aasmcpu.pas 139 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. symtype,
  28. aasmbase,aasmtai,aasmdata,aasmsym,
  29. ogbase;
  30. const
  31. { "mov reg,reg" source operand number }
  32. O_MOV_SOURCE = 0;
  33. { "mov reg,reg" destination operand number }
  34. O_MOV_DEST = 1;
  35. { Operand types }
  36. OT_NONE = $00000000;
  37. { Bits 0..7: sizes }
  38. OT_BITS8 = $00000001;
  39. OT_BITS16 = $00000002;
  40. OT_BITS32 = $00000004;
  41. OT_BITS64 = $00000008; { x86_64 and FPU }
  42. OT_BITS128 = $10000000; { 16 byte SSE }
  43. OT_BITS256 = $20000000; { 32 byte AVX }
  44. OT_BITS80 = $00000010; { FPU only }
  45. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  46. OT_NEAR = $00000040;
  47. OT_SHORT = $00000080;
  48. { TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
  49. but this requires adjusting the opcode table }
  50. OT_SIZE_MASK = $3000001F; { all the size attributes }
  51. OT_NON_SIZE = longint(not OT_SIZE_MASK);
  52. { Bits 8..11: modifiers }
  53. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  54. OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
  55. OT_COLON = $00000400; { operand is followed by a colon }
  56. OT_MODIFIER_MASK = $00000F00;
  57. { Bits 12..15: type of operand }
  58. OT_REGISTER = $00001000;
  59. OT_IMMEDIATE = $00002000;
  60. OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
  61. OT_REGMEM = $00008000; { for r/m, ie EA, operands }
  62. OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
  63. OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
  64. { Bits 20..22, 24..26: register classes
  65. otf_* consts are not used alone, only to build other constants. }
  66. otf_reg_cdt = $00100000;
  67. otf_reg_gpr = $00200000;
  68. otf_reg_sreg = $00400000;
  69. otf_reg_fpu = $01000000;
  70. otf_reg_mmx = $02000000;
  71. otf_reg_xmm = $04000000;
  72. otf_reg_ymm = $08000000;
  73. { Bits 16..19: subclasses, meaning depends on classes field }
  74. otf_sub0 = $00010000;
  75. otf_sub1 = $00020000;
  76. otf_sub2 = $00040000;
  77. otf_sub3 = $00080000;
  78. OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
  79. OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_fpu or otf_reg_mmx or otf_reg_xmm or otf_reg_ymm;
  80. { register class 0: CRx, DRx and TRx }
  81. {$ifdef x86_64}
  82. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
  83. {$else x86_64}
  84. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
  85. {$endif x86_64}
  86. OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
  87. OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
  88. OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
  89. OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
  90. { register class 1: general-purpose registers }
  91. OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
  92. OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
  93. OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
  94. OT_REG16 = OT_REG_GPR or OT_BITS16;
  95. OT_REG32 = OT_REG_GPR or OT_BITS32;
  96. OT_REG64 = OT_REG_GPR or OT_BITS64;
  97. { GPR subclass 0: accumulator: AL, AX, EAX or RAX }
  98. OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
  99. OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
  100. OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
  101. OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
  102. {$ifdef x86_64}
  103. OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
  104. {$endif x86_64}
  105. { GPR subclass 1: counter: CL, CX, ECX or RCX }
  106. OT_REG_COUNT = OT_REG_GPR or otf_sub1;
  107. OT_REG_CL = OT_REG_COUNT or OT_BITS8;
  108. OT_REG_CX = OT_REG_COUNT or OT_BITS16;
  109. OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
  110. {$ifdef x86_64}
  111. OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
  112. {$endif x86_64}
  113. { GPR subclass 2: data register: DL, DX, EDX or RDX }
  114. OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
  115. OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
  116. { register class 2: Segment registers }
  117. OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
  118. OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
  119. OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
  120. OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
  121. { register class 3: FPU registers }
  122. OT_FPUREG = OT_REGISTER or otf_reg_fpu;
  123. OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
  124. { register class 4: MMX (both reg and r/m) }
  125. OT_MMXREG = OT_REGNORM or otf_reg_mmx;
  126. OT_MMXRM = OT_REGMEM or otf_reg_mmx;
  127. { register class 5: XMM (both reg and r/m) }
  128. OT_XMMREG = OT_REGNORM or otf_reg_xmm;
  129. OT_XMMRM = OT_REGMEM or otf_reg_xmm;
  130. OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
  131. OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
  132. { register class 5: XMM (both reg and r/m) }
  133. OT_YMMREG = OT_REGNORM or otf_reg_ymm;
  134. OT_YMMRM = OT_REGMEM or otf_reg_ymm;
  135. OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
  136. OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
  137. { Vector-Memory operands }
  138. OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64;
  139. { Memory operands }
  140. OT_MEM8 = OT_MEMORY or OT_BITS8;
  141. OT_MEM16 = OT_MEMORY or OT_BITS16;
  142. OT_MEM32 = OT_MEMORY or OT_BITS32;
  143. OT_MEM64 = OT_MEMORY or OT_BITS64;
  144. OT_MEM128 = OT_MEMORY or OT_BITS128;
  145. OT_MEM256 = OT_MEMORY or OT_BITS256;
  146. OT_MEM80 = OT_MEMORY or OT_BITS80;
  147. OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
  148. { simple [address] offset }
  149. { Matches any type of r/m operand }
  150. OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM;
  151. { Immediate operands }
  152. OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
  153. OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
  154. OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
  155. OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
  156. OT_ONENESS = otf_sub0; { special type of immediate operand }
  157. OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
  158. { Size of the instruction table converted by nasmconv.pas }
  159. {$if defined(x86_64)}
  160. instabentries = {$i x8664nop.inc}
  161. {$elseif defined(i386)}
  162. instabentries = {$i i386nop.inc}
  163. {$elseif defined(i8086)}
  164. instabentries = {$i i8086nop.inc}
  165. {$endif}
  166. maxinfolen = 8;
  167. type
  168. { What an instruction can change. Needed for optimizer and spilling code.
  169. Note: The order of this enumeration is should not be changed! }
  170. TInsChange = (Ch_None,
  171. {Read from a register}
  172. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  173. {write from a register}
  174. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  175. {read and write from/to a register}
  176. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  177. {modify the contents of a register with the purpose of using
  178. this changed content afterwards (add/sub/..., but e.g. not rep
  179. or movsd)}
  180. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  181. Ch_CDirFlag {clear direction flag}, Ch_SDirFlag {set dir flag},Ch_RDirFlag {read direction flag},
  182. Ch_RFlags, Ch_WFlags, Ch_RWFlags, Ch_FPU,
  183. Ch_Rop1, Ch_Wop1, Ch_RWop1,Ch_Mop1,
  184. Ch_Rop2, Ch_Wop2, Ch_RWop2,Ch_Mop2,
  185. Ch_Rop3, Ch_WOp3, Ch_RWOp3,Ch_Mop3,
  186. Ch_WMemEDI,
  187. Ch_All,
  188. { x86_64 registers }
  189. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  190. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  191. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  192. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
  193. );
  194. TInsProp = packed record
  195. Ch : set of TInsChange;
  196. end;
  197. TMemRefSizeInfo = (msiUnkown, msiUnsupported, msiNoSize,
  198. msiMultiple, msiMultiple8, msiMultiple16, msiMultiple32,
  199. msiMultiple64, msiMultiple128, msiMultiple256,
  200. msiMemRegSize, msiMemRegx16y32, msiMemRegx32y64, msiMemRegx64y128, msiMemRegx64y256,
  201. msiMem8, msiMem16, msiMem32, msiMem64, msiMem128, msiMem256,
  202. msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  203. msiVMemMultiple, msiVMemRegSize);
  204. TConstSizeInfo = (csiUnkown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
  205. TInsTabMemRefSizeInfoRec = record
  206. MemRefSize : TMemRefSizeInfo;
  207. ExistsSSEAVX: boolean;
  208. ConstSize : TConstSizeInfo;
  209. end;
  210. const
  211. MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultiple8,
  212. msiMultiple16, msiMultiple32,
  213. msiMultiple64, msiMultiple128,
  214. msiMultiple256, msiVMemMultiple];
  215. MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  216. msiVMemMultiple, msiVMemRegSize];
  217. InsProp : array[tasmop] of TInsProp =
  218. {$if defined(x86_64)}
  219. {$i x8664pro.inc}
  220. {$elseif defined(i386)}
  221. {$i i386prop.inc}
  222. {$elseif defined(i8086)}
  223. {$i i8086prop.inc}
  224. {$endif}
  225. type
  226. TOperandOrder = (op_intel,op_att);
  227. tinsentry=packed record
  228. opcode : tasmop;
  229. ops : byte;
  230. optypes : array[0..max_operands-1] of longint;
  231. code : array[0..maxinfolen] of char;
  232. flags : int64;
  233. end;
  234. pinsentry=^tinsentry;
  235. { alignment for operator }
  236. tai_align = class(tai_align_abstract)
  237. reg : tregister;
  238. constructor create(b:byte);override;
  239. constructor create_op(b: byte; _op: byte);override;
  240. function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
  241. end;
  242. taicpu = class(tai_cpu_abstract_sym)
  243. opsize : topsize;
  244. constructor op_none(op : tasmop);
  245. constructor op_none(op : tasmop;_size : topsize);
  246. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  247. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  248. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  249. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  250. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  251. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  252. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  253. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  254. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  255. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  256. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  257. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  258. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  259. constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  260. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  261. constructor op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  262. { this is for Jmp instructions }
  263. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  264. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  265. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  266. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  267. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  268. procedure changeopsize(siz:topsize);
  269. function GetString:string;
  270. { This is a workaround for the GAS non commutative fpu instruction braindamage.
  271. Early versions of the UnixWare assembler had a bug where some fpu instructions
  272. were reversed and GAS still keeps this "feature" for compatibility.
  273. for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
  274. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
  275. http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
  276. Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
  277. when generating output for other assemblers, the opcodes must be fixed before writing them.
  278. This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
  279. because in case of smartlinking assembler is generated twice so at the second run wrong
  280. assembler is generated.
  281. }
  282. function FixNonCommutativeOpcodes: tasmop;
  283. private
  284. FOperandOrder : TOperandOrder;
  285. procedure init(_size : topsize); { this need to be called by all constructor }
  286. public
  287. { the next will reset all instructions that can change in pass 2 }
  288. procedure ResetPass1;override;
  289. procedure ResetPass2;override;
  290. function CheckIfValid:boolean;
  291. function Pass1(objdata:TObjData):longint;override;
  292. procedure Pass2(objdata:TObjData);override;
  293. procedure SetOperandOrder(order:TOperandOrder);
  294. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  295. { register spilling code }
  296. function spilling_get_operation_type(opnr: longint): topertype;override;
  297. {$ifdef i8086}
  298. procedure loadsegsymbol(opidx:longint;s:tasmsymbol);
  299. {$endif i8086}
  300. private
  301. { next fields are filled in pass1, so pass2 is faster }
  302. insentry : PInsEntry;
  303. insoffset : longint;
  304. LastInsOffset : longint; { need to be public to be reset }
  305. inssize : shortint;
  306. {$ifdef x86_64}
  307. rex : byte;
  308. {$endif x86_64}
  309. function InsEnd:longint;
  310. procedure create_ot(objdata:TObjData);
  311. function Matches(p:PInsEntry):boolean;
  312. function calcsize(p:PInsEntry):shortint;
  313. procedure gencode(objdata:TObjData);
  314. function NeedAddrPrefix(opidx:byte):boolean;
  315. procedure Swapoperands;
  316. function FindInsentry(objdata:TObjData):boolean;
  317. end;
  318. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  319. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  320. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  321. procedure InitAsm;
  322. procedure DoneAsm;
  323. {*****************************************************************************
  324. External Symbol Chain
  325. used for agx86nsm and agx86int
  326. *****************************************************************************}
  327. type
  328. PExternChain = ^TExternChain;
  329. TExternChain = Record
  330. psym : pshortstring;
  331. is_defined : boolean;
  332. next : PExternChain;
  333. end;
  334. const
  335. FEC : PExternChain = nil;
  336. procedure AddSymbol(symname : string; defined : boolean);
  337. procedure FreeExternChainList;
  338. implementation
  339. uses
  340. cutils,
  341. globals,
  342. systems,
  343. procinfo,
  344. itcpugas,
  345. symsym,
  346. cpuinfo;
  347. procedure AddSymbol(symname : string; defined : boolean);
  348. var
  349. EC : PExternChain;
  350. begin
  351. EC:=FEC;
  352. while assigned(EC) do
  353. begin
  354. if EC^.psym^=symname then
  355. begin
  356. if defined then
  357. EC^.is_defined:=true;
  358. exit;
  359. end;
  360. EC:=EC^.next;
  361. end;
  362. New(EC);
  363. EC^.next:=FEC;
  364. FEC:=EC;
  365. FEC^.psym:=stringdup(symname);
  366. FEC^.is_defined := defined;
  367. end;
  368. procedure FreeExternChainList;
  369. var
  370. EC : PExternChain;
  371. begin
  372. EC:=FEC;
  373. while assigned(EC) do
  374. begin
  375. FEC:=EC^.next;
  376. stringdispose(EC^.psym);
  377. Dispose(EC);
  378. EC:=FEC;
  379. end;
  380. end;
  381. {*****************************************************************************
  382. Instruction table
  383. *****************************************************************************}
  384. const
  385. {Instruction flags }
  386. IF_NONE = $00000000;
  387. IF_SM = $00000001; { size match first two operands }
  388. IF_SM2 = $00000002;
  389. IF_SB = $00000004; { unsized operands can't be non-byte }
  390. IF_SW = $00000008; { unsized operands can't be non-word }
  391. IF_SD = $00000010; { unsized operands can't be nondword }
  392. IF_SMASK = $0000001f;
  393. IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
  394. IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
  395. IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
  396. IF_ARMASK = $00000060; { mask for unsized argument spec }
  397. IF_ARSHIFT = 5; { LSB of IF_ARMASK }
  398. IF_PRIV = $00000100; { it's a privileged instruction }
  399. IF_SMM = $00000200; { it's only valid in SMM }
  400. IF_PROT = $00000400; { it's protected mode only }
  401. IF_NOX86_64 = $00000800; { removed instruction in x86_64 }
  402. IF_UNDOC = $00001000; { it's an undocumented instruction }
  403. IF_FPU = $00002000; { it's an FPU instruction }
  404. IF_MMX = $00004000; { it's an MMX instruction }
  405. { it's a 3DNow! instruction }
  406. IF_3DNOW = $00008000;
  407. { it's a SSE (KNI, MMX2) instruction }
  408. IF_SSE = $00010000;
  409. { SSE2 instructions }
  410. IF_SSE2 = $00020000;
  411. { SSE3 instructions }
  412. IF_SSE3 = $00040000;
  413. { SSE64 instructions }
  414. IF_SSE64 = $00080000;
  415. { the mask for processor types }
  416. {IF_PMASK = longint($FF000000);}
  417. { the mask for disassembly "prefer" }
  418. {IF_PFMASK = longint($F001FF00);}
  419. { SVM instructions }
  420. IF_SVM = $00100000;
  421. { SSE4 instructions }
  422. IF_SSE4 = $00200000;
  423. { TODO: These flags were added to make x86ins.dat more readable.
  424. Values must be reassigned to make any other use of them. }
  425. IF_SSSE3 = $00200000;
  426. IF_SSE41 = $00200000;
  427. IF_SSE42 = $00200000;
  428. IF_AVX = $00200000;
  429. IF_AVX2 = $00200000;
  430. IF_BMI1 = $00200000;
  431. IF_BMI2 = $00200000;
  432. IF_16BITONLY = $00200000;
  433. IF_FMA = $00200000;
  434. IF_FMA4 = $00200000;
  435. IF_TSX = $00200000;
  436. IF_RAND = $00200000;
  437. IF_XSAVE = $00200000;
  438. IF_PREFETCHWT1 = $00200000;
  439. IF_PLEVEL = $0F000000; { mask for processor level }
  440. IF_8086 = $00000000; { 8086 instruction }
  441. IF_186 = $01000000; { 186+ instruction }
  442. IF_286 = $02000000; { 286+ instruction }
  443. IF_386 = $03000000; { 386+ instruction }
  444. IF_486 = $04000000; { 486+ instruction }
  445. IF_PENT = $05000000; { Pentium instruction }
  446. IF_P6 = $06000000; { P6 instruction }
  447. IF_KATMAI = $07000000; { Katmai instructions }
  448. IF_WILLAMETTE = $08000000; { Willamette instructions }
  449. IF_PRESCOTT = $09000000; { Prescott instructions }
  450. IF_X86_64 = $0a000000;
  451. IF_SANDYBRIDGE = $0e000000; { Sandybridge-specific instruction }
  452. IF_NEC = $0f000000; { NEC V20/V30 instruction }
  453. { the following are not strictly part of the processor level, because
  454. they are never used standalone, but always in combination with a
  455. separate processor level flag. Therefore, they use bits outside of
  456. IF_PLEVEL, otherwise they would mess up the processor level they're
  457. used in combination with.
  458. The following combinations are currently used:
  459. IF_AMD or IF_P6,
  460. IF_CYRIX or IF_486,
  461. IF_CYRIX or IF_PENT,
  462. IF_CYRIX or IF_P6 }
  463. IF_CYRIX = $10000000; { Cyrix, Centaur or VIA-specific instruction }
  464. IF_AMD = $20000000; { AMD-specific instruction }
  465. { added flags }
  466. IF_PRE = $40000000; { it's a prefix instruction }
  467. IF_PASS2 = $80000000; { if the instruction can change in a second pass }
  468. IF_IMM4 = $100000000; { immediate operand is a nibble (must be in range [0..15]) }
  469. IF_IMM3 = $200000000; { immediate operand is a triad (must be in range [0..7]) }
  470. type
  471. TInsTabCache=array[TasmOp] of longint;
  472. PInsTabCache=^TInsTabCache;
  473. TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
  474. PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
  475. const
  476. {$if defined(x86_64)}
  477. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  478. {$elseif defined(i386)}
  479. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  480. {$elseif defined(i8086)}
  481. InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
  482. {$endif}
  483. var
  484. InsTabCache : PInsTabCache;
  485. InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
  486. const
  487. {$if defined(x86_64)}
  488. { Intel style operands ! }
  489. opsize_2_type:array[0..2,topsize] of longint=(
  490. (OT_NONE,
  491. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  492. OT_BITS16,OT_BITS32,OT_BITS64,
  493. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  494. OT_BITS64,
  495. OT_NEAR,OT_FAR,OT_SHORT,
  496. OT_NONE,
  497. OT_BITS128,
  498. OT_BITS256
  499. ),
  500. (OT_NONE,
  501. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  502. OT_BITS16,OT_BITS32,OT_BITS64,
  503. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  504. OT_BITS64,
  505. OT_NEAR,OT_FAR,OT_SHORT,
  506. OT_NONE,
  507. OT_BITS128,
  508. OT_BITS256
  509. ),
  510. (OT_NONE,
  511. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  512. OT_BITS16,OT_BITS32,OT_BITS64,
  513. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  514. OT_BITS64,
  515. OT_NEAR,OT_FAR,OT_SHORT,
  516. OT_NONE,
  517. OT_BITS128,
  518. OT_BITS256
  519. )
  520. );
  521. reg_ot_table : array[tregisterindex] of longint = (
  522. {$i r8664ot.inc}
  523. );
  524. {$elseif defined(i386)}
  525. { Intel style operands ! }
  526. opsize_2_type:array[0..2,topsize] of longint=(
  527. (OT_NONE,
  528. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  529. OT_BITS16,OT_BITS32,OT_BITS64,
  530. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  531. OT_BITS64,
  532. OT_NEAR,OT_FAR,OT_SHORT,
  533. OT_NONE,
  534. OT_BITS128,
  535. OT_BITS256
  536. ),
  537. (OT_NONE,
  538. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  539. OT_BITS16,OT_BITS32,OT_BITS64,
  540. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  541. OT_BITS64,
  542. OT_NEAR,OT_FAR,OT_SHORT,
  543. OT_NONE,
  544. OT_BITS128,
  545. OT_BITS256
  546. ),
  547. (OT_NONE,
  548. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  549. OT_BITS16,OT_BITS32,OT_BITS64,
  550. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  551. OT_BITS64,
  552. OT_NEAR,OT_FAR,OT_SHORT,
  553. OT_NONE,
  554. OT_BITS128,
  555. OT_BITS256
  556. )
  557. );
  558. reg_ot_table : array[tregisterindex] of longint = (
  559. {$i r386ot.inc}
  560. );
  561. {$elseif defined(i8086)}
  562. { Intel style operands ! }
  563. opsize_2_type:array[0..2,topsize] of longint=(
  564. (OT_NONE,
  565. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  566. OT_BITS16,OT_BITS32,OT_BITS64,
  567. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  568. OT_BITS64,
  569. OT_NEAR,OT_FAR,OT_SHORT,
  570. OT_NONE,
  571. OT_BITS128,
  572. OT_BITS256
  573. ),
  574. (OT_NONE,
  575. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  576. OT_BITS16,OT_BITS32,OT_BITS64,
  577. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  578. OT_BITS64,
  579. OT_NEAR,OT_FAR,OT_SHORT,
  580. OT_NONE,
  581. OT_BITS128,
  582. OT_BITS256
  583. ),
  584. (OT_NONE,
  585. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  586. OT_BITS16,OT_BITS32,OT_BITS64,
  587. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  588. OT_BITS64,
  589. OT_NEAR,OT_FAR,OT_SHORT,
  590. OT_NONE,
  591. OT_BITS128,
  592. OT_BITS256
  593. )
  594. );
  595. reg_ot_table : array[tregisterindex] of longint = (
  596. {$i r8086ot.inc}
  597. );
  598. {$endif}
  599. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  600. begin
  601. result := InsTabMemRefSizeInfoCache^[aAsmop];
  602. end;
  603. { Operation type for spilling code }
  604. type
  605. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  606. var
  607. operation_type_table : ^toperation_type_table;
  608. {****************************************************************************
  609. TAI_ALIGN
  610. ****************************************************************************}
  611. constructor tai_align.create(b: byte);
  612. begin
  613. inherited create(b);
  614. reg:=NR_ECX;
  615. end;
  616. constructor tai_align.create_op(b: byte; _op: byte);
  617. begin
  618. inherited create_op(b,_op);
  619. reg:=NR_NO;
  620. end;
  621. function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
  622. const
  623. { Updated according to
  624. Software Optimization Guide for AMD Family 15h Processors, Verison 3.08, January 2014
  625. and
  626. Intel 64 and IA-32 Architectures Software Developer’s Manual
  627. Volume 2B: Instruction Set Reference, N-Z, January 2015
  628. }
  629. alignarray_cmovcpus:array[0..10] of string[11]=(
  630. #$66#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  631. #$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  632. #$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  633. #$0F#$1F#$84#$00#$00#$00#$00#$00,
  634. #$0F#$1F#$80#$00#$00#$00#$00,
  635. #$66#$0F#$1F#$44#$00#$00,
  636. #$0F#$1F#$44#$00#$00,
  637. #$0F#$1F#$40#$00,
  638. #$0F#$1F#$00,
  639. #$66#$90,
  640. #$90);
  641. {$ifdef i8086}
  642. alignarray:array[0..5] of string[8]=(
  643. #$90#$90#$90#$90#$90#$90#$90,
  644. #$90#$90#$90#$90#$90#$90,
  645. #$90#$90#$90#$90,
  646. #$90#$90#$90,
  647. #$90#$90,
  648. #$90);
  649. {$else i8086}
  650. alignarray:array[0..5] of string[8]=(
  651. #$8D#$B4#$26#$00#$00#$00#$00,
  652. #$8D#$B6#$00#$00#$00#$00,
  653. #$8D#$74#$26#$00,
  654. #$8D#$76#$00,
  655. #$89#$F6,
  656. #$90);
  657. {$endif i8086}
  658. var
  659. bufptr : pchar;
  660. j : longint;
  661. localsize: byte;
  662. begin
  663. inherited calculatefillbuf(buf,executable);
  664. if not(use_op) and executable then
  665. begin
  666. bufptr:=pchar(@buf);
  667. { fillsize may still be used afterwards, so don't modify }
  668. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  669. localsize:=fillsize;
  670. while (localsize>0) do
  671. begin
  672. {$ifndef i8086}
  673. if CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype] then
  674. begin
  675. for j:=low(alignarray_cmovcpus) to high(alignarray_cmovcpus) do
  676. if (localsize>=length(alignarray_cmovcpus[j])) then
  677. break;
  678. move(alignarray_cmovcpus[j][1],bufptr^,length(alignarray_cmovcpus[j]));
  679. inc(bufptr,length(alignarray_cmovcpus[j]));
  680. dec(localsize,length(alignarray_cmovcpus[j]));
  681. end
  682. else
  683. {$endif not i8086}
  684. begin
  685. for j:=low(alignarray) to high(alignarray) do
  686. if (localsize>=length(alignarray[j])) then
  687. break;
  688. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  689. inc(bufptr,length(alignarray[j]));
  690. dec(localsize,length(alignarray[j]));
  691. end
  692. end;
  693. end;
  694. calculatefillbuf:=pchar(@buf);
  695. end;
  696. {*****************************************************************************
  697. Taicpu Constructors
  698. *****************************************************************************}
  699. procedure taicpu.changeopsize(siz:topsize);
  700. begin
  701. opsize:=siz;
  702. end;
  703. procedure taicpu.init(_size : topsize);
  704. begin
  705. { default order is att }
  706. FOperandOrder:=op_att;
  707. segprefix:=NR_NO;
  708. opsize:=_size;
  709. insentry:=nil;
  710. LastInsOffset:=-1;
  711. InsOffset:=0;
  712. InsSize:=0;
  713. end;
  714. constructor taicpu.op_none(op : tasmop);
  715. begin
  716. inherited create(op);
  717. init(S_NO);
  718. end;
  719. constructor taicpu.op_none(op : tasmop;_size : topsize);
  720. begin
  721. inherited create(op);
  722. init(_size);
  723. end;
  724. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  725. begin
  726. inherited create(op);
  727. init(_size);
  728. ops:=1;
  729. loadreg(0,_op1);
  730. end;
  731. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  732. begin
  733. inherited create(op);
  734. init(_size);
  735. ops:=1;
  736. loadconst(0,_op1);
  737. end;
  738. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  739. begin
  740. inherited create(op);
  741. init(_size);
  742. ops:=1;
  743. loadref(0,_op1);
  744. end;
  745. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  746. begin
  747. inherited create(op);
  748. init(_size);
  749. ops:=2;
  750. loadreg(0,_op1);
  751. loadreg(1,_op2);
  752. end;
  753. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  754. begin
  755. inherited create(op);
  756. init(_size);
  757. ops:=2;
  758. loadreg(0,_op1);
  759. loadconst(1,_op2);
  760. end;
  761. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  762. begin
  763. inherited create(op);
  764. init(_size);
  765. ops:=2;
  766. loadreg(0,_op1);
  767. loadref(1,_op2);
  768. end;
  769. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  770. begin
  771. inherited create(op);
  772. init(_size);
  773. ops:=2;
  774. loadconst(0,_op1);
  775. loadreg(1,_op2);
  776. end;
  777. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  778. begin
  779. inherited create(op);
  780. init(_size);
  781. ops:=2;
  782. loadconst(0,_op1);
  783. loadconst(1,_op2);
  784. end;
  785. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  786. begin
  787. inherited create(op);
  788. init(_size);
  789. ops:=2;
  790. loadconst(0,_op1);
  791. loadref(1,_op2);
  792. end;
  793. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  794. begin
  795. inherited create(op);
  796. init(_size);
  797. ops:=2;
  798. loadref(0,_op1);
  799. loadreg(1,_op2);
  800. end;
  801. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  802. begin
  803. inherited create(op);
  804. init(_size);
  805. ops:=3;
  806. loadreg(0,_op1);
  807. loadreg(1,_op2);
  808. loadreg(2,_op3);
  809. end;
  810. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  811. begin
  812. inherited create(op);
  813. init(_size);
  814. ops:=3;
  815. loadconst(0,_op1);
  816. loadreg(1,_op2);
  817. loadreg(2,_op3);
  818. end;
  819. constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  820. begin
  821. inherited create(op);
  822. init(_size);
  823. ops:=3;
  824. loadref(0,_op1);
  825. loadreg(1,_op2);
  826. loadreg(2,_op3);
  827. end;
  828. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  829. begin
  830. inherited create(op);
  831. init(_size);
  832. ops:=3;
  833. loadconst(0,_op1);
  834. loadref(1,_op2);
  835. loadreg(2,_op3);
  836. end;
  837. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  838. begin
  839. inherited create(op);
  840. init(_size);
  841. ops:=3;
  842. loadconst(0,_op1);
  843. loadreg(1,_op2);
  844. loadref(2,_op3);
  845. end;
  846. constructor taicpu.op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  847. begin
  848. inherited create(op);
  849. init(_size);
  850. ops:=3;
  851. loadreg(0,_op1);
  852. loadreg(1,_op2);
  853. loadref(2,_op3);
  854. end;
  855. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  856. begin
  857. inherited create(op);
  858. init(_size);
  859. condition:=cond;
  860. ops:=1;
  861. loadsymbol(0,_op1,0);
  862. end;
  863. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  864. begin
  865. inherited create(op);
  866. init(_size);
  867. ops:=1;
  868. loadsymbol(0,_op1,0);
  869. end;
  870. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  871. begin
  872. inherited create(op);
  873. init(_size);
  874. ops:=1;
  875. loadsymbol(0,_op1,_op1ofs);
  876. end;
  877. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  878. begin
  879. inherited create(op);
  880. init(_size);
  881. ops:=2;
  882. loadsymbol(0,_op1,_op1ofs);
  883. loadreg(1,_op2);
  884. end;
  885. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  886. begin
  887. inherited create(op);
  888. init(_size);
  889. ops:=2;
  890. loadsymbol(0,_op1,_op1ofs);
  891. loadref(1,_op2);
  892. end;
  893. function taicpu.GetString:string;
  894. var
  895. i : longint;
  896. s : string;
  897. addsize : boolean;
  898. begin
  899. s:='['+std_op2str[opcode];
  900. for i:=0 to ops-1 do
  901. begin
  902. with oper[i]^ do
  903. begin
  904. if i=0 then
  905. s:=s+' '
  906. else
  907. s:=s+',';
  908. { type }
  909. addsize:=false;
  910. if (ot and OT_XMMREG)=OT_XMMREG then
  911. s:=s+'xmmreg'
  912. else
  913. if (ot and OT_YMMREG)=OT_YMMREG then
  914. s:=s+'ymmreg'
  915. else
  916. if (ot and OT_MMXREG)=OT_MMXREG then
  917. s:=s+'mmxreg'
  918. else
  919. if (ot and OT_FPUREG)=OT_FPUREG then
  920. s:=s+'fpureg'
  921. else
  922. if (ot and OT_REGISTER)=OT_REGISTER then
  923. begin
  924. s:=s+'reg';
  925. addsize:=true;
  926. end
  927. else
  928. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  929. begin
  930. s:=s+'imm';
  931. addsize:=true;
  932. end
  933. else
  934. if (ot and OT_MEMORY)=OT_MEMORY then
  935. begin
  936. s:=s+'mem';
  937. addsize:=true;
  938. end
  939. else
  940. s:=s+'???';
  941. { size }
  942. if addsize then
  943. begin
  944. if (ot and OT_BITS8)<>0 then
  945. s:=s+'8'
  946. else
  947. if (ot and OT_BITS16)<>0 then
  948. s:=s+'16'
  949. else
  950. if (ot and OT_BITS32)<>0 then
  951. s:=s+'32'
  952. else
  953. if (ot and OT_BITS64)<>0 then
  954. s:=s+'64'
  955. else
  956. if (ot and OT_BITS128)<>0 then
  957. s:=s+'128'
  958. else
  959. if (ot and OT_BITS256)<>0 then
  960. s:=s+'256'
  961. else
  962. s:=s+'??';
  963. { signed }
  964. if (ot and OT_SIGNED)<>0 then
  965. s:=s+'s';
  966. end;
  967. end;
  968. end;
  969. GetString:=s+']';
  970. end;
  971. procedure taicpu.Swapoperands;
  972. var
  973. p : POper;
  974. begin
  975. { Fix the operands which are in AT&T style and we need them in Intel style }
  976. case ops of
  977. 0,1:
  978. ;
  979. 2 : begin
  980. { 0,1 -> 1,0 }
  981. p:=oper[0];
  982. oper[0]:=oper[1];
  983. oper[1]:=p;
  984. end;
  985. 3 : begin
  986. { 0,1,2 -> 2,1,0 }
  987. p:=oper[0];
  988. oper[0]:=oper[2];
  989. oper[2]:=p;
  990. end;
  991. 4 : begin
  992. { 0,1,2,3 -> 3,2,1,0 }
  993. p:=oper[0];
  994. oper[0]:=oper[3];
  995. oper[3]:=p;
  996. p:=oper[1];
  997. oper[1]:=oper[2];
  998. oper[2]:=p;
  999. end;
  1000. else
  1001. internalerror(201108141);
  1002. end;
  1003. end;
  1004. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  1005. begin
  1006. if FOperandOrder<>order then
  1007. begin
  1008. Swapoperands;
  1009. FOperandOrder:=order;
  1010. end;
  1011. end;
  1012. function taicpu.FixNonCommutativeOpcodes: tasmop;
  1013. begin
  1014. result:=opcode;
  1015. { we need ATT order }
  1016. SetOperandOrder(op_att);
  1017. if (
  1018. (ops=2) and
  1019. (oper[0]^.typ=top_reg) and
  1020. (oper[1]^.typ=top_reg) and
  1021. { if the first is ST and the second is also a register
  1022. it is necessarily ST1 .. ST7 }
  1023. ((oper[0]^.reg=NR_ST) or
  1024. (oper[0]^.reg=NR_ST0))
  1025. ) or
  1026. { ((ops=1) and
  1027. (oper[0]^.typ=top_reg) and
  1028. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  1029. (ops=0) then
  1030. begin
  1031. if opcode=A_FSUBR then
  1032. result:=A_FSUB
  1033. else if opcode=A_FSUB then
  1034. result:=A_FSUBR
  1035. else if opcode=A_FDIVR then
  1036. result:=A_FDIV
  1037. else if opcode=A_FDIV then
  1038. result:=A_FDIVR
  1039. else if opcode=A_FSUBRP then
  1040. result:=A_FSUBP
  1041. else if opcode=A_FSUBP then
  1042. result:=A_FSUBRP
  1043. else if opcode=A_FDIVRP then
  1044. result:=A_FDIVP
  1045. else if opcode=A_FDIVP then
  1046. result:=A_FDIVRP;
  1047. end;
  1048. if (
  1049. (ops=1) and
  1050. (oper[0]^.typ=top_reg) and
  1051. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  1052. (oper[0]^.reg<>NR_ST)
  1053. ) then
  1054. begin
  1055. if opcode=A_FSUBRP then
  1056. result:=A_FSUBP
  1057. else if opcode=A_FSUBP then
  1058. result:=A_FSUBRP
  1059. else if opcode=A_FDIVRP then
  1060. result:=A_FDIVP
  1061. else if opcode=A_FDIVP then
  1062. result:=A_FDIVRP;
  1063. end;
  1064. end;
  1065. {*****************************************************************************
  1066. Assembler
  1067. *****************************************************************************}
  1068. type
  1069. ea = packed record
  1070. sib_present : boolean;
  1071. bytes : byte;
  1072. size : byte;
  1073. modrm : byte;
  1074. sib : byte;
  1075. {$ifdef x86_64}
  1076. rex : byte;
  1077. {$endif x86_64}
  1078. end;
  1079. procedure taicpu.create_ot(objdata:TObjData);
  1080. {
  1081. this function will also fix some other fields which only needs to be once
  1082. }
  1083. var
  1084. i,l,relsize : longint;
  1085. currsym : TObjSymbol;
  1086. begin
  1087. if ops=0 then
  1088. exit;
  1089. { update oper[].ot field }
  1090. for i:=0 to ops-1 do
  1091. with oper[i]^ do
  1092. begin
  1093. case typ of
  1094. top_reg :
  1095. begin
  1096. ot:=reg_ot_table[findreg_by_number(reg)];
  1097. end;
  1098. top_ref :
  1099. begin
  1100. if (ref^.refaddr=addr_no)
  1101. {$ifdef i386}
  1102. or (
  1103. (ref^.refaddr in [addr_pic]) and
  1104. (ref^.base<>NR_NO)
  1105. )
  1106. {$endif i386}
  1107. {$ifdef x86_64}
  1108. or (
  1109. (ref^.refaddr in [addr_pic,addr_pic_no_got]) and
  1110. (ref^.base<>NR_NO)
  1111. )
  1112. {$endif x86_64}
  1113. then
  1114. begin
  1115. { create ot field }
  1116. if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
  1117. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1118. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1119. ) then
  1120. // AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
  1121. ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
  1122. (reg_ot_table[findreg_by_number(ref^.index)])
  1123. else if (ref^.base = NR_NO) and
  1124. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1125. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1126. ) then
  1127. // AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
  1128. ot := (OT_REG_GPR) or
  1129. (reg_ot_table[findreg_by_number(ref^.index)])
  1130. else if (ot and OT_SIZE_MASK)=0 then
  1131. ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
  1132. else
  1133. ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
  1134. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  1135. ot:=ot or OT_MEM_OFFS;
  1136. { fix scalefactor }
  1137. if (ref^.index=NR_NO) then
  1138. ref^.scalefactor:=0
  1139. else
  1140. if (ref^.scalefactor=0) then
  1141. ref^.scalefactor:=1;
  1142. end
  1143. else
  1144. begin
  1145. { Jumps use a relative offset which can be 8bit,
  1146. for other opcodes we always need to generate the full
  1147. 32bit address }
  1148. if assigned(objdata) and
  1149. is_jmp then
  1150. begin
  1151. currsym:=objdata.symbolref(ref^.symbol);
  1152. l:=ref^.offset;
  1153. {$push}
  1154. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  1155. if assigned(currsym) then
  1156. inc(l,currsym.address);
  1157. {$pop}
  1158. { when it is a forward jump we need to compensate the
  1159. offset of the instruction since the previous time,
  1160. because the symbol address is then still using the
  1161. 'old-style' addressing.
  1162. For backwards jumps this is not required because the
  1163. address of the symbol is already adjusted to the
  1164. new offset }
  1165. if (l>InsOffset) and (LastInsOffset<>-1) then
  1166. inc(l,InsOffset-LastInsOffset);
  1167. { instruction size will then always become 2 (PFV) }
  1168. relsize:=(InsOffset+2)-l;
  1169. if (relsize>=-128) and (relsize<=127) and
  1170. (
  1171. not assigned(currsym) or
  1172. (currsym.objsection=objdata.currobjsec)
  1173. ) then
  1174. ot:=OT_IMM8 or OT_SHORT
  1175. else
  1176. {$ifdef i8086}
  1177. ot:=OT_IMM16 or OT_NEAR;
  1178. {$else i8086}
  1179. ot:=OT_IMM32 or OT_NEAR;
  1180. {$endif i8086}
  1181. end
  1182. else
  1183. {$ifdef i8086}
  1184. if opsize=S_FAR then
  1185. ot:=OT_IMM16 or OT_FAR
  1186. else
  1187. ot:=OT_IMM16 or OT_NEAR;
  1188. {$else i8086}
  1189. ot:=OT_IMM32 or OT_NEAR;
  1190. {$endif i8086}
  1191. end;
  1192. end;
  1193. top_local :
  1194. begin
  1195. if (ot and OT_SIZE_MASK)=0 then
  1196. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  1197. else
  1198. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  1199. end;
  1200. top_const :
  1201. begin
  1202. // if opcode is a SSE or AVX-instruction then we need a
  1203. // special handling (opsize can different from const-size)
  1204. // (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
  1205. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
  1206. (not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnkown])) then
  1207. begin
  1208. case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
  1209. csiNoSize: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE;
  1210. csiMem8: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS8;
  1211. csiMem16: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS16;
  1212. csiMem32: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS32;
  1213. csiMem64: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS64;
  1214. end;
  1215. end
  1216. else
  1217. begin
  1218. { allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
  1219. { further, allow AAD and AAM with imm. operand }
  1220. if (opsize=S_NO) and not((i in [1,2,3])
  1221. {$ifndef x86_64}
  1222. or ((i=0) and (opcode in [A_AAD,A_AAM]))
  1223. {$endif x86_64}
  1224. ) then
  1225. message(asmr_e_invalid_opcode_and_operand);
  1226. if
  1227. {$ifndef i8086}
  1228. (opsize<>S_W) and
  1229. {$endif not i8086}
  1230. (aint(val)>=-128) and (val<=127) then
  1231. ot:=OT_IMM8 or OT_SIGNED
  1232. else
  1233. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  1234. if (val=1) and (i=1) then
  1235. ot := ot or OT_ONENESS;
  1236. end;
  1237. end;
  1238. top_none :
  1239. begin
  1240. { generated when there was an error in the
  1241. assembler reader. It never happends when generating
  1242. assembler }
  1243. end;
  1244. else
  1245. internalerror(200402266);
  1246. end;
  1247. end;
  1248. end;
  1249. function taicpu.InsEnd:longint;
  1250. begin
  1251. InsEnd:=InsOffset+InsSize;
  1252. end;
  1253. function taicpu.Matches(p:PInsEntry):boolean;
  1254. { * IF_SM stands for Size Match: any operand whose size is not
  1255. * explicitly specified by the template is `really' intended to be
  1256. * the same size as the first size-specified operand.
  1257. * Non-specification is tolerated in the input instruction, but
  1258. * _wrong_ specification is not.
  1259. *
  1260. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  1261. * three-operand instructions such as SHLD: it implies that the
  1262. * first two operands must match in size, but that the third is
  1263. * required to be _unspecified_.
  1264. *
  1265. * IF_SB invokes Size Byte: operands with unspecified size in the
  1266. * template are really bytes, and so no non-byte specification in
  1267. * the input instruction will be tolerated. IF_SW similarly invokes
  1268. * Size Word, and IF_SD invokes Size Doubleword.
  1269. *
  1270. * (The default state if neither IF_SM nor IF_SM2 is specified is
  1271. * that any operand with unspecified size in the template is
  1272. * required to have unspecified size in the instruction too...)
  1273. }
  1274. var
  1275. insot,
  1276. currot,
  1277. i,j,asize,oprs : longint;
  1278. insflags:cardinal;
  1279. siz : array[0..max_operands-1] of longint;
  1280. begin
  1281. result:=false;
  1282. { Check the opcode and operands }
  1283. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  1284. exit;
  1285. {$ifdef i8086}
  1286. { On i8086, we need to skip the i386+ version of Jcc near, if the target
  1287. cpu is earlier than 386. There's another entry, later in the table for
  1288. i8086, which simulates it with i8086 instructions:
  1289. JNcc short +3
  1290. JMP near target }
  1291. if (p^.opcode=A_Jcc) and (current_settings.cputype<cpu_386) and
  1292. ((p^.flags and IF_386)<>0) then
  1293. exit;
  1294. {$endif i8086}
  1295. for i:=0 to p^.ops-1 do
  1296. begin
  1297. insot:=p^.optypes[i];
  1298. currot:=oper[i]^.ot;
  1299. { Check the operand flags }
  1300. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1301. exit;
  1302. { Check if the passed operand size matches with one of
  1303. the supported operand sizes }
  1304. if ((insot and OT_SIZE_MASK)<>0) and
  1305. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1306. exit;
  1307. { "far" matches only with "far" }
  1308. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1309. exit;
  1310. end;
  1311. { Check operand sizes }
  1312. insflags:=p^.flags;
  1313. if insflags and IF_SMASK<>0 then
  1314. begin
  1315. { as default an untyped size can get all the sizes, this is different
  1316. from nasm, but else we need to do a lot checking which opcodes want
  1317. size or not with the automatic size generation }
  1318. asize:=-1;
  1319. if (insflags and IF_SB)<>0 then
  1320. asize:=OT_BITS8
  1321. else if (insflags and IF_SW)<>0 then
  1322. asize:=OT_BITS16
  1323. else if (insflags and IF_SD)<>0 then
  1324. asize:=OT_BITS32;
  1325. if (insflags and IF_ARMASK)<>0 then
  1326. begin
  1327. siz[0]:=-1;
  1328. siz[1]:=-1;
  1329. siz[2]:=-1;
  1330. siz[((insflags and IF_ARMASK) shr IF_ARSHIFT)-1]:=asize;
  1331. end
  1332. else
  1333. begin
  1334. siz[0]:=asize;
  1335. siz[1]:=asize;
  1336. siz[2]:=asize;
  1337. end;
  1338. if (insflags and (IF_SM or IF_SM2))<>0 then
  1339. begin
  1340. if (insflags and IF_SM2)<>0 then
  1341. oprs:=2
  1342. else
  1343. oprs:=p^.ops;
  1344. for i:=0 to oprs-1 do
  1345. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  1346. begin
  1347. for j:=0 to oprs-1 do
  1348. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  1349. break;
  1350. end;
  1351. end
  1352. else
  1353. oprs:=2;
  1354. { Check operand sizes }
  1355. for i:=0 to p^.ops-1 do
  1356. begin
  1357. insot:=p^.optypes[i];
  1358. currot:=oper[i]^.ot;
  1359. if ((insot and OT_SIZE_MASK)=0) and
  1360. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  1361. { Immediates can always include smaller size }
  1362. ((currot and OT_IMMEDIATE)=0) and
  1363. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1364. exit;
  1365. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1366. exit;
  1367. end;
  1368. end;
  1369. if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
  1370. (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1371. begin
  1372. for i:=0 to p^.ops-1 do
  1373. begin
  1374. insot:=p^.optypes[i];
  1375. if ((insot and OT_XMMRM) = OT_XMMRM) OR
  1376. ((insot and OT_YMMRM) = OT_YMMRM) then
  1377. begin
  1378. if (insot and OT_SIZE_MASK) = 0 then
  1379. begin
  1380. case insot and (OT_XMMRM or OT_YMMRM) of
  1381. OT_XMMRM: insot := insot or OT_BITS128;
  1382. OT_YMMRM: insot := insot or OT_BITS256;
  1383. end;
  1384. end;
  1385. end;
  1386. currot:=oper[i]^.ot;
  1387. { Check the operand flags }
  1388. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1389. exit;
  1390. { Check if the passed operand size matches with one of
  1391. the supported operand sizes }
  1392. if ((insot and OT_SIZE_MASK)<>0) and
  1393. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1394. exit;
  1395. end;
  1396. end;
  1397. result:=true;
  1398. end;
  1399. procedure taicpu.ResetPass1;
  1400. begin
  1401. { we need to reset everything here, because the choosen insentry
  1402. can be invalid for a new situation where the previously optimized
  1403. insentry is not correct }
  1404. InsEntry:=nil;
  1405. InsSize:=0;
  1406. LastInsOffset:=-1;
  1407. end;
  1408. procedure taicpu.ResetPass2;
  1409. begin
  1410. { we are here in a second pass, check if the instruction can be optimized }
  1411. if assigned(InsEntry) and
  1412. ((InsEntry^.flags and IF_PASS2)<>0) then
  1413. begin
  1414. InsEntry:=nil;
  1415. InsSize:=0;
  1416. end;
  1417. LastInsOffset:=-1;
  1418. end;
  1419. function taicpu.CheckIfValid:boolean;
  1420. begin
  1421. result:=FindInsEntry(nil);
  1422. end;
  1423. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1424. var
  1425. i : longint;
  1426. begin
  1427. result:=false;
  1428. { Things which may only be done once, not when a second pass is done to
  1429. optimize }
  1430. if (Insentry=nil) or ((InsEntry^.flags and IF_PASS2)<>0) then
  1431. begin
  1432. current_filepos:=fileinfo;
  1433. { We need intel style operands }
  1434. SetOperandOrder(op_intel);
  1435. { create the .ot fields }
  1436. create_ot(objdata);
  1437. { set the file postion }
  1438. end
  1439. else
  1440. begin
  1441. { we've already an insentry so it's valid }
  1442. result:=true;
  1443. exit;
  1444. end;
  1445. { Lookup opcode in the table }
  1446. InsSize:=-1;
  1447. i:=instabcache^[opcode];
  1448. if i=-1 then
  1449. begin
  1450. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1451. exit;
  1452. end;
  1453. insentry:=@instab[i];
  1454. while (insentry^.opcode=opcode) do
  1455. begin
  1456. if matches(insentry) then
  1457. begin
  1458. result:=true;
  1459. exit;
  1460. end;
  1461. inc(insentry);
  1462. end;
  1463. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1464. { No instruction found, set insentry to nil and inssize to -1 }
  1465. insentry:=nil;
  1466. inssize:=-1;
  1467. end;
  1468. function taicpu.Pass1(objdata:TObjData):longint;
  1469. begin
  1470. Pass1:=0;
  1471. { Save the old offset and set the new offset }
  1472. InsOffset:=ObjData.CurrObjSec.Size;
  1473. { Error? }
  1474. if (Insentry=nil) and (InsSize=-1) then
  1475. exit;
  1476. { set the file postion }
  1477. current_filepos:=fileinfo;
  1478. { Get InsEntry }
  1479. if FindInsEntry(ObjData) then
  1480. begin
  1481. { Calculate instruction size }
  1482. InsSize:=calcsize(insentry);
  1483. if segprefix<>NR_NO then
  1484. inc(InsSize);
  1485. { Fix opsize if size if forced }
  1486. if (insentry^.flags and (IF_SB or IF_SW or IF_SD))<>0 then
  1487. begin
  1488. if (insentry^.flags and IF_ARMASK)=0 then
  1489. begin
  1490. if (insentry^.flags and IF_SB)<>0 then
  1491. begin
  1492. if opsize=S_NO then
  1493. opsize:=S_B;
  1494. end
  1495. else if (insentry^.flags and IF_SW)<>0 then
  1496. begin
  1497. if opsize=S_NO then
  1498. opsize:=S_W;
  1499. end
  1500. else if (insentry^.flags and IF_SD)<>0 then
  1501. begin
  1502. if opsize=S_NO then
  1503. opsize:=S_L;
  1504. end;
  1505. end;
  1506. end;
  1507. LastInsOffset:=InsOffset;
  1508. Pass1:=InsSize;
  1509. exit;
  1510. end;
  1511. LastInsOffset:=-1;
  1512. end;
  1513. const
  1514. segprefixes: array[NR_ES..NR_GS] of Byte=(
  1515. // es cs ss ds fs gs
  1516. $26, $2E, $36, $3E, $64, $65
  1517. );
  1518. procedure taicpu.Pass2(objdata:TObjData);
  1519. begin
  1520. { error in pass1 ? }
  1521. if insentry=nil then
  1522. exit;
  1523. current_filepos:=fileinfo;
  1524. { Segment override }
  1525. if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
  1526. begin
  1527. {$ifdef i8086}
  1528. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) and
  1529. ((segprefix=NR_FS) or (segprefix=NR_GS)) then
  1530. Message(asmw_e_instruction_not_supported_by_cpu);
  1531. {$endif i8086}
  1532. objdata.writebytes(segprefixes[segprefix],1);
  1533. { fix the offset for GenNode }
  1534. inc(InsOffset);
  1535. end
  1536. else if segprefix<>NR_NO then
  1537. InternalError(201001071);
  1538. { Generate the instruction }
  1539. GenCode(objdata);
  1540. end;
  1541. function taicpu.needaddrprefix(opidx:byte):boolean;
  1542. begin
  1543. result:=(oper[opidx]^.typ=top_ref) and
  1544. (oper[opidx]^.ref^.refaddr=addr_no) and
  1545. {$ifdef x86_64}
  1546. (oper[opidx]^.ref^.base<>NR_RIP) and
  1547. {$endif x86_64}
  1548. (
  1549. (
  1550. (oper[opidx]^.ref^.index<>NR_NO) and
  1551. (getsubreg(oper[opidx]^.ref^.index)<>R_SUBADDR)
  1552. ) or
  1553. (
  1554. (oper[opidx]^.ref^.base<>NR_NO) and
  1555. (getsubreg(oper[opidx]^.ref^.base)<>R_SUBADDR)
  1556. )
  1557. );
  1558. end;
  1559. procedure badreg(r:Tregister);
  1560. begin
  1561. Message1(asmw_e_invalid_register,generic_regname(r));
  1562. end;
  1563. function regval(r:Tregister):byte;
  1564. const
  1565. intsupreg2opcode: array[0..7] of byte=
  1566. // ax cx dx bx si di bp sp -- in x86reg.dat
  1567. // ax cx dx bx sp bp si di -- needed order
  1568. (0, 1, 2, 3, 6, 7, 5, 4);
  1569. maxsupreg: array[tregistertype] of tsuperregister=
  1570. {$ifdef x86_64}
  1571. (0, 16, 9, 8, 16, 32, 0, 0);
  1572. {$else x86_64}
  1573. (0, 8, 9, 8, 8, 32, 0, 0);
  1574. {$endif x86_64}
  1575. var
  1576. rs: tsuperregister;
  1577. rt: tregistertype;
  1578. begin
  1579. rs:=getsupreg(r);
  1580. rt:=getregtype(r);
  1581. if (rs>=maxsupreg[rt]) then
  1582. badreg(r);
  1583. result:=rs and 7;
  1584. if (rt=R_INTREGISTER) then
  1585. begin
  1586. if (rs<8) then
  1587. result:=intsupreg2opcode[rs];
  1588. if getsubreg(r)=R_SUBH then
  1589. inc(result,4);
  1590. end;
  1591. end;
  1592. {$if defined(x86_64)}
  1593. function rexbits(r: tregister): byte;
  1594. begin
  1595. result:=0;
  1596. case getregtype(r) of
  1597. R_INTREGISTER:
  1598. if (getsupreg(r)>=RS_R8) then
  1599. { Either B,X or R bits can be set, depending on register role in instruction.
  1600. Set all three bits here, caller will discard unnecessary ones. }
  1601. result:=result or $47
  1602. else if (getsubreg(r)=R_SUBL) and
  1603. (getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1604. result:=result or $40
  1605. else if (getsubreg(r)=R_SUBH) then
  1606. { Not an actual REX bit, used to detect incompatible usage of
  1607. AH/BH/CH/DH }
  1608. result:=result or $80;
  1609. R_MMREGISTER:
  1610. if getsupreg(r)>=RS_XMM8 then
  1611. result:=result or $47;
  1612. end;
  1613. end;
  1614. function process_ea_ref(const input:toper;var output:ea;rfield:longint):boolean;
  1615. var
  1616. sym : tasmsymbol;
  1617. md,s : byte;
  1618. base,index,scalefactor,
  1619. o : longint;
  1620. ir,br : Tregister;
  1621. isub,bsub : tsubregister;
  1622. begin
  1623. result:=false;
  1624. ir:=input.ref^.index;
  1625. br:=input.ref^.base;
  1626. isub:=getsubreg(ir);
  1627. bsub:=getsubreg(br);
  1628. s:=input.ref^.scalefactor;
  1629. o:=input.ref^.offset;
  1630. sym:=input.ref^.symbol;
  1631. //if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  1632. // ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1633. if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
  1634. ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
  1635. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1636. internalerror(200301081);
  1637. { it's direct address }
  1638. if (br=NR_NO) and (ir=NR_NO) then
  1639. begin
  1640. output.sib_present:=true;
  1641. output.bytes:=4;
  1642. output.modrm:=4 or (rfield shl 3);
  1643. output.sib:=$25;
  1644. end
  1645. else if (br=NR_RIP) and (ir=NR_NO) then
  1646. begin
  1647. { rip based }
  1648. output.sib_present:=false;
  1649. output.bytes:=4;
  1650. output.modrm:=5 or (rfield shl 3);
  1651. end
  1652. else
  1653. { it's an indirection }
  1654. begin
  1655. { 16 bit? }
  1656. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1657. (br<>NR_NO) and (bsub=R_SUBADDR)
  1658. ) then
  1659. begin
  1660. // vector memory (AVX2) =>> ignore
  1661. end
  1662. else if ((ir<>NR_NO) and (isub<>R_SUBADDR) and (isub<>R_SUBD)) or
  1663. ((br<>NR_NO) and (bsub<>R_SUBADDR) and (bsub<>R_SUBD)) then
  1664. begin
  1665. message(asmw_e_16bit_32bit_not_supported);
  1666. end;
  1667. { wrong, for various reasons }
  1668. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1669. exit;
  1670. output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
  1671. result:=true;
  1672. { base }
  1673. case br of
  1674. NR_R8D,
  1675. NR_EAX,
  1676. NR_R8,
  1677. NR_RAX : base:=0;
  1678. NR_R9D,
  1679. NR_ECX,
  1680. NR_R9,
  1681. NR_RCX : base:=1;
  1682. NR_R10D,
  1683. NR_EDX,
  1684. NR_R10,
  1685. NR_RDX : base:=2;
  1686. NR_R11D,
  1687. NR_EBX,
  1688. NR_R11,
  1689. NR_RBX : base:=3;
  1690. NR_R12D,
  1691. NR_ESP,
  1692. NR_R12,
  1693. NR_RSP : base:=4;
  1694. NR_R13D,
  1695. NR_EBP,
  1696. NR_R13,
  1697. NR_NO,
  1698. NR_RBP : base:=5;
  1699. NR_R14D,
  1700. NR_ESI,
  1701. NR_R14,
  1702. NR_RSI : base:=6;
  1703. NR_R15D,
  1704. NR_EDI,
  1705. NR_R15,
  1706. NR_RDI : base:=7;
  1707. else
  1708. exit;
  1709. end;
  1710. { index }
  1711. case ir of
  1712. NR_R8D,
  1713. NR_EAX,
  1714. NR_R8,
  1715. NR_RAX,
  1716. NR_XMM0,
  1717. NR_XMM8,
  1718. NR_YMM0,
  1719. NR_YMM8 : index:=0;
  1720. NR_R9D,
  1721. NR_ECX,
  1722. NR_R9,
  1723. NR_RCX,
  1724. NR_XMM1,
  1725. NR_XMM9,
  1726. NR_YMM1,
  1727. NR_YMM9 : index:=1;
  1728. NR_R10D,
  1729. NR_EDX,
  1730. NR_R10,
  1731. NR_RDX,
  1732. NR_XMM2,
  1733. NR_XMM10,
  1734. NR_YMM2,
  1735. NR_YMM10 : index:=2;
  1736. NR_R11D,
  1737. NR_EBX,
  1738. NR_R11,
  1739. NR_RBX,
  1740. NR_XMM3,
  1741. NR_XMM11,
  1742. NR_YMM3,
  1743. NR_YMM11 : index:=3;
  1744. NR_R12D,
  1745. NR_ESP,
  1746. NR_R12,
  1747. NR_NO,
  1748. NR_XMM4,
  1749. NR_XMM12,
  1750. NR_YMM4,
  1751. NR_YMM12 : index:=4;
  1752. NR_R13D,
  1753. NR_EBP,
  1754. NR_R13,
  1755. NR_RBP,
  1756. NR_XMM5,
  1757. NR_XMM13,
  1758. NR_YMM5,
  1759. NR_YMM13: index:=5;
  1760. NR_R14D,
  1761. NR_ESI,
  1762. NR_R14,
  1763. NR_RSI,
  1764. NR_XMM6,
  1765. NR_XMM14,
  1766. NR_YMM6,
  1767. NR_YMM14: index:=6;
  1768. NR_R15D,
  1769. NR_EDI,
  1770. NR_R15,
  1771. NR_RDI,
  1772. NR_XMM7,
  1773. NR_XMM15,
  1774. NR_YMM7,
  1775. NR_YMM15: index:=7;
  1776. else
  1777. exit;
  1778. end;
  1779. case s of
  1780. 0,
  1781. 1 : scalefactor:=0;
  1782. 2 : scalefactor:=1;
  1783. 4 : scalefactor:=2;
  1784. 8 : scalefactor:=3;
  1785. else
  1786. exit;
  1787. end;
  1788. { If rbp or r13 is used we must always include an offset }
  1789. if (br=NR_NO) or
  1790. ((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
  1791. md:=0
  1792. else
  1793. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1794. md:=1
  1795. else
  1796. md:=2;
  1797. if (br=NR_NO) or (md=2) then
  1798. output.bytes:=4
  1799. else
  1800. output.bytes:=md;
  1801. { SIB needed ? }
  1802. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
  1803. begin
  1804. output.sib_present:=false;
  1805. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  1806. end
  1807. else
  1808. begin
  1809. output.sib_present:=true;
  1810. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  1811. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1812. end;
  1813. end;
  1814. output.size:=1+ord(output.sib_present)+output.bytes;
  1815. result:=true;
  1816. end;
  1817. {$elseif defined(i386)}
  1818. function process_ea_ref(const input:toper;out output:ea;rfield:longint):boolean;
  1819. var
  1820. sym : tasmsymbol;
  1821. md,s : byte;
  1822. base,index,scalefactor,
  1823. o : longint;
  1824. ir,br : Tregister;
  1825. isub,bsub : tsubregister;
  1826. begin
  1827. result:=false;
  1828. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) and (input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) or // vector memory (AVX2)
  1829. ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER) and (getregtype(input.ref^.index)<>R_MMREGISTER)) or
  1830. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1831. internalerror(200301081);
  1832. ir:=input.ref^.index;
  1833. br:=input.ref^.base;
  1834. isub:=getsubreg(ir);
  1835. bsub:=getsubreg(br);
  1836. s:=input.ref^.scalefactor;
  1837. o:=input.ref^.offset;
  1838. sym:=input.ref^.symbol;
  1839. { it's direct address }
  1840. if (br=NR_NO) and (ir=NR_NO) then
  1841. begin
  1842. { it's a pure offset }
  1843. output.sib_present:=false;
  1844. output.bytes:=4;
  1845. output.modrm:=5 or (rfield shl 3);
  1846. end
  1847. else
  1848. { it's an indirection }
  1849. begin
  1850. { 16 bit address? }
  1851. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1852. (br<>NR_NO) and (bsub=R_SUBADDR)
  1853. ) then
  1854. begin
  1855. // vector memory (AVX2) =>> ignore
  1856. end
  1857. else if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1858. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1859. message(asmw_e_16bit_not_supported);
  1860. {$ifdef OPTEA}
  1861. { make single reg base }
  1862. if (br=NR_NO) and (s=1) then
  1863. begin
  1864. br:=ir;
  1865. ir:=NR_NO;
  1866. end;
  1867. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  1868. if (br=NR_NO) and
  1869. (((s=2) and (ir<>NR_ESP)) or
  1870. (s=3) or (s=5) or (s=9)) then
  1871. begin
  1872. br:=ir;
  1873. dec(s);
  1874. end;
  1875. { swap ESP into base if scalefactor is 1 }
  1876. if (s=1) and (ir=NR_ESP) then
  1877. begin
  1878. ir:=br;
  1879. br:=NR_ESP;
  1880. end;
  1881. {$endif OPTEA}
  1882. { wrong, for various reasons }
  1883. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1884. exit;
  1885. { base }
  1886. case br of
  1887. NR_EAX : base:=0;
  1888. NR_ECX : base:=1;
  1889. NR_EDX : base:=2;
  1890. NR_EBX : base:=3;
  1891. NR_ESP : base:=4;
  1892. NR_NO,
  1893. NR_EBP : base:=5;
  1894. NR_ESI : base:=6;
  1895. NR_EDI : base:=7;
  1896. else
  1897. exit;
  1898. end;
  1899. { index }
  1900. case ir of
  1901. NR_EAX,
  1902. NR_XMM0,
  1903. NR_YMM0: index:=0;
  1904. NR_ECX,
  1905. NR_XMM1,
  1906. NR_YMM1: index:=1;
  1907. NR_EDX,
  1908. NR_XMM2,
  1909. NR_YMM2: index:=2;
  1910. NR_EBX,
  1911. NR_XMM3,
  1912. NR_YMM3: index:=3;
  1913. NR_NO,
  1914. NR_XMM4,
  1915. NR_YMM4: index:=4;
  1916. NR_EBP,
  1917. NR_XMM5,
  1918. NR_YMM5: index:=5;
  1919. NR_ESI,
  1920. NR_XMM6,
  1921. NR_YMM6: index:=6;
  1922. NR_EDI,
  1923. NR_XMM7,
  1924. NR_YMM7: index:=7;
  1925. else
  1926. exit;
  1927. end;
  1928. case s of
  1929. 0,
  1930. 1 : scalefactor:=0;
  1931. 2 : scalefactor:=1;
  1932. 4 : scalefactor:=2;
  1933. 8 : scalefactor:=3;
  1934. else
  1935. exit;
  1936. end;
  1937. if (br=NR_NO) or
  1938. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  1939. md:=0
  1940. else
  1941. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1942. md:=1
  1943. else
  1944. md:=2;
  1945. if (br=NR_NO) or (md=2) then
  1946. output.bytes:=4
  1947. else
  1948. output.bytes:=md;
  1949. { SIB needed ? }
  1950. if (ir=NR_NO) and (br<>NR_ESP) then
  1951. begin
  1952. output.sib_present:=false;
  1953. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  1954. end
  1955. else
  1956. begin
  1957. output.sib_present:=true;
  1958. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
  1959. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1960. end;
  1961. end;
  1962. if output.sib_present then
  1963. output.size:=2+output.bytes
  1964. else
  1965. output.size:=1+output.bytes;
  1966. result:=true;
  1967. end;
  1968. {$elseif defined(i8086)}
  1969. procedure maybe_swap_index_base(var br,ir:Tregister);
  1970. var
  1971. tmpreg: Tregister;
  1972. begin
  1973. if ((br=NR_NO) or (br=NR_SI) or (br=NR_DI)) and
  1974. ((ir=NR_NO) or (ir=NR_BP) or (ir=NR_BX)) then
  1975. begin
  1976. tmpreg:=br;
  1977. br:=ir;
  1978. ir:=tmpreg;
  1979. end;
  1980. end;
  1981. function process_ea_ref(const input:toper;out output:ea;rfield:longint):boolean;
  1982. var
  1983. sym : tasmsymbol;
  1984. md,s,rv : byte;
  1985. base,
  1986. o : longint;
  1987. ir,br : Tregister;
  1988. isub,bsub : tsubregister;
  1989. begin
  1990. result:=false;
  1991. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  1992. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1993. internalerror(200301081);
  1994. ir:=input.ref^.index;
  1995. br:=input.ref^.base;
  1996. isub:=getsubreg(ir);
  1997. bsub:=getsubreg(br);
  1998. s:=input.ref^.scalefactor;
  1999. o:=input.ref^.offset;
  2000. sym:=input.ref^.symbol;
  2001. { it's a direct address }
  2002. if (br=NR_NO) and (ir=NR_NO) then
  2003. begin
  2004. { it's a pure offset }
  2005. output.bytes:=2;
  2006. output.modrm:=6 or (rfield shl 3);
  2007. end
  2008. else
  2009. { it's an indirection }
  2010. begin
  2011. { 32 bit address? }
  2012. if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  2013. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  2014. message(asmw_e_32bit_not_supported);
  2015. { scalefactor can only be 1 in 16-bit addresses }
  2016. if (s<>1) and (ir<>NR_NO) then
  2017. exit;
  2018. maybe_swap_index_base(br,ir);
  2019. if (br=NR_BX) and (ir=NR_SI) then
  2020. base:=0
  2021. else if (br=NR_BX) and (ir=NR_DI) then
  2022. base:=1
  2023. else if (br=NR_BP) and (ir=NR_SI) then
  2024. base:=2
  2025. else if (br=NR_BP) and (ir=NR_DI) then
  2026. base:=3
  2027. else if (br=NR_NO) and (ir=NR_SI) then
  2028. base:=4
  2029. else if (br=NR_NO) and (ir=NR_DI) then
  2030. base:=5
  2031. else if (br=NR_BP) and (ir=NR_NO) then
  2032. base:=6
  2033. else if (br=NR_BX) and (ir=NR_NO) then
  2034. base:=7
  2035. else
  2036. exit;
  2037. if (base<>6) and (o=0) and (sym=nil) then
  2038. md:=0
  2039. else if ((o>=-128) and (o<=127) and (sym=nil)) then
  2040. md:=1
  2041. else
  2042. md:=2;
  2043. output.bytes:=md;
  2044. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  2045. end;
  2046. output.size:=1+output.bytes;
  2047. output.sib_present:=false;
  2048. result:=true;
  2049. end;
  2050. {$endif}
  2051. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  2052. var
  2053. rv : byte;
  2054. begin
  2055. result:=false;
  2056. fillchar(output,sizeof(output),0);
  2057. {Register ?}
  2058. if (input.typ=top_reg) then
  2059. begin
  2060. rv:=regval(input.reg);
  2061. output.modrm:=$c0 or (rfield shl 3) or rv;
  2062. output.size:=1;
  2063. {$ifdef x86_64}
  2064. output.rex:=output.rex or (rexbits(input.reg) and $F1);
  2065. {$endif x86_64}
  2066. result:=true;
  2067. exit;
  2068. end;
  2069. {No register, so memory reference.}
  2070. if input.typ<>top_ref then
  2071. internalerror(200409263);
  2072. result:=process_ea_ref(input,output,rfield);
  2073. end;
  2074. function taicpu.calcsize(p:PInsEntry):shortint;
  2075. var
  2076. codes : pchar;
  2077. c : byte;
  2078. len : shortint;
  2079. ea_data : ea;
  2080. exists_vex: boolean;
  2081. exists_vex_extension: boolean;
  2082. exists_prefix_66: boolean;
  2083. exists_prefix_F2: boolean;
  2084. exists_prefix_F3: boolean;
  2085. {$ifdef x86_64}
  2086. omit_rexw : boolean;
  2087. {$endif x86_64}
  2088. begin
  2089. len:=0;
  2090. codes:=@p^.code[0];
  2091. exists_vex := false;
  2092. exists_vex_extension := false;
  2093. exists_prefix_66 := false;
  2094. exists_prefix_F2 := false;
  2095. exists_prefix_F3 := false;
  2096. {$ifdef x86_64}
  2097. rex:=0;
  2098. omit_rexw:=false;
  2099. {$endif x86_64}
  2100. repeat
  2101. c:=ord(codes^);
  2102. inc(codes);
  2103. case c of
  2104. &0 :
  2105. break;
  2106. &1,&2,&3 :
  2107. begin
  2108. inc(codes,c);
  2109. inc(len,c);
  2110. end;
  2111. &10,&11,&12 :
  2112. begin
  2113. {$ifdef x86_64}
  2114. rex:=rex or (rexbits(oper[c-&10]^.reg) and $F1);
  2115. {$endif x86_64}
  2116. inc(codes);
  2117. inc(len);
  2118. end;
  2119. &13,&23 :
  2120. begin
  2121. inc(codes);
  2122. inc(len);
  2123. end;
  2124. &4,&5,&6,&7 :
  2125. begin
  2126. if opsize={$ifdef i8086}S_L{$else}S_W{$endif} then
  2127. inc(len,2)
  2128. else
  2129. inc(len);
  2130. end;
  2131. &14,&15,&16,
  2132. &20,&21,&22,
  2133. &24,&25,&26,&27,
  2134. &50,&51,&52 :
  2135. inc(len);
  2136. &30,&31,&32,
  2137. &37,
  2138. &60,&61,&62 :
  2139. inc(len,2);
  2140. &34,&35,&36:
  2141. begin
  2142. {$ifdef i8086}
  2143. inc(len,2);
  2144. {$else i8086}
  2145. if opsize=S_Q then
  2146. inc(len,8)
  2147. else
  2148. inc(len,4);
  2149. {$endif i8086}
  2150. end;
  2151. &44,&45,&46:
  2152. inc(len,sizeof(pint));
  2153. &54,&55,&56:
  2154. inc(len,8);
  2155. &40,&41,&42,
  2156. &70,&71,&72,
  2157. &254,&255,&256 :
  2158. inc(len,4);
  2159. &64,&65,&66:
  2160. {$ifdef i8086}
  2161. inc(len,2);
  2162. {$else i8086}
  2163. inc(len,4);
  2164. {$endif i8086}
  2165. &74,&75,&76,&77: ; // ignore vex-coded operand-idx
  2166. &320,&321,&322 :
  2167. begin
  2168. case (oper[c-&320]^.ot and OT_SIZE_MASK) of
  2169. {$if defined(i386) or defined(x86_64)}
  2170. OT_BITS16 :
  2171. {$elseif defined(i8086)}
  2172. OT_BITS32 :
  2173. {$endif}
  2174. inc(len);
  2175. {$ifdef x86_64}
  2176. OT_BITS64:
  2177. begin
  2178. rex:=rex or $48;
  2179. end;
  2180. {$endif x86_64}
  2181. end;
  2182. end;
  2183. &310 :
  2184. {$if defined(x86_64)}
  2185. { every insentry with code 0310 must be marked with NOX86_64 }
  2186. InternalError(2011051301);
  2187. {$elseif defined(i386)}
  2188. inc(len);
  2189. {$elseif defined(i8086)}
  2190. {nothing};
  2191. {$endif}
  2192. &311 :
  2193. {$if defined(x86_64) or defined(i8086)}
  2194. inc(len)
  2195. {$endif x86_64 or i8086}
  2196. ;
  2197. &324 :
  2198. {$ifndef i8086}
  2199. inc(len)
  2200. {$endif not i8086}
  2201. ;
  2202. &326 :
  2203. begin
  2204. {$ifdef x86_64}
  2205. rex:=rex or $48;
  2206. {$endif x86_64}
  2207. end;
  2208. &312,
  2209. &323,
  2210. &327,
  2211. &331,&332: ;
  2212. &325:
  2213. {$ifdef i8086}
  2214. inc(len)
  2215. {$endif i8086}
  2216. ;
  2217. &333:
  2218. begin
  2219. inc(len);
  2220. exists_prefix_F2 := true;
  2221. end;
  2222. &334:
  2223. begin
  2224. inc(len);
  2225. exists_prefix_F3 := true;
  2226. end;
  2227. &361:
  2228. begin
  2229. {$ifndef i8086}
  2230. inc(len);
  2231. exists_prefix_66 := true;
  2232. {$endif not i8086}
  2233. end;
  2234. &335:
  2235. {$ifdef x86_64}
  2236. omit_rexw:=true
  2237. {$endif x86_64}
  2238. ;
  2239. &100..&227 :
  2240. begin
  2241. {$ifdef x86_64}
  2242. if (c<&177) then
  2243. begin
  2244. if (oper[c and 7]^.typ=top_reg) then
  2245. begin
  2246. rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
  2247. end;
  2248. end;
  2249. {$endif x86_64}
  2250. if not process_ea(oper[(c shr 3) and 7]^, ea_data, 0) then
  2251. Message(asmw_e_invalid_effective_address)
  2252. else
  2253. inc(len,ea_data.size);
  2254. {$ifdef x86_64}
  2255. rex:=rex or ea_data.rex;
  2256. {$endif x86_64}
  2257. end;
  2258. &362: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
  2259. // =>> DEFAULT = 2 Bytes
  2260. begin
  2261. if not(exists_vex) then
  2262. begin
  2263. inc(len, 2);
  2264. exists_vex := true;
  2265. end;
  2266. end;
  2267. &363: // REX.W = 1
  2268. // =>> VEX prefix length = 3
  2269. begin
  2270. if not(exists_vex_extension) then
  2271. begin
  2272. inc(len);
  2273. exists_vex_extension := true;
  2274. end;
  2275. end;
  2276. &364: ; // VEX length bit
  2277. &366, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
  2278. &367: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
  2279. &370: // VEX-Extension prefix $0F
  2280. // ignore for calculating length
  2281. ;
  2282. &371, // VEX-Extension prefix $0F38
  2283. &372: // VEX-Extension prefix $0F3A
  2284. begin
  2285. if not(exists_vex_extension) then
  2286. begin
  2287. inc(len);
  2288. exists_vex_extension := true;
  2289. end;
  2290. end;
  2291. &300,&301,&302:
  2292. begin
  2293. {$if defined(x86_64) or defined(i8086)}
  2294. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2295. inc(len);
  2296. {$endif x86_64 or i8086}
  2297. end;
  2298. else
  2299. InternalError(200603141);
  2300. end;
  2301. until false;
  2302. {$ifdef x86_64}
  2303. if ((rex and $80)<>0) and ((rex and $4F)<>0) then
  2304. Message(asmw_e_bad_reg_with_rex);
  2305. rex:=rex and $4F; { reset extra bits in upper nibble }
  2306. if omit_rexw then
  2307. begin
  2308. if rex=$48 then { remove rex entirely? }
  2309. rex:=0
  2310. else
  2311. rex:=rex and $F7;
  2312. end;
  2313. if not(exists_vex) then
  2314. begin
  2315. if rex<>0 then
  2316. Inc(len);
  2317. end;
  2318. {$endif}
  2319. if exists_vex then
  2320. begin
  2321. if exists_prefix_66 then dec(len);
  2322. if exists_prefix_F2 then dec(len);
  2323. if exists_prefix_F3 then dec(len);
  2324. {$ifdef x86_64}
  2325. if not(exists_vex_extension) then
  2326. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  2327. {$endif x86_64}
  2328. end;
  2329. calcsize:=len;
  2330. end;
  2331. procedure taicpu.GenCode(objdata:TObjData);
  2332. {
  2333. * the actual codes (C syntax, i.e. octal):
  2334. * \0 - terminates the code. (Unless it's a literal of course.)
  2335. * \1, \2, \3 - that many literal bytes follow in the code stream
  2336. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  2337. * (POP is never used for CS) depending on operand 0
  2338. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  2339. * on operand 0
  2340. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  2341. * to the register value of operand 0, 1 or 2
  2342. * \13 - a literal byte follows in the code stream, to be added
  2343. * to the condition code value of the instruction.
  2344. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  2345. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  2346. * \23 - a literal byte follows in the code stream, to be added
  2347. * to the inverted condition code value of the instruction
  2348. * (inverted version of \13).
  2349. * \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
  2350. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  2351. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  2352. * assembly mode or the address-size override on the operand
  2353. * \37 - a word constant, from the _segment_ part of operand 0
  2354. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  2355. * \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
  2356. on the address size of instruction
  2357. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  2358. * \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
  2359. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  2360. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  2361. * assembly mode or the address-size override on the operand
  2362. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  2363. * \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
  2364. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  2365. * field the register value of operand b.
  2366. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  2367. * field equal to digit b.
  2368. * \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
  2369. * \300,\301,\302 - might be an 0x67, depending on the address size of
  2370. * the memory reference in operand x.
  2371. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  2372. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  2373. * \312 - (disassembler only) invalid with non-default address size.
  2374. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  2375. * size of operand x.
  2376. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  2377. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  2378. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  2379. * \327 - indicates that this instruction is only valid when the
  2380. * operand size is the default (instruction to disassembler,
  2381. * generates no code in the assembler)
  2382. * \331 - instruction not valid with REP prefix. Hint for
  2383. * disassembler only; for SSE instructions.
  2384. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  2385. * \333 - 0xF3 prefix for SSE instructions
  2386. * \334 - 0xF2 prefix for SSE instructions
  2387. * \335 - Indicates 64-bit operand size with REX.W not necessary
  2388. * \361 - 0x66 prefix for SSE instructions
  2389. * \362 - VEX prefix for AVX instructions
  2390. * \363 - VEX W1
  2391. * \364 - VEX Vector length 256
  2392. * \366 - operand 2 (ymmreg) encoded in bit 4-7 of the immediate byte
  2393. * \367 - operand 3 (ymmreg) encoded in bit 4-7 of the immediate byte
  2394. * \370 - VEX 0F-FLAG
  2395. * \371 - VEX 0F38-FLAG
  2396. * \372 - VEX 0F3A-FLAG
  2397. }
  2398. var
  2399. currval : aint;
  2400. currsym : tobjsymbol;
  2401. currrelreloc,
  2402. currabsreloc,
  2403. currabsreloc32 : TObjRelocationType;
  2404. {$ifdef x86_64}
  2405. rexwritten : boolean;
  2406. {$endif x86_64}
  2407. procedure getvalsym(opidx:longint);
  2408. begin
  2409. case oper[opidx]^.typ of
  2410. top_ref :
  2411. begin
  2412. currval:=oper[opidx]^.ref^.offset;
  2413. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  2414. {$ifdef i8086}
  2415. if oper[opidx]^.ref^.refaddr=addr_seg then
  2416. begin
  2417. currrelreloc:=RELOC_SEGREL;
  2418. currabsreloc:=RELOC_SEG;
  2419. currabsreloc32:=RELOC_SEG;
  2420. end
  2421. else if oper[opidx]^.ref^.refaddr=addr_dgroup then
  2422. begin
  2423. currrelreloc:=RELOC_DGROUPREL;
  2424. currabsreloc:=RELOC_DGROUP;
  2425. currabsreloc32:=RELOC_DGROUP;
  2426. end
  2427. else if oper[opidx]^.ref^.refaddr=addr_fardataseg then
  2428. begin
  2429. currrelreloc:=RELOC_FARDATASEGREL;
  2430. currabsreloc:=RELOC_FARDATASEG;
  2431. currabsreloc32:=RELOC_FARDATASEG;
  2432. end
  2433. else
  2434. {$endif i8086}
  2435. {$ifdef i386}
  2436. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2437. (tf_pic_uses_got in target_info.flags) then
  2438. begin
  2439. currrelreloc:=RELOC_PLT32;
  2440. currabsreloc:=RELOC_GOT32;
  2441. currabsreloc32:=RELOC_GOT32;
  2442. end
  2443. else
  2444. {$endif i386}
  2445. {$ifdef x86_64}
  2446. if oper[opidx]^.ref^.refaddr=addr_pic then
  2447. begin
  2448. currrelreloc:=RELOC_PLT32;
  2449. currabsreloc:=RELOC_GOTPCREL;
  2450. currabsreloc32:=RELOC_GOTPCREL;
  2451. end
  2452. else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
  2453. begin
  2454. currrelreloc:=RELOC_RELATIVE;
  2455. currabsreloc:=RELOC_RELATIVE;
  2456. currabsreloc32:=RELOC_RELATIVE;
  2457. end
  2458. else
  2459. {$endif x86_64}
  2460. begin
  2461. currrelreloc:=RELOC_RELATIVE;
  2462. currabsreloc:=RELOC_ABSOLUTE;
  2463. currabsreloc32:=RELOC_ABSOLUTE32;
  2464. end;
  2465. end;
  2466. top_const :
  2467. begin
  2468. currval:=aint(oper[opidx]^.val);
  2469. currsym:=nil;
  2470. currabsreloc:=RELOC_ABSOLUTE;
  2471. currabsreloc32:=RELOC_ABSOLUTE32;
  2472. end;
  2473. else
  2474. Message(asmw_e_immediate_or_reference_expected);
  2475. end;
  2476. end;
  2477. {$ifdef x86_64}
  2478. procedure maybewriterex;
  2479. begin
  2480. if (rex<>0) and not(rexwritten) then
  2481. begin
  2482. rexwritten:=true;
  2483. objdata.writebytes(rex,1);
  2484. end;
  2485. end;
  2486. {$endif x86_64}
  2487. procedure write0x66prefix;
  2488. const
  2489. b66: Byte=$66;
  2490. begin
  2491. {$ifdef i8086}
  2492. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  2493. Message(asmw_e_instruction_not_supported_by_cpu);
  2494. {$endif i8086}
  2495. objdata.writebytes(b66,1);
  2496. end;
  2497. procedure write0x67prefix;
  2498. const
  2499. b67: Byte=$67;
  2500. begin
  2501. {$ifdef i8086}
  2502. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  2503. Message(asmw_e_instruction_not_supported_by_cpu);
  2504. {$endif i8086}
  2505. objdata.writebytes(b67,1);
  2506. end;
  2507. procedure objdata_writereloc(Data:TRelocDataInt;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
  2508. begin
  2509. {$ifdef i386}
  2510. { Special case of '_GLOBAL_OFFSET_TABLE_'
  2511. which needs a special relocation type R_386_GOTPC }
  2512. if assigned (p) and
  2513. (p.name='_GLOBAL_OFFSET_TABLE_') and
  2514. (tf_pic_uses_got in target_info.flags) then
  2515. begin
  2516. { nothing else than a 4 byte relocation should occur
  2517. for GOT }
  2518. if len<>4 then
  2519. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  2520. Reloctype:=RELOC_GOTPC;
  2521. { We need to add the offset of the relocation
  2522. of _GLOBAL_OFFSET_TABLE symbol within
  2523. the current instruction }
  2524. inc(data,objdata.currobjsec.size-insoffset);
  2525. end;
  2526. {$endif i386}
  2527. objdata.writereloc(data,len,p,Reloctype);
  2528. end;
  2529. const
  2530. CondVal:array[TAsmCond] of byte=($0,
  2531. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  2532. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  2533. $0, $A, $A, $B, $8, $4);
  2534. var
  2535. c : byte;
  2536. pb : pbyte;
  2537. codes : pchar;
  2538. bytes : array[0..3] of byte;
  2539. rfield,
  2540. data,s,opidx : longint;
  2541. ea_data : ea;
  2542. relsym : TObjSymbol;
  2543. needed_VEX_Extension: boolean;
  2544. needed_VEX: boolean;
  2545. opmode: integer;
  2546. VEXvvvv: byte;
  2547. VEXmmmmm: byte;
  2548. begin
  2549. { safety check }
  2550. if objdata.currobjsec.size<>longword(insoffset) then
  2551. internalerror(200130121);
  2552. { those variables are initialized inside local procedures, the dfa cannot handle this yet }
  2553. currsym:=nil;
  2554. currabsreloc:=RELOC_NONE;
  2555. currabsreloc32:=RELOC_NONE;
  2556. currrelreloc:=RELOC_NONE;
  2557. currval:=0;
  2558. { check instruction's processor level }
  2559. { todo: maybe adapt and enable this code for i386 and x86_64 as well }
  2560. {$ifdef i8086}
  2561. if objdata.CPUType<>cpu_none then
  2562. begin
  2563. case insentry^.flags and IF_PLEVEL of
  2564. IF_8086:
  2565. ;
  2566. IF_186:
  2567. if objdata.CPUType<cpu_186 then
  2568. Message(asmw_e_instruction_not_supported_by_cpu);
  2569. IF_286:
  2570. if objdata.CPUType<cpu_286 then
  2571. Message(asmw_e_instruction_not_supported_by_cpu);
  2572. IF_386:
  2573. if objdata.CPUType<cpu_386 then
  2574. Message(asmw_e_instruction_not_supported_by_cpu);
  2575. IF_486:
  2576. if objdata.CPUType<cpu_486 then
  2577. Message(asmw_e_instruction_not_supported_by_cpu);
  2578. IF_PENT:
  2579. if objdata.CPUType<cpu_Pentium then
  2580. Message(asmw_e_instruction_not_supported_by_cpu);
  2581. IF_P6:
  2582. if objdata.CPUType<cpu_Pentium2 then
  2583. Message(asmw_e_instruction_not_supported_by_cpu);
  2584. IF_KATMAI:
  2585. if objdata.CPUType<cpu_Pentium3 then
  2586. Message(asmw_e_instruction_not_supported_by_cpu);
  2587. IF_WILLAMETTE,
  2588. IF_PRESCOTT:
  2589. if objdata.CPUType<cpu_Pentium4 then
  2590. Message(asmw_e_instruction_not_supported_by_cpu);
  2591. { the NEC V20/V30 extensions are incompatible with 386+, due to overlapping opcodes }
  2592. IF_NEC:
  2593. if objdata.CPUType>=cpu_386 then
  2594. Message(asmw_e_instruction_not_supported_by_cpu);
  2595. { todo: handle these properly }
  2596. IF_SANDYBRIDGE:
  2597. ;
  2598. end;
  2599. end;
  2600. {$endif i8086}
  2601. { load data to write }
  2602. codes:=insentry^.code;
  2603. {$ifdef x86_64}
  2604. rexwritten:=false;
  2605. {$endif x86_64}
  2606. { Force word push/pop for registers }
  2607. if (opsize={$ifdef i8086}S_L{$else}S_W{$endif}) and ((codes[0]=#4) or (codes[0]=#6) or
  2608. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  2609. write0x66prefix;
  2610. // needed VEX Prefix (for AVX etc.)
  2611. needed_VEX := false;
  2612. needed_VEX_Extension := false;
  2613. opmode := -1;
  2614. VEXvvvv := 0;
  2615. VEXmmmmm := 0;
  2616. repeat
  2617. c:=ord(codes^);
  2618. inc(codes);
  2619. case c of
  2620. &0: break;
  2621. &1,
  2622. &2,
  2623. &3: inc(codes,c);
  2624. &74: opmode := 0;
  2625. &75: opmode := 1;
  2626. &76: opmode := 2;
  2627. &333: VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
  2628. &334: VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
  2629. &361: VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
  2630. &362: needed_VEX := true;
  2631. &363: begin
  2632. needed_VEX_Extension := true;
  2633. VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
  2634. end;
  2635. &364: VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
  2636. &370: VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
  2637. &371: begin
  2638. needed_VEX_Extension := true;
  2639. VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
  2640. end;
  2641. &372: begin
  2642. needed_VEX_Extension := true;
  2643. VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
  2644. end;
  2645. end;
  2646. until false;
  2647. if needed_VEX then
  2648. begin
  2649. if (opmode > ops) or
  2650. (opmode < -1) then
  2651. begin
  2652. Internalerror(777100);
  2653. end
  2654. else if opmode = -1 then
  2655. begin
  2656. VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
  2657. end
  2658. else if oper[opmode]^.typ = top_reg then
  2659. begin
  2660. VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
  2661. {$ifdef x86_64}
  2662. if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
  2663. {$else}
  2664. VEXvvvv := VEXvvvv or (1 shl 6);
  2665. {$endif x86_64}
  2666. end
  2667. else Internalerror(777101);
  2668. if not(needed_VEX_Extension) then
  2669. begin
  2670. {$ifdef x86_64}
  2671. if rex and $0B <> 0 then needed_VEX_Extension := true;
  2672. {$endif x86_64}
  2673. end;
  2674. if needed_VEX_Extension then
  2675. begin
  2676. // VEX-Prefix-Length = 3 Bytes
  2677. {$ifdef x86_64}
  2678. VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
  2679. VEXvvvv := VEXvvvv or ((rex and $08) shl 7); // set REX.w
  2680. {$else}
  2681. VEXmmmmm := VEXmmmmm or (7 shl 5); //
  2682. {$endif x86_64}
  2683. bytes[0]:=$C4;
  2684. bytes[1]:=VEXmmmmm;
  2685. bytes[2]:=VEXvvvv;
  2686. objdata.writebytes(bytes,3);
  2687. end
  2688. else
  2689. begin
  2690. // VEX-Prefix-Length = 2 Bytes
  2691. {$ifdef x86_64}
  2692. if rex and $04 = 0 then
  2693. {$endif x86_64}
  2694. begin
  2695. VEXvvvv := VEXvvvv or (1 shl 7);
  2696. end;
  2697. bytes[0]:=$C5;
  2698. bytes[1]:=VEXvvvv;
  2699. objdata.writebytes(bytes,2);
  2700. end;
  2701. end
  2702. else
  2703. begin
  2704. needed_VEX_Extension := false;
  2705. opmode := -1;
  2706. end;
  2707. { load data to write }
  2708. codes:=insentry^.code;
  2709. repeat
  2710. c:=ord(codes^);
  2711. inc(codes);
  2712. case c of
  2713. &0 :
  2714. break;
  2715. &1,&2,&3 :
  2716. begin
  2717. {$ifdef x86_64}
  2718. if not(needed_VEX) then // TG
  2719. maybewriterex;
  2720. {$endif x86_64}
  2721. objdata.writebytes(codes^,c);
  2722. inc(codes,c);
  2723. end;
  2724. &4,&6 :
  2725. begin
  2726. case oper[0]^.reg of
  2727. NR_CS:
  2728. bytes[0]:=$e;
  2729. NR_NO,
  2730. NR_DS:
  2731. bytes[0]:=$1e;
  2732. NR_ES:
  2733. bytes[0]:=$6;
  2734. NR_SS:
  2735. bytes[0]:=$16;
  2736. else
  2737. internalerror(777004);
  2738. end;
  2739. if c=&4 then
  2740. inc(bytes[0]);
  2741. objdata.writebytes(bytes,1);
  2742. end;
  2743. &5,&7 :
  2744. begin
  2745. case oper[0]^.reg of
  2746. NR_FS:
  2747. bytes[0]:=$a0;
  2748. NR_GS:
  2749. bytes[0]:=$a8;
  2750. else
  2751. internalerror(777005);
  2752. end;
  2753. if c=&5 then
  2754. inc(bytes[0]);
  2755. objdata.writebytes(bytes,1);
  2756. end;
  2757. &10,&11,&12 :
  2758. begin
  2759. {$ifdef x86_64}
  2760. if not(needed_VEX) then // TG
  2761. maybewriterex;
  2762. {$endif x86_64}
  2763. bytes[0]:=ord(codes^)+regval(oper[c-&10]^.reg);
  2764. inc(codes);
  2765. objdata.writebytes(bytes,1);
  2766. end;
  2767. &13 :
  2768. begin
  2769. bytes[0]:=ord(codes^)+condval[condition];
  2770. inc(codes);
  2771. objdata.writebytes(bytes,1);
  2772. end;
  2773. &14,&15,&16 :
  2774. begin
  2775. getvalsym(c-&14);
  2776. if (currval<-128) or (currval>127) then
  2777. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  2778. if assigned(currsym) then
  2779. objdata_writereloc(currval,1,currsym,currabsreloc)
  2780. else
  2781. objdata.writebytes(currval,1);
  2782. end;
  2783. &20,&21,&22 :
  2784. begin
  2785. getvalsym(c-&20);
  2786. if (currval<-256) or (currval>255) then
  2787. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  2788. if assigned(currsym) then
  2789. objdata_writereloc(currval,1,currsym,currabsreloc)
  2790. else
  2791. objdata.writebytes(currval,1);
  2792. end;
  2793. &23 :
  2794. begin
  2795. bytes[0]:=ord(codes^)+condval[inverse_cond(condition)];
  2796. inc(codes);
  2797. objdata.writebytes(bytes,1);
  2798. end;
  2799. &24,&25,&26,&27 :
  2800. begin
  2801. getvalsym(c-&24);
  2802. if (insentry^.flags and IF_IMM3)<>0 then
  2803. begin
  2804. if (currval<0) or (currval>7) then
  2805. Message2(asmw_e_value_exceeds_bounds,'unsigned triad',tostr(currval));
  2806. end
  2807. else if (insentry^.flags and IF_IMM4)<>0 then
  2808. begin
  2809. if (currval<0) or (currval>15) then
  2810. Message2(asmw_e_value_exceeds_bounds,'unsigned nibble',tostr(currval));
  2811. end
  2812. else
  2813. if (currval<0) or (currval>255) then
  2814. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  2815. if assigned(currsym) then
  2816. objdata_writereloc(currval,1,currsym,currabsreloc)
  2817. else
  2818. objdata.writebytes(currval,1);
  2819. end;
  2820. &30,&31,&32 : // 030..032
  2821. begin
  2822. getvalsym(c-&30);
  2823. {$ifndef i8086}
  2824. { currval is an aint so this cannot happen on i8086 and causes only a warning }
  2825. if (currval<-65536) or (currval>65535) then
  2826. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  2827. {$endif i8086}
  2828. if assigned(currsym)
  2829. {$ifdef i8086}
  2830. or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
  2831. {$endif i8086}
  2832. then
  2833. objdata_writereloc(currval,2,currsym,currabsreloc)
  2834. else
  2835. objdata.writebytes(currval,2);
  2836. end;
  2837. &34,&35,&36 : // 034..036
  2838. { !!! These are intended (and used in opcode table) to select depending
  2839. on address size, *not* operand size. Works by coincidence only. }
  2840. begin
  2841. getvalsym(c-&34);
  2842. {$ifdef i8086}
  2843. if assigned(currsym) then
  2844. objdata_writereloc(currval,2,currsym,currabsreloc)
  2845. else
  2846. objdata.writebytes(currval,2);
  2847. {$else i8086}
  2848. if opsize=S_Q then
  2849. begin
  2850. if assigned(currsym) then
  2851. objdata_writereloc(currval,8,currsym,currabsreloc)
  2852. else
  2853. objdata.writebytes(currval,8);
  2854. end
  2855. else
  2856. begin
  2857. if assigned(currsym) then
  2858. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2859. else
  2860. objdata.writebytes(currval,4);
  2861. end
  2862. {$endif i8086}
  2863. end;
  2864. &40,&41,&42 : // 040..042
  2865. begin
  2866. getvalsym(c-&40);
  2867. if assigned(currsym) then
  2868. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2869. else
  2870. objdata.writebytes(currval,4);
  2871. end;
  2872. &44,&45,&46 :// 044..046 - select between word/dword/qword depending on
  2873. begin // address size (we support only default address sizes).
  2874. getvalsym(c-&44);
  2875. {$if defined(x86_64)}
  2876. if assigned(currsym) then
  2877. objdata_writereloc(currval,8,currsym,currabsreloc)
  2878. else
  2879. objdata.writebytes(currval,8);
  2880. {$elseif defined(i386)}
  2881. if assigned(currsym) then
  2882. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2883. else
  2884. objdata.writebytes(currval,4);
  2885. {$elseif defined(i8086)}
  2886. if assigned(currsym) then
  2887. objdata_writereloc(currval,2,currsym,currabsreloc)
  2888. else
  2889. objdata.writebytes(currval,2);
  2890. {$endif}
  2891. end;
  2892. &50,&51,&52 : // 050..052 - byte relative operand
  2893. begin
  2894. getvalsym(c-&50);
  2895. data:=currval-insend;
  2896. {$push}
  2897. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  2898. if assigned(currsym) then
  2899. inc(data,currsym.address);
  2900. {$pop}
  2901. if (data>127) or (data<-128) then
  2902. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  2903. objdata.writebytes(data,1);
  2904. end;
  2905. &54,&55,&56: // 054..056 - qword immediate operand
  2906. begin
  2907. getvalsym(c-&54);
  2908. if assigned(currsym) then
  2909. objdata_writereloc(currval,8,currsym,currabsreloc)
  2910. else
  2911. objdata.writebytes(currval,8);
  2912. end;
  2913. &60,&61,&62 :
  2914. begin
  2915. getvalsym(c-&60);
  2916. {$ifdef i8086}
  2917. if assigned(currsym) then
  2918. objdata_writereloc(currval,2,currsym,currrelreloc)
  2919. else
  2920. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  2921. {$else i8086}
  2922. InternalError(777006);
  2923. {$endif i8086}
  2924. end;
  2925. &64,&65,&66 : // 064..066 - select between 16/32 address mode, but we support only 32 (only 16 on i8086)
  2926. begin
  2927. getvalsym(c-&64);
  2928. {$ifdef i8086}
  2929. if assigned(currsym) then
  2930. objdata_writereloc(currval,2,currsym,currrelreloc)
  2931. else
  2932. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  2933. {$else i8086}
  2934. if assigned(currsym) then
  2935. objdata_writereloc(currval,4,currsym,currrelreloc)
  2936. else
  2937. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2938. {$endif i8086}
  2939. end;
  2940. &70,&71,&72 : // 070..072 - long relative operand
  2941. begin
  2942. getvalsym(c-&70);
  2943. if assigned(currsym) then
  2944. objdata_writereloc(currval,4,currsym,currrelreloc)
  2945. else
  2946. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2947. end;
  2948. &74,&75,&76 : ; // 074..076 - vex-coded vector operand
  2949. // ignore
  2950. &254,&255,&256 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
  2951. begin
  2952. getvalsym(c-&254);
  2953. {$ifdef x86_64}
  2954. { for i386 as aint type is longint the
  2955. following test is useless }
  2956. if (currval<low(longint)) or (currval>high(longint)) then
  2957. Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
  2958. {$endif x86_64}
  2959. if assigned(currsym) then
  2960. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2961. else
  2962. objdata.writebytes(currval,4);
  2963. end;
  2964. &300,&301,&302:
  2965. begin
  2966. {$if defined(x86_64) or defined(i8086)}
  2967. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2968. write0x67prefix;
  2969. {$endif x86_64 or i8086}
  2970. end;
  2971. &310 : { fixed 16-bit addr }
  2972. {$if defined(x86_64)}
  2973. { every insentry having code 0310 must be marked with NOX86_64 }
  2974. InternalError(2011051302);
  2975. {$elseif defined(i386)}
  2976. write0x67prefix;
  2977. {$elseif defined(i8086)}
  2978. {nothing};
  2979. {$endif}
  2980. &311 : { fixed 32-bit addr }
  2981. {$if defined(x86_64) or defined(i8086)}
  2982. write0x67prefix
  2983. {$endif x86_64 or i8086}
  2984. ;
  2985. &320,&321,&322 :
  2986. begin
  2987. case oper[c-&320]^.ot and OT_SIZE_MASK of
  2988. {$if defined(i386) or defined(x86_64)}
  2989. OT_BITS16 :
  2990. {$elseif defined(i8086)}
  2991. OT_BITS32 :
  2992. {$endif}
  2993. write0x66prefix;
  2994. {$ifndef x86_64}
  2995. OT_BITS64 :
  2996. Message(asmw_e_64bit_not_supported);
  2997. {$endif x86_64}
  2998. end;
  2999. end;
  3000. &323 : {no action needed};
  3001. &325:
  3002. {$ifdef i8086}
  3003. write0x66prefix;
  3004. {$else i8086}
  3005. {no action needed};
  3006. {$endif i8086}
  3007. &324,
  3008. &361:
  3009. begin
  3010. {$ifndef i8086}
  3011. if not(needed_VEX) then
  3012. write0x66prefix;
  3013. {$endif not i8086}
  3014. end;
  3015. &326 :
  3016. begin
  3017. {$ifndef x86_64}
  3018. Message(asmw_e_64bit_not_supported);
  3019. {$endif x86_64}
  3020. end;
  3021. &333 :
  3022. begin
  3023. if not(needed_VEX) then
  3024. begin
  3025. bytes[0]:=$f3;
  3026. objdata.writebytes(bytes,1);
  3027. end;
  3028. end;
  3029. &334 :
  3030. begin
  3031. if not(needed_VEX) then
  3032. begin
  3033. bytes[0]:=$f2;
  3034. objdata.writebytes(bytes,1);
  3035. end;
  3036. end;
  3037. &335:
  3038. ;
  3039. &312,
  3040. &327,
  3041. &331,&332 :
  3042. begin
  3043. { these are dissambler hints or 32 bit prefixes which
  3044. are not needed }
  3045. end;
  3046. &362..&364: ; // VEX flags =>> nothing todo
  3047. &366, &367:
  3048. begin
  3049. opidx:=c-&364; { 0366->operand 2, 0367->operand 3 }
  3050. if needed_VEX and
  3051. (ops=4) and
  3052. (oper[opidx]^.typ=top_reg) and
  3053. (oper[opidx]^.ot and (otf_reg_xmm or otf_reg_ymm)<>0) then
  3054. begin
  3055. bytes[0] := ((getsupreg(oper[opidx]^.reg) and 15) shl 4);
  3056. objdata.writebytes(bytes,1);
  3057. end
  3058. else
  3059. Internalerror(2014032001);
  3060. end;
  3061. &370..&372: ; // VEX flags =>> nothing todo
  3062. &37:
  3063. begin
  3064. {$ifdef i8086}
  3065. if assigned(currsym) then
  3066. objdata_writereloc(0,2,currsym,RELOC_SEG)
  3067. else
  3068. InternalError(2015041503);
  3069. {$else i8086}
  3070. InternalError(777006);
  3071. {$endif i8086}
  3072. end;
  3073. else
  3074. begin
  3075. { rex should be written at this point }
  3076. {$ifdef x86_64}
  3077. if not(needed_VEX) then // TG
  3078. if (rex<>0) and not(rexwritten) then
  3079. internalerror(200603191);
  3080. {$endif x86_64}
  3081. if (c>=&100) and (c<=&227) then // 0100..0227
  3082. begin
  3083. if (c<&177) then // 0177
  3084. begin
  3085. if (oper[c and 7]^.typ=top_reg) then
  3086. rfield:=regval(oper[c and 7]^.reg)
  3087. else
  3088. rfield:=regval(oper[c and 7]^.ref^.base);
  3089. end
  3090. else
  3091. rfield:=c and 7;
  3092. opidx:=(c shr 3) and 7;
  3093. if not process_ea(oper[opidx]^,ea_data,rfield) then
  3094. Message(asmw_e_invalid_effective_address);
  3095. pb:=@bytes[0];
  3096. pb^:=ea_data.modrm;
  3097. inc(pb);
  3098. if ea_data.sib_present then
  3099. begin
  3100. pb^:=ea_data.sib;
  3101. inc(pb);
  3102. end;
  3103. s:=pb-@bytes[0];
  3104. objdata.writebytes(bytes,s);
  3105. case ea_data.bytes of
  3106. 0 : ;
  3107. 1 :
  3108. begin
  3109. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  3110. begin
  3111. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  3112. {$ifdef i386}
  3113. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3114. (tf_pic_uses_got in target_info.flags) then
  3115. currabsreloc:=RELOC_GOT32
  3116. else
  3117. {$endif i386}
  3118. {$ifdef x86_64}
  3119. if oper[opidx]^.ref^.refaddr=addr_pic then
  3120. currabsreloc:=RELOC_GOTPCREL
  3121. else
  3122. {$endif x86_64}
  3123. currabsreloc:=RELOC_ABSOLUTE;
  3124. objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  3125. end
  3126. else
  3127. begin
  3128. bytes[0]:=oper[opidx]^.ref^.offset;
  3129. objdata.writebytes(bytes,1);
  3130. end;
  3131. inc(s);
  3132. end;
  3133. 2,4 :
  3134. begin
  3135. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  3136. currval:=oper[opidx]^.ref^.offset;
  3137. {$ifdef x86_64}
  3138. if oper[opidx]^.ref^.refaddr=addr_pic then
  3139. currabsreloc:=RELOC_GOTPCREL
  3140. else
  3141. if oper[opidx]^.ref^.base=NR_RIP then
  3142. begin
  3143. currabsreloc:=RELOC_RELATIVE;
  3144. { Adjust reloc value by number of bytes following the displacement,
  3145. but not if displacement is specified by literal constant }
  3146. if Assigned(currsym) then
  3147. Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
  3148. end
  3149. else
  3150. {$endif x86_64}
  3151. {$ifdef i386}
  3152. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3153. (tf_pic_uses_got in target_info.flags) then
  3154. currabsreloc:=RELOC_GOT32
  3155. else
  3156. {$endif i386}
  3157. {$ifdef i8086}
  3158. if ea_data.bytes=2 then
  3159. currabsreloc:=RELOC_ABSOLUTE
  3160. else
  3161. {$endif i8086}
  3162. currabsreloc:=RELOC_ABSOLUTE32;
  3163. if (currabsreloc in [RELOC_ABSOLUTE32{$ifdef i8086},RELOC_ABSOLUTE{$endif}]) and
  3164. (Assigned(oper[opidx]^.ref^.relsymbol)) then
  3165. begin
  3166. relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
  3167. if relsym.objsection=objdata.CurrObjSec then
  3168. begin
  3169. currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
  3170. {$ifdef i8086}
  3171. if ea_data.bytes=4 then
  3172. currabsreloc:=RELOC_RELATIVE32
  3173. else
  3174. {$endif i8086}
  3175. currabsreloc:=RELOC_RELATIVE;
  3176. end
  3177. else
  3178. begin
  3179. currabsreloc:=RELOC_PIC_PAIR;
  3180. currval:=relsym.offset;
  3181. end;
  3182. end;
  3183. objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
  3184. inc(s,ea_data.bytes);
  3185. end;
  3186. end;
  3187. end
  3188. else
  3189. InternalError(777007);
  3190. end;
  3191. end;
  3192. until false;
  3193. end;
  3194. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  3195. begin
  3196. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  3197. (regtype = R_INTREGISTER) and
  3198. (ops=2) and
  3199. (oper[0]^.typ=top_reg) and
  3200. (oper[1]^.typ=top_reg) and
  3201. (oper[0]^.reg=oper[1]^.reg)
  3202. ) or
  3203. (((opcode=A_MOVSS) or (opcode=A_MOVSD) or (opcode=A_MOVQ) or
  3204. (opcode=A_MOVAPS) or (opcode=A_MOVAPD) or
  3205. (opcode=A_VMOVSS) or (opcode=A_VMOVSD) or (opcode=A_VMOVQ) or
  3206. (opcode=A_VMOVAPS) or (opcode=A_VMOVAPD)) and
  3207. (regtype = R_MMREGISTER) and
  3208. (ops=2) and
  3209. (oper[0]^.typ=top_reg) and
  3210. (oper[1]^.typ=top_reg) and
  3211. (oper[0]^.reg=oper[1]^.reg)
  3212. );
  3213. end;
  3214. procedure build_spilling_operation_type_table;
  3215. var
  3216. opcode : tasmop;
  3217. i : integer;
  3218. begin
  3219. new(operation_type_table);
  3220. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  3221. for opcode:=low(tasmop) to high(tasmop) do
  3222. with InsProp[opcode] do
  3223. begin
  3224. if Ch_Rop1 in Ch then
  3225. operation_type_table^[opcode,0]:=operand_read;
  3226. if Ch_Wop1 in Ch then
  3227. operation_type_table^[opcode,0]:=operand_write;
  3228. if [Ch_RWop1,Ch_Mop1]*Ch<>[] then
  3229. operation_type_table^[opcode,0]:=operand_readwrite;
  3230. if Ch_Rop2 in Ch then
  3231. operation_type_table^[opcode,1]:=operand_read;
  3232. if Ch_Wop2 in Ch then
  3233. operation_type_table^[opcode,1]:=operand_write;
  3234. if [Ch_RWop2,Ch_Mop2]*Ch<>[] then
  3235. operation_type_table^[opcode,1]:=operand_readwrite;
  3236. if Ch_Rop3 in Ch then
  3237. operation_type_table^[opcode,2]:=operand_read;
  3238. if Ch_Wop3 in Ch then
  3239. operation_type_table^[opcode,2]:=operand_write;
  3240. if [Ch_RWop3,Ch_Mop3]*Ch<>[] then
  3241. operation_type_table^[opcode,2]:=operand_readwrite;
  3242. end;
  3243. end;
  3244. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  3245. begin
  3246. { the information in the instruction table is made for the string copy
  3247. operation MOVSD so hack here (FK)
  3248. VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
  3249. so fix it here (FK)
  3250. }
  3251. if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
  3252. begin
  3253. case opnr of
  3254. 0:
  3255. result:=operand_read;
  3256. 1:
  3257. result:=operand_write;
  3258. else
  3259. internalerror(200506055);
  3260. end
  3261. end
  3262. { IMUL has 1, 2 and 3-operand forms }
  3263. else if opcode=A_IMUL then
  3264. begin
  3265. case ops of
  3266. 1:
  3267. if opnr=0 then
  3268. result:=operand_read
  3269. else
  3270. internalerror(2014011802);
  3271. 2:
  3272. begin
  3273. case opnr of
  3274. 0:
  3275. result:=operand_read;
  3276. 1:
  3277. result:=operand_readwrite;
  3278. else
  3279. internalerror(2014011803);
  3280. end;
  3281. end;
  3282. 3:
  3283. begin
  3284. case opnr of
  3285. 0,1:
  3286. result:=operand_read;
  3287. 2:
  3288. result:=operand_write;
  3289. else
  3290. internalerror(2014011804);
  3291. end;
  3292. end;
  3293. else
  3294. internalerror(2014011805);
  3295. end;
  3296. end
  3297. else
  3298. result:=operation_type_table^[opcode,opnr];
  3299. end;
  3300. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  3301. var
  3302. tmpref: treference;
  3303. begin
  3304. tmpref:=ref;
  3305. {$ifdef i8086}
  3306. if tmpref.segment=NR_SS then
  3307. tmpref.segment:=NR_NO;
  3308. {$endif i8086}
  3309. case getregtype(r) of
  3310. R_INTREGISTER :
  3311. begin
  3312. if getsubreg(r)=R_SUBH then
  3313. inc(tmpref.offset);
  3314. { we don't need special code here for 32 bit loads on x86_64, since
  3315. those will automatically zero-extend the upper 32 bits. }
  3316. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
  3317. end;
  3318. R_MMREGISTER :
  3319. if current_settings.fputype in fpu_avx_instructionsets then
  3320. case getsubreg(r) of
  3321. R_SUBMMD:
  3322. result:=taicpu.op_ref_reg(A_VMOVSD,S_NO,tmpref,r);
  3323. R_SUBMMS:
  3324. result:=taicpu.op_ref_reg(A_VMOVSS,S_NO,tmpref,r);
  3325. R_SUBQ,
  3326. R_SUBMMWHOLE:
  3327. result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
  3328. else
  3329. internalerror(200506043);
  3330. end
  3331. else
  3332. case getsubreg(r) of
  3333. R_SUBMMD:
  3334. result:=taicpu.op_ref_reg(A_MOVSD,S_NO,tmpref,r);
  3335. R_SUBMMS:
  3336. result:=taicpu.op_ref_reg(A_MOVSS,S_NO,tmpref,r);
  3337. R_SUBQ,
  3338. R_SUBMMWHOLE:
  3339. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
  3340. else
  3341. internalerror(200506043);
  3342. end;
  3343. else
  3344. internalerror(200401041);
  3345. end;
  3346. end;
  3347. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  3348. var
  3349. size: topsize;
  3350. tmpref: treference;
  3351. begin
  3352. tmpref:=ref;
  3353. {$ifdef i8086}
  3354. if tmpref.segment=NR_SS then
  3355. tmpref.segment:=NR_NO;
  3356. {$endif i8086}
  3357. case getregtype(r) of
  3358. R_INTREGISTER :
  3359. begin
  3360. if getsubreg(r)=R_SUBH then
  3361. inc(tmpref.offset);
  3362. size:=reg2opsize(r);
  3363. {$ifdef x86_64}
  3364. { even if it's a 32 bit reg, we still have to spill 64 bits
  3365. because we often perform 64 bit operations on them }
  3366. if (size=S_L) then
  3367. begin
  3368. size:=S_Q;
  3369. r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
  3370. end;
  3371. {$endif x86_64}
  3372. result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
  3373. end;
  3374. R_MMREGISTER :
  3375. if current_settings.fputype in fpu_avx_instructionsets then
  3376. case getsubreg(r) of
  3377. R_SUBMMD:
  3378. result:=taicpu.op_reg_ref(A_VMOVSD,S_NO,r,tmpref);
  3379. R_SUBMMS:
  3380. result:=taicpu.op_reg_ref(A_VMOVSS,S_NO,r,tmpref);
  3381. R_SUBQ,
  3382. R_SUBMMWHOLE:
  3383. result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
  3384. else
  3385. internalerror(200506042);
  3386. end
  3387. else
  3388. case getsubreg(r) of
  3389. R_SUBMMD:
  3390. result:=taicpu.op_reg_ref(A_MOVSD,S_NO,r,tmpref);
  3391. R_SUBMMS:
  3392. result:=taicpu.op_reg_ref(A_MOVSS,S_NO,r,tmpref);
  3393. R_SUBQ,
  3394. R_SUBMMWHOLE:
  3395. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
  3396. else
  3397. internalerror(200506042);
  3398. end;
  3399. else
  3400. internalerror(200401041);
  3401. end;
  3402. end;
  3403. {$ifdef i8086}
  3404. procedure taicpu.loadsegsymbol(opidx:longint;s:tasmsymbol);
  3405. var
  3406. r: treference;
  3407. begin
  3408. reference_reset_symbol(r,s,0,1,[]);
  3409. r.refaddr:=addr_seg;
  3410. loadref(opidx,r);
  3411. end;
  3412. {$endif i8086}
  3413. {*****************************************************************************
  3414. Instruction table
  3415. *****************************************************************************}
  3416. procedure BuildInsTabCache;
  3417. var
  3418. i : longint;
  3419. begin
  3420. new(instabcache);
  3421. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  3422. i:=0;
  3423. while (i<InsTabEntries) do
  3424. begin
  3425. if InsTabCache^[InsTab[i].OPcode]=-1 then
  3426. InsTabCache^[InsTab[i].OPcode]:=i;
  3427. inc(i);
  3428. end;
  3429. end;
  3430. procedure BuildInsTabMemRefSizeInfoCache;
  3431. var
  3432. AsmOp: TasmOp;
  3433. i,j: longint;
  3434. insentry : PInsEntry;
  3435. MRefInfo: TMemRefSizeInfo;
  3436. SConstInfo: TConstSizeInfo;
  3437. actRegSize: int64;
  3438. actMemSize: int64;
  3439. actConstSize: int64;
  3440. actRegCount: integer;
  3441. actMemCount: integer;
  3442. actConstCount: integer;
  3443. actRegTypes : int64;
  3444. actRegMemTypes: int64;
  3445. NewRegSize: int64;
  3446. actVMemCount : integer;
  3447. actVMemTypes : int64;
  3448. RegMMXSizeMask: int64;
  3449. RegXMMSizeMask: int64;
  3450. RegYMMSizeMask: int64;
  3451. bitcount: integer;
  3452. function bitcnt(aValue: int64): integer;
  3453. var
  3454. i: integer;
  3455. begin
  3456. result := 0;
  3457. for i := 0 to 63 do
  3458. begin
  3459. if (aValue mod 2) = 1 then
  3460. begin
  3461. inc(result);
  3462. end;
  3463. aValue := aValue shr 1;
  3464. end;
  3465. end;
  3466. begin
  3467. new(InsTabMemRefSizeInfoCache);
  3468. FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
  3469. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3470. begin
  3471. i := InsTabCache^[AsmOp];
  3472. if i >= 0 then
  3473. begin
  3474. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3475. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3476. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
  3477. insentry:=@instab[i];
  3478. RegMMXSizeMask := 0;
  3479. RegXMMSizeMask := 0;
  3480. RegYMMSizeMask := 0;
  3481. while (insentry^.opcode=AsmOp) do
  3482. begin
  3483. MRefInfo := msiUnkown;
  3484. actRegSize := 0;
  3485. actRegCount := 0;
  3486. actRegTypes := 0;
  3487. NewRegSize := 0;
  3488. actMemSize := 0;
  3489. actMemCount := 0;
  3490. actRegMemTypes := 0;
  3491. actVMemCount := 0;
  3492. actVMemTypes := 0;
  3493. actConstSize := 0;
  3494. actConstCount := 0;
  3495. for j := 0 to insentry^.ops -1 do
  3496. begin
  3497. if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
  3498. ((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
  3499. ((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
  3500. ((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) then
  3501. begin
  3502. inc(actVMemCount);
  3503. case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64) of
  3504. OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
  3505. OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
  3506. OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
  3507. OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
  3508. else InternalError(777206);
  3509. end;
  3510. end
  3511. else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
  3512. begin
  3513. inc(actRegCount);
  3514. NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
  3515. if NewRegSize = 0 then
  3516. begin
  3517. case insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG) of
  3518. OT_MMXREG: begin
  3519. NewRegSize := OT_BITS64;
  3520. end;
  3521. OT_XMMREG: begin
  3522. NewRegSize := OT_BITS128;
  3523. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3524. end;
  3525. OT_YMMREG: begin
  3526. NewRegSize := OT_BITS256;
  3527. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3528. end;
  3529. else NewRegSize := not(0);
  3530. end;
  3531. end;
  3532. actRegSize := actRegSize or NewRegSize;
  3533. actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG));
  3534. end
  3535. else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
  3536. begin
  3537. inc(actMemCount);
  3538. actMemSize:=actMemSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3539. if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
  3540. begin
  3541. actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
  3542. end;
  3543. end
  3544. else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
  3545. begin
  3546. inc(actConstCount);
  3547. actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3548. end
  3549. end;
  3550. if actConstCount > 0 then
  3551. begin
  3552. case actConstSize of
  3553. 0: SConstInfo := csiNoSize;
  3554. OT_BITS8: SConstInfo := csiMem8;
  3555. OT_BITS16: SConstInfo := csiMem16;
  3556. OT_BITS32: SConstInfo := csiMem32;
  3557. OT_BITS64: SConstInfo := csiMem64;
  3558. else SConstInfo := csiMultiple;
  3559. end;
  3560. if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnkown then
  3561. begin
  3562. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
  3563. end
  3564. else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
  3565. begin
  3566. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
  3567. end;
  3568. end;
  3569. if actVMemCount > 0 then
  3570. begin
  3571. if actVMemCount = 1 then
  3572. begin
  3573. if actVMemTypes > 0 then
  3574. begin
  3575. case actVMemTypes of
  3576. OT_XMEM32: MRefInfo := msiXMem32;
  3577. OT_XMEM64: MRefInfo := msiXMem64;
  3578. OT_YMEM32: MRefInfo := msiYMem32;
  3579. OT_YMEM64: MRefInfo := msiYMem64;
  3580. else InternalError(777208);
  3581. end;
  3582. case actRegTypes of
  3583. OT_XMMREG: case MRefInfo of
  3584. msiXMem32,
  3585. msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
  3586. msiYMem32,
  3587. msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
  3588. else InternalError(777210);
  3589. end;
  3590. OT_YMMREG: case MRefInfo of
  3591. msiXMem32,
  3592. msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
  3593. msiYMem32,
  3594. msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
  3595. else InternalError(777211);
  3596. end;
  3597. //else InternalError(777209);
  3598. end;
  3599. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3600. begin
  3601. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3602. end
  3603. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3604. begin
  3605. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64] then
  3606. begin
  3607. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
  3608. end
  3609. else InternalError(777212);
  3610. end;
  3611. end;
  3612. end
  3613. else InternalError(777207);
  3614. end
  3615. else
  3616. case actMemCount of
  3617. 0: ; // nothing todo
  3618. 1: begin
  3619. MRefInfo := msiUnkown;
  3620. case actRegMemTypes and (OT_MMXRM OR OT_XMMRM OR OT_YMMRM) of
  3621. OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
  3622. OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
  3623. OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
  3624. end;
  3625. case actMemSize of
  3626. 0: MRefInfo := msiNoSize;
  3627. OT_BITS8: MRefInfo := msiMem8;
  3628. OT_BITS16: MRefInfo := msiMem16;
  3629. OT_BITS32: MRefInfo := msiMem32;
  3630. OT_BITS64: MRefInfo := msiMem64;
  3631. OT_BITS128: MRefInfo := msiMem128;
  3632. OT_BITS256: MRefInfo := msiMem256;
  3633. OT_BITS80,
  3634. OT_FAR,
  3635. OT_NEAR,
  3636. OT_SHORT: ; // ignore
  3637. else
  3638. begin
  3639. bitcount := bitcnt(actMemSize);
  3640. if bitcount > 1 then MRefInfo := msiMultiple
  3641. else InternalError(777203);
  3642. end;
  3643. end;
  3644. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3645. begin
  3646. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3647. end
  3648. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3649. begin
  3650. with InsTabMemRefSizeInfoCache^[AsmOp] do
  3651. begin
  3652. if ((MemRefSize = msiMem8) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultiple8
  3653. else if ((MemRefSize = msiMem16) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultiple16
  3654. else if ((MemRefSize = msiMem32) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultiple32
  3655. else if ((MemRefSize = msiMem64) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultiple64
  3656. else if ((MemRefSize = msiMem128) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultiple128
  3657. else if ((MemRefSize = msiMem256) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultiple256
  3658. else MemRefSize := msiMultiple;
  3659. end;
  3660. end;
  3661. if actRegCount > 0 then
  3662. begin
  3663. case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG) of
  3664. OT_MMXREG: RegMMXSizeMask := RegMMXSizeMask or actMemSize;
  3665. OT_XMMREG: RegXMMSizeMask := RegXMMSizeMask or actMemSize;
  3666. OT_YMMREG: RegYMMSizeMask := RegYMMSizeMask or actMemSize;
  3667. else begin
  3668. RegMMXSizeMask := not(0);
  3669. RegXMMSizeMask := not(0);
  3670. RegYMMSizeMask := not(0);
  3671. end;
  3672. end;
  3673. end;
  3674. end;
  3675. else InternalError(777202);
  3676. end;
  3677. inc(insentry);
  3678. end;
  3679. if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
  3680. (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
  3681. begin
  3682. case RegXMMSizeMask of
  3683. OT_BITS16: case RegYMMSizeMask of
  3684. OT_BITS32: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
  3685. end;
  3686. OT_BITS32: case RegYMMSizeMask of
  3687. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
  3688. end;
  3689. OT_BITS64: case RegYMMSizeMask of
  3690. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3691. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
  3692. end;
  3693. OT_BITS128: begin
  3694. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
  3695. begin
  3696. // vector-memory-operand AVX2 (e.g. VGATHER..)
  3697. case RegYMMSizeMask of
  3698. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
  3699. end;
  3700. end
  3701. else if RegMMXSizeMask = 0 then
  3702. begin
  3703. case RegYMMSizeMask of
  3704. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3705. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3706. end;
  3707. end
  3708. else if RegYMMSizeMask = 0 then
  3709. begin
  3710. case RegMMXSizeMask of
  3711. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3712. end;
  3713. end
  3714. else InternalError(777205);
  3715. end;
  3716. end;
  3717. end;
  3718. end;
  3719. end;
  3720. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3721. begin
  3722. // only supported intructiones with SSE- or AVX-operands
  3723. if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
  3724. begin
  3725. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3726. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3727. end;
  3728. end;
  3729. end;
  3730. procedure InitAsm;
  3731. begin
  3732. build_spilling_operation_type_table;
  3733. if not assigned(instabcache) then
  3734. BuildInsTabCache;
  3735. if not assigned(InsTabMemRefSizeInfoCache) then
  3736. BuildInsTabMemRefSizeInfoCache;
  3737. end;
  3738. procedure DoneAsm;
  3739. begin
  3740. if assigned(operation_type_table) then
  3741. begin
  3742. dispose(operation_type_table);
  3743. operation_type_table:=nil;
  3744. end;
  3745. if assigned(instabcache) then
  3746. begin
  3747. dispose(instabcache);
  3748. instabcache:=nil;
  3749. end;
  3750. if assigned(InsTabMemRefSizeInfoCache) then
  3751. begin
  3752. dispose(InsTabMemRefSizeInfoCache);
  3753. InsTabMemRefSizeInfoCache:=nil;
  3754. end;
  3755. end;
  3756. begin
  3757. cai_align:=tai_align;
  3758. cai_cpu:=taicpu;
  3759. end.