123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410 |
- Unit JIDctFst;
- { This file contains a fast, not so accurate integer implementation of the
- inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
- must also perform dequantization of the input coefficients.
- A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- on each row (or vice versa, but it's more convenient to emit a row at
- a time). Direct algorithms are also available, but they are much more
- complex and seem not to be any faster when reduced to code.
- This implementation is based on Arai, Agui, and Nakajima's algorithm for
- scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- Japanese, but the algorithm is described in the Pennebaker & Mitchell
- JPEG textbook (see REFERENCES section in file README). The following code
- is based directly on figure 4-8 in P&M.
- While an 8-point DCT cannot be done in less than 11 multiplies, it is
- possible to arrange the computation so that many of the multiplies are
- simple scalings of the final outputs. These multiplies can then be
- folded into the multiplications or divisions by the JPEG quantization
- table entries. The AA&N method leaves only 5 multiplies and 29 adds
- to be done in the DCT itself.
- The primary disadvantage of this method is that with fixed-point math,
- accuracy is lost due to imprecise representation of the scaled
- quantization values. The smaller the quantization table entry, the less
- precise the scaled value, so this implementation does worse with high-
- quality-setting files than with low-quality ones. }
- { Original : jidctfst.c ; Copyright (C) 1994-1996, Thomas G. Lane. }
- interface
- {$I jconfig.inc}
- uses
- jmorecfg,
- jinclude,
- jpeglib,
- jdct; { Private declarations for DCT subsystem }
- { Perform dequantization and inverse DCT on one block of coefficients. }
- {GLOBAL}
- procedure jpeg_idct_ifast (cinfo : j_decompress_ptr;
- compptr : jpeg_component_info_ptr;
- coef_block : JCOEFPTR;
- output_buf : JSAMPARRAY;
- output_col : JDIMENSION);
- implementation
- { This module is specialized to the case DCTSIZE = 8. }
- {$ifndef DCTSIZE_IS_8}
- Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
- {$endif}
- { Scaling decisions are generally the same as in the LL&M algorithm;
- see jidctint.c for more details. However, we choose to descale
- (right shift) multiplication products as soon as they are formed,
- rather than carrying additional fractional bits into subsequent additions.
- This compromises accuracy slightly, but it lets us save a few shifts.
- More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
- everywhere except in the multiplications proper; this saves a good deal
- of work on 16-bit-int machines.
- The dequantized coefficients are not integers because the AA&N scaling
- factors have been incorporated. We represent them scaled up by PASS1_BITS,
- so that the first and second IDCT rounds have the same input scaling.
- For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
- avoid a descaling shift; this compromises accuracy rather drastically
- for small quantization table entries, but it saves a lot of shifts.
- For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
- so we use a much larger scaling factor to preserve accuracy.
- A final compromise is to represent the multiplicative constants to only
- 8 fractional bits, rather than 13. This saves some shifting work on some
- machines, and may also reduce the cost of multiplication (since there
- are fewer one-bits in the constants). }
- {$ifdef BITS_IN_JSAMPLE_IS_8}
- const
- CONST_BITS = 8;
- PASS1_BITS = 2;
- {$else}
- const
- CONST_BITS = 8;
- PASS1_BITS = 1; { lose a little precision to avoid overflow }
- {$endif}
- const
- FIX_1_082392200 = INT32(Round((INT32(1) shl CONST_BITS)*1.082392200)); {277}
- FIX_1_414213562 = INT32(Round((INT32(1) shl CONST_BITS)*1.414213562)); {362}
- FIX_1_847759065 = INT32(Round((INT32(1) shl CONST_BITS)*1.847759065)); {473}
- FIX_2_613125930 = INT32(Round((INT32(1) shl CONST_BITS)*2.613125930)); {669}
- { Descale and correctly round an INT32 value that's scaled by N bits.
- We assume RIGHT_SHIFT rounds towards minus infinity, so adding
- the fudge factor is correct for either sign of X. }
- function DESCALE(x : INT32; n : int) : INT32;
- var
- shift_temp : INT32;
- begin
- {$ifdef USE_ACCURATE_ROUNDING}
- shift_temp := x + (INT32(1) shl (n-1));
- {$else}
- { We can gain a little more speed, with a further compromise in accuracy,
- by omitting the addition in a descaling shift. This yields an incorrectly
- rounded result half the time... }
- shift_temp := x;
- {$endif}
- {$ifdef RIGHT_SHIFT_IS_UNSIGNED}
- if shift_temp < 0 then
- Descale := (shift_temp shr n) or ((not INT32(0)) shl (32-n))
- else
- {$endif}
- Descale := (shift_temp shr n);
- end;
- { Multiply a DCTELEM variable by an INT32 constant, and immediately
- descale to yield a DCTELEM result. }
- {(DCTELEM( DESCALE((var) * (const), CONST_BITS))}
- function Multiply(Avar, Aconst: Integer): DCTELEM;
- begin
- Multiply := DCTELEM( Avar*INT32(Aconst) div (INT32(1) shl CONST_BITS));
- end;
- { Dequantize a coefficient by multiplying it by the multiplier-table
- entry; produce a DCTELEM result. For 8-bit data a 16x16->16
- multiplication will do. For 12-bit data, the multiplier table is
- declared INT32, so a 32-bit multiply will be used. }
- {$ifdef BITS_IN_JSAMPLE_IS_8}
- function DEQUANTIZE(coef,quantval : int) : int;
- begin
- Dequantize := ( IFAST_MULT_TYPE(coef) * quantval);
- end;
- {$else}
- function DEQUANTIZE(coef,quantval : INT32) : int;
- begin
- Dequantize := DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS);
- end;
- {$endif}
- { Like DESCALE, but applies to a DCTELEM and produces an int.
- We assume that int right shift is unsigned if INT32 right shift is. }
- function IDESCALE(x : DCTELEM; n : int) : int;
- {$ifdef BITS_IN_JSAMPLE_IS_8}
- const
- DCTELEMBITS = 16; { DCTELEM may be 16 or 32 bits }
- {$else}
- const
- DCTELEMBITS = 32; { DCTELEM must be 32 bits }
- {$endif}
- var
- ishift_temp : DCTELEM;
- begin
- {$ifndef USE_ACCURATE_ROUNDING}
- ishift_temp := x + (INT32(1) shl (n-1));
- {$else}
- { We can gain a little more speed, with a further compromise in accuracy,
- by omitting the addition in a descaling shift. This yields an incorrectly
- rounded result half the time... }
- ishift_temp := x;
- {$endif}
- {$ifdef RIGHT_SHIFT_IS_UNSIGNED}
- if ishift_temp < 0 then
- IDescale := (ishift_temp shr n)
- or ((not DCTELEM(0)) shl (DCTELEMBITS-n))
- else
- {$endif}
- IDescale := (ishift_temp shr n);
- end;
- { Perform dequantization and inverse DCT on one block of coefficients. }
- {GLOBAL}
- procedure jpeg_idct_ifast (cinfo : j_decompress_ptr;
- compptr : jpeg_component_info_ptr;
- coef_block : JCOEFPTR;
- output_buf : JSAMPARRAY;
- output_col : JDIMENSION);
- type
- PWorkspace = ^TWorkspace;
- TWorkspace = coef_bits_field; { buffers data between passes }
- var
- tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : DCTELEM;
- tmp10, tmp11, tmp12, tmp13 : DCTELEM;
- z5, z10, z11, z12, z13 : DCTELEM;
- inptr : JCOEFPTR;
- quantptr : IFAST_MULT_TYPE_FIELD_PTR;
- wsptr : PWorkspace;
- outptr : JSAMPROW;
- range_limit : JSAMPROW;
- ctr : int;
- workspace : TWorkspace; { buffers data between passes }
- {SHIFT_TEMPS} { for DESCALE }
- {ISHIFT_TEMPS} { for IDESCALE }
- var
- dcval : int;
- var
- dcval_ : JSAMPLE;
- begin
- { Each IDCT routine is responsible for range-limiting its results and
- converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
- be quite far out of range if the input data is corrupt, so a bulletproof
- range-limiting step is required. We use a mask-and-table-lookup method
- to do the combined operations quickly. See the comments with
- prepare_range_limit_table (in jdmaster.c) for more info. }
- range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE]));
- { Pass 1: process columns from input, store into work array. }
- inptr := coef_block;
- quantptr := IFAST_MULT_TYPE_FIELD_PTR(compptr^.dct_table);
- wsptr := @workspace;
- for ctr := pred(DCTSIZE) downto 0 do
- begin
- { Due to quantization, we will usually find that many of the input
- coefficients are zero, especially the AC terms. We can exploit this
- by short-circuiting the IDCT calculation for any column in which all
- the AC terms are zero. In that case each output is equal to the
- DC coefficient (with scale factor as needed).
- With typical images and quantization tables, half or more of the
- column DCT calculations can be simplified this way. }
- if (inptr^[DCTSIZE*1]=0) and (inptr^[DCTSIZE*2]=0) and (inptr^[DCTSIZE*3]=0) and
- (inptr^[DCTSIZE*4]=0) and (inptr^[DCTSIZE*5]=0) and (inptr^[DCTSIZE*6]=0) and
- (inptr^[DCTSIZE*7]=0) then
- begin
- { AC terms all zero }
- dcval := int(DEQUANTIZE(inptr^[DCTSIZE*0], quantptr^[DCTSIZE*0]));
- wsptr^[DCTSIZE*0] := dcval;
- wsptr^[DCTSIZE*1] := dcval;
- wsptr^[DCTSIZE*2] := dcval;
- wsptr^[DCTSIZE*3] := dcval;
- wsptr^[DCTSIZE*4] := dcval;
- wsptr^[DCTSIZE*5] := dcval;
- wsptr^[DCTSIZE*6] := dcval;
- wsptr^[DCTSIZE*7] := dcval;
- Inc(JCOEF_PTR(inptr)); { advance pointers to next column }
- Inc(IFAST_MULT_TYPE_PTR(quantptr));
- Inc(int_ptr(wsptr));
- continue;
- end;
- { Even part }
- tmp0 := DEQUANTIZE(inptr^[DCTSIZE*0], quantptr^[DCTSIZE*0]);
- tmp1 := DEQUANTIZE(inptr^[DCTSIZE*2], quantptr^[DCTSIZE*2]);
- tmp2 := DEQUANTIZE(inptr^[DCTSIZE*4], quantptr^[DCTSIZE*4]);
- tmp3 := DEQUANTIZE(inptr^[DCTSIZE*6], quantptr^[DCTSIZE*6]);
- tmp10 := tmp0 + tmp2; { phase 3 }
- tmp11 := tmp0 - tmp2;
- tmp13 := tmp1 + tmp3; { phases 5-3 }
- tmp12 := MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; { 2*c4 }
- tmp0 := tmp10 + tmp13; { phase 2 }
- tmp3 := tmp10 - tmp13;
- tmp1 := tmp11 + tmp12;
- tmp2 := tmp11 - tmp12;
- { Odd part }
- tmp4 := DEQUANTIZE(inptr^[DCTSIZE*1], quantptr^[DCTSIZE*1]);
- tmp5 := DEQUANTIZE(inptr^[DCTSIZE*3], quantptr^[DCTSIZE*3]);
- tmp6 := DEQUANTIZE(inptr^[DCTSIZE*5], quantptr^[DCTSIZE*5]);
- tmp7 := DEQUANTIZE(inptr^[DCTSIZE*7], quantptr^[DCTSIZE*7]);
- z13 := tmp6 + tmp5; { phase 6 }
- z10 := tmp6 - tmp5;
- z11 := tmp4 + tmp7;
- z12 := tmp4 - tmp7;
- tmp7 := z11 + z13; { phase 5 }
- tmp11 := MULTIPLY(z11 - z13, FIX_1_414213562); { 2*c4 }
- z5 := MULTIPLY(z10 + z12, FIX_1_847759065); { 2*c2 }
- tmp10 := MULTIPLY(z12, FIX_1_082392200) - z5; { 2*(c2-c6) }
- tmp12 := MULTIPLY(z10, - FIX_2_613125930) + z5; { -2*(c2+c6) }
- tmp6 := tmp12 - tmp7; { phase 2 }
- tmp5 := tmp11 - tmp6;
- tmp4 := tmp10 + tmp5;
- wsptr^[DCTSIZE*0] := int (tmp0 + tmp7);
- wsptr^[DCTSIZE*7] := int (tmp0 - tmp7);
- wsptr^[DCTSIZE*1] := int (tmp1 + tmp6);
- wsptr^[DCTSIZE*6] := int (tmp1 - tmp6);
- wsptr^[DCTSIZE*2] := int (tmp2 + tmp5);
- wsptr^[DCTSIZE*5] := int (tmp2 - tmp5);
- wsptr^[DCTSIZE*4] := int (tmp3 + tmp4);
- wsptr^[DCTSIZE*3] := int (tmp3 - tmp4);
- Inc(JCOEF_PTR(inptr)); { advance pointers to next column }
- Inc(IFAST_MULT_TYPE_PTR(quantptr));
- Inc(int_ptr(wsptr));
- end;
- { Pass 2: process rows from work array, store into output array. }
- { Note that we must descale the results by a factor of 8 == 2**3, }
- { and also undo the PASS1_BITS scaling. }
- wsptr := @workspace;
- for ctr := 0 to pred(DCTSIZE) do
- begin
- outptr := JSAMPROW(@output_buf^[ctr]^[output_col]);
- { Rows of zeroes can be exploited in the same way as we did with columns.
- However, the column calculation has created many nonzero AC terms, so
- the simplification applies less often (typically 5% to 10% of the time).
- On machines with very fast multiplication, it's possible that the
- test takes more time than it's worth. In that case this section
- may be commented out. }
- {$ifndef NO_ZERO_ROW_TEST}
- if (wsptr^[1]=0) and (wsptr^[2]=0) and (wsptr^[3]=0) and (wsptr^[4]=0) and
- (wsptr^[5]=0) and (wsptr^[6]=0) and (wsptr^[7]=0) then
- begin
- { AC terms all zero }
- dcval_ := range_limit^[IDESCALE(wsptr^[0], PASS1_BITS+3)
- and RANGE_MASK];
- outptr^[0] := dcval_;
- outptr^[1] := dcval_;
- outptr^[2] := dcval_;
- outptr^[3] := dcval_;
- outptr^[4] := dcval_;
- outptr^[5] := dcval_;
- outptr^[6] := dcval_;
- outptr^[7] := dcval_;
- Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row }
- continue;
- end;
- {$endif}
- { Even part }
- tmp10 := (DCTELEM(wsptr^[0]) + DCTELEM(wsptr^[4]));
- tmp11 := (DCTELEM(wsptr^[0]) - DCTELEM(wsptr^[4]));
- tmp13 := (DCTELEM(wsptr^[2]) + DCTELEM(wsptr^[6]));
- tmp12 := MULTIPLY(DCTELEM(wsptr^[2]) - DCTELEM(wsptr^[6]), FIX_1_414213562)
- - tmp13;
- tmp0 := tmp10 + tmp13;
- tmp3 := tmp10 - tmp13;
- tmp1 := tmp11 + tmp12;
- tmp2 := tmp11 - tmp12;
- { Odd part }
- z13 := DCTELEM(wsptr^[5]) + DCTELEM(wsptr^[3]);
- z10 := DCTELEM(wsptr^[5]) - DCTELEM(wsptr^[3]);
- z11 := DCTELEM(wsptr^[1]) + DCTELEM(wsptr^[7]);
- z12 := DCTELEM(wsptr^[1]) - DCTELEM(wsptr^[7]);
- tmp7 := z11 + z13; { phase 5 }
- tmp11 := MULTIPLY(z11 - z13, FIX_1_414213562); { 2*c4 }
- z5 := MULTIPLY(z10 + z12, FIX_1_847759065); { 2*c2 }
- tmp10 := MULTIPLY(z12, FIX_1_082392200) - z5; { 2*(c2-c6) }
- tmp12 := MULTIPLY(z10, - FIX_2_613125930) + z5; { -2*(c2+c6) }
- tmp6 := tmp12 - tmp7; { phase 2 }
- tmp5 := tmp11 - tmp6;
- tmp4 := tmp10 + tmp5;
- { Final output stage: scale down by a factor of 8 and range-limit }
- outptr^[0] := range_limit^[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
- and RANGE_MASK];
- outptr^[7] := range_limit^[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
- and RANGE_MASK];
- outptr^[1] := range_limit^[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
- and RANGE_MASK];
- outptr^[6] := range_limit^[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
- and RANGE_MASK];
- outptr^[2] := range_limit^[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
- and RANGE_MASK];
- outptr^[5] := range_limit^[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
- and RANGE_MASK];
- outptr^[4] := range_limit^[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
- and RANGE_MASK];
- outptr^[3] := range_limit^[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
- and RANGE_MASK];
- Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row }
- end;
- end;
- end.
|