cpubase.pas 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595
  1. {******************************************************************************
  2. $Id$
  3. Copyright (c) 1998-2000 by Florian Klaempfl and Peter Vreman
  4. Contains the base types for the Scalable Processor ARChitecture (SPARC)
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; if not, write to the Free Software
  15. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  16. ****************************************************************************}
  17. UNIT cpuBase;
  18. {$INCLUDE fpcdefs.inc}
  19. INTERFACE
  20. USES globals,cutils,cclasses,aasmbase,cpuinfo,cginfo;
  21. CONST
  22. {Size of the instruction table converted by nasmconv.pas}
  23. maxinfolen=8;
  24. {Defines the default address size for a processor}
  25. OS_ADDR=OS_32;
  26. {the natural int size for a processor}
  27. OS_INT=OS_32;
  28. {the maximum float size for a processor}
  29. OS_FLOAT=OS_F64;
  30. {the size of a vector register for a processor}
  31. OS_VECTOR=OS_M64;{$WARNING "OS_VECTOR" was set to "OS_M64" but not verified!}
  32. CONST
  33. {Operand types}
  34. OT_NONE = $00000000;
  35. OT_BITS8 = $00000001; { size, and other attributes, of the operand }
  36. OT_BITS16 = $00000002;
  37. OT_BITS32 = $00000004;
  38. OT_BITS64 = $00000008; { FPU only }
  39. OT_BITS80 = $00000010;
  40. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  41. OT_NEAR = $00000040;
  42. OT_SHORT = $00000080;
  43. OT_SIZE_MASK = $000000FF; { all the size attributes }
  44. OT_NON_SIZE = LongInt(not OT_SIZE_MASK);
  45. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  46. OT_TO = $00000200; { operand is followed by a colon }
  47. { reverse effect in FADD, FSUB &c }
  48. OT_COLON = $00000400;
  49. OT_REGISTER = $00001000;
  50. OT_IMMEDIATE = $00002000;
  51. OT_IMM8 = $00002001;
  52. OT_IMM16 = $00002002;
  53. OT_IMM32 = $00002004;
  54. OT_IMM64 = $00002008;
  55. OT_IMM80 = $00002010;
  56. OT_REGMEM = $00200000; { for r/m, ie EA, operands }
  57. OT_REGNORM = $00201000; { 'normal' reg, qualifies as EA }
  58. OT_REG8 = $00201001;
  59. OT_REG16 = $00201002;
  60. OT_REG32 = $00201004;
  61. OT_MMXREG = $00201008; { MMX registers }
  62. OT_XMMREG = $00201010; { Katmai registers }
  63. OT_MEMORY = $00204000; { register number in 'basereg' }
  64. OT_MEM8 = $00204001;
  65. OT_MEM16 = $00204002;
  66. OT_MEM32 = $00204004;
  67. OT_MEM64 = $00204008;
  68. OT_MEM80 = $00204010;
  69. OT_FPUREG = $01000000; { floating point stack registers }
  70. OT_FPU0 = $01000800; { FPU stack register zero }
  71. OT_REG_SMASK = $00070000; { special register operands: these may be treated differently }
  72. { a mask for the following }
  73. OT_REG_ACCUM = $00211000; { accumulator: AL, AX or EAX }
  74. OT_REG_AL = $00211001; { REG_ACCUM | BITSxx }
  75. OT_REG_AX = $00211002; { ditto }
  76. OT_REG_EAX = $00211004; { and again }
  77. OT_REG_COUNT = $00221000; { counter: CL, CX or ECX }
  78. OT_REG_CL = $00221001; { REG_COUNT | BITSxx }
  79. OT_REG_CX = $00221002; { ditto }
  80. OT_REG_ECX = $00221004; { another one }
  81. OT_REG_DX = $00241002;
  82. OT_REG_SREG = $00081002; { any segment register }
  83. OT_REG_CS = $01081002; { CS }
  84. OT_REG_DESS = $02081002; { DS, ES, SS (non-CS 86 registers) }
  85. OT_REG_FSGS = $04081002; { FS, GS (386 extENDed registers) }
  86. OT_REG_CDT = $00101004; { CRn, DRn and TRn }
  87. OT_REG_CREG = $08101004; { CRn }
  88. OT_REG_CR4 = $08101404; { CR4 (Pentium only) }
  89. OT_REG_DREG = $10101004; { DRn }
  90. OT_REG_TREG = $20101004; { TRn }
  91. OT_MEM_OFFS = $00604000; { special type of EA }
  92. { simple [address] offset }
  93. OT_ONENESS = $00800000; { special type of immediate operand }
  94. { so UNITY == IMMEDIATE | ONENESS }
  95. OT_UNITY = $00802000; { for shift/rotate instructions }
  96. {Instruction flags }
  97. IF_NONE = $00000000;
  98. IF_SM = $00000001; { size match first two operands }
  99. IF_SM2 = $00000002;
  100. IF_SB = $00000004; { unsized operands can't be non-byte }
  101. IF_SW = $00000008; { unsized operands can't be non-word }
  102. IF_SD = $00000010; { unsized operands can't be nondword }
  103. IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
  104. IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
  105. IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
  106. IF_ARMASK = $00000060; { mask for unsized argument spec }
  107. IF_PRIV = $00000100; { it's a privileged instruction }
  108. IF_SMM = $00000200; { it's only valid in SMM }
  109. IF_PROT = $00000400; { it's protected mode only }
  110. IF_UNDOC = $00001000; { it's an undocumented instruction }
  111. IF_FPU = $00002000; { it's an FPU instruction }
  112. IF_MMX = $00004000; { it's an MMX instruction }
  113. IF_3DNOW = $00008000; { it's a 3DNow! instruction }
  114. IF_SSE = $00010000; { it's a SSE (KNI, MMX2) instruction }
  115. IF_PMASK = LongInt($FF000000); { the mask for processor types }
  116. IF_PFMASK = LongInt($F001FF00); { the mask for disassembly "prefer" }
  117. IF_V7 = $00000000; { SPARC V7 instruction only (not supported)}
  118. IF_V8 = $01000000; { SPARC V8 instruction (the default)}
  119. IF_V9 = $02000000; { SPARC V9 instruction (not yet supported)}
  120. { added flags }
  121. IF_PRE = $40000000; { it's a prefix instruction }
  122. IF_PASS2 = LongInt($80000000);{instruction can change in a second pass?}
  123. TYPE
  124. {$WARNING CPU32 opcodes do not fully include the Ultra SPRAC instruction set.}
  125. TAsmOp=({$INCLUDE opcode.inc});
  126. op2strtable=ARRAY[TAsmOp]OF STRING[11];
  127. CONST
  128. FirstOp=Low(TAsmOp);
  129. LastOp=High(TAsmOp);
  130. std_op2str:op2strtable=({$INCLUDE strinst.inc});
  131. {*****************************************************************************
  132. Operand Sizes
  133. *****************************************************************************}
  134. TYPE
  135. { S_NO = No Size of operand }
  136. { S_B = Byte size operand }
  137. { S_W = Word size operand }
  138. { S_L = DWord size operand }
  139. { USED FOR conversions in x86}
  140. { S_BW = Byte to word }
  141. { S_BL = Byte to long }
  142. { S_WL = Word to long }
  143. { Floating point types }
  144. { S_FS = single type (32 bit) }
  145. { S_FL = double/64bit integer }
  146. { S_FX = ExtENDed type }
  147. { S_IS = integer on 16 bits }
  148. { S_IL = integer on 32 bits }
  149. { S_IQ = integer on 64 bits }
  150. TOpSize=(S_NO,
  151. S_B,
  152. S_W,
  153. S_L,
  154. S_BW,
  155. S_BL,
  156. S_WL,
  157. S_IS,
  158. S_IL,
  159. S_IQ,
  160. S_FS,
  161. S_FL,
  162. S_FX,
  163. S_D,
  164. S_Q,
  165. S_FV,
  166. S_NEAR,
  167. S_FAR,
  168. S_SHORT);
  169. CONST
  170. { Intel style operands ! }
  171. opsize_2_type:ARRAY[0..2,topsize] of LongInt=(
  172. (OT_NONE,
  173. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS16,OT_BITS32,OT_BITS32,
  174. OT_BITS16,OT_BITS32,OT_BITS64,
  175. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,
  176. OT_NEAR,OT_FAR,OT_SHORT
  177. ),
  178. (OT_NONE,
  179. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS8,OT_BITS8,OT_BITS16,
  180. OT_BITS16,OT_BITS32,OT_BITS64,
  181. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,
  182. OT_NEAR,OT_FAR,OT_SHORT
  183. ),
  184. (OT_NONE,
  185. OT_BITS8,OT_BITS16,OT_BITS32,OT_NONE,OT_NONE,OT_NONE,
  186. OT_BITS16,OT_BITS32,OT_BITS64,
  187. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,
  188. OT_NEAR,OT_FAR,OT_SHORT
  189. )
  190. );
  191. {*****************************************************************************}
  192. { Conditions }
  193. {*****************************************************************************}
  194. TYPE
  195. TAsmCond=(C_None,
  196. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  197. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  198. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  199. );
  200. CONST
  201. cond2str:ARRAY[TAsmCond] of string[3]=('',
  202. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  203. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  204. 'ns','nz','o','p','pe','po','s','z'
  205. );
  206. inverse_cond:ARRAY[TAsmCond] of TAsmCond=(C_None,
  207. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  208. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  209. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  210. );
  211. CONST
  212. CondAsmOps=3;
  213. CondAsmOp:ARRAY[0..CondAsmOps-1] of TAsmOp=(A_FCMPd, A_JMPL, A_FCMPs);
  214. CondAsmOpStr:ARRAY[0..CondAsmOps-1] of string[4]=('FCMPd','JMPL','FCMPs');
  215. {*****************************************************************************}
  216. { Registers }
  217. {*****************************************************************************}
  218. TYPE
  219. { enumeration for registers, don't change the order }
  220. { it's used by the register size conversions }
  221. TRegister=({$INCLUDE registers.inc});
  222. TRegister64=PACKED RECORD
  223. {A type to store register locations for 64 Bit values.}
  224. RegLo,RegHi:TRegister;
  225. END;
  226. treg64=tregister64;{alias for compact code}
  227. TRegisterSet=SET OF TRegister;
  228. reg2strtable=ARRAY[tregister] OF STRING[6];
  229. CONST
  230. R_NO=R_NONE;
  231. firstreg = low(tregister);
  232. lastreg = high(tregister);
  233. std_reg2str:reg2strtable=({$INCLUDE strregs.inc});
  234. {*****************************************************************************
  235. Flags
  236. *****************************************************************************}
  237. TYPE
  238. TResFlags=(
  239. F_E, {Equal}
  240. F_NE, {Not Equal}
  241. F_G, {Greater}
  242. F_L, {Less}
  243. F_GE, {Greater or Equal}
  244. F_LE, {Less or Equal}
  245. F_C, {Carry}
  246. F_NC, {Not Carry}
  247. F_A, {Above}
  248. F_AE, {Above or Equal}
  249. F_B, {Below}
  250. F_BE {Below or Equal}
  251. );
  252. {*****************************************************************************
  253. Reference
  254. *****************************************************************************}
  255. TYPE
  256. trefoptions=(ref_none,ref_parafixup,ref_localfixup,ref_selffixup);
  257. { immediate/reference record }
  258. poperreference = ^treference;
  259. treference = packed record
  260. segment,
  261. base,
  262. index : tregister;
  263. scalefactor : byte;
  264. offset : LongInt;
  265. symbol : tasmsymbol;
  266. offsetfixup : LongInt;
  267. options : trefoptions;
  268. {$ifdef newcg}
  269. alignment : byte;
  270. {$ENDif newcg}
  271. END;
  272. { reference record }
  273. PParaReference=^TParaReference;
  274. TParaReference=PACKED RECORD
  275. Index:TRegister;
  276. Offset:longint;
  277. END;
  278. {*****************************************************************************
  279. Operands
  280. *****************************************************************************}
  281. { Types of operand }
  282. toptype=(top_none,top_reg,top_ref,top_CONST,top_symbol);
  283. toper=record
  284. ot : LongInt;
  285. case typ : toptype of
  286. top_none : ();
  287. top_reg : (reg:tregister);
  288. top_ref : (ref:poperreference);
  289. top_CONST : (val:aword);
  290. top_symbol : (sym:tasmsymbol;symofs:LongInt);
  291. END;
  292. {*****************************************************************************
  293. Argument Classification
  294. *****************************************************************************}
  295. TYPE
  296. TArgClass = (
  297. { the following classes should be defined by all processor implemnations }
  298. AC_NOCLASS,
  299. AC_MEMORY,
  300. AC_INTEGER,
  301. AC_FPU,
  302. { the following argument classes are i386 specific }
  303. AC_FPUUP,
  304. AC_SSE,
  305. AC_SSEUP);
  306. {*****************************************************************************
  307. Generic Location
  308. *****************************************************************************}
  309. TYPE
  310. TLoc=( {information about the location of an operand}
  311. LOC_INVALID, { added for tracking problems}
  312. LOC_CONSTANT, { CONSTant value }
  313. LOC_JUMP, { boolean results only, jump to false or true label }
  314. LOC_FLAGS, { boolean results only, flags are set }
  315. LOC_CREFERENCE, { in memory CONSTant value }
  316. LOC_REFERENCE, { in memory value }
  317. LOC_REGISTER, { in a processor register }
  318. LOC_CREGISTER, { Constant register which shouldn't be modified }
  319. LOC_FPUREGISTER, { FPU stack }
  320. LOC_CFPUREGISTER, { if it is a FPU register variable on the fpu stack }
  321. LOC_MMXREGISTER, { MMX register }
  322. LOC_CMMXREGISTER, { MMX register variable }
  323. LOC_MMREGISTER,
  324. LOC_CMMREGISTER
  325. );
  326. {tparamlocation describes where a parameter for a procedure is stored.
  327. References are given from the caller's point of view. The usual TLocation isn't
  328. used, because contains a lot of unnessary fields.}
  329. TParaLocation=PACKED RECORD
  330. Size:TCGSize;
  331. Loc:TLoc;
  332. sp_fixup:LongInt;
  333. CASE TLoc OF
  334. LOC_REFERENCE:(reference:tparareference);
  335. { segment in reference at the same place as in loc_register }
  336. LOC_REGISTER,LOC_CREGISTER : (
  337. CASE LongInt OF
  338. 1 : (register,registerhigh : tregister);
  339. { overlay a registerlow }
  340. 2 : (registerlow : tregister);
  341. { overlay a 64 Bit register type }
  342. 3 : (reg64 : tregister64);
  343. 4 : (register64 : tregister64);
  344. );
  345. { it's only for better handling }
  346. LOC_MMXREGISTER,LOC_CMMXREGISTER : (mmxreg : tregister);
  347. END;
  348. TLocation=PACKED RECORD
  349. loc : TLoc;
  350. size : TCGSize;
  351. case TLoc of
  352. LOC_FLAGS : (resflags : tresflags);
  353. LOC_CONSTANT : (
  354. case longint of
  355. 1 : (value : AWord);
  356. 2 : (valuelow, valuehigh:AWord);
  357. { overlay a complete 64 Bit value }
  358. 3 : (valueqword : qword);
  359. );
  360. LOC_CREFERENCE,
  361. LOC_REFERENCE : (reference : treference);
  362. { segment in reference at the same place as in loc_register }
  363. LOC_REGISTER,LOC_CREGISTER : (
  364. case longint of
  365. 1 : (register,registerhigh,segment : tregister);
  366. { overlay a registerlow }
  367. 2 : (registerlow : tregister);
  368. { overlay a 64 Bit register type }
  369. 3 : (reg64 : tregister64);
  370. 4 : (register64 : tregister64);
  371. );
  372. { it's only for better handling }
  373. LOC_MMXREGISTER,LOC_CMMXREGISTER : (mmxreg : tregister);
  374. end;
  375. {*****************************************************************************
  376. Constants
  377. *****************************************************************************}
  378. CONST
  379. general_registers = [R_L0..R_L7];
  380. { legEND: }
  381. { xxxregs = set of all possibly used registers of that type in the code }
  382. { generator }
  383. { usableregsxxx = set of all 32bit components of registers that can be }
  384. { possible allocated to a regvar or using getregisterxxx (this }
  385. { excludes registers which can be only used for parameter }
  386. { passing on ABI's that define this) }
  387. { c_countusableregsxxx = amount of registers in the usableregsxxx set }
  388. IntRegs=[R_G0..R_I7];
  389. usableregsint=general_registers;
  390. c_countusableregsint = 4;
  391. fpuregs=[R_F0..R_F31];
  392. usableregsfpu=[];
  393. c_countusableregsfpu=0;
  394. mmregs=[];
  395. usableregsmm=[];
  396. c_countusableregsmm=8;
  397. firstsaveintreg = R_G0;
  398. lastsaveintreg = R_I7;
  399. firstsavefpureg = R_F0;
  400. lastsavefpureg = R_F31;
  401. firstsavemmreg = R_G0;
  402. lastsavemmreg = R_I7;
  403. lowsavereg = R_G0;
  404. highsavereg = R_I7;
  405. ALL_REGISTERS = [lowsavereg..highsavereg];
  406. lvaluelocations = [LOC_REFERENCE,LOC_CFPUREGISTER,
  407. LOC_CREGISTER,LOC_MMXREGISTER,LOC_CMMXREGISTER];
  408. {
  409. registers_saved_on_cdecl = [R_ESI,R_EDI,R_EBX];}
  410. {*****************************************************************************
  411. GDB Information
  412. *****************************************************************************}
  413. {# Register indexes for stabs information, when some
  414. parameters or variables are stored in registers.
  415. Taken from rs6000.h (DBX_REGISTER_NUMBER)
  416. from GCC 3.x source code. PowerPC has 1:1 mapping
  417. according to the order of the registers defined
  418. in GCC
  419. }
  420. stab_regindex:ARRAY[tregister]OF ShortInt=({$INCLUDE stabregi.inc});
  421. {*************************** generic register names **************************}
  422. stack_pointer_reg = R_O6;
  423. frame_pointer_reg = R_I6;
  424. {the return_result_reg, is used inside the called function to store its return
  425. value when that is a scalar value otherwise a pointer to the address of the
  426. result is placed inside it}
  427. return_result_reg = R_I0;
  428. {the function_result_reg contains the function result after a call to a scalar
  429. function othewise it contains a pointer to the returned result}
  430. function_result_reg = R_O0;
  431. self_pointer_reg =R_G5;
  432. {There is no accumulator in the SPARC architecture. There are just families of
  433. registers. All registers belonging to the same family are identical except in
  434. the "global registers" family where GO is different from the others : G0 gives
  435. always 0 when it is red and thows away any value written to it.Nevertheless,
  436. scalar routine results are returned onto R_O0.}
  437. accumulator = R_O0;
  438. accumulatorhigh = R_O1;
  439. fpu_result_reg =R_F0;
  440. mmresultreg =R_G0;
  441. {*****************************************************************************}
  442. { GCC /ABI linking information }
  443. {*****************************************************************************}
  444. {# Registers which must be saved when calling a routine declared as cppdecl,
  445. cdecl, stdcall, safecall, palmossyscall. The registers saved should be the ones
  446. as defined in the target ABI and / or GCC.
  447. This value can be deduced from the CALLED_USED_REGISTERS array in the GCC
  448. source.}
  449. std_saved_registers=[R_O6];
  450. {# Required parameter alignment when calling a routine declared as stdcall and
  451. cdecl. The alignment value should be the one defined by GCC or the target ABI.
  452. The value of this constant is equal to the constant
  453. PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.}
  454. std_param_align=4;
  455. {# Registers which are defined as scratch and no need to save across routine
  456. calls or in assembler blocks.}
  457. ScratchRegsCount=3;
  458. scratch_regs:ARRAY[1..ScratchRegsCount]OF TRegister=(R_O4,R_O5,R_I7);
  459. {$WARNING FIXME : Scratch registers list has to be verified}
  460. { low and high of the available maximum width integer general purpose }
  461. { registers }
  462. LoGPReg = R_G0;
  463. HiGPReg = R_I7;
  464. { low and high of every possible width general purpose register (same as }
  465. { above on most architctures apart from the 80x86) }
  466. LoReg = R_G0;
  467. HiReg = R_I7;
  468. cpuflags = [];
  469. { sizes }
  470. pointersize = 4;
  471. extENDed_size = 8;{SPARC architecture uses IEEE floating point numbers}
  472. mmreg_size = 8;
  473. sizepostfix_pointer = S_L;
  474. {*****************************************************************************
  475. Instruction table
  476. *****************************************************************************}
  477. {$ifndef NOAG386BIN}
  478. TYPE
  479. tinsentry=packed record
  480. opcode : tasmop;
  481. ops : byte;
  482. optypes : ARRAY[0..2] of LongInt;
  483. code : ARRAY[0..maxinfolen] of char;
  484. flags : LongInt;
  485. END;
  486. pinsentry=^tinsentry;
  487. TInsTabCache=ARRAY[TasmOp] of LongInt;
  488. PInsTabCache=^TInsTabCache;
  489. VAR
  490. InsTabCache : PInsTabCache;
  491. {$ENDif NOAG386BIN}
  492. {*****************************************************************************
  493. Helpers
  494. *****************************************************************************}
  495. CONST
  496. maxvarregs=30;
  497. VarRegs:ARRAY[1..maxvarregs]OF TRegister=(
  498. R_G0,R_G1,R_G2,R_G3,R_G4,R_G5,R_G6,R_G7,
  499. R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,{R_R14=R_SP}R_O7,
  500. R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
  501. R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,{R_R30=R_FP}R_I7
  502. );
  503. maxfpuvarregs = 8;
  504. max_operands = 3;
  505. maxintregs = maxvarregs;
  506. maxfpuregs = maxfpuvarregs;
  507. FUNCTION reg2str(r:tregister):string;
  508. FUNCTION is_calljmp(o:tasmop):boolean;
  509. FUNCTION flags_to_cond(CONST f:TResFlags):TAsmCond;
  510. IMPLEMENTATION
  511. FUNCTION reg2str(r:tregister):string;
  512. TYPE
  513. TStrReg=ARRAY[TRegister]OF STRING[5];
  514. CONST
  515. StrReg:TStrReg=({$INCLUDE strregs.inc});
  516. BEGIN
  517. reg2str:=StrReg[r];
  518. END;
  519. FUNCTION is_calljmp(o:tasmop):boolean;
  520. BEGIN
  521. CASE o OF
  522. A_CALL,A_JMPL:
  523. is_calljmp:=true;
  524. ELSE
  525. is_calljmp:=false;
  526. END;
  527. END;
  528. FUNCTION flags_to_cond(CONST f:TResFlags):TAsmCond;
  529. CONST
  530. flags_2_cond:ARRAY[TResFlags]OF TAsmCond=(C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE);
  531. BEGIN
  532. result:=flags_2_cond[f];
  533. END;
  534. END.
  535. {
  536. $Log$
  537. Revision 1.12 2002-10-11 13:35:14 mazen
  538. *** empty log message ***
  539. Revision 1.11 2002/10/10 19:57:51 mazen
  540. * Just to update repsitory
  541. Revision 1.10 2002/10/02 22:20:28 mazen
  542. + out registers allocator for the first 6 scalar parameters which must be passed into %o0..%o5
  543. Revision 1.9 2002/10/01 21:06:29 mazen
  544. attinst.inc --> strinst.inc
  545. Revision 1.8 2002/09/30 19:12:14 mazen
  546. * function prologue fixed
  547. Revision 1.7 2002/09/27 04:30:53 mazen
  548. * cleanup made
  549. Revision 1.6 2002/09/24 03:57:53 mazen
  550. * some cleanup was made
  551. }