cgbase.pas 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl
  3. Some basic types and constants for the code generation
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. {# This unit exports some types which are used across the code generator }
  18. unit cgbase;
  19. {$i fpcdefs.inc}
  20. interface
  21. uses
  22. globtype,
  23. symconst;
  24. type
  25. { Location types where value can be stored }
  26. TCGLoc=(
  27. LOC_INVALID, { added for tracking problems}
  28. LOC_VOID, { no value is available }
  29. LOC_CONSTANT, { constant value }
  30. LOC_JUMP, { boolean results only, jump to false or true label }
  31. LOC_FLAGS, { boolean results only, flags are set }
  32. LOC_CREFERENCE, { in memory constant value reference (cannot change) }
  33. LOC_REFERENCE, { in memory value }
  34. LOC_REGISTER, { in a processor register }
  35. LOC_CREGISTER, { Constant register which shouldn't be modified }
  36. LOC_FPUREGISTER, { FPU stack }
  37. LOC_CFPUREGISTER, { if it is a FPU register variable on the fpu stack }
  38. LOC_MMXREGISTER, { MMX register }
  39. { MMX register variable }
  40. LOC_CMMXREGISTER,
  41. { multimedia register }
  42. LOC_MMREGISTER,
  43. { Constant multimedia reg which shouldn't be modified }
  44. LOC_CMMREGISTER,
  45. { contiguous subset of bits of an integer register }
  46. LOC_SUBSETREG,
  47. LOC_CSUBSETREG,
  48. { contiguous subset of bits in memory }
  49. LOC_SUBSETREF,
  50. LOC_CSUBSETREF
  51. );
  52. { since we have only 16bit offsets, we need to be able to specify the high
  53. and lower 16 bits of the address of a symbol of up to 64 bit }
  54. trefaddr = (
  55. addr_no,
  56. addr_full,
  57. {$IFNDEF POWERPC64}
  58. addr_hi,
  59. addr_lo,
  60. {$ENDIF}
  61. addr_pic
  62. {$IFDEF POWERPC64}
  63. ,
  64. addr_low, // bits 48-63
  65. addr_high, // bits 32-47
  66. addr_higher, // bits 16-31
  67. addr_highest, // bits 00-15
  68. addr_higha, // bits 16-31, adjusted
  69. addr_highera, // bits 32-47, adjusted
  70. addr_highesta // bits 48-63, adjusted
  71. {$ENDIF}
  72. );
  73. {# Generic opcodes, which must be supported by all processors
  74. }
  75. topcg =
  76. (
  77. OP_NONE,
  78. OP_MOVE, { replaced operation with direct load }
  79. OP_ADD, { simple addition }
  80. OP_AND, { simple logical and }
  81. OP_DIV, { simple unsigned division }
  82. OP_IDIV, { simple signed division }
  83. OP_IMUL, { simple signed multiply }
  84. OP_MUL, { simple unsigned multiply }
  85. OP_NEG, { simple negate }
  86. OP_NOT, { simple logical not }
  87. OP_OR, { simple logical or }
  88. OP_SAR, { arithmetic shift-right }
  89. OP_SHL, { logical shift left }
  90. OP_SHR, { logical shift right }
  91. OP_SUB, { simple subtraction }
  92. OP_XOR { simple exclusive or }
  93. );
  94. {# Generic flag values - used for jump locations }
  95. TOpCmp =
  96. (
  97. OC_NONE,
  98. OC_EQ, { equality comparison }
  99. OC_GT, { greater than (signed) }
  100. OC_LT, { less than (signed) }
  101. OC_GTE, { greater or equal than (signed) }
  102. OC_LTE, { less or equal than (signed) }
  103. OC_NE, { not equal }
  104. OC_BE, { less or equal than (unsigned) }
  105. OC_B, { less than (unsigned) }
  106. OC_AE, { greater or equal than (unsigned) }
  107. OC_A { greater than (unsigned) }
  108. );
  109. { OS_NO is also used memory references with large data that can
  110. not be loaded in a register directly }
  111. TCgSize = (OS_NO,
  112. { integer registers }
  113. OS_8,OS_16,OS_32,OS_64,OS_128,OS_S8,OS_S16,OS_S32,OS_S64,OS_S128,
  114. { single,double,extended,comp,float128 }
  115. OS_F32,OS_F64,OS_F80,OS_C64,OS_F128,
  116. { multi-media sizes: split in byte, word, dword, ... }
  117. { entities, then the signed counterparts }
  118. OS_M8,OS_M16,OS_M32,OS_M64,OS_M128,
  119. OS_MS8,OS_MS16,OS_MS32,OS_MS64,OS_MS128);
  120. { Register types }
  121. TRegisterType = (
  122. R_INVALIDREGISTER, { = 0 }
  123. R_INTREGISTER, { = 1 }
  124. R_FPUREGISTER, { = 2 }
  125. { used by Intel only }
  126. R_MMXREGISTER, { = 3 }
  127. R_MMREGISTER, { = 4 }
  128. R_SPECIALREGISTER, { = 5 }
  129. R_ADDRESSREGISTER { = 6 }
  130. );
  131. { Sub registers }
  132. TSubRegister = (
  133. R_SUBNONE, { = 0; no sub register possible }
  134. R_SUBL, { = 1; 8 bits, Like AL }
  135. R_SUBH, { = 2; 8 bits, Like AH }
  136. R_SUBW, { = 3; 16 bits, Like AX }
  137. R_SUBD, { = 4; 32 bits, Like EAX }
  138. R_SUBQ, { = 5; 64 bits, Like RAX }
  139. { For Sparc floats that use F0:F1 to store doubles }
  140. R_SUBFS, { = 6; Float that allocates 1 FPU register }
  141. R_SUBFD, { = 7; Float that allocates 2 FPU registers }
  142. R_SUBFQ, { = 8; Float that allocates 4 FPU registers }
  143. R_SUBMMS, { = 9; single scalar in multi media register }
  144. R_SUBMMD, { = 10; double scalar in multi media register }
  145. R_SUBMMWHOLE { = 11; complete MM register, size depends on CPU }
  146. );
  147. TSuperRegister = type word;
  148. {
  149. The new register coding:
  150. SuperRegister (bits 0..15)
  151. Subregister (bits 16..23)
  152. Register type (bits 24..31)
  153. TRegister is defined as an enum to make it incompatible
  154. with TSuperRegister to avoid mixing them
  155. }
  156. TRegister = (
  157. TRegisterLowEnum := Low(longint),
  158. TRegisterHighEnum := High(longint)
  159. );
  160. TRegisterRec=packed record
  161. {$ifdef FPC_BIG_ENDIAN}
  162. regtype : Tregistertype;
  163. subreg : Tsubregister;
  164. supreg : Tsuperregister;
  165. {$else FPC_BIG_ENDIAN}
  166. supreg : Tsuperregister;
  167. subreg : Tsubregister;
  168. regtype : Tregistertype;
  169. {$endif FPC_BIG_ENDIAN}
  170. end;
  171. { A type to store register locations for 64 Bit values. }
  172. {$ifdef cpu64bit}
  173. tregister64 = tregister;
  174. {$else cpu64bit}
  175. tregister64 = record
  176. reglo,reghi : tregister;
  177. end;
  178. {$endif cpu64bit}
  179. Tregistermmxset = record
  180. reg0,reg1,reg2,reg3:Tregister
  181. end;
  182. { Set type definition for registers }
  183. tcpuregisterset = set of byte;
  184. tsuperregisterset = array[byte] of set of byte;
  185. pmmshuffle = ^tmmshuffle;
  186. { this record describes shuffle operations for mm operations; if a pointer a shuffle record
  187. passed to an mm operation is nil, it means that the whole location is moved }
  188. tmmshuffle = record
  189. { describes how many shuffles are actually described, if len=0 then
  190. moving the scalar with index 0 to the scalar with index 0 is meant }
  191. len : byte;
  192. { lower nibble of each entry of this array describes index of the source data index while
  193. the upper nibble describes the destination index }
  194. shuffles : array[1..1] of byte;
  195. end;
  196. Tsuperregisterarray=array[0..$ffff] of Tsuperregister;
  197. Psuperregisterarray=^Tsuperregisterarray;
  198. Tsuperregisterworklist=object
  199. buflength,
  200. buflengthinc,
  201. length:word;
  202. buf:Psuperregisterarray;
  203. constructor init;
  204. constructor copyfrom(const x:Tsuperregisterworklist);
  205. destructor done;
  206. procedure clear;
  207. procedure add(s:tsuperregister);
  208. function addnodup(s:tsuperregister): boolean;
  209. function get:tsuperregister;
  210. function readidx(i:word):tsuperregister;
  211. procedure deleteidx(i:word);
  212. function delete(s:tsuperregister):boolean;
  213. end;
  214. psuperregisterworklist=^tsuperregisterworklist;
  215. const
  216. { alias for easier understanding }
  217. R_SSEREGISTER = R_MMREGISTER;
  218. { Invalid register number }
  219. RS_INVALID = high(tsuperregister);
  220. { Maximum number of cpu registers per register type,
  221. this must fit in tcpuregisterset }
  222. maxcpuregister = 32;
  223. tcgsize2size : Array[tcgsize] of integer =
  224. { integer values }
  225. (0,1,2,4,8,16,1,2,4,8,16,
  226. { floating point values }
  227. 4,8,10,8,16,
  228. { multimedia values }
  229. 1,2,4,8,16,1,2,4,8,16);
  230. tfloat2tcgsize: array[tfloattype] of tcgsize =
  231. (OS_F32,OS_F64,OS_F80,OS_C64,OS_C64,OS_F128);
  232. tcgsize2tfloat: array[OS_F32..OS_C64] of tfloattype =
  233. (s32real,s64real,s80real,s64comp);
  234. { Table to convert tcgsize variables to the correspondending
  235. unsigned types }
  236. tcgsize2unsigned : array[tcgsize] of tcgsize = (OS_NO,
  237. OS_8,OS_16,OS_32,OS_64,OS_128,OS_8,OS_16,OS_32,OS_64,OS_128,
  238. OS_F32,OS_F64,OS_F80,OS_C64,OS_F128,
  239. OS_M8,OS_M16,OS_M32,OS_M64,OS_M128,OS_M8,OS_M16,OS_M32,
  240. OS_M64,OS_M128);
  241. tcgloc2str : array[TCGLoc] of string[12] = (
  242. 'LOC_INVALID',
  243. 'LOC_VOID',
  244. 'LOC_CONST',
  245. 'LOC_JUMP',
  246. 'LOC_FLAGS',
  247. 'LOC_CREF',
  248. 'LOC_REF',
  249. 'LOC_REG',
  250. 'LOC_CREG',
  251. 'LOC_FPUREG',
  252. 'LOC_CFPUREG',
  253. 'LOC_MMXREG',
  254. 'LOC_CMMXREG',
  255. 'LOC_MMREG',
  256. 'LOC_CMMREG',
  257. 'LOC_SSETREG',
  258. 'LOC_CSSETREG',
  259. 'LOC_SSETREF',
  260. 'LOC_CSSETREF');
  261. var
  262. mms_movescalar : pmmshuffle;
  263. procedure supregset_reset(var regs:tsuperregisterset;setall:boolean;
  264. maxreg:Tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  265. procedure supregset_include(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  266. procedure supregset_exclude(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  267. function supregset_in(const regs:tsuperregisterset;s:tsuperregister):boolean;{$ifdef USEINLINE}inline;{$endif}
  268. function newreg(rt:tregistertype;sr:tsuperregister;sb:tsubregister):tregister;{$ifdef USEINLINE}inline;{$endif}
  269. function getsubreg(r:tregister):tsubregister;{$ifdef USEINLINE}inline;{$endif}
  270. function getsupreg(r:tregister):tsuperregister;{$ifdef USEINLINE}inline;{$endif}
  271. function getregtype(r:tregister):tregistertype;{$ifdef USEINLINE}inline;{$endif}
  272. procedure setsubreg(var r:tregister;sr:tsubregister);{$ifdef USEINLINE}inline;{$endif}
  273. procedure setsupreg(var r:tregister;sr:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  274. function generic_regname(r:tregister):string;
  275. {# From a constant numeric value, return the abstract code generator
  276. size.
  277. }
  278. function int_cgsize(const a: aint): tcgsize;{$ifdef USEINLINE}inline;{$endif}
  279. function int_float_cgsize(const a: aint): tcgsize;
  280. { return the inverse condition of opcmp }
  281. function inverse_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
  282. { return the opcmp needed when swapping the operands }
  283. function swap_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
  284. { return whether op is commutative }
  285. function commutativeop(op: topcg): boolean;{$ifdef USEINLINE}inline;{$endif}
  286. { returns true, if shuffle describes a real shuffle operation and not only a move }
  287. function realshuffle(shuffle : pmmshuffle) : boolean;
  288. { returns true, if the shuffle describes only a move of the scalar at index 0 }
  289. function shufflescalar(shuffle : pmmshuffle) : boolean;
  290. { removes shuffling from shuffle, this means that the destenation index of each shuffle is copied to
  291. the source }
  292. procedure removeshuffles(var shuffle : tmmshuffle);
  293. implementation
  294. uses
  295. verbose;
  296. {******************************************************************************
  297. tsuperregisterworklist
  298. ******************************************************************************}
  299. constructor tsuperregisterworklist.init;
  300. begin
  301. length:=0;
  302. buflength:=0;
  303. buflengthinc:=16;
  304. buf:=nil;
  305. end;
  306. constructor Tsuperregisterworklist.copyfrom(const x:Tsuperregisterworklist);
  307. begin
  308. self:=x;
  309. if x.buf<>nil then
  310. begin
  311. getmem(buf,buflength*sizeof(Tsuperregister));
  312. move(x.buf^,buf^,length*sizeof(Tsuperregister));
  313. end;
  314. end;
  315. destructor tsuperregisterworklist.done;
  316. begin
  317. if assigned(buf) then
  318. freemem(buf);
  319. end;
  320. procedure tsuperregisterworklist.add(s:tsuperregister);
  321. begin
  322. inc(length);
  323. { Need to increase buffer length? }
  324. if length>=buflength then
  325. begin
  326. inc(buflength,buflengthinc);
  327. buflengthinc:=buflengthinc*2;
  328. if buflengthinc>256 then
  329. buflengthinc:=256;
  330. reallocmem(buf,buflength*sizeof(Tsuperregister));
  331. end;
  332. buf^[length-1]:=s;
  333. end;
  334. function tsuperregisterworklist.addnodup(s:tsuperregister): boolean;
  335. begin
  336. addnodup := false;
  337. if indexword(buf^,length,s) = -1 then
  338. begin
  339. add(s);
  340. addnodup := true;
  341. end;
  342. end;
  343. procedure tsuperregisterworklist.clear;
  344. begin
  345. length:=0;
  346. end;
  347. procedure tsuperregisterworklist.deleteidx(i:word);
  348. begin
  349. if i>=length then
  350. internalerror(200310144);
  351. buf^[i]:=buf^[length-1];
  352. dec(length);
  353. end;
  354. function tsuperregisterworklist.readidx(i:word):tsuperregister;
  355. begin
  356. if (i >= length) then
  357. internalerror(2005010601);
  358. result := buf^[i];
  359. end;
  360. function tsuperregisterworklist.get:tsuperregister;
  361. begin
  362. if length=0 then
  363. internalerror(200310142);
  364. get:=buf^[0];
  365. buf^[0]:=buf^[length-1];
  366. dec(length);
  367. end;
  368. function tsuperregisterworklist.delete(s:tsuperregister):boolean;
  369. var
  370. i:longint;
  371. begin
  372. delete:=false;
  373. { indexword in 1.0.x and 1.9.4 is broken }
  374. i:=indexword(buf^,length,s);
  375. if i<>-1 then
  376. begin
  377. deleteidx(i);
  378. delete := true;
  379. end;
  380. end;
  381. procedure supregset_reset(var regs:tsuperregisterset;setall:boolean;
  382. maxreg:Tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  383. begin
  384. fillchar(regs,(maxreg+7) shr 3,-byte(setall));
  385. end;
  386. procedure supregset_include(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  387. begin
  388. include(regs[s shr 8],(s and $ff));
  389. end;
  390. procedure supregset_exclude(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  391. begin
  392. exclude(regs[s shr 8],(s and $ff));
  393. end;
  394. function supregset_in(const regs:tsuperregisterset;s:tsuperregister):boolean;{$ifdef USEINLINE}inline;{$endif}
  395. begin
  396. result:=(s and $ff) in regs[s shr 8];
  397. end;
  398. function newreg(rt:tregistertype;sr:tsuperregister;sb:tsubregister):tregister;{$ifdef USEINLINE}inline;{$endif}
  399. begin
  400. tregisterrec(result).regtype:=rt;
  401. tregisterrec(result).supreg:=sr;
  402. tregisterrec(result).subreg:=sb;
  403. end;
  404. function getsubreg(r:tregister):tsubregister;{$ifdef USEINLINE}inline;{$endif}
  405. begin
  406. result:=tregisterrec(r).subreg;
  407. end;
  408. function getsupreg(r:tregister):tsuperregister;{$ifdef USEINLINE}inline;{$endif}
  409. begin
  410. result:=tregisterrec(r).supreg;
  411. end;
  412. function getregtype(r:tregister):tregistertype;{$ifdef USEINLINE}inline;{$endif}
  413. begin
  414. result:=tregisterrec(r).regtype;
  415. end;
  416. procedure setsubreg(var r:tregister;sr:tsubregister);{$ifdef USEINLINE}inline;{$endif}
  417. begin
  418. tregisterrec(r).subreg:=sr;
  419. end;
  420. procedure setsupreg(var r:tregister;sr:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  421. begin
  422. tregisterrec(r).supreg:=sr;
  423. end;
  424. function generic_regname(r:tregister):string;
  425. var
  426. nr : string[12];
  427. begin
  428. str(getsupreg(r),nr);
  429. case getregtype(r) of
  430. R_INTREGISTER:
  431. result:='ireg'+nr;
  432. R_FPUREGISTER:
  433. result:='freg'+nr;
  434. R_MMREGISTER:
  435. result:='mreg'+nr;
  436. R_MMXREGISTER:
  437. result:='xreg'+nr;
  438. R_ADDRESSREGISTER:
  439. result:='areg'+nr;
  440. R_SPECIALREGISTER:
  441. result:='sreg'+nr;
  442. else
  443. begin
  444. result:='INVALID';
  445. exit;
  446. end;
  447. end;
  448. case getsubreg(r) of
  449. R_SUBNONE:
  450. ;
  451. R_SUBL:
  452. result:=result+'l';
  453. R_SUBH:
  454. result:=result+'h';
  455. R_SUBW:
  456. result:=result+'w';
  457. R_SUBD:
  458. result:=result+'d';
  459. R_SUBQ:
  460. result:=result+'q';
  461. R_SUBFS:
  462. result:=result+'fs';
  463. R_SUBFD:
  464. result:=result+'fd';
  465. R_SUBMMD:
  466. result:=result+'md';
  467. R_SUBMMS:
  468. result:=result+'ms';
  469. R_SUBMMWHOLE:
  470. result:=result+'ma';
  471. else
  472. internalerror(200308252);
  473. end;
  474. end;
  475. function int_cgsize(const a: aint): tcgsize;{$ifdef USEINLINE}inline;{$endif}
  476. const
  477. size2cgsize : array[0..8] of tcgsize = (
  478. OS_NO,OS_8,OS_16,OS_NO,OS_32,OS_NO,OS_NO,OS_NO,OS_64
  479. );
  480. begin
  481. if a>8 then
  482. result:=OS_NO
  483. else
  484. result:=size2cgsize[a];
  485. end;
  486. function int_float_cgsize(const a: aint): tcgsize;
  487. begin
  488. case a of
  489. 4 :
  490. result:=OS_F32;
  491. 8 :
  492. result:=OS_F64;
  493. 10 :
  494. result:=OS_F80;
  495. 16 :
  496. result:=OS_F128;
  497. else
  498. internalerror(200603211);
  499. end;
  500. end;
  501. function inverse_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
  502. const
  503. list: array[TOpCmp] of TOpCmp =
  504. (OC_NONE,OC_NE,OC_LTE,OC_GTE,OC_LT,OC_GT,OC_EQ,OC_A,OC_AE,
  505. OC_B,OC_BE);
  506. begin
  507. inverse_opcmp := list[opcmp];
  508. end;
  509. function swap_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
  510. const
  511. list: array[TOpCmp] of TOpCmp =
  512. (OC_NONE,OC_EQ,OC_LT,OC_GT,OC_LTE,OC_GTE,OC_NE,OC_AE,OC_A,
  513. OC_BE,OC_B);
  514. begin
  515. swap_opcmp := list[opcmp];
  516. end;
  517. function commutativeop(op: topcg): boolean;{$ifdef USEINLINE}inline;{$endif}
  518. const
  519. list: array[topcg] of boolean =
  520. (true,false,true,true,false,false,true,true,false,false,
  521. true,false,false,false,false,true);
  522. begin
  523. commutativeop := list[op];
  524. end;
  525. function realshuffle(shuffle : pmmshuffle) : boolean;
  526. var
  527. i : longint;
  528. begin
  529. realshuffle:=true;
  530. if (shuffle=nil) or (shuffle^.len=0) then
  531. realshuffle:=false
  532. else
  533. begin
  534. for i:=1 to shuffle^.len do
  535. begin
  536. if (shuffle^.shuffles[i] and $f)<>((shuffle^.shuffles[i] and $f0) shr 4) then
  537. exit;
  538. end;
  539. realshuffle:=false;
  540. end;
  541. end;
  542. function shufflescalar(shuffle : pmmshuffle) : boolean;
  543. begin
  544. result:=shuffle^.len=0;
  545. end;
  546. procedure removeshuffles(var shuffle : tmmshuffle);
  547. var
  548. i : longint;
  549. begin
  550. if shuffle.len=0 then
  551. exit;
  552. for i:=1 to shuffle.len do
  553. shuffle.shuffles[i]:=(shuffle.shuffles[i] and $f) or ((shuffle.shuffles[i] and $f0) shr 4);
  554. end;
  555. initialization
  556. new(mms_movescalar);
  557. mms_movescalar^.len:=0;
  558. finalization
  559. dispose(mms_movescalar);
  560. end.