cpubase.pas 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the ARM
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. {# Base unit for processor information. This unit contains
  18. enumerations of registers, opcodes, sizes, and other
  19. such things which are processor specific.
  20. }
  21. unit cpubase;
  22. {$define USEINLINE}
  23. {$i fpcdefs.inc}
  24. interface
  25. uses
  26. globtype,globals,
  27. cpuinfo,
  28. cgbase
  29. ;
  30. {*****************************************************************************
  31. Assembler Opcodes
  32. *****************************************************************************}
  33. type
  34. TAsmOp= {$i armop.inc}
  35. {This is a bit of a hack, because there are more than 256 ARM Assembly Ops
  36. But FPC currently can't handle more than 256 elements in a set.}
  37. TCommonAsmOps = Set of A_None .. A_UADD16;
  38. { This should define the array of instructions as string }
  39. op2strtable=array[tasmop] of string[11];
  40. const
  41. { First value of opcode enumeration }
  42. firstop = low(tasmop);
  43. { Last value of opcode enumeration }
  44. lastop = high(tasmop);
  45. {*****************************************************************************
  46. Registers
  47. *****************************************************************************}
  48. type
  49. { Number of registers used for indexing in tables }
  50. tregisterindex=0..{$i rarmnor.inc}-1;
  51. const
  52. { Available Superregisters }
  53. {$i rarmsup.inc}
  54. RS_PC = RS_R15;
  55. { No Subregisters }
  56. R_SUBWHOLE = R_SUBNONE;
  57. { Available Registers }
  58. {$i rarmcon.inc}
  59. { aliases }
  60. NR_PC = NR_R15;
  61. { Integer Super registers first and last }
  62. first_int_supreg = RS_R0;
  63. first_int_imreg = $10;
  64. { Float Super register first and last }
  65. first_fpu_supreg = RS_F0;
  66. first_fpu_imreg = $08;
  67. { MM Super register first and last }
  68. first_mm_supreg = RS_S0;
  69. first_mm_imreg = $30;
  70. { TODO: Calculate bsstart}
  71. regnumber_count_bsstart = 128;
  72. regnumber_table : array[tregisterindex] of tregister = (
  73. {$i rarmnum.inc}
  74. );
  75. regstabs_table : array[tregisterindex] of shortint = (
  76. {$i rarmsta.inc}
  77. );
  78. regdwarf_table : array[tregisterindex] of shortint = (
  79. {$i rarmdwa.inc}
  80. );
  81. { registers which may be destroyed by calls }
  82. VOLATILE_INTREGISTERS = [RS_R0..RS_R3,RS_R12..RS_R14];
  83. VOLATILE_FPUREGISTERS = [RS_F0..RS_F3];
  84. VOLATILE_MMREGISTERS = [RS_D0..RS_D7,RS_D16..RS_D31];
  85. VOLATILE_INTREGISTERS_DARWIN = [RS_R0..RS_R3,RS_R9,RS_R12..RS_R14];
  86. type
  87. totherregisterset = set of tregisterindex;
  88. {*****************************************************************************
  89. Instruction post fixes
  90. *****************************************************************************}
  91. type
  92. { ARM instructions load/store and arithmetic instructions
  93. can have several instruction post fixes which are collected
  94. in this enumeration
  95. }
  96. TOpPostfix = (PF_None,
  97. { update condition flags
  98. or floating point single }
  99. PF_S,
  100. { floating point size }
  101. PF_D,PF_E,PF_P,PF_EP,
  102. { exchange }
  103. PF_X,
  104. { rounding }
  105. PF_R,
  106. { load/store }
  107. PF_B,PF_SB,PF_BT,PF_H,PF_SH,PF_T,
  108. { multiple load/store address modes }
  109. PF_IA,PF_IB,PF_DA,PF_DB,PF_FD,PF_FA,PF_ED,PF_EA,
  110. { multiple load/store vfp address modes }
  111. PF_IAD,PF_DBD,PF_FDD,PF_EAD,
  112. PF_IAS,PF_DBS,PF_FDS,PF_EAS,
  113. PF_IAX,PF_DBX,PF_FDX,PF_EAX,
  114. { VFP postfixes }
  115. PF_8,PF_16,PF_32,PF_64,
  116. PF_I8,PF_I16,PF_I32,PF_I64,
  117. PF_S8,PF_S16,PF_S32,PF_S64,
  118. PF_U8,PF_U16,PF_U32,PF_U64,
  119. PF_P8, // polynomial
  120. PF_F32,PF_F64,
  121. PF_F32F64,PF_F64F32,
  122. PF_F32S16,PF_F32U16,PF_S16F32,PF_U16F32,
  123. PF_F64S16,PF_F64U16,PF_S16F64,PF_U16F64,
  124. PF_F32S32,PF_F32U32,PF_S32F32,PF_U32F32,
  125. PF_F64S32,PF_F64U32,PF_S32F64,PF_U32F64
  126. );
  127. TOpPostfixes = set of TOpPostfix;
  128. TRoundingMode = (RM_None,RM_P,RM_M,RM_Z);
  129. const
  130. cgsize2fpuoppostfix : array[OS_NO..OS_F128] of toppostfix = (
  131. PF_None,
  132. PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,
  133. PF_S,PF_D,PF_E,PF_None,PF_None);
  134. oppostfix2str : array[TOpPostfix] of string[8] = ('',
  135. 's',
  136. 'd','e','p','ep',
  137. 'x',
  138. 'r',
  139. 'b','sb','bt','h','sh','t',
  140. 'ia','ib','da','db','fd','fa','ed','ea',
  141. 'iad','dbd','fdd','ead',
  142. 'ias','dbs','fds','eas',
  143. 'iax','dbx','fdx','eax',
  144. '.8','.16','.32','.64',
  145. '.i8','.i16','.i32','.i64',
  146. '.s8','.s16','.s32','.s64',
  147. '.u8','.u16','.u32','.u64',
  148. '.p8',
  149. '.f32','.f64',
  150. '.f32.f64','.f64.f32',
  151. '.f32.s16','.f32.u16','.s16.f32','.u16.f32',
  152. '.f64.s16','.f64.u16','.s16.f64','.u16.f64',
  153. '.f32.s32','.f32.u32','.s32.f32','.u32.f32',
  154. '.f64.s32','.f64.u32','.s32.f64','.u32.f64');
  155. roundingmode2str : array[TRoundingMode] of string[1] = ('',
  156. 'p','m','z');
  157. {*****************************************************************************
  158. Conditions
  159. *****************************************************************************}
  160. type
  161. TAsmCond=(C_None,
  162. C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
  163. C_GE,C_LT,C_GT,C_LE,C_AL,C_NV
  164. );
  165. TAsmConds = set of TAsmCond;
  166. const
  167. cond2str : array[TAsmCond] of string[2]=('',
  168. 'eq','ne','cs','cc','mi','pl','vs','vc','hi','ls',
  169. 'ge','lt','gt','le','al','nv'
  170. );
  171. uppercond2str : array[TAsmCond] of string[2]=('',
  172. 'EQ','NE','CS','CC','MI','PL','VS','VC','HI','LS',
  173. 'GE','LT','GT','LE','AL','NV'
  174. );
  175. {*****************************************************************************
  176. Flags
  177. *****************************************************************************}
  178. type
  179. TResFlags = (F_EQ,F_NE,F_CS,F_CC,F_MI,F_PL,F_VS,F_VC,F_HI,F_LS,
  180. F_GE,F_LT,F_GT,F_LE);
  181. {*****************************************************************************
  182. Operands
  183. *****************************************************************************}
  184. taddressmode = (AM_OFFSET,AM_PREINDEXED,AM_POSTINDEXED);
  185. tshiftmode = (SM_None,SM_LSL,SM_LSR,SM_ASR,SM_ROR,SM_RRX);
  186. tupdatereg = (UR_None,UR_Update);
  187. pshifterop = ^tshifterop;
  188. tshifterop = record
  189. shiftmode : tshiftmode;
  190. rs : tregister;
  191. shiftimm : byte;
  192. end;
  193. tcpumodeflag = (mfA, mfI, mfF);
  194. tcpumodeflags = set of tcpumodeflag;
  195. tspecialregflag = (srC, srX, srS, srF);
  196. tspecialregflags = set of tspecialregflag;
  197. {*****************************************************************************
  198. Constants
  199. *****************************************************************************}
  200. const
  201. max_operands = 6;
  202. maxintregs = 15;
  203. maxfpuregs = 8;
  204. maxaddrregs = 0;
  205. {*****************************************************************************
  206. Operand Sizes
  207. *****************************************************************************}
  208. type
  209. topsize = (S_NO,
  210. S_B,S_W,S_L,S_BW,S_BL,S_WL,
  211. S_IS,S_IL,S_IQ,
  212. S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX
  213. );
  214. {*****************************************************************************
  215. Constants
  216. *****************************************************************************}
  217. const
  218. maxvarregs = 7;
  219. varregs : Array [1..maxvarregs] of tsuperregister =
  220. (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
  221. maxfpuvarregs = 4;
  222. fpuvarregs : Array [1..maxfpuvarregs] of tsuperregister =
  223. (RS_F4,RS_F5,RS_F6,RS_F7);
  224. {*****************************************************************************
  225. Default generic sizes
  226. *****************************************************************************}
  227. { Defines the default address size for a processor, }
  228. OS_ADDR = OS_32;
  229. { the natural int size for a processor,
  230. has to match osuinttype/ossinttype as initialized in psystem }
  231. OS_INT = OS_32;
  232. OS_SINT = OS_S32;
  233. { the maximum float size for a processor, }
  234. OS_FLOAT = OS_F64;
  235. { the size of a vector register for a processor }
  236. OS_VECTOR = OS_M32;
  237. {*****************************************************************************
  238. Generic Register names
  239. *****************************************************************************}
  240. { Stack pointer register }
  241. NR_STACK_POINTER_REG = NR_R13;
  242. RS_STACK_POINTER_REG = RS_R13;
  243. { Frame pointer register (initialized in tcpuprocinfo.init_framepointer) }
  244. RS_FRAME_POINTER_REG: tsuperregister = RS_NO;
  245. NR_FRAME_POINTER_REG: tregister = NR_NO;
  246. { Register for addressing absolute data in a position independant way,
  247. such as in PIC code. The exact meaning is ABI specific. For
  248. further information look at GCC source : PIC_OFFSET_TABLE_REGNUM
  249. }
  250. NR_PIC_OFFSET_REG = NR_R9;
  251. { Results are returned in this register (32-bit values) }
  252. NR_FUNCTION_RETURN_REG = NR_R0;
  253. RS_FUNCTION_RETURN_REG = RS_R0;
  254. { The value returned from a function is available in this register }
  255. NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG;
  256. RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG;
  257. NR_FPU_RESULT_REG = NR_F0;
  258. NR_MM_RESULT_REG = NR_D0;
  259. NR_RETURN_ADDRESS_REG = NR_FUNCTION_RETURN_REG;
  260. { Offset where the parent framepointer is pushed }
  261. PARENT_FRAMEPOINTER_OFFSET = 0;
  262. NR_DEFAULTFLAGS = NR_CPSR;
  263. RS_DEFAULTFLAGS = RS_CPSR;
  264. { Low part of 64bit return value }
  265. function NR_FUNCTION_RESULT64_LOW_REG: tregister;{$ifdef USEINLINE}inline;{$endif USEINLINE}
  266. function RS_FUNCTION_RESULT64_LOW_REG: shortint;{$ifdef USEINLINE}inline;{$endif USEINLINE}
  267. { High part of 64bit return value }
  268. function NR_FUNCTION_RESULT64_HIGH_REG: tregister;{$ifdef USEINLINE}inline;{$endif USEINLINE}
  269. function RS_FUNCTION_RESULT64_HIGH_REG: shortint;{$ifdef USEINLINE}inline;{$endif USEINLINE}
  270. {*****************************************************************************
  271. GCC /ABI linking information
  272. *****************************************************************************}
  273. const
  274. { Required parameter alignment when calling a routine declared as
  275. stdcall and cdecl. The alignment value should be the one defined
  276. by GCC or the target ABI.
  277. The value of this constant is equal to the constant
  278. PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
  279. }
  280. std_param_align = 4;
  281. {*****************************************************************************
  282. Helpers
  283. *****************************************************************************}
  284. { Returns the tcgsize corresponding with the size of reg.}
  285. function reg_cgsize(const reg: tregister) : tcgsize;
  286. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  287. function is_calljmp(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE}
  288. procedure inverse_flags(var f: TResFlags);
  289. function flags_to_cond(const f: TResFlags) : TAsmCond;
  290. function findreg_by_number(r:Tregister):tregisterindex;
  291. function std_regnum_search(const s:string):Tregister;
  292. function std_regname(r:Tregister):string;
  293. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  294. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  295. procedure shifterop_reset(var so : tshifterop); {$ifdef USEINLINE}inline;{$endif USEINLINE}
  296. function is_pc(const r : tregister) : boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  297. function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
  298. function is_thumb_imm(d: aint): boolean;
  299. { Returns true if d is a valid constant for thumb 32 bit,
  300. doesn't handle ROR_C detection }
  301. function is_thumb32_imm(d : aint) : boolean;
  302. function split_into_shifter_const(value : aint;var imm1: dword; var imm2: dword):boolean;
  303. function is_continuous_mask(d : aword;var lsb, width: byte) : boolean;
  304. function dwarf_reg(r:tregister):shortint;
  305. function dwarf_reg_no_error(r:tregister):shortint;
  306. function eh_return_data_regno(nr: longint): longint;
  307. function IsIT(op: TAsmOp) : boolean;
  308. function GetITLevels(op: TAsmOp) : longint;
  309. function GenerateARMCode : boolean;
  310. function GenerateThumbCode : boolean;
  311. function GenerateThumb2Code : boolean;
  312. function IsVFPFloatImmediate(ft : tfloattype;value : bestreal) : boolean;
  313. implementation
  314. uses
  315. systems,rgBase,verbose;
  316. const
  317. std_regname_table : TRegNameTable = (
  318. {$i rarmstd.inc}
  319. );
  320. regnumber_index : array[tregisterindex] of tregisterindex = (
  321. {$i rarmrni.inc}
  322. );
  323. std_regname_index : array[tregisterindex] of tregisterindex = (
  324. {$i rarmsri.inc}
  325. );
  326. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  327. begin
  328. case regtype of
  329. R_MMREGISTER:
  330. begin
  331. case s of
  332. { records passed in MM registers }
  333. OS_32,
  334. OS_F32:
  335. cgsize2subreg:=R_SUBFS;
  336. OS_64,
  337. OS_F64:
  338. cgsize2subreg:=R_SUBFD;
  339. else
  340. internalerror(2009112701);
  341. end;
  342. end;
  343. else
  344. cgsize2subreg:=R_SUBWHOLE;
  345. end;
  346. end;
  347. function reg_cgsize(const reg: tregister): tcgsize;
  348. begin
  349. case getregtype(reg) of
  350. R_INTREGISTER :
  351. reg_cgsize:=OS_32;
  352. R_FPUREGISTER :
  353. reg_cgsize:=OS_F80;
  354. R_MMREGISTER :
  355. begin
  356. case getsubreg(reg) of
  357. R_SUBFD,
  358. R_SUBWHOLE:
  359. result:=OS_F64;
  360. R_SUBFS:
  361. result:=OS_F32;
  362. else
  363. internalerror(2009112903);
  364. end;
  365. end;
  366. else
  367. internalerror(200303181);
  368. end;
  369. end;
  370. function is_calljmp(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE}
  371. begin
  372. { This isn't 100% perfect because the arm allows jumps also by writing to PC=R15.
  373. To overcome this problem we simply forbid that FPC generates jumps by loading R15 }
  374. is_calljmp:= o in [A_B,A_BL,A_BX,A_BLX];
  375. end;
  376. procedure inverse_flags(var f: TResFlags);
  377. const
  378. inv_flags: array[TResFlags] of TResFlags =
  379. (F_NE,F_EQ,F_CC,F_CS,F_PL,F_MI,F_VC,F_VS,F_LS,F_HI,
  380. F_LT,F_GE,F_LE,F_GT);
  381. begin
  382. f:=inv_flags[f];
  383. end;
  384. function flags_to_cond(const f: TResFlags) : TAsmCond;
  385. const
  386. flag_2_cond: array[F_EQ..F_LE] of TAsmCond =
  387. (C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
  388. C_GE,C_LT,C_GT,C_LE);
  389. begin
  390. if f>high(flag_2_cond) then
  391. internalerror(200112301);
  392. result:=flag_2_cond[f];
  393. end;
  394. function findreg_by_number(r:Tregister):tregisterindex;
  395. begin
  396. result:=rgBase.findreg_by_number_table(r,regnumber_index);
  397. end;
  398. function std_regnum_search(const s:string):Tregister;
  399. begin
  400. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  401. end;
  402. function std_regname(r:Tregister):string;
  403. var
  404. p : tregisterindex;
  405. begin
  406. p:=findreg_by_number_table(r,regnumber_index);
  407. if p<>0 then
  408. result:=std_regname_table[p]
  409. else
  410. result:=generic_regname(r);
  411. end;
  412. procedure shifterop_reset(var so : tshifterop);{$ifdef USEINLINE}inline;{$endif USEINLINE}
  413. begin
  414. FillChar(so,sizeof(so),0);
  415. end;
  416. function is_pc(const r : tregister) : boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  417. begin
  418. is_pc:=(r=NR_R15);
  419. end;
  420. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  421. const
  422. inverse: array[TAsmCond] of TAsmCond=(C_None,
  423. C_NE,C_EQ,C_CC,C_CS,C_PL,C_MI,C_VC,C_VS,C_LS,C_HI,
  424. C_LT,C_GE,C_LE,C_GT,C_None,C_None
  425. );
  426. begin
  427. result := inverse[c];
  428. end;
  429. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  430. begin
  431. result := c1 = c2;
  432. end;
  433. function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
  434. var
  435. i : longint;
  436. begin
  437. if GenerateThumb2Code then
  438. begin
  439. for i:=0 to 24 do
  440. begin
  441. if (dword(d) and not($ff shl i))=0 then
  442. begin
  443. imm_shift:=i;
  444. result:=true;
  445. exit;
  446. end;
  447. end;
  448. end
  449. else
  450. begin
  451. for i:=0 to 15 do
  452. begin
  453. if (dword(d) and not(roldword($ff,i*2)))=0 then
  454. begin
  455. imm_shift:=i*2;
  456. result:=true;
  457. exit;
  458. end;
  459. end;
  460. end;
  461. result:=false;
  462. end;
  463. function is_thumb_imm(d: aint): boolean;
  464. begin
  465. result:=(d and $FF) = d;
  466. end;
  467. function is_thumb32_imm(d: aint): boolean;
  468. var
  469. t : aint;
  470. i : longint;
  471. begin
  472. {Loading 0-255 is simple}
  473. if (d and $FF) = d then
  474. result:=true
  475. { If top and bottom are equal, check if either all 4 bytes are equal
  476. or byte 0 and 2 or byte 1 and 3 are equal }
  477. else if ((d shr 16)=(d and $FFFF)) and
  478. (
  479. ((d and $FF00FF00) = 0) or
  480. ((d and $00FF00FF) = 0) or
  481. ((d shr 8)=(d and $FF))
  482. ) then
  483. result:=true
  484. {Can an 8-bit value be shifted accordingly?}
  485. else
  486. begin
  487. result:=false;
  488. for i:=8 to 31 do
  489. begin
  490. t:=RolDWord(d,i);
  491. if ((t and $FF)=t) and
  492. ((t and $80)=$80) then
  493. begin
  494. result:=true;
  495. exit;
  496. end;
  497. end;
  498. end;
  499. end;
  500. function is_continuous_mask(d : aword;var lsb, width: byte) : boolean;
  501. var
  502. msb : byte;
  503. begin
  504. lsb:=BsfDword(d);
  505. msb:=BsrDword(d);
  506. width:=msb-lsb+1;
  507. result:=(lsb<>255) and (msb<>255) and (aword(((1 shl (msb-lsb+1))-1) shl lsb) = d);
  508. end;
  509. function split_into_shifter_const(value : aint;var imm1: dword; var imm2: dword) : boolean;
  510. var
  511. d, i, i2: Dword;
  512. begin
  513. Result:=false;
  514. {Thumb2 is not supported (YET?)}
  515. if GenerateThumb2Code then exit;
  516. d:=DWord(value);
  517. for i:=0 to 15 do
  518. begin
  519. imm1:=d and rordword($FF, I*2);
  520. imm2:=d and not (imm1); {remove already found bits}
  521. {is the remainder a shifterconst? YAY! we've done it!}
  522. {Could we start from i instead of 0?}
  523. for i2:=0 to 15 do
  524. begin
  525. if (imm2 and not(rordword($FF,i2*2)))=0 then
  526. begin
  527. result:=true;
  528. exit;
  529. end;
  530. end;
  531. end;
  532. end;
  533. function dwarf_reg(r:tregister):shortint;
  534. begin
  535. result:=regdwarf_table[findreg_by_number(r)];
  536. if result=-1 then
  537. internalerror(200603251);
  538. end;
  539. function dwarf_reg_no_error(r:tregister):shortint;
  540. begin
  541. result:=regdwarf_table[findreg_by_number(r)];
  542. end;
  543. function eh_return_data_regno(nr: longint): longint;
  544. begin
  545. if (nr>=0) and (nr<2) then
  546. result:=nr
  547. else
  548. result:=-1;
  549. end;
  550. { Low part of 64bit return value }
  551. function NR_FUNCTION_RESULT64_LOW_REG: tregister; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  552. begin
  553. if target_info.endian=endian_little then
  554. result:=NR_R0
  555. else
  556. result:=NR_R1;
  557. end;
  558. function RS_FUNCTION_RESULT64_LOW_REG: shortint; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  559. begin
  560. if target_info.endian=endian_little then
  561. result:=RS_R0
  562. else
  563. result:=RS_R1;
  564. end;
  565. { High part of 64bit return value }
  566. function NR_FUNCTION_RESULT64_HIGH_REG: tregister; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  567. begin
  568. if target_info.endian=endian_little then
  569. result:=NR_R1
  570. else
  571. result:=NR_R0;
  572. end;
  573. function RS_FUNCTION_RESULT64_HIGH_REG: shortint; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  574. begin
  575. if target_info.endian=endian_little then
  576. result:=RS_R1
  577. else
  578. result:=RS_R0;
  579. end;
  580. function IsIT(op: TAsmOp) : boolean;
  581. begin
  582. case op of
  583. A_IT,
  584. A_ITE, A_ITT,
  585. A_ITEE, A_ITTE, A_ITET, A_ITTT,
  586. A_ITEEE, A_ITTEE, A_ITETE, A_ITTTE,
  587. A_ITEET, A_ITTET, A_ITETT, A_ITTTT:
  588. result:=true;
  589. else
  590. result:=false;
  591. end;
  592. end;
  593. function GetITLevels(op: TAsmOp) : longint;
  594. begin
  595. case op of
  596. A_IT:
  597. result:=1;
  598. A_ITE, A_ITT:
  599. result:=2;
  600. A_ITEE, A_ITTE, A_ITET, A_ITTT:
  601. result:=3;
  602. A_ITEEE, A_ITTEE, A_ITETE, A_ITTTE,
  603. A_ITEET, A_ITTET, A_ITETT, A_ITTTT:
  604. result:=4;
  605. else
  606. result:=0;
  607. end;
  608. end;
  609. function GenerateARMCode : boolean;
  610. begin
  611. Result:=current_settings.instructionset=is_arm;
  612. end;
  613. function GenerateThumbCode : boolean;
  614. begin
  615. Result:=(current_settings.instructionset=is_thumb) and not(CPUARM_HAS_THUMB2 in cpu_capabilities[current_settings.cputype]);
  616. end;
  617. function GenerateThumb2Code : boolean;
  618. begin
  619. Result:=(current_settings.instructionset=is_thumb) and (CPUARM_HAS_THUMB2 in cpu_capabilities[current_settings.cputype]);
  620. end;
  621. function IsVFPFloatImmediate(ft : tfloattype;value : bestreal) : boolean;
  622. var
  623. singlerec : tcompsinglerec;
  624. doublerec : tcompdoublerec;
  625. begin
  626. Result:=false;
  627. case ft of
  628. s32real:
  629. begin
  630. singlerec.value:=value;
  631. singlerec:=tcompsinglerec(NtoLE(DWord(singlerec)));
  632. Result:=(singlerec.bytes[0]=0) and (singlerec.bytes[1]=0) and ((singlerec.bytes[2] and 7)=0) and
  633. (((singlerec.bytes[3] and $7e)=$40) or ((singlerec.bytes[3] and $7e)=$3e));
  634. end;
  635. s64real:
  636. begin
  637. doublerec.value:=value;
  638. doublerec:=tcompdoublerec(NtoLE(QWord(doublerec)));
  639. Result:=(doublerec.bytes[0]=0) and (doublerec.bytes[1]=0) and (doublerec.bytes[2]=0) and
  640. (doublerec.bytes[3]=0) and (doublerec.bytes[4]=0) and (doublerec.bytes[5]=0) and
  641. ((((doublerec.bytes[6] and $7f)=$40) and ((doublerec.bytes[7] and $c0)=0)) or
  642. (((doublerec.bytes[6] and $7f)=$3f) and ((doublerec.bytes[7] and $c0)=$c0)));
  643. end;
  644. end;
  645. end;
  646. end.