1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651 |
- {*
- ===============================================================================
- The original notice of the softfloat package is shown below. The conversion
- to pascal was done by Carl Eric Codere in 2002 ([email protected]).
- ===============================================================================
- This C source file is part of the SoftFloat IEC/IEEE Floating-Point
- Arithmetic Package, Release 2a.
- Written by John R. Hauser. This work was made possible in part by the
- International Computer Science Institute, located at Suite 600, 1947 Center
- Street, Berkeley, California 94704. Funding was partially provided by the
- National Science Foundation under grant MIP-9311980. The original version
- of this code was written as part of a project to build a fixed-point vector
- processor in collaboration with the University of California at Berkeley,
- overseen by Profs. Nelson Morgan and John Wawrzynek. More information
- is available through the Web page
- `http://HTTP.CS.Berkeley.EDU/~jhauser/arithmetic/SoftFloat.html'.
- THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
- has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
- TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
- PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
- AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
- Derivative works are acceptable, even for commercial purposes, so long as
- (1) they include prominent notice that the work is derivative, and (2) they
- include prominent notice akin to these four paragraphs for those parts of
- this code that are retained.
- ===============================================================================
- *}
- unit softfpu;
- { Overflow checking must be disabled,
- since some operations expect overflow!
- }
- {$Q-}
- interface
- {
- -------------------------------------------------------------------------------
- Software IEC/IEEE floating-point types.
- -------------------------------------------------------------------------------
- }
- TYPE
- float32 = longword;
- flag = byte;
- uint8 = byte;
- int8 = shortint;
- uint16 = word;
- int16 = integer;
- uint32 = longword;
- int32 = longint;
- bits8 = byte;
- sbits8 = shortint;
- bits16 = word;
- sbits16 = integer;
- sbits32 = longint;
- bits32 = longword;
- {$ifndef fpc}
- qword = int64;
- {$endif}
- uint64 = qword;
- bits64 = qword;
- sbits64 = int64;
- {$ifdef ENDIAN_LITTLE}
- float64 = packed record
- low: bits32;
- high: bits32;
- end;
- int64rec = packed record
- low: bits32;
- high: bits32;
- end;
- {$else}
- float64 = packed record
- high,low : bits32;
- end;
- int64rec = packed record
- high,low : bits32;
- end;
- {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_lt(a: float64;b: float64): flag;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than
- or equal to the corresponding value `b', and 0 otherwise. The comparison
- is performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_le(a: float64;b: float64): flag;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is equal to
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_eq(a: float64;b: float64): flag;
- {*
- -------------------------------------------------------------------------------
- Returns the square root of the double-precision floating-point value `a'.
- The operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_sqrt( a: float64; var out: float64 );
- {*
- -------------------------------------------------------------------------------
- Returns the remainder of the double-precision floating-point value `a'
- with respect to the corresponding value `b'. The operation is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_rem(a: float64; b : float64; var out: float64);
- {*
- -------------------------------------------------------------------------------
- Returns the result of dividing the double-precision floating-point value `a'
- by the corresponding value `b'. The operation is performed according to the
- IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_div(a: float64; b : float64 ; var out: float64 );
- {*
- -------------------------------------------------------------------------------
- Returns the result of multiplying the double-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_mul( a: float64; b:float64; Var out: float64);
- {*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the double-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_sub(a: float64; b : float64; var out: float64);
- {*
- -------------------------------------------------------------------------------
- Returns the result of adding the double-precision floating-point values `a'
- and `b'. The operation is performed according to the IEC/IEEE Standard for
- Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_add( a: float64; b : float64; Var out : float64);
- {*
- -------------------------------------------------------------------------------
- Rounds the double-precision floating-point value `a' to an integer,
- and returns the result as a double-precision floating-point value. The
- operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_round_to_int(a: float64; var out: float64 );
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the single-precision floating-point format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_to_float32(a: float64 ): float32;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic, except that the conversion is always rounded toward zero.
- If `a' is a NaN, the largest positive integer is returned. Otherwise, if
- the conversion overflows, the largest integer with the same sign as `a' is
- returned.
- -------------------------------------------------------------------------------
- *}
- Function float64_to_int32_round_to_zero(a: float64 ): int32;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic---which means in particular that the conversion is rounded
- according to the current rounding mode. If `a' is a NaN, the largest
- positive integer is returned. Otherwise, if the conversion overflows, the
- largest integer with the same sign as `a' is returned.
- -------------------------------------------------------------------------------
- *}
- Function float64_to_int32(a: float64): int32;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_lt( a:float32 ; b : float32): flag;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than
- or equal to the corresponding value `b', and 0 otherwise. The comparison
- is performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_le( a: float32; b : float32 ):flag;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is equal to
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_eq( a:float32; b:float32): flag;
- {*
- -------------------------------------------------------------------------------
- Returns the square root of the single-precision floating-point value `a'.
- The operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_sqrt(a: float32 ): float32;
- {*
- -------------------------------------------------------------------------------
- Returns the remainder of the single-precision floating-point value `a'
- with respect to the corresponding value `b'. The operation is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_rem(a: float32; b: float32 ):float32;
- {*
- -------------------------------------------------------------------------------
- Returns the result of dividing the single-precision floating-point value `a'
- by the corresponding value `b'. The operation is performed according to the
- IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_div(a: float32;b: float32 ): float32;
- {*
- -------------------------------------------------------------------------------
- Returns the result of multiplying the single-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_mul(a: float32; b: float32 ) : float32;
- {*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the single-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_sub( a: float32 ; b:float32 ): float32;
- {*
- -------------------------------------------------------------------------------
- Returns the result of adding the single-precision floating-point values `a'
- and `b'. The operation is performed according to the IEC/IEEE Standard for
- Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_add( a: float32; b:float32 ): float32;
- {*
- -------------------------------------------------------------------------------
- Rounds the single-precision floating-point value `a' to an integer,
- and returns the result as a single-precision floating-point value. The
- operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_round_to_int( a: float32): float32;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the double-precision floating-point format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float32_to_float64( a : float32; var out: Float64);
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic, except that the conversion is always rounded toward zero.
- If `a' is a NaN, the largest positive integer is returned. Otherwise, if
- the conversion overflows, the largest integer with the same sign as `a' is
- returned.
- -------------------------------------------------------------------------------
- *}
- Function float32_to_int32_round_to_zero( a: Float32 ): int32;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic---which means in particular that the conversion is rounded
- according to the current rounding mode. If `a' is a NaN, the largest
- positive integer is returned. Otherwise, if the conversion overflows, the
- largest integer with the same sign as `a' is returned.
- -------------------------------------------------------------------------------
- *}
- Function float32_to_int32( a : float32) : int32;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the 32-bit two's complement integer `a' to
- the double-precision floating-point format. The conversion is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure int32_to_float64( a: int32; var c: float64 );
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the 32-bit two's complement integer `a' to
- the single-precision floating-point format. The conversion is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function int32_to_float32( a: int32): float32;
- {*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit two's complement integer `a'
- | to the double-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*}
- function int64_to_float64( a: int64 ): float64;
- {*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit two's complement integer `a'
- | to the single-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*}
- function int64_to_float32( a: int64 ): float32;
- CONST
- {-------------------------------------------------------------------------------
- Software IEC/IEEE floating-point underflow tininess-detection mode.
- -------------------------------------------------------------------------------
- *}
- float_tininess_after_rounding = 0;
- float_tininess_before_rounding = 1;
- {*
- -------------------------------------------------------------------------------
- Software IEC/IEEE floating-point rounding mode.
- -------------------------------------------------------------------------------
- *}
- {
- Round to nearest.
- This is the default mode. It should be used unless there is a specific
- need for one of the others. In this mode results are rounded to the
- nearest representable value. If the result is midway between two
- representable values, the even representable is chosen. Even here
- means the lowest-order bit is zero. This rounding mode prevents
- statistical bias and guarantees numeric stability: round-off errors
- in a lengthy calculation will remain smaller than half of FLT_EPSILON.
- Round toward plus Infinity.
- All results are rounded to the smallest representable value which is
- greater than the result.
- Round toward minus Infinity.
- All results are rounded to the largest representable value which is
- less than the result.
- Round toward zero.
- All results are rounded to the largest representable value whose
- magnitude is less than that of the result. In other words, if the
- result is negative it is rounded up; if it is positive, it is
- rounded down.
- }
- float_round_nearest_even = 0;
- float_round_down = 1;
- float_round_up = 2;
- float_round_to_zero = 3;
- {*
- -------------------------------------------------------------------------------
- Software IEC/IEEE floating-point exception flags.
- -------------------------------------------------------------------------------
- *}
- float_flag_invalid = 1;
- float_flag_divbyzero = 4;
- float_flag_overflow = 8;
- float_flag_underflow = 16;
- float_flag_inexact = 32;
- {*
- -------------------------------------------------------------------------------
- Floating-point rounding mode and exception flags.
- -------------------------------------------------------------------------------
- *}
- const
- float_rounding_mode : Byte = float_round_nearest_even;
- float_exception_flags : Byte = 0;
- {*
- -------------------------------------------------------------------------------
- Underflow tininess-detection mode, statically initialized to default value.
- (The declaration in `softfloat.h' must match the `int8' type here.)
- -------------------------------------------------------------------------------
- *}
- const float_detect_tininess: int8 = float_tininess_after_rounding;
- implementation
- {*
- -------------------------------------------------------------------------------
- Raises the exceptions specified by `flags'. Floating-point traps can be
- defined here if desired. It is currently not possible for such a trap
- to substitute a result value. If traps are not implemented, this routine
- should be simply `float_exception_flags |= flags;'.
- -------------------------------------------------------------------------------
- *}
- procedure float_raise( i: shortint );
- Begin
- float_exception_flags := float_exception_flags or i;
- if (float_exception_flags and float_flag_invalid) <> 0 then
- RunError(207)
- else
- if (float_exception_flags and float_flag_divbyzero) <> 0 then
- RunError(200)
- else
- if (float_exception_flags and float_flag_overflow) <> 0 then
- RunError(205)
- else
- if (float_exception_flags and float_flag_underflow) <> 0 then
- RunError(206);
- end;
- (*****************************************************************************)
- (*----------------------------------------------------------------------------*)
- (* Primitive arithmetic functions, including multi-word arithmetic, and *)
- (* division and square root approximations. (Can be specialized to target if *)
- (* desired.) *)
- (* ---------------------------------------------------------------------------*)
- (*****************************************************************************)
- {*
- -------------------------------------------------------------------------------
- Shifts `a' right by the number of bits given in `count'. If any nonzero
- bits are shifted off, they are ``jammed'' into the least significant bit of
- the result by setting the least significant bit to 1. The value of `count'
- can be arbitrarily large; in particular, if `count' is greater than 32, the
- result will be either 0 or 1, depending on whether `a' is zero or nonzero.
- The result is stored in the location pointed to by `zPtr'.
- -------------------------------------------------------------------------------
- *}
- Procedure shift32RightJamming( a: bits32 ; count: int16 ; VAR zPtr :bits32);
- var
- z: Bits32;
- Begin
- if ( count = 0 ) then
- z := a
- else
- if ( count < 32 ) then
- Begin
- z := ( a shr count ) or bits32( (( a shl ( ( - count ) AND 31 )) ) <> 0);
- End
- else
- Begin
- z := bits32( a <> 0 );
- End;
- zPtr := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
- number of bits given in `count'. Any bits shifted off are lost. The value
- of `count' can be arbitrarily large; in particular, if `count' is greater
- than 64, the result will be 0. The result is broken into two 32-bit pieces
- which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- shift64Right(
- a0 :bits32; a1: bits32; count:int16; VAR z0Ptr:bits32; VAR z1Ptr:bits32);
- Var
- z0, z1: bits32;
- negCount : int8;
- Begin
- negCount := ( - count ) AND 31;
- if ( count = 0 ) then
- Begin
- z1 := a1;
- z0 := a0;
- End
- else if ( count < 32 ) then
- Begin
- z1 := ( a0 shl negCount ) OR ( a1 shr count );
- z0 := a0 shr count;
- End
- else
- Begin
- if (count < 64) then
- z1 := ( a0 shr ( count AND 31 ) )
- else
- z1 := 0;
- z0 := 0;
- End;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
- number of bits given in `count'. If any nonzero bits are shifted off, they
- are ``jammed'' into the least significant bit of the result by setting the
- least significant bit to 1. The value of `count' can be arbitrarily large;
- in particular, if `count' is greater than 64, the result will be either 0
- or 1, depending on whether the concatenation of `a0' and `a1' is zero or
- nonzero. The result is broken into two 32-bit pieces which are stored at
- the locations pointed to by `z0Ptr' and `z1Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- shift64RightJamming(
- a0:bits32; a1: bits32; count:int16; VAR Z0Ptr :bits32;VAR z1Ptr: bits32 );
- VAR
- z0, z1 : bits32;
- negCount : int8;
- Begin
- negCount := ( - count ) AND 31;
- if ( count = 0 ) then
- Begin
- z1 := a1;
- z0 := a0;
- End
- else
- if ( count < 32 ) then
- Begin
- z1 := ( a0 shl negCount ) OR ( a1 shr count ) OR bits32( ( a1 shl negCount ) <> 0 );
- z0 := a0 shr count;
- End
- else
- Begin
- if ( count = 32 ) then
- Begin
- z1 := a0 OR bits32( a1 <> 0 );
- End
- else
- if ( count < 64 ) Then
- Begin
- z1 := ( a0 shr ( count AND 31 ) ) OR bits32( ( ( a0 shl negCount ) OR a1 ) <> 0 );
- End
- else
- Begin
- z1 := bits32( ( a0 OR a1 ) <> 0 );
- End;
- z0 := 0;
- End;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
- by 32 _plus_ the number of bits given in `count'. The shifted result is
- at most 64 nonzero bits; these are broken into two 32-bit pieces which are
- stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
- off form a third 32-bit result as follows: The _last_ bit shifted off is
- the most-significant bit of the extra result, and the other 31 bits of the
- extra result are all zero if and only if _all_but_the_last_ bits shifted off
- were all zero. This extra result is stored in the location pointed to by
- `z2Ptr'. The value of `count' can be arbitrarily large.
- (This routine makes more sense if `a0', `a1', and `a2' are considered
- to form a fixed-point value with binary point between `a1' and `a2'. This
- fixed-point value is shifted right by the number of bits given in `count',
- and the integer part of the result is returned at the locations pointed to
- by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
- corrupted as described above, and is returned at the location pointed to by
- `z2Ptr'.)
- -------------------------------------------------------------------------------
- }
- Procedure
- shift64ExtraRightJamming(
- a0: bits32;
- a1: bits32;
- a2: bits32;
- count: int16;
- VAR z0Ptr: bits32;
- VAR z1Ptr: bits32;
- VAR z2Ptr: bits32
- );
- Var
- z0, z1, z2: bits32;
- negCount : int8;
- Begin
- negCount := ( - count ) AND 31;
- if ( count = 0 ) then
- Begin
- z2 := a2;
- z1 := a1;
- z0 := a0;
- End
- else
- Begin
- if ( count < 32 ) Then
- Begin
- z2 := a1 shl negCount;
- z1 := ( a0 shl negCount ) OR ( a1 shr count );
- z0 := a0 shr count;
- End
- else
- Begin
- if ( count = 32 ) then
- Begin
- z2 := a1;
- z1 := a0;
- End
- else
- Begin
- a2 := a2 or a1;
- if ( count < 64 ) then
- Begin
- z2 := a0 shl negCount;
- z1 := a0 shr ( count AND 31 );
- End
- else
- Begin
- if count = 64 then
- z2 := a0
- else
- z2 := bits32(a0 <> 0);
- z1 := 0;
- End;
- End;
- z0 := 0;
- End;
- z2 := z2 or bits32( a2 <> 0 );
- End;
- z2Ptr := z2;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
- number of bits given in `count'. Any bits shifted off are lost. The value
- of `count' must be less than 32. The result is broken into two 32-bit
- pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- shortShift64Left(
- a0:bits32; a1:bits32; count:int16; VAR z0Ptr:bits32; VAR z1Ptr:bits32 );
- Begin
- z1Ptr := a1 shl count;
- if count = 0 then
- z0Ptr := a0
- else
- z0Ptr := ( a0 shl count ) OR ( a1 shr ( ( - count ) AND 31 ) );
- End;
- {*
- -------------------------------------------------------------------------------
- Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left
- by the number of bits given in `count'. Any bits shifted off are lost.
- The value of `count' must be less than 32. The result is broken into three
- 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
- `z1Ptr', and `z2Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- shortShift96Left(
- a0: bits32;
- a1: bits32;
- a2: bits32;
- count: int16;
- VAR z0Ptr: bits32;
- VAR z1Ptr: bits32;
- VAR z2Ptr: bits32
- );
- Var
- z0, z1, z2: bits32;
- negCount: int8;
- Begin
- z2 := a2 shl count;
- z1 := a1 shl count;
- z0 := a0 shl count;
- if ( 0 < count ) then
- Begin
- negCount := ( ( - count ) AND 31 );
- z1 := z1 or (a2 shr negCount);
- z0 := z0 or (a1 shr negCount);
- End;
- z2Ptr := z2;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
- value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
- any carry out is lost. The result is broken into two 32-bit pieces which
- are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- add64(
- a0:bits32; a1:bits32; b0:bits32; b1:bits32; VAR z0Ptr:bits32; VAR z1Ptr:bits32 );
- Var
- z1: bits32;
- Begin
- z1 := a1 + b1;
- z1Ptr := z1;
- z0Ptr := a0 + b0 + bits32( z1 < a1 );
- End;
- {*
- -------------------------------------------------------------------------------
- Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
- 96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
- modulo 2^96, so any carry out is lost. The result is broken into three
- 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
- `z1Ptr', and `z2Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- add96(
- a0: bits32;
- a1: bits32;
- a2: bits32;
- b0: bits32;
- b1: bits32;
- b2: bits32;
- VAR z0Ptr: bits32;
- VAR z1Ptr: bits32;
- VAR z2Ptr: bits32
- );
- var
- z0, z1, z2: bits32;
- carry0, carry1: int8;
- Begin
- z2 := a2 + b2;
- carry1 := int8( z2 < a2 );
- z1 := a1 + b1;
- carry0 := int8( z1 < a1 );
- z0 := a0 + b0;
- z1 := z1 + carry1;
- z0 := z0 + bits32( z1 < carry1 );
- z0 := z0 + carry0;
- z2Ptr := z2;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
- 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
- 2^64, so any borrow out (carry out) is lost. The result is broken into two
- 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
- `z1Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- sub64(
- a0: bits32; a1 : bits32; b0 :bits32; b1: bits32; VAR z0Ptr:bits32; VAR z1Ptr: bits32 );
- Begin
- z1Ptr := a1 - b1;
- z0Ptr := a0 - b0 - bits32( a1 < b1 );
- End;
- {*
- -------------------------------------------------------------------------------
- Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
- the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction
- is modulo 2^96, so any borrow out (carry out) is lost. The result is broken
- into three 32-bit pieces which are stored at the locations pointed to by
- `z0Ptr', `z1Ptr', and `z2Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- sub96(
- a0:bits32;
- a1:bits32;
- a2:bits32;
- b0:bits32;
- b1:bits32;
- b2:bits32;
- VAR z0Ptr:bits32;
- VAR z1Ptr:bits32;
- VAR z2Ptr:bits32
- );
- Var
- z0, z1, z2: bits32;
- borrow0, borrow1: int8;
- Begin
- z2 := a2 - b2;
- borrow1 := int8( a2 < b2 );
- z1 := a1 - b1;
- borrow0 := int8( a1 < b1 );
- z0 := a0 - b0;
- z0 := z0 - bits32( z1 < borrow1 );
- z1 := z1 - borrow1;
- z0 := z0 -borrow0;
- z2Ptr := z2;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Multiplies `a' by `b' to obtain a 64-bit product. The product is broken
- into two 32-bit pieces which are stored at the locations pointed to by
- `z0Ptr' and `z1Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure mul32To64( a:bits32; b:bits32; VAR z0Ptr: bits32; VAR z1Ptr
- :bits32 );
- Var
- aHigh, aLow, bHigh, bLow: bits16;
- z0, zMiddleA, zMiddleB, z1: bits32;
- Begin
- aLow := a and $ffff;
- aHigh := a shr 16;
- bLow := b and $ffff;
- bHigh := b shr 16;
- z1 := ( bits32( aLow) ) * bLow;
- zMiddleA := ( bits32 (aLow) ) * bHigh;
- zMiddleB := ( bits32 (aHigh) ) * bLow;
- z0 := ( bits32 (aHigh) ) * bHigh;
- zMiddleA := zMiddleA + zMiddleB;
- z0 := z0 + ( ( bits32 ( zMiddleA < zMiddleB ) ) shl 16 ) + ( zMiddleA shr 16 );
- zMiddleA := zmiddleA shl 16;
- z1 := z1 + zMiddleA;
- z0 := z0 + bits32( z1 < zMiddleA );
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b'
- to obtain a 96-bit product. The product is broken into three 32-bit pieces
- which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
- `z2Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- mul64By32To96(
- a0:bits32;
- a1:bits32;
- b:bits32;
- VAR z0Ptr:bits32;
- VAR z1Ptr:bits32;
- VAR z2Ptr:bits32
- );
- Var
- z0, z1, z2, more1: bits32;
- Begin
- mul32To64( a1, b, z1, z2 );
- mul32To64( a0, b, z0, more1 );
- add64( z0, more1, 0, z1, z0, z1 );
- z2Ptr := z2;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
- 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
- product. The product is broken into four 32-bit pieces which are stored at
- the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- mul64To128(
- a0:bits32;
- a1:bits32;
- b0:bits32;
- b1:bits32;
- VAR z0Ptr:bits32;
- VAR z1Ptr:bits32;
- VAR z2Ptr:bits32;
- VAR z3Ptr:bits32
- );
- Var
- z0, z1, z2, z3: bits32;
- more1, more2: bits32;
- Begin
- mul32To64( a1, b1, z2, z3 );
- mul32To64( a1, b0, z1, more2 );
- add64( z1, more2, 0, z2, z1, z2 );
- mul32To64( a0, b0, z0, more1 );
- add64( z0, more1, 0, z1, z0, z1 );
- mul32To64( a0, b1, more1, more2 );
- add64( more1, more2, 0, z2, more1, z2 );
- add64( z0, z1, 0, more1, z0, z1 );
- z3Ptr := z3;
- z2Ptr := z2;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns an approximation to the 32-bit integer quotient obtained by dividing
- `b' into the 64-bit value formed by concatenating `a0' and `a1'. The
- divisor `b' must be at least 2^31. If q is the exact quotient truncated
- toward zero, the approximation returned lies between q and q + 2 inclusive.
- If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
- unsigned integer is returned.
- -------------------------------------------------------------------------------
- *}
- Function estimateDiv64To32( a0:bits32; a1: bits32; b:bits32): bits32;
- Var
- b0, b1: bits32;
- rem0, rem1, term0, term1: bits32;
- z: bits32;
- Begin
- if ( b <= a0 ) then
- Begin
- estimateDiv64To32 := $FFFFFFFF;
- exit;
- End;
- b0 := b shr 16;
- if ( b0 shl 16 <= a0 ) then
- z:= $FFFF0000
- else
- z:= ( a0 div b0 ) shl 16;
- mul32To64( b, z, term0, term1 );
- sub64( a0, a1, term0, term1, rem0, rem1 );
- while ( ( sbits32 (rem0) ) < 0 ) do
- Begin
- z := z - $10000;
- b1 := b shl 16;
- add64( rem0, rem1, b0, b1, rem0, rem1 );
- End;
- rem0 := ( rem0 shl 16 ) OR ( rem1 shr 16 );
- if ( b0 shl 16 <= rem0 ) then
- z := z or $FFFF
- else
- z := z or (rem0 div b0);
- estimateDiv64To32 := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns an approximation to the square root of the 32-bit significand given
- by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
- `aExp' (the least significant bit) is 1, the integer returned approximates
- 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
- is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
- case, the approximation returned lies strictly within +/-2 of the exact
- value.
- -------------------------------------------------------------------------------
- *}
- Function estimateSqrt32( aExp: int16; a: bits32 ): bits32;
- const sqrtOddAdjustments: array[0..15] of bits16 = (
- $0004, $0022, $005D, $00B1, $011D, $019F, $0236, $02E0,
- $039C, $0468, $0545, $0631, $072B, $0832, $0946, $0A67
- );
- const sqrtEvenAdjustments: array[0..15] of bits16 = (
- $0A2D, $08AF, $075A, $0629, $051A, $0429, $0356, $029E,
- $0200, $0179, $0109, $00AF, $0068, $0034, $0012, $0002
- );
- Var
- index: int8;
- z: bits32;
- Begin
- index := ( a shr 27 ) AND 15;
- if ( aExp AND 1 ) <> 0 then
- Begin
- z := $4000 + ( a shr 17 ) - sqrtOddAdjustments[ index ];
- z := ( ( a div z ) shl 14 ) + ( z shl 15 );
- a := a shr 1;
- End
- else
- Begin
- z := $8000 + ( a shr 17 ) - sqrtEvenAdjustments[ index ];
- z := a div z + z;
- if ( $20000 <= z ) then
- z := $FFFF8000
- else
- z := ( z shl 15 );
- if ( z <= a ) then
- Begin
- estimateSqrt32 := bits32 ( ( sbits32 (a )) shr 1 );
- exit;
- End;
- End;
- estimateSqrt32 := ( ( estimateDiv64To32( a, 0, z ) ) shr 1 ) + ( z shr 1 );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the number of leading 0 bits before the most-significant 1 bit of
- `a'. If `a' is zero, 32 is returned.
- -------------------------------------------------------------------------------
- *}
- Function countLeadingZeros32( a:bits32 ): int8;
- const countLeadingZerosHigh:array[0..255] of int8 = (
- 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
- );
- Var
- shiftCount: int8;
- Begin
- shiftCount := 0;
- if ( a < $10000 ) then
- Begin
- shiftCount := shiftcount + 16;
- a := a shl 16;
- End;
- if ( a < $1000000 ) then
- Begin
- shiftCount := shiftcount + 8;
- a := a shl 8;
- end;
- shiftCount := shiftcount + countLeadingZerosHigh[ a shr 24 ];
- countLeadingZeros32:= shiftCount;
- End;
- {*----------------------------------------------------------------------------
- | Returns the number of leading 0 bits before the most-significant 1 bit of
- | `a'. If `a' is zero, 64 is returned.
- *----------------------------------------------------------------------------*}
- function countLeadingZeros64( a : bits64): int8;
- var
- shiftcount : int8;
- Begin
- shiftCount := 0;
- if ( a < (bits64(1) shl 32 )) then
- shiftCount := shiftcount + 32
- else
- a := a shr 32;
- shiftCount := shiftCount + countLeadingZeros32( a );
- countLeadingZeros64:= shiftCount;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is
- equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
- returns 0.
- -------------------------------------------------------------------------------
- *}
- Function eq64( a0: bits32; a1:bits32 ;b0:bits32; b1:bits32 ): flag;
- Begin
- eq64 := flag( a0 = b0 ) and flag( a1 = b1 );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
- than or equal to the 64-bit value formed by concatenating `b0' and `b1'.
- Otherwise, returns 0.
- -------------------------------------------------------------------------------
- *}
- Function le64( a0: bits32; a1:bits32 ;b0:bits32; b1:bits32 ): flag;
- Begin
- le64:= flag( a0 < b0 ) or flag( ( a0 = b0 ) and ( a1 <= b1 ) );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
- than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
- returns 0.
- -------------------------------------------------------------------------------
- *}
- Function lt64( a0: bits32; a1:bits32 ;b0:bits32; b1:bits32 ): flag;
- Begin
- lt64 := flag( a0 < b0 ) or flag( ( a0 = b0 ) and ( a1 < b1 ) );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not
- equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
- returns 0.
- -------------------------------------------------------------------------------
- *}
- Function ne64( a0: bits32; a1:bits32 ;b0:bits32; b1:bits32 ): flag;
- Begin
- ne64:= flag( a0 <> b0 ) or flag( a1 <> b1 );
- End;
- (*****************************************************************************)
- (* End Low-Level arithmetic *)
- (*****************************************************************************)
- {*
- -------------------------------------------------------------------------------
- Functions and definitions to determine: (1) whether tininess for underflow
- is detected before or after rounding by default, (2) what (if anything)
- happens when exceptions are raised, (3) how signaling NaNs are distinguished
- from quiet NaNs, (4) the default generated quiet NaNs, and (4) how NaNs
- are propagated from function inputs to output. These details are ENDIAN
- specific
- -------------------------------------------------------------------------------
- *}
- {$IFDEF ENDIAN_LITTLE}
- {*
- -------------------------------------------------------------------------------
- Internal canonical NaN format.
- -------------------------------------------------------------------------------
- *}
- TYPE
- commonNaNT = packed record
- sign: flag;
- high, low : bits32;
- end;
- {*
- -------------------------------------------------------------------------------
- The pattern for a default generated single-precision NaN.
- -------------------------------------------------------------------------------
- *}
- const float32_default_nan = $FFC00000;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is a NaN;
- otherwise returns 0.
- -------------------------------------------------------------------------------
- *}
- Function float32_is_nan( a : float32 ): flag;
- Begin
- float32_is_nan:= flag( $FF000000 < bits32 ( a shl 1 ) );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is a signaling
- NaN; otherwise returns 0.
- -------------------------------------------------------------------------------
- *}
- Function float32_is_signaling_nan( a : float32 ): flag;
- Begin
- float32_is_signaling_nan := flag
- ( ( ( a shr 22 ) and $1FF ) = $1FE ) and( a and $003FFFFF );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point NaN
- `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
- exception is raised.
- -------------------------------------------------------------------------------
- *}
- Procedure float32ToCommonNaN( a: float32; VAR c:commonNaNT );
- var
- z : commonNaNT ;
- Begin
- if ( float32_is_signaling_nan( a ) <> 0) then
- float_raise( float_flag_invalid );
- z.sign := a shr 31;
- z.low := 0;
- z.high := a shl 9;
- c := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the canonical NaN `a' to the single-
- precision floating-point format.
- -------------------------------------------------------------------------------
- *}
- Function commonNaNToFloat32( a : commonNaNT ): float32;
- Begin
- commonNaNToFloat32 := ( ( bits32 (a.sign) ) shl 31 ) or $7FC00000 or ( a.high shr 9 );
- End;
- {*
- -------------------------------------------------------------------------------
- Takes two single-precision floating-point values `a' and `b', one of which
- is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
- signaling NaN, the invalid exception is raised.
- -------------------------------------------------------------------------------
- *}
- Function propagateFloat32NaN( a : float32 ; b: float32 ): float32;
- Var
- aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN: flag;
- label returnLargerSignificand;
- Begin
- aIsNaN := float32_is_nan( a );
- aIsSignalingNaN := float32_is_signaling_nan( a );
- bIsNaN := float32_is_nan( b );
- bIsSignalingNaN := float32_is_signaling_nan( b );
- a := a or $00400000;
- b := b or $00400000;
- if ( aIsSignalingNaN or bIsSignalingNaN ) <> 0 then
- float_raise( float_flag_invalid );
- if ( aIsSignalingNaN )<> 0 then
- Begin
- if ( bIsSignalingNaN ) <> 0 then
- goto returnLargerSignificand;
- if bIsNan <> 0 then
- propagateFloat32NaN := b
- else
- propagateFloat32NaN := a;
- exit;
- End
- else if ( aIsNaN <> 0) then
- Begin
- if ( bIsSignalingNaN or not bIsNaN )<> 0 then
- Begin
- propagateFloat32NaN := a;
- exit;
- End;
- returnLargerSignificand:
- if ( bits32 ( a shl 1 ) < bits32 ( b shl 1 ) ) then
- Begin
- propagateFloat32NaN := b;
- exit;
- End;
- if ( bits32 ( b shl 1 ) < bits32 ( a shl 1 ) ) then
- Begin
- propagateFloat32NaN := a;
- End;
- if a < b then
- propagateFloat32NaN := a
- else
- propagateFloat32NaN := b;
- exit;
- End
- else
- Begin
- propagateFloat32NaN := b;
- exit;
- End;
- End;
- {*
- -------------------------------------------------------------------------------
- The pattern for a default generated double-precision NaN. The `high' and
- `low' values hold the most- and least-significant bits, respectively.
- -------------------------------------------------------------------------------
- *}
- const
- float64_default_nan_high = $FFF80000;
- float64_default_nan_low = $00000000;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is a NaN;
- otherwise returns 0.
- -------------------------------------------------------------------------------
- *}
- Function float64_is_nan( a : float64 ) : flag;
- Begin
- float64_is_nan :=
- flag( $FFE00000 <= bits32 ( a.high shl 1 ) )
- and ( a.low or ( a.high and $000FFFFF ) );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is a signaling
- NaN; otherwise returns 0.
- -------------------------------------------------------------------------------
- *}
- Function float64_is_signaling_nan( a : float64 ): flag;
- Begin
- float64_is_signaling_nan :=
- flag( ( ( a.high shr 19 ) and $FFF ) = $FFE )
- and ( a.low or ( a.high and $0007FFFF ) );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point NaN
- `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
- exception is raised.
- -------------------------------------------------------------------------------
- *}
- Procedure float64ToCommonNaN( a : float64; VAR c:commonNaNT );
- Var
- z : commonNaNT;
- Begin
- if ( float64_is_signaling_nan( a )<>0 ) then
- float_raise( float_flag_invalid );
- z.sign := a.high shr 31;
- shortShift64Left( a.high, a.low, 12, z.high, z.low );
- c := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the canonical NaN `a' to the double-
- precision floating-point format.
- -------------------------------------------------------------------------------
- *}
- Procedure commonNaNToFloat64( a : commonNaNT; VAR c: float64 );
- Var
- z: float64;
- Begin
- shift64Right( a.high, a.low, 12, z.high, z.low );
- z.high := z.high or ( ( bits32 (a.sign) ) shl 31 ) or $7FF80000;
- c := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Takes two double-precision floating-point values `a' and `b', one of which
- is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
- signaling NaN, the invalid exception is raised.
- -------------------------------------------------------------------------------
- *}
- Procedure propagateFloat64NaN( a: float64; b: float64 ; VAR c: float64 );
- Var
- aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN: flag;
- label returnLargerSignificand;
- Begin
- aIsNaN := float64_is_nan( a );
- aIsSignalingNaN := float64_is_signaling_nan( a );
- bIsNaN := float64_is_nan( b );
- bIsSignalingNaN := float64_is_signaling_nan( b );
- a.high := a.high or $00080000;
- b.high := b.high or $00080000;
- if ( aIsSignalingNaN or bIsSignalingNaN )<> 0 then
- float_raise( float_flag_invalid );
- if ( aIsSignalingNaN )<>0 then
- Begin
- if ( bIsSignalingNaN )<>0 then
- goto returnLargerSignificand;
- if bIsNan <> 0 then
- c := b
- else
- c := a;
- exit;
- End
- else if ( aIsNaN )<> 0 then
- Begin
- if ( bIsSignalingNaN or not bIsNaN ) <> 0 then
- Begin
- c := a;
- exit;
- End;
- returnLargerSignificand:
- if ( lt64( a.high shl 1, a.low, b.high shl 1, b.low ) ) <> 0 then
- Begin
- c := b;
- exit;
- End;
- if ( lt64( b.high shl 1, b.low, a.high shl 1, a.low ) ) <> 0 then
- Begin
- c := a;
- exit;
- End;
- if a.high < b.high then
- c := a
- else
- c := b;
- exit;
- End
- else
- Begin
- c := b;
- exit;
- End;
- End;
- {$ELSE}
- { Big endian code }
- (*----------------------------------------------------------------------------
- | Internal canonical NaN format.
- *----------------------------------------------------------------------------*)
- commonNANT = packed record
- sign : flag;
- high, low : bits32;
- end;
- (*----------------------------------------------------------------------------
- | The pattern for a default generated single-precision NaN.
- *----------------------------------------------------------------------------*)
- const float32_default_nan = $7FFFFFFF;
- (*----------------------------------------------------------------------------
- | Returns 1 if the single-precision floating-point value `a' is a NaN;
- | otherwise returns 0.
- *----------------------------------------------------------------------------*)
- function float32_is_nan(a: float32): flag;
- begin
- float32_is_nan := flag( 0xFF000000 < (bits32) ( a shl 1 ) );
- end;
- (*----------------------------------------------------------------------------
- | Returns 1 if the single-precision floating-point value `a' is a signaling
- | NaN; otherwise returns 0.
- *----------------------------------------------------------------------------*)
- function float32_is_signaling_nan(a: float32):flag;
- begin
- float32_is_signaling_nan := flag( ( ( a shr 22 ) and $1FF ) = $1FE ) and ( (a and $003FFFFF)<>0 );
- end;
- (*----------------------------------------------------------------------------
- | Returns the result of converting the single-precision floating-point NaN
- | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
- | exception is raised.
- *----------------------------------------------------------------------------*)
- Procedure float32ToCommonNaN( a: float32; VAR c:commonNaNT );
- var
- z: commonNANT;
- begin
- if float32_is_signaling_nan(a) then
- float_raise(float_flag_invalid);
- z.sign := a shr 31;
- z.low := 0;
- z.high := a shl 9;
- c:=z;
- end;
- (*----------------------------------------------------------------------------
- | Returns the result of converting the canonical NaN `a' to the single-
- | precision floating-point format.
- *----------------------------------------------------------------------------*)
- function CommonNanToFloat32(a : CommonNaNT): float32;
- begin
- CommonNanToFloat32:= ( ( (bits32) a.sign ) shl 31 ) OR $7FC00000 OR ( a.high shr 9 );
- end;
- (*----------------------------------------------------------------------------
- | Takes two single-precision floating-point values `a' and `b', one of which
- | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
- | signaling NaN, the invalid exception is raised.
- *----------------------------------------------------------------------------*)
- function propagateFloat32NaN( a: float32 ; b: float32): float32;
- var
- aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN: flag;
- begin
- aIsNaN := float32_is_nan( a );
- aIsSignalingNaN := float32_is_signaling_nan( a );
- bIsNaN := float32_is_nan( b );
- bIsSignalingNaN := float32_is_signaling_nan( b );
- a := a or $00400000;
- b := b or $00400000;
- if ( aIsSignalingNaN or bIsSignalingNaN ) then
- float_raise( float_flag_invalid );
- if bIsSignalingNaN<>0 then
- propagateFloat32Nan := b
- else if aIsSignalingNan<>0 then
- propagateFloat32Nan := a
- else if bIsNan<>0 then
- propagateFloat32Nan := b
- else
- propagateFloat32Nan := a;
- end;
- (*----------------------------------------------------------------------------
- | The pattern for a default generated double-precision NaN. The `high' and
- | `low' values hold the most- and least-significant bits, respectively.
- *----------------------------------------------------------------------------*)
- const
- float64_default_nan_high = $7FFFFFFF;
- float64_default_nan_low = $FFFFFFFF;
- (*----------------------------------------------------------------------------
- | Returns 1 if the double-precision floating-point value `a' is a NaN;
- | otherwise returns 0.
- *----------------------------------------------------------------------------*)
- function float64_is_nan(a: float64): flag;
- begin
- float_64_is_nan := flag
- ( $FFE00000 <= (bits32) ( a.high shl 1 ) )
- and ( (a.low<>0) or (( a.high and $000FFFFF )<>0) );
- end;
- (*----------------------------------------------------------------------------
- | Returns 1 if the double-precision floating-point value `a' is a signaling
- | NaN; otherwise returns 0.
- *----------------------------------------------------------------------------*)
- function float64_is_signaling_nan( a:float64): flag;
- begin
- float64_is_signaling_nan := flag
- ( ( ( a.high shr 19 ) and $FFF ) = $FFE )
- and ( (a.low<>0) or (( a.high and 0x0007FFFF )<>0) );
- end;
- (*----------------------------------------------------------------------------
- | Returns the result of converting the double-precision floating-point NaN
- | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
- | exception is raised.
- *----------------------------------------------------------------------------*)
- Procedure float64ToCommonNaN( a : float64; VAR c:commonNaNT );
- var
- z : commonNaNT;
- begin
- if ( float64_is_signaling_nan( a )<>0 ) then
- float_raise( float_flag_invalid );
- z.sign = a.high shr 31;
- shortShift64Left( a.high, a.low, 12, z.high, z.low );
- c:=z;
- end;
- (*----------------------------------------------------------------------------
- | Returns the result of converting the canonical NaN `a' to the double-
- | precision floating-point format.
- *----------------------------------------------------------------------------*)
- Procedure commonNaNToFloat64( a : commonNaNT; VAR c: float64 );
- var
- z: float64;
- begin
- shift64Right( a.high, a.low, 12, z.high, z.low );
- z.high := z.high or ( ( (bits32) a.sign )<<31 ) | 0x7FF80000;
- c:=z;
- end;
- (*----------------------------------------------------------------------------
- | Takes two double-precision floating-point values `a' and `b', one of which
- | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
- | signaling NaN, the invalid exception is raised.
- *----------------------------------------------------------------------------*)
- Procedure propagateFloat64NaN( a: float64; b: float64 ; VAR c: float64 );
- var
- aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN : flag;
- begin
- aIsNaN := float64_is_nan( a );
- aIsSignalingNaN := float64_is_signaling_nan( a );
- bIsNaN := float64_is_nan( b );
- bIsSignalingNaN := float64_is_signaling_nan( b );
- a.high := a.high or $00080000;
- b.high := b.high or $00080000;
- if ( aIsSignalingNaN<>0 or bIsSignalingNaN<>0 ) then
- float_raise( float_flag_invalid );
- if bIsSignalingNaN<>0 then
- c := b
- else if aIsSignalingNan<>0 then
- c := a
- else if bIsNan<>0 then
- c := b
- else
- c := a;
- end;
- {$ENDIF}
- (****************************************************************************)
- (* END ENDIAN SPECIFIC CODE *)
- (****************************************************************************)
- {*
- -------------------------------------------------------------------------------
- Returns the fraction bits of the single-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function ExtractFloat32Frac(a : Float32) : Bits32;
- Begin
- ExtractFloat32Frac := A AND $007FFFFF;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the exponent bits of the single-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function extractFloat32Exp( a: float32 ): Int16;
- Begin
- extractFloat32Exp := (a shr 23) AND $FF;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the sign bit of the single-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function extractFloat32Sign( a: float32 ): Flag;
- Begin
- extractFloat32Sign := a shr 31;
- End;
- {*
- -------------------------------------------------------------------------------
- Normalizes the subnormal single-precision floating-point value represented
- by the denormalized significand `aSig'. The normalized exponent and
- significand are stored at the locations pointed to by `zExpPtr' and
- `zSigPtr', respectively.
- -------------------------------------------------------------------------------
- *}
- Procedure normalizeFloat32Subnormal( aSig : bits32; VAR zExpPtr: Int16; VAR zSigPtr :bits32);
- Var
- ShiftCount : BYTE;
- Begin
- shiftCount := countLeadingZeros32( aSig ) - 8;
- zSigPtr := aSig shl shiftCount;
- zExpPtr := 1 - shiftCount;
- End;
- {*
- -------------------------------------------------------------------------------
- Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
- single-precision floating-point value, returning the result. After being
- shifted into the proper positions, the three fields are simply added
- together to form the result. This means that any integer portion of `zSig'
- will be added into the exponent. Since a properly normalized significand
- will have an integer portion equal to 1, the `zExp' input should be 1 less
- than the desired result exponent whenever `zSig' is a complete, normalized
- significand.
- -------------------------------------------------------------------------------
- *}
- Function packFloat32( zSign: Flag; zExp : Int16; zSig: Bits32 ): Float32;
- Begin
- packFloat32 := ( ( bits32( zSign) ) shl 31 ) + ( ( bits32 (zExp) ) shl 23 )
- + zSig;
- End;
- {*
- -------------------------------------------------------------------------------
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- and significand `zSig', and returns the proper single-precision floating-
- point value corresponding to the abstract input. Ordinarily, the abstract
- value is simply rounded and packed into the single-precision format, with
- the inexact exception raised if the abstract input cannot be represented
- exactly. However, if the abstract value is too large, the overflow and
- inexact exceptions are raised and an infinity or maximal finite value is
- returned. If the abstract value is too small, the input value is rounded to
- a subnormal number, and the underflow and inexact exceptions are raised if
- the abstract input cannot be represented exactly as a subnormal single-
- precision floating-point number.
- The input significand `zSig' has its binary point between bits 30
- and 29, which is 7 bits to the left of the usual location. This shifted
- significand must be normalized or smaller. If `zSig' is not normalized,
- `zExp' must be 0; in that case, the result returned is a subnormal number,
- and it must not require rounding. In the usual case that `zSig' is
- normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
- The handling of underflow and overflow follows the IEC/IEEE Standard for
- Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function roundAndPackFloat32( zSign : Flag; zExp : Int16; zSig : Bits32 ) : float32;
- Var
- roundingMode : BYTE;
- roundNearestEven : Flag;
- roundIncrement, roundBits : BYTE;
- IsTiny : Flag;
- Begin
- roundingMode := float_rounding_mode;
- if (roundingMode = float_round_nearest_even) then
- Begin
- roundNearestEven := Flag(TRUE);
- end
- else
- roundNearestEven := Flag(FALSE);
- roundIncrement := $40;
- if ( Boolean(roundNearestEven) = FALSE) then
- Begin
- if ( roundingMode = float_round_to_zero ) Then
- Begin
- roundIncrement := 0;
- End
- else
- Begin
- roundIncrement := $7F;
- if ( zSign <> 0 ) then
- Begin
- if roundingMode = float_round_up then roundIncrement := 0;
- End
- else
- Begin
- if roundingMode = float_round_down then roundIncrement := 0;
- End;
- End
- End;
- roundBits := zSig AND $7F;
- if ($FD <= bits16 (zExp) ) then
- Begin
- if (( $FD < zExp ) OR ( zExp = $FD ) AND ( sbits32 ( zSig + roundIncrement ) < 0 ) ) then
- Begin
- float_raise( float_flag_overflow OR float_flag_inexact );
- roundAndPackFloat32:=packFloat32( zSign, $FF, 0 ) - Flag( roundIncrement = 0 );
- exit;
- End;
- if ( zExp < 0 ) then
- Begin
- isTiny :=
- flag(( float_detect_tininess = float_tininess_before_rounding )
- OR ( zExp < -1 )
- OR ( (zSig + roundIncrement) < $80000000 ));
- shift32RightJamming( zSig, - zExp, zSig );
- zExp := 0;
- roundBits := zSig AND $7F;
- if ( (isTiny = flag(TRUE)) and (roundBits<>0) ) then
- float_raise( float_flag_underflow );
- End;
- End;
- if ( roundBits )<> 0 then
- float_exception_flags := float_flag_inexact OR float_exception_flags;
- zSig := ( zSig + roundIncrement ) shr 7;
- zSig := zSig AND not bits32( bits32( ( roundBits XOR $40 ) = 0 ) and roundNearestEven );
- if ( zSig = 0 ) then zExp := 0;
- roundAndPackFloat32 := packFloat32( zSign, zExp, zSig );
- exit;
- End;
- {*
- -------------------------------------------------------------------------------
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- and significand `zSig', and returns the proper single-precision floating-
- point value corresponding to the abstract input. This routine is just like
- `roundAndPackFloat32' except that `zSig' does not have to be normalized.
- Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
- floating-point exponent.
- -------------------------------------------------------------------------------
- *}
- Function normalizeRoundAndPackFloat32( zSign: flag; zExp: int16; zSig:bits32 ): float32;
- Var
- ShiftCount : int8;
- Begin
- shiftCount := countLeadingZeros32( zSig ) - 1;
- normalizeRoundAndPackFloat32 := roundAndPackFloat32( zSign, zExp - shiftCount, zSig shl shiftCount );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the least-significant 32 fraction bits of the double-precision
- floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function extractFloat64Frac( a: float64 ): bits32;
- Begin
- extractFloat64Frac := a.low;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the most-significant 20 fraction bits of the double-precision
- floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function extractFloat64Frac0(a: float64): bits32;
- Begin
- extractFloat64Frac0 := a.high and $000FFFFF;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the least-significant 32 fraction bits of the double-precision
- floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function extractFloat64Frac1(a: float64): bits32;
- Begin
- extractFloat64Frac1 := a.low;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the exponent bits of the double-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function extractFloat64Exp(a: float64): int16;
- Begin
- extractFloat64Exp:= ( a.high shr 20 ) AND $7FF;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the sign bit of the double-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function extractFloat64Sign(a: float64) : flag;
- Begin
- extractFloat64Sign := a.high shr 31;
- End;
- {*
- -------------------------------------------------------------------------------
- Normalizes the subnormal double-precision floating-point value represented
- by the denormalized significand formed by the concatenation of `aSig0' and
- `aSig1'. The normalized exponent is stored at the location pointed to by
- `zExpPtr'. The most significant 21 bits of the normalized significand are
- stored at the location pointed to by `zSig0Ptr', and the least significant
- 32 bits of the normalized significand are stored at the location pointed to
- by `zSig1Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure normalizeFloat64Subnormal(
- aSig0: bits32;
- aSig1: bits32;
- VAR zExpPtr : Int16;
- VAR zSig0Ptr : Bits32;
- VAR zSig1Ptr : Bits32
- );
- Var
- ShiftCount : Int8;
- Begin
- if ( aSig0 = 0 ) then
- Begin
- shiftCount := countLeadingZeros32( aSig1 ) - 11;
- if ( shiftCount < 0 ) then
- Begin
- zSig0Ptr := aSig1 shr ( - shiftCount );
- zSig1Ptr := aSig1 shl ( shiftCount AND 31 );
- End
- else
- Begin
- zSig0Ptr := aSig1 shl shiftCount;
- zSig1Ptr := 0;
- End;
- zExpPtr := - shiftCount - 31;
- End
- else
- Begin
- shiftCount := countLeadingZeros32( aSig0 ) - 11;
- shortShift64Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
- zExpPtr := 1 - shiftCount;
- End;
- End;
- {*
- -------------------------------------------------------------------------------
- Packs the sign `zSign', the exponent `zExp', and the significand formed by
- the concatenation of `zSig0' and `zSig1' into a double-precision floating-
- point value, returning the result. After being shifted into the proper
- positions, the three fields `zSign', `zExp', and `zSig0' are simply added
- together to form the most significant 32 bits of the result. This means
- that any integer portion of `zSig0' will be added into the exponent. Since
- a properly normalized significand will have an integer portion equal to 1,
- the `zExp' input should be 1 less than the desired result exponent whenever
- `zSig0' and `zSig1' concatenated form a complete, normalized significand.
- -------------------------------------------------------------------------------
- *}
- Procedure
- packFloat64( zSign: Flag; zExp: Int16; zSig0: Bits32; zSig1 : Bits32; VAR c : float64);
- var
- z: Float64;
- Begin
- z.low := zSig1;
- z.high := ( ( bits32 (zSign) ) shl 31 ) + ( ( bits32 (zExp) ) shl 20 ) + zSig0;
- c := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- and extended significand formed by the concatenation of `zSig0', `zSig1',
- and `zSig2', and returns the proper double-precision floating-point value
- corresponding to the abstract input. Ordinarily, the abstract value is
- simply rounded and packed into the double-precision format, with the inexact
- exception raised if the abstract input cannot be represented exactly.
- However, if the abstract value is too large, the overflow and inexact
- exceptions are raised and an infinity or maximal finite value is returned.
- If the abstract value is too small, the input value is rounded to a
- subnormal number, and the underflow and inexact exceptions are raised if the
- abstract input cannot be represented exactly as a subnormal double-precision
- floating-point number.
- The input significand must be normalized or smaller. If the input
- significand is not normalized, `zExp' must be 0; in that case, the result
- returned is a subnormal number, and it must not require rounding. In the
- usual case that the input significand is normalized, `zExp' must be 1 less
- than the ``true'' floating-point exponent. The handling of underflow and
- overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure
- roundAndPackFloat64(
- zSign: Flag; zExp: Int16; zSig0: Bits32; zSig1: Bits32; zSig2: Bits32; Var c: Float64 );
- Var
- roundingMode : Int8;
- roundNearestEven, increment, isTiny : Flag;
- Begin
- roundingMode := float_rounding_mode;
- roundNearestEven := flag( roundingMode = float_round_nearest_even );
- increment := flag( sbits32 (zSig2) < 0 );
- if ( roundNearestEven = flag(FALSE) ) then
- Begin
- if ( roundingMode = float_round_to_zero ) then
- increment := 0
- else
- Begin
- if ( zSign )<> 0 then
- Begin
- increment := flag( roundingMode = float_round_down ) and zSig2;
- End
- else
- Begin
- increment := flag( roundingMode = float_round_up ) and zSig2;
- End
- End
- End;
- if ( $7FD <= bits16 (zExp) ) then
- Begin
- if (( $7FD < zExp )
- or (( zExp = $7FD )
- and (eq64( $001FFFFF, $FFFFFFFF, zSig0, zSig1 )<>0)
- and (increment<>0)
- )
- ) then
- Begin
- float_raise( float_flag_overflow OR float_flag_inexact );
- if (( roundingMode = float_round_to_zero )
- or ( (zSign<>0) and ( roundingMode = float_round_up ) )
- or ( (zSign = 0) and ( roundingMode = float_round_down ) )
- ) then
- Begin
- packFloat64( zSign, $7FE, $000FFFFF, $FFFFFFFF, c );
- exit;
- End;
- packFloat64( zSign, $7FF, 0, 0, c );
- exit;
- End;
- if ( zExp < 0 ) then
- Begin
- isTiny :=
- flag( float_detect_tininess = float_tininess_before_rounding )
- or flag( zExp < -1 )
- or flag(increment = 0)
- or flag(lt64( zSig0, zSig1, $001FFFFF, $FFFFFFFF)<>0);
- shift64ExtraRightJamming(
- zSig0, zSig1, zSig2, - zExp, zSig0, zSig1, zSig2 );
- zExp := 0;
- if ( isTiny<>0) and (zSig2<>0 ) then float_raise( float_flag_underflow );
- if ( roundNearestEven )<>0 then
- Begin
- increment := flag( sbits32 (zSig2) < 0 );
- End
- else
- Begin
- if ( zSign )<>0 then
- Begin
- increment := flag( roundingMode = float_round_down ) and zSig2;
- End
- else
- Begin
- increment := flag( roundingMode = float_round_up ) and zSig2;
- End
- End;
- End;
- End;
- if ( zSig2 )<>0 then
- float_exception_flags := float_exception_flags OR float_flag_inexact;
- if ( increment )<>0 then
- Begin
- add64( zSig0, zSig1, 0, 1, zSig0, zSig1 );
- zSig1 := zSig1 and not ( bits32(flag( zSig2 + zSig2 = 0 )) and roundNearestEven );
- End
- else
- Begin
- if ( ( zSig0 or zSig1 ) = 0 ) then zExp := 0;
- End;
- packFloat64( zSign, zExp, zSig0, zSig1, c );
- End;
- {*
- -------------------------------------------------------------------------------
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- and significand formed by the concatenation of `zSig0' and `zSig1', and
- returns the proper double-precision floating-point value corresponding
- to the abstract input. This routine is just like `roundAndPackFloat64'
- except that the input significand has fewer bits and does not have to be
- normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
- point exponent.
- -------------------------------------------------------------------------------
- *}
- Procedure
- normalizeRoundAndPackFloat64(
- zSign:flag; zExp:int16; zSig0:bits32; zSig1:bits32; VAR c: float64 );
- Var
- shiftCount : int8;
- zSig2 : bits32;
- Begin
- if ( zSig0 = 0 ) then
- Begin
- zSig0 := zSig1;
- zSig1 := 0;
- zExp := zExp -32;
- End;
- shiftCount := countLeadingZeros32( zSig0 ) - 11;
- if ( 0 <= shiftCount ) then
- Begin
- zSig2 := 0;
- shortShift64Left( zSig0, zSig1, shiftCount, zSig0, zSig1 );
- End
- else
- Begin
- shift64ExtraRightJamming
- (zSig0, zSig1, 0, - shiftCount, zSig0, zSig1, zSig2 );
- End;
- zExp := zExp - shiftCount;
- roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2, c );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the 32-bit two's complement integer `a' to
- the single-precision floating-point format. The conversion is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function int32_to_float32( a: int32): float32;
- Var
- zSign : Flag;
- Begin
- if ( a = 0 ) then
- Begin
- int32_to_float32 := 0;
- exit;
- End;
- if ( a = sbits32 ($80000000) ) then
- Begin
- int32_to_float32 := packFloat32( 1, $9E, 0 );
- exit;
- end;
- zSign := flag( a < 0 );
- If zSign<>0 then
- a := -a;
- int32_to_float32:=
- normalizeRoundAndPackFloat32( zSign, $9C, a );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the 32-bit two's complement integer `a' to
- the double-precision floating-point format. The conversion is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure int32_to_float64( a: int32; var c: float64 );
- var
- zSign : flag;
- absA : bits32;
- shiftCount : int8;
- zSig0, zSig1 : bits32;
- Begin
- if ( a = 0 ) then
- Begin
- packFloat64( 0, 0, 0, 0, c );
- exit;
- end;
- zSign := flag( a < 0 );
- if ZSign<>0 then
- AbsA := -a
- else
- AbsA := a;
- shiftCount := countLeadingZeros32( absA ) - 11;
- if ( 0 <= shiftCount ) then
- Begin
- zSig0 := absA shl shiftCount;
- zSig1 := 0;
- End
- else
- Begin
- shift64Right( absA, 0, - shiftCount, zSig0, zSig1 );
- End;
- packFloat64( zSign, $412 - shiftCount, zSig0, zSig1,c );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic---which means in particular that the conversion is rounded
- according to the current rounding mode. If `a' is a NaN, the largest
- positive integer is returned. Otherwise, if the conversion overflows, the
- largest integer with the same sign as `a' is returned.
- -------------------------------------------------------------------------------
- *}
- Function float32_to_int32( a : float32) : int32;
- Var
- aSign: flag;
- aExp, shiftCount: int16;
- aSig, aSigExtra: bits32;
- z: int32;
- roundingMode: int8;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- shiftCount := aExp - $96;
- if ( 0 <= shiftCount ) then
- Begin
- if ( $9E <= aExp ) then
- Begin
- if ( a <> $CF000000 ) then
- Begin
- float_raise( float_flag_invalid );
- if ( (aSign=0) or ( ( aExp = $FF ) and (aSig<>0) ) ) then
- Begin
- float32_to_int32 := $7FFFFFFF;
- exit;
- End;
- End;
- float32_to_int32 := sbits32 ($80000000);
- exit;
- End;
- z := ( aSig or $00800000 ) shl shiftCount;
- if ( aSign<>0 ) then z := - z;
- End
- else
- Begin
- if ( aExp < $7E ) then
- Begin
- aSigExtra := aExp OR aSig;
- z := 0;
- End
- else
- Begin
- aSig := aSig OR $00800000;
- aSigExtra := aSig shl ( shiftCount and 31 );
- z := aSig shr ( - shiftCount );
- End;
- if ( aSigExtra<>0 ) then
- float_exception_flags := float_exception_flags
- or float_flag_inexact;
- roundingMode := float_rounding_mode;
- if ( roundingMode = float_round_nearest_even ) then
- Begin
- if ( sbits32 (aSigExtra) < 0 ) then
- Begin
- Inc(z);
- if ( bits32 ( aSigExtra shl 1 ) = 0 ) then
- z := z and not 1;
- End;
- if ( aSign<>0 ) then
- z := - z;
- End
- else
- Begin
- aSigExtra := flag( aSigExtra <> 0 );
- if ( aSign<>0 ) then
- Begin
- z := z + (flag( roundingMode = float_round_down ) and aSigExtra);
- z := - z;
- End
- else
- Begin
- z := z + (flag( roundingMode = float_round_up ) and aSigExtra);
- End
- End;
- End;
- float32_to_int32 := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic, except that the conversion is always rounded toward zero.
- If `a' is a NaN, the largest positive integer is returned. Otherwise, if
- the conversion overflows, the largest integer with the same sign as `a' is
- returned.
- -------------------------------------------------------------------------------
- *}
- Function float32_to_int32_round_to_zero( a: Float32 ): int32;
- Var
- aSign : flag;
- aExp, shiftCount : int16;
- aSig : bits32;
- z : int32;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- shiftCount := aExp - $9E;
- if ( 0 <= shiftCount ) then
- Begin
- if ( a <> $CF000000 ) then
- Begin
- float_raise( float_flag_invalid );
- if ( (aSign=0) or ( ( aExp = $FF ) and (aSig<>0) ) ) then
- Begin
- float32_to_int32_round_to_zero := $7FFFFFFF;
- exit;
- end;
- End;
- float32_to_int32_round_to_zero:= sbits32 ($80000000);
- exit;
- End
- else
- if ( aExp <= $7E ) then
- Begin
- if ( aExp or aSig )<>0 then
- float_exception_flags :=
- float_exception_flags or float_flag_inexact;
- float32_to_int32_round_to_zero := 0;
- exit;
- End;
- aSig := ( aSig or $00800000 ) shl 8;
- z := aSig shr ( - shiftCount );
- if ( bits32 ( aSig shl ( shiftCount and 31 ) )<> 0 ) then
- Begin
- float_exception_flags :=
- float_exception_flags or float_flag_inexact;
- End;
- if ( aSign<>0 ) then z := - z;
- float32_to_int32_round_to_zero := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the double-precision floating-point format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float32_to_float64( a : float32; var out: Float64);
- Var
- aSign : flag;
- aExp : int16;
- aSig, zSig0, zSig1: bits32;
- tmp : CommonNanT;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- if ( aExp = $FF ) then
- Begin
- if ( aSig<>0 ) then
- Begin
- float32ToCommonNaN(a, tmp);
- commonNaNToFloat64(tmp , out);
- exit;
- End;
- packFloat64( aSign, $7FF, 0, 0, out );
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- if ( aSig = 0 ) then
- Begin
- packFloat64( aSign, 0, 0, 0, out );
- exit;
- end;
- normalizeFloat32Subnormal( aSig, aExp, aSig );
- Dec(aExp);
- End;
- shift64Right( aSig, 0, 3, zSig0, zSig1 );
- packFloat64( aSign, aExp + $380, zSig0, zSig1, out );
- End;
- {*
- -------------------------------------------------------------------------------
- Rounds the single-precision floating-point value `a' to an integer,
- and returns the result as a single-precision floating-point value. The
- operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_round_to_int( a: float32): float32;
- Var
- aSign: flag;
- aExp: int16;
- lastBitMask, roundBitsMask: bits32;
- roundingMode: int8;
- z: float32;
- Begin
- aExp := extractFloat32Exp( a );
- if ( $96 <= aExp ) then
- Begin
- if ( ( aExp = $FF ) and (extractFloat32Frac( a )<>0) ) then
- Begin
- float32_round_to_int:= propagateFloat32NaN( a, a );
- exit;
- End;
- float32_round_to_int:=a;
- exit;
- End;
- if ( aExp <= $7E ) then
- Begin
- if ( bits32 ( a shl 1 ) = 0 ) then
- Begin
- float32_round_to_int:=a;
- exit;
- end;
- float_exception_flags
- := float_exception_flags OR float_flag_inexact;
- aSign := extractFloat32Sign( a );
- case ( float_rounding_mode ) of
- float_round_nearest_even:
- Begin
- if ( ( aExp = $7E ) and (extractFloat32Frac( a )<>0) ) then
- Begin
- float32_round_to_int := packFloat32( aSign, $7F, 0 );
- exit;
- End;
- End;
- float_round_down:
- Begin
- if aSign <> 0 then
- float32_round_to_int := $BF800000
- else
- float32_round_to_int := 0;
- exit;
- End;
- float_round_up:
- Begin
- if aSign <> 0 then
- float32_round_to_int := $80000000
- else
- float32_round_to_int := $3F800000;
- exit;
- End;
- end;
- float32_round_to_int := packFloat32( aSign, 0, 0 );
- End;
- lastBitMask := 1;
- {_____________________________!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!}
- lastBitMask := lastBitMask shl ($96 - aExp);
- roundBitsMask := lastBitMask - 1;
- z := a;
- roundingMode := float_rounding_mode;
- if ( roundingMode = float_round_nearest_even ) then
- Begin
- z := z + (lastBitMask shr 1);
- if ( ( z and roundBitsMask ) = 0 ) then
- z := z and not lastBitMask;
- End
- else if ( roundingMode <> float_round_to_zero ) then
- Begin
- if ( (extractFloat32Sign( z ) xor flag(roundingMode = float_round_up ))<>0 ) then
- Begin
- z := z + roundBitsMask;
- End;
- End;
- z := z and not roundBitsMask;
- if ( z <> a ) then
- float_exception_flags := float_exception_flags or float_flag_inexact;
- float32_round_to_int := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of adding the absolute values of the single-precision
- floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
- before being returned. `zSign' is ignored if the result is a NaN.
- The addition is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function addFloat32Sigs( a:float32; b: float32; zSign:flag ): float32;
- Var
- aExp, bExp, zExp: int16;
- aSig, bSig, zSig: bits32;
- expDiff: int16;
- label roundAndPack;
- Begin
- aSig:=extractFloat32Frac( a );
- aExp:=extractFloat32Exp( a );
- bSig:=extractFloat32Frac( b );
- bExp := extractFloat32Exp( b );
- expDiff := aExp - bExp;
- aSig := aSig shl 6;
- bSig := bSig shl 6;
- if ( 0 < expDiff ) then
- Begin
- if ( aExp = $FF ) then
- Begin
- if ( aSig <> 0) then
- Begin
- addFloat32Sigs := propagateFloat32NaN( a, b );
- exit;
- End;
- addFloat32Sigs := a;
- exit;
- End;
- if ( bExp = 0 ) then
- Begin
- Dec(expDiff);
- End
- else
- Begin
- bSig := bSig or $20000000;
- End;
- shift32RightJamming( bSig, expDiff, bSig );
- zExp := aExp;
- End
- else
- If ( expDiff < 0 ) then
- Begin
- if ( bExp = $FF ) then
- Begin
- if ( bSig<>0 ) then
- Begin
- addFloat32Sigs := propagateFloat32NaN( a, b );
- exit;
- end;
- addFloat32Sigs := packFloat32( zSign, $FF, 0 );
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- Inc(expDiff);
- End
- else
- Begin
- aSig := aSig OR $20000000;
- End;
- shift32RightJamming( aSig, - expDiff, aSig );
- zExp := bExp;
- End
- else
- Begin
- if ( aExp = $FF ) then
- Begin
- if ( aSig OR bSig )<> 0 then
- Begin
- addFloat32Sigs := propagateFloat32NaN( a, b );
- exit;
- end;
- addFloat32Sigs := a;
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- addFloat32Sigs := packFloat32( zSign, 0, ( aSig + bSig ) shr 6 );
- exit;
- end;
- zSig := $40000000 + aSig + bSig;
- zExp := aExp;
- goto roundAndPack;
- End;
- aSig := aSig OR $20000000;
- zSig := ( aSig + bSig ) shl 1;
- Dec(zExp);
- if ( sbits32 (zSig) < 0 ) then
- Begin
- zSig := aSig + bSig;
- Inc(zExp);
- End;
- roundAndPack:
- addFloat32Sigs := roundAndPackFloat32( zSign, zExp, zSig );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the absolute values of the single-
- precision floating-point values `a' and `b'. If `zSign' is 1, the
- difference is negated before being returned. `zSign' is ignored if the
- result is a NaN. The subtraction is performed according to the IEC/IEEE
- Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function subFloat32Sigs( a:float32; b:float32; zSign:flag ): float32;
- Var
- aExp, bExp, zExp: int16;
- aSig, bSig, zSig: bits32;
- expDiff : int16;
- label aExpBigger;
- label bExpBigger;
- label aBigger;
- label bBigger;
- label normalizeRoundAndPack;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- bSig := extractFloat32Frac( b );
- bExp := extractFloat32Exp( b );
- expDiff := aExp - bExp;
- aSig := aSig shl 7;
- bSig := bSig shl 7;
- if ( 0 < expDiff ) then goto aExpBigger;
- if ( expDiff < 0 ) then goto bExpBigger;
- if ( aExp = $FF ) then
- Begin
- if ( aSig OR bSig )<> 0 then
- Begin
- subFloat32Sigs := propagateFloat32NaN( a, b );
- exit;
- End;
- float_raise( float_flag_invalid );
- subFloat32Sigs := float32_default_nan;
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- aExp := 1;
- bExp := 1;
- End;
- if ( bSig < aSig ) Then goto aBigger;
- if ( aSig < bSig ) Then goto bBigger;
- subFloat32Sigs := packFloat32( flag(float_rounding_mode = float_round_down), 0, 0 );
- exit;
- bExpBigger:
- if ( bExp = $FF ) then
- Begin
- if ( bSig<>0 ) then
- Begin
- subFloat32Sigs := propagateFloat32NaN( a, b );
- exit;
- End;
- subFloat32Sigs := packFloat32( zSign XOR 1, $FF, 0 );
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- Inc(expDiff);
- End
- else
- Begin
- aSig := aSig OR $40000000;
- End;
- shift32RightJamming( aSig, - expDiff, aSig );
- bSig := bSig OR $40000000;
- bBigger:
- zSig := bSig - aSig;
- zExp := bExp;
- zSign := zSign xor 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp = $FF ) then
- Begin
- if ( aSig <> 0) then
- Begin
- subFloat32Sigs := propagateFloat32NaN( a, b );
- exit;
- End;
- subFloat32Sigs := a;
- exit;
- End;
- if ( bExp = 0 ) then
- Begin
- Dec(expDiff);
- End
- else
- Begin
- bSig := bSig OR $40000000;
- End;
- shift32RightJamming( bSig, expDiff, bSig );
- aSig := aSig OR $40000000;
- aBigger:
- zSig := aSig - bSig;
- zExp := aExp;
- normalizeRoundAndPack:
- Dec(zExp);
- subFloat32Sigs := normalizeRoundAndPackFloat32( zSign, zExp, zSig );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of adding the single-precision floating-point values `a'
- and `b'. The operation is performed according to the IEC/IEEE Standard for
- Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_add( a: float32; b:float32 ): float32;
- Var
- aSign, bSign: Flag;
- Begin
- aSign := extractFloat32Sign( a );
- bSign := extractFloat32Sign( b );
- if ( aSign = bSign ) then
- Begin
- float32_add := addFloat32Sigs( a, b, aSign );
- End
- else
- Begin
- float32_add := subFloat32Sigs( a, b, aSign );
- End;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the single-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_sub( a: float32 ; b:float32 ): float32;
- Var
- aSign, bSign: flag;
- Begin
- aSign := extractFloat32Sign( a );
- bSign := extractFloat32Sign( b );
- if ( aSign = bSign ) then
- Begin
- float32_sub := subFloat32Sigs( a, b, aSign );
- End
- else
- Begin
- float32_sub := addFloat32Sigs( a, b, aSign );
- End;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of multiplying the single-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_mul(a: float32; b: float32 ) : float32;
- Var
- aSign, bSign, zSign: flag;
- aExp, bExp, zExp : int16;
- aSig, bSig, zSig0, zSig1: bits32;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- bSig := extractFloat32Frac( b );
- bExp := extractFloat32Exp( b );
- bSign := extractFloat32Sign( b );
- zSign := aSign xor bSign;
- if ( aExp = $FF ) then
- Begin
- if ( (aSig<>0) OR ( ( bExp = $FF ) AND (bSig<>0) ) ) then
- Begin
- float32_mul := propagateFloat32NaN( a, b );
- End;
- if ( ( bExp OR bSig ) = 0 ) then
- Begin
- float_raise( float_flag_invalid );
- float32_mul := float32_default_nan;
- exit;
- End;
- float32_mul := packFloat32( zSign, $FF, 0 );
- exit;
- End;
- if ( bExp = $FF ) then
- Begin
- if ( bSig <> 0 ) then
- Begin
- float32_mul := propagateFloat32NaN( a, b );
- exit;
- End;
- if ( ( aExp OR aSig ) = 0 ) then
- Begin
- float_raise( float_flag_invalid );
- float32_mul := float32_default_nan;
- exit;
- End;
- float32_mul := packFloat32( zSign, $FF, 0 );
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- if ( aSig = 0 ) then
- Begin
- float32_mul := packFloat32( zSign, 0, 0 );
- exit;
- End;
- normalizeFloat32Subnormal( aSig, aExp, aSig );
- End;
- if ( bExp = 0 ) then
- Begin
- if ( bSig = 0 ) then
- Begin
- float32_mul := packFloat32( zSign, 0, 0 );
- exit;
- End;
- normalizeFloat32Subnormal( bSig, bExp, bSig );
- End;
- zExp := aExp + bExp - $7F;
- aSig := ( aSig OR $00800000 ) shl 7;
- bSig := ( bSig OR $00800000 ) shl 8;
- mul32To64( aSig, bSig, zSig0, zSig1 );
- zSig0 := zSig0 OR bits32( zSig1 <> 0 );
- if ( 0 <= sbits32 ( zSig0 shl 1 ) ) then
- Begin
- zSig0 := zSig0 shl 1;
- Dec(zExp);
- End;
- float32_mul := roundAndPackFloat32( zSign, zExp, zSig0 );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of dividing the single-precision floating-point value `a'
- by the corresponding value `b'. The operation is performed according to the
- IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_div(a: float32;b: float32 ): float32;
- Var
- aSign, bSign, zSign: flag;
- aExp, bExp, zExp: int16;
- aSig, bSig, zSig, rem0, rem1, term0, term1: bits32;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- bSig := extractFloat32Frac( b );
- bExp := extractFloat32Exp( b );
- bSign := extractFloat32Sign( b );
- zSign := aSign xor bSign;
- if ( aExp = $FF ) then
- Begin
- if ( aSig <> 0 ) then
- Begin
- float32_div := propagateFloat32NaN( a, b );
- exit;
- End;
- if ( bExp = $FF ) then
- Begin
- if ( bSig <> 0) then
- Begin
- float32_div := propagateFloat32NaN( a, b );
- End;
- float_raise( float_flag_invalid );
- float32_div := float32_default_nan;
- exit;
- End;
- float32_div := packFloat32( zSign, $FF, 0 );
- exit;
- End;
- if ( bExp = $FF ) then
- Begin
- if ( bSig <> 0) then
- Begin
- float32_div := propagateFloat32NaN( a, b );
- exit;
- End;
- float32_div := packFloat32( zSign, 0, 0 );
- exit;
- End;
- if ( bExp = 0 ) Then
- Begin
- if ( bSig = 0 ) Then
- Begin
- if ( ( aExp OR aSig ) = 0 ) then
- Begin
- float_raise( float_flag_invalid );
- float32_div := float32_default_nan;
- exit;
- End;
- float_raise( float_flag_divbyzero );
- float32_div := packFloat32( zSign, $FF, 0 );
- exit;
- End;
- normalizeFloat32Subnormal( bSig, bExp, bSig );
- End;
- if ( aExp = 0 ) Then
- Begin
- if ( aSig = 0 ) Then
- Begin
- float32_div := packFloat32( zSign, 0, 0 );
- exit;
- End;
- normalizeFloat32Subnormal( aSig, aExp, aSig );
- End;
- zExp := aExp - bExp + $7D;
- aSig := ( aSig OR $00800000 ) shl 7;
- bSig := ( bSig OR $00800000 ) shl 8;
- if ( bSig <= ( aSig + aSig ) ) then
- Begin
- aSig := aSig shr 1;
- Inc(zExp);
- End;
- zSig := estimateDiv64To32( aSig, 0, bSig );
- if ( ( zSig and $3F ) <= 2 ) then
- Begin
- mul32To64( bSig, zSig, term0, term1 );
- sub64( aSig, 0, term0, term1, rem0, rem1 );
- while ( sbits32 (rem0) < 0 ) do
- Begin
- Dec(zSig);
- add64( rem0, rem1, 0, bSig, rem0, rem1 );
- End;
- zSig := zSig or bits32( rem1 <> 0 );
- End;
- float32_div := roundAndPackFloat32( zSign, zExp, zSig );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the remainder of the single-precision floating-point value `a'
- with respect to the corresponding value `b'. The operation is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_rem(a: float32; b: float32 ):float32;
- Var
- aSign, bSign, zSign: flag;
- aExp, bExp, expDiff: int16;
- aSig, bSig, q, allZero, alternateASig: bits32;
- sigMean: sbits32;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- bSig := extractFloat32Frac( b );
- bExp := extractFloat32Exp( b );
- bSign := extractFloat32Sign( b );
- if ( aExp = $FF ) then
- Begin
- if ( (aSig<>0) OR ( ( bExp = $FF ) AND (bSig <>0)) ) then
- Begin
- float32_rem := propagateFloat32NaN( a, b );
- exit;
- End;
- float_raise( float_flag_invalid );
- float32_rem := float32_default_nan;
- exit;
- End;
- if ( bExp = $FF ) then
- Begin
- if ( bSig <> 0 ) then
- Begin
- float32_rem := propagateFloat32NaN( a, b );
- exit;
- End;
- float32_rem := a;
- exit;
- End;
- if ( bExp = 0 ) then
- Begin
- if ( bSig = 0 ) then
- Begin
- float_raise( float_flag_invalid );
- float32_rem := float32_default_nan;
- exit;
- End;
- normalizeFloat32Subnormal( bSig, bExp, bSig );
- End;
- if ( aExp = 0 ) then
- Begin
- if ( aSig = 0 ) then
- Begin
- float32_rem := a;
- exit;
- End;
- normalizeFloat32Subnormal( aSig, aExp, aSig );
- End;
- expDiff := aExp - bExp;
- aSig := ( aSig OR $00800000 ) shl 8;
- bSig := ( bSig OR $00800000 ) shl 8;
- if ( expDiff < 0 ) then
- Begin
- if ( expDiff < -1 ) then
- Begin
- float32_rem := a;
- exit;
- End;
- aSig := aSig shr 1;
- End;
- q := bits32( bSig <= aSig );
- if ( q <> 0) then
- aSig := aSig - bSig;
- expDiff := expDiff - 32;
- while ( 0 < expDiff ) do
- Begin
- q := estimateDiv64To32( aSig, 0, bSig );
- if (2 < q) then
- q := q - 2
- else
- q := 0;
- aSig := - ( ( bSig shr 2 ) * q );
- expDiff := expDiff - 30;
- End;
- expDiff := expDiff + 32;
- if ( 0 < expDiff ) then
- Begin
- q := estimateDiv64To32( aSig, 0, bSig );
- if (2 < q) then
- q := q - 2
- else
- q := 0;
- q := q shr (32 - expDiff);
- bSig := bSig shr 2;
- aSig := ( ( aSig shr 1 ) shl ( expDiff - 1 ) ) - bSig * q;
- End
- else
- Begin
- aSig := aSig shr 2;
- bSig := bSig shr 2;
- End;
- Repeat
- alternateASig := aSig;
- Inc(q);
- aSig := aSig - bSig;
- Until not ( 0 <= sbits32 (aSig) );
- sigMean := aSig + alternateASig;
- if ( ( sigMean < 0 ) OR ( ( sigMean = 0 ) AND (( q and 1 )<>0) ) ) then
- Begin
- aSig := alternateASig;
- End;
- zSign := flag( sbits32 (aSig) < 0 );
- if ( zSign<>0 ) then
- aSig := - aSig;
- float32_rem := normalizeRoundAndPackFloat32( aSign xor zSign, bExp, aSig );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the square root of the single-precision floating-point value `a'.
- The operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_sqrt(a: float32 ): float32;
- Var
- aSign : flag;
- aExp, zExp : int16;
- aSig, zSig, rem0, rem1, term0, term1: bits32;
- label roundAndPack;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- if ( aExp = $FF ) then
- Begin
- if ( aSig <> 0) then
- Begin
- float32_sqrt := propagateFloat32NaN( a, 0 );
- exit;
- End;
- if ( aSign = 0) then
- Begin
- float32_sqrt := a;
- exit;
- End;
- float_raise( float_flag_invalid );
- float32_sqrt := float32_default_nan;
- exit;
- End;
- if ( aSign <> 0) then
- Begin
- if ( ( aExp OR aSig ) = 0 ) then
- Begin
- float32_sqrt := a;
- exit;
- End;
- float_raise( float_flag_invalid );
- float32_sqrt := float32_default_nan;
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- if ( aSig = 0 ) then
- Begin
- float32_sqrt := 0;
- exit;
- End;
- normalizeFloat32Subnormal( aSig, aExp, aSig );
- End;
- zExp := ( ( aExp - $7F ) shr 1 ) + $7E;
- aSig := ( aSig OR $00800000 ) shl 8;
- zSig := estimateSqrt32( aExp, aSig ) + 2;
- if ( ( zSig and $7F ) <= 5 ) then
- Begin
- if ( zSig < 2 ) then
- Begin
- zSig := $7FFFFFFF;
- goto roundAndPack;
- End
- else
- Begin
- aSig := aSig shr (aExp and 1);
- mul32To64( zSig, zSig, term0, term1 );
- sub64( aSig, 0, term0, term1, rem0, rem1 );
- while ( sbits32 (rem0) < 0 ) do
- Begin
- Dec(zSig);
- shortShift64Left( 0, zSig, 1, term0, term1 );
- term1 := term1 or 1;
- add64( rem0, rem1, term0, term1, rem0, rem1 );
- End;
- zSig := zSig OR bits32( ( rem0 OR rem1 ) <> 0 );
- End;
- End;
- shift32RightJamming( zSig, 1, zSig );
- roundAndPack:
- float32_sqrt := roundAndPackFloat32( 0, zExp, zSig );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is equal to
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_eq( a:float32; b:float32): flag;
- Begin
- if ((( extractFloat32Exp( a ) = $FF ) AND (extractFloat32Frac( a )<>0))
- OR ( ( extractFloat32Exp( b ) = $FF ) AND (extractFloat32Frac( b )<>0) )
- ) then
- Begin
- if ( (float32_is_signaling_nan( a )<>0) OR (float32_is_signaling_nan( b )<>0) ) then
- Begin
- float_raise( float_flag_invalid );
- End;
- float32_eq := 0;
- exit;
- End;
- float32_eq := flag( a = b ) OR flag( bits32 ( ( a OR b ) shl 1 ) = 0 );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than
- or equal to the corresponding value `b', and 0 otherwise. The comparison
- is performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_le( a: float32; b : float32 ):flag;
- var
- aSign, bSign: flag;
- Begin
- if ( ( ( extractFloat32Exp( a ) = $FF ) AND (extractFloat32Frac( a )<>0) )
- OR ( ( extractFloat32Exp( b ) = $FF ) AND (extractFloat32Frac( b )<>0) )
- ) then
- Begin
- float_raise( float_flag_invalid );
- float32_le := 0;
- exit;
- End;
- aSign := extractFloat32Sign( a );
- bSign := extractFloat32Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float32_le := aSign OR flag( bits32 ( ( a OR b ) shl 1 ) = 0 );
- exit;
- End;
- float32_le := flag(flag( a = b ) OR flag( aSign xor flag( a < b ) ));
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_lt( a:float32 ; b : float32): flag;
- var
- aSign, bSign: flag;
- Begin
- if ( ( ( extractFloat32Exp( a ) = $FF ) AND (extractFloat32Frac( a ) <>0))
- OR ( ( extractFloat32Exp( b ) = $FF ) AND (extractFloat32Frac( b ) <>0) )
- ) then
- Begin
- float_raise( float_flag_invalid );
- float32_lt :=0;
- exit;
- End;
- aSign := extractFloat32Sign( a );
- bSign := extractFloat32Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float32_lt := aSign AND flag( bits32 ( ( a OR b ) shl 1 ) <> 0 );
- exit;
- End;
- float32_lt := flag(flag( a <> b ) AND flag( aSign xor flag( a < b ) ));
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is equal to
- the corresponding value `b', and 0 otherwise. The invalid exception is
- raised if either operand is a NaN. Otherwise, the comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_eq_signaling( a: float32; b: float32) : flag;
- Begin
- if ( ( ( extractFloat32Exp( a ) = $FF ) AND (extractFloat32Frac( a ) <> 0))
- OR ( ( extractFloat32Exp( b ) = $FF ) AND (extractFloat32Frac( b ) <> 0))
- ) then
- Begin
- float_raise( float_flag_invalid );
- float32_eq_signaling := 0;
- exit;
- End;
- float32_eq_signaling := (flag( a = b ) OR flag( bits32 ( ( a OR b ) shl 1 ) = 0 ));
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than or
- equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
- cause an exception. Otherwise, the comparison is performed according to the
- IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_le_quiet( a: float32 ; b : float32 ): flag;
- Var
- aSign, bSign: flag;
- aExp, bExp: int16;
- Begin
- if ( ( ( extractFloat32Exp( a ) = $FF ) AND (extractFloat32Frac( a )<>0) )
- OR ( ( extractFloat32Exp( b ) = $FF ) AND (extractFloat32Frac( b )<>0) )
- ) then
- Begin
- if ( (float32_is_signaling_nan( a )<>0) OR (float32_is_signaling_nan( b )<>0) ) then
- Begin
- float_raise( float_flag_invalid );
- End;
- float32_le_quiet := 0;
- exit;
- End;
- aSign := extractFloat32Sign( a );
- bSign := extractFloat32Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float32_le_quiet := aSign OR flag( bits32 ( ( a OR b ) shl 1 ) = 0 );
- exit;
- End;
- float32_le_quiet := flag(flag( a = b ) OR flag( aSign xor flag( a < b ) ));
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
- exception. Otherwise, the comparison is performed according to the IEC/IEEE
- Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_lt_quiet( a: float32 ; b: float32 ): flag;
- Var
- aSign, bSign: flag;
- Begin
- if ( ( ( extractFloat32Exp( a ) = $FF ) AND (extractFloat32Frac( a )<>0) )
- OR ( ( extractFloat32Exp( b ) = $FF ) AND (extractFloat32Frac( b )<>0) )
- ) then
- Begin
- if ( (float32_is_signaling_nan( a )<>0) OR (float32_is_signaling_nan( b )<>0) ) then
- Begin
- float_raise( float_flag_invalid );
- End;
- float32_lt_quiet := 0;
- exit;
- End;
- aSign := extractFloat32Sign( a );
- bSign := extractFloat32Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float32_lt_quiet := aSign AND flag( bits32 ( ( a OR b ) shl 1 ) <> 0 );
- exit;
- End;
- float32_lt_quiet := flag(flag( a <> b ) AND ( aSign xor flag( a < b ) ));
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic---which means in particular that the conversion is rounded
- according to the current rounding mode. If `a' is a NaN, the largest
- positive integer is returned. Otherwise, if the conversion overflows, the
- largest integer with the same sign as `a' is returned.
- -------------------------------------------------------------------------------
- *}
- Function float64_to_int32(a: float64): int32;
- var
- aSign: flag;
- aExp, shiftCount: int16;
- aSig0, aSig1, absZ, aSigExtra: bits32;
- z: int32;
- roundingMode: int8;
- label invalid;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- shiftCount := aExp - $413;
- if ( 0 <= shiftCount ) then
- Begin
- if ( $41E < aExp ) then
- Begin
- if ( ( aExp = $7FF ) AND (( aSig0 OR aSig1 )<>0) ) then
- aSign := 0;
- goto invalid;
- End;
- shortShift64Left(
- aSig0 OR $00100000, aSig1, shiftCount, absZ, aSigExtra );
- if ( $80000000 < absZ ) then
- goto invalid;
- End
- else
- Begin
- aSig1 := flag( aSig1 <> 0 );
- if ( aExp < $3FE ) then
- Begin
- aSigExtra := aExp OR aSig0 OR aSig1;
- absZ := 0;
- End
- else
- Begin
- aSig0 := aSig0 OR $00100000;
- aSigExtra := ( aSig0 shl ( shiftCount and 31 ) ) OR aSig1;
- absZ := aSig0 shr ( - shiftCount );
- End;
- End;
- roundingMode := float_rounding_mode;
- if ( roundingMode = float_round_nearest_even ) then
- Begin
- if ( sbits32(aSigExtra) < 0 ) then
- Begin
- Inc(absZ);
- if ( bits32 ( aSigExtra shl 1 ) = 0 ) then
- absZ := absZ and not 1;
- End;
- if aSign <> 0 then
- z := - absZ
- else
- z := absZ;
- End
- else
- Begin
- aSigExtra := bits32( aSigExtra <> 0 );
- if ( aSign <> 0) then
- Begin
- z := - ( absZ
- + ( int32( roundingMode = float_round_down ) and aSigExtra ) );
- End
- else
- Begin
- z := absZ + ( int32( roundingMode = float_round_up ) and aSigExtra );
- End
- End;
- if ( (( aSign xor flag( z < 0 ) )<>0) AND (z<>0) ) then
- Begin
- invalid:
- float_raise( float_flag_invalid );
- if (aSign <> 0 ) then
- float64_to_int32 := sbits32 ($80000000)
- else
- float64_to_int32 := $7FFFFFFF;
- exit;
- End;
- if ( aSigExtra <> 0) then
- float_exception_flags := float_exception_flags or float_flag_inexact;
- float64_to_int32 := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic, except that the conversion is always rounded toward zero.
- If `a' is a NaN, the largest positive integer is returned. Otherwise, if
- the conversion overflows, the largest integer with the same sign as `a' is
- returned.
- -------------------------------------------------------------------------------
- *}
- Function float64_to_int32_round_to_zero(a: float64 ): int32;
- Var
- aSign: flag;
- aExp, shiftCount: int16;
- aSig0, aSig1, absZ, aSigExtra: bits32;
- z: int32;
- label invalid;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- shiftCount := aExp - $413;
- if ( 0 <= shiftCount ) then
- Begin
- if ( $41E < aExp ) then
- Begin
- if ( ( aExp = $7FF ) AND (( aSig0 OR aSig1 )<>0) ) then
- aSign := 0;
- goto invalid;
- End;
- shortShift64Left(
- aSig0 OR $00100000, aSig1, shiftCount, absZ, aSigExtra );
- End
- else
- Begin
- if ( aExp < $3FF ) then
- Begin
- if ( aExp OR aSig0 OR aSig1 )<>0 then
- Begin
- float_exception_flags :=
- float_exception_flags or float_flag_inexact;
- End;
- float64_to_int32_round_to_zero := 0;
- exit;
- End;
- aSig0 := aSig0 or $00100000;
- aSigExtra := ( aSig0 shl ( shiftCount and 31 ) ) OR aSig1;
- absZ := aSig0 shr ( - shiftCount );
- End;
- if aSign <> 0 then
- z := - absZ
- else
- z := absZ;
- if ( (( aSign xor flag( z < 0 )) <> 0) AND (z<>0) ) then
- Begin
- invalid:
- float_raise( float_flag_invalid );
- if (aSign <> 0) then
- float64_to_int32_round_to_zero := sbits32 ($80000000)
- else
- float64_to_int32_round_to_zero := $7FFFFFFF;
- exit;
- End;
- if ( aSigExtra <> 0) then
- float_exception_flags := float_exception_flags or float_flag_inexact;
- float64_to_int32_round_to_zero := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the single-precision floating-point format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_to_float32(a: float64 ): float32;
- Var
- aSign: flag;
- aExp: int16;
- aSig0, aSig1, zSig: bits32;
- allZero: bits32;
- tmp : CommonNanT;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- if ( aExp = $7FF ) then
- Begin
- if ( aSig0 OR aSig1 ) <> 0 then
- Begin
- float64ToCommonNaN( a, tmp );
- float64_to_float32 := commonNaNToFloat32( tmp );
- exit;
- End;
- float64_to_float32 := packFloat32( aSign, $FF, 0 );
- exit;
- End;
- shift64RightJamming( aSig0, aSig1, 22, allZero, zSig );
- if ( aExp <> 0) then
- zSig := zSig OR $40000000;
- float64_to_float32 := roundAndPackFloat32( aSign, aExp - $381, zSig );
- End;
- {*
- -------------------------------------------------------------------------------
- Rounds the double-precision floating-point value `a' to an integer,
- and returns the result as a double-precision floating-point value. The
- operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_round_to_int(a: float64; var out: float64 );
- Var
- aSign: flag;
- aExp: int16;
- lastBitMask, roundBitsMask: bits32;
- roundingMode: int8;
- z: float64;
- Begin
- aExp := extractFloat64Exp( a );
- if ( $413 <= aExp ) then
- Begin
- if ( $433 <= aExp ) then
- Begin
- if ( ( aExp = $7FF )
- AND
- (
- ( extractFloat64Frac0( a ) OR extractFloat64Frac1( a )
- ) <>0)
- ) then
- Begin
- propagateFloat64NaN( a, a, out );
- exit;
- End;
- out := a;
- exit;
- End;
- lastBitMask := 1;
- lastBitMask := ( lastBitMask shl ( $432 - aExp ) ) shl 1;
- roundBitsMask := lastBitMask - 1;
- z := a;
- roundingMode := float_rounding_mode;
- if ( roundingMode = float_round_nearest_even ) then
- Begin
- if ( lastBitMask <> 0) then
- Begin
- add64( z.high, z.low, 0, lastBitMask shr 1, z.high, z.low );
- if ( ( z.low and roundBitsMask ) = 0 ) then
- z.low := z.low and not lastBitMask;
- End
- else
- Begin
- if ( sbits32 (z.low) < 0 ) then
- Begin
- Inc(z.high);
- if ( bits32 ( z.low shl 1 ) = 0 ) then
- z.high := z.high and not 1;
- End;
- End;
- End
- else if ( roundingMode <> float_round_to_zero ) then
- Begin
- if ( extractFloat64Sign( z )
- xor flag( roundingMode = float_round_up ) )<> 0 then
- Begin
- add64( z.high, z.low, 0, roundBitsMask, z.high, z.low );
- End;
- End;
- z.low := z.low and not roundBitsMask;
- End
- else
- Begin
- if ( aExp <= $3FE ) then
- Begin
- if ( ( ( bits32 ( a.high shl 1 ) ) OR a.low ) = 0 ) then
- Begin
- out := a;
- exit;
- End;
- float_exception_flags := float_exception_flags or
- float_flag_inexact;
- aSign := extractFloat64Sign( a );
- case ( float_rounding_mode ) of
- float_round_nearest_even:
- Begin
- if ( ( aExp = $3FE )
- AND ( (extractFloat64Frac0( a ) OR extractFloat64Frac1( a ) )<>0)
- ) then
- Begin
- packFloat64( aSign, $3FF, 0, 0, out );
- exit;
- End;
- End;
- float_round_down:
- Begin
- if aSign<>0 then
- packFloat64( 1, $3FF, 0, 0, out )
- else
- packFloat64( 0, 0, 0, 0, out );
- exit;
- End;
- float_round_up:
- Begin
- if aSign <> 0 then
- packFloat64( 1, 0, 0, 0, out )
- else
- packFloat64( 0, $3FF, 0, 0, out );
- exit;
- End;
- end;
- packFloat64( aSign, 0, 0, 0, out );
- exit;
- End;
- lastBitMask := 1;
- lastBitMask := lastBitMask shl ($413 - aExp);
- roundBitsMask := lastBitMask - 1;
- z.low := 0;
- z.high := a.high;
- roundingMode := float_rounding_mode;
- if ( roundingMode = float_round_nearest_even ) then
- Begin
- z.high := z.high + lastBitMask shr 1;
- if ( ( ( z.high and roundBitsMask ) OR a.low ) = 0 ) then
- Begin
- z.high := z.high and not lastBitMask;
- End;
- End
- else if ( roundingMode <> float_round_to_zero ) then
- Begin
- if ( extractFloat64Sign( z )
- xor flag( roundingMode = float_round_up ) )<> 0 then
- Begin
- z.high := z.high or bits32( a.low <> 0 );
- z.high := z.high + roundBitsMask;
- End;
- End;
- z.high := z.high and not roundBitsMask;
- End;
- if ( ( z.low <> a.low ) OR ( z.high <> a.high ) ) then
- Begin
- float_exception_flags :=
- float_exception_flags or float_flag_inexact;
- End;
- out := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of adding the absolute values of the double-precision
- floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
- before being returned. `zSign' is ignored if the result is a NaN.
- The addition is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure addFloat64Sigs( a:float64 ; b: float64 ; zSign:flag; Var out: float64 );
- Var
- aExp, bExp, zExp: int16;
- aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2: bits32;
- expDiff: int16;
- label shiftRight1;
- label roundAndPack;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- bSig1 := extractFloat64Frac1( b );
- bSig0 := extractFloat64Frac0( b );
- bExp := extractFloat64Exp( b );
- expDiff := aExp - bExp;
- if ( 0 < expDiff ) then
- Begin
- if ( aExp = $7FF ) then
- Begin
- if ( aSig0 OR aSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- end;
- out := a;
- exit;
- End;
- if ( bExp = 0 ) then
- Begin
- Dec(expDiff);
- End
- else
- Begin
- bSig0 := bSig0 or $00100000;
- End;
- shift64ExtraRightJamming(
- bSig0, bSig1, 0, expDiff, bSig0, bSig1, zSig2 );
- zExp := aExp;
- End
- else if ( expDiff < 0 ) then
- Begin
- if ( bExp = $7FF ) then
- Begin
- if ( bSig0 OR bSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- packFloat64( zSign, $7FF, 0, 0, out );
- End;
- if ( aExp = 0 ) then
- Begin
- Inc(expDiff);
- End
- else
- Begin
- aSig0 := aSig0 or $00100000;
- End;
- shift64ExtraRightJamming(
- aSig0, aSig1, 0, - expDiff, aSig0, aSig1, zSig2 );
- zExp := bExp;
- End
- else
- Begin
- if ( aExp = $7FF ) then
- Begin
- if ( aSig0 OR aSig1 OR bSig0 OR bSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- out := a;
- exit;
- End;
- add64( aSig0, aSig1, bSig0, bSig1, zSig0, zSig1 );
- if ( aExp = 0 ) then
- Begin
- packFloat64( zSign, 0, zSig0, zSig1, out );
- exit;
- End;
- zSig2 := 0;
- zSig0 := zSig0 or $00200000;
- zExp := aExp;
- goto shiftRight1;
- End;
- aSig0 := aSig0 or $00100000;
- add64( aSig0, aSig1, bSig0, bSig1, zSig0, zSig1 );
- Dec(zExp);
- if ( zSig0 < $00200000 ) then
- goto roundAndPack;
- Inc(zExp);
- shiftRight1:
- shift64ExtraRightJamming( zSig0, zSig1, zSig2, 1, zSig0, zSig1, zSig2 );
- roundAndPack:
- roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2, out );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the absolute values of the double-
- precision floating-point values `a' and `b'. If `zSign' is 1, the
- difference is negated before being returned. `zSign' is ignored if the
- result is a NaN. The subtraction is performed according to the IEC/IEEE
- Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure subFloat64Sigs( a:float64; b: float64 ; zSign:flag; Var out: float64 );
- Var
- aExp, bExp, zExp: int16;
- aSig0, aSig1, bSig0, bSig1, zSig0, zSig1: bits32;
- expDiff: int16;
- z: float64;
- label aExpBigger;
- label bExpBigger;
- label aBigger;
- label bBigger;
- label normalizeRoundAndPack;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- bSig1 := extractFloat64Frac1( b );
- bSig0 := extractFloat64Frac0( b );
- bExp := extractFloat64Exp( b );
- expDiff := aExp - bExp;
- shortShift64Left( aSig0, aSig1, 10, aSig0, aSig1 );
- shortShift64Left( bSig0, bSig1, 10, bSig0, bSig1 );
- if ( 0 < expDiff ) then goto aExpBigger;
- if ( expDiff < 0 ) then goto bExpBigger;
- if ( aExp = $7FF ) then
- Begin
- if ( aSig0 OR aSig1 OR bSig0 OR bSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- float_raise( float_flag_invalid );
- z.low := float64_default_nan_low;
- z.high := float64_default_nan_high;
- out := z;
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- aExp := 1;
- bExp := 1;
- End;
- if ( bSig0 < aSig0 ) then goto aBigger;
- if ( aSig0 < bSig0 ) then goto bBigger;
- if ( bSig1 < aSig1 ) then goto aBigger;
- if ( aSig1 < bSig1 ) then goto bBigger;
- packFloat64( flag(float_rounding_mode = float_round_down), 0, 0, 0 , out);
- exit;
- bExpBigger:
- if ( bExp = $7FF ) then
- Begin
- if ( bSig0 OR bSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- packFloat64( zSign xor 1, $7FF, 0, 0, out );
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- Inc(expDiff);
- End
- else
- Begin
- aSig0 := aSig0 or $40000000;
- End;
- shift64RightJamming( aSig0, aSig1, - expDiff, aSig0, aSig1 );
- bSig0 := bSig0 or $40000000;
- bBigger:
- sub64( bSig0, bSig1, aSig0, aSig1, zSig0, zSig1 );
- zExp := bExp;
- zSign := zSign xor 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp = $7FF ) then
- Begin
- if ( aSig0 OR aSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- out := a;
- exit;
- End;
- if ( bExp = 0 ) then
- Begin
- Dec(expDiff);
- End
- else
- Begin
- bSig0 := bSig0 or $40000000;
- End;
- shift64RightJamming( bSig0, bSig1, expDiff, bSig0, bSig1 );
- aSig0 := aSig0 or $40000000;
- aBigger:
- sub64( aSig0, aSig1, bSig0, bSig1, zSig0, zSig1 );
- zExp := aExp;
- normalizeRoundAndPack:
- Dec(zExp);
- normalizeRoundAndPackFloat64( zSign, zExp - 10, zSig0, zSig1, out );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of adding the double-precision floating-point values `a'
- and `b'. The operation is performed according to the IEC/IEEE Standard for
- Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_add( a: float64; b : float64; Var out : float64);
- Var
- aSign, bSign: flag;
- Begin
- aSign := extractFloat64Sign( a );
- bSign := extractFloat64Sign( b );
- if ( aSign = bSign ) then
- Begin
- addFloat64Sigs( a, b, aSign, out );
- End
- else
- Begin
- subFloat64Sigs( a, b, aSign, out );
- End;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the double-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_sub(a: float64; b : float64; var out: float64);
- Var
- aSign, bSign: flag;
- Begin
- aSign := extractFloat64Sign( a );
- bSign := extractFloat64Sign( b );
- if ( aSign = bSign ) then
- Begin
- subFloat64Sigs( a, b, aSign, out );
- End
- else
- Begin
- addFloat64Sigs( a, b, aSign, out );
- End;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of multiplying the double-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_mul( a: float64; b:float64; Var out: float64);
- Var
- aSign, bSign, zSign: flag;
- aExp, bExp, zExp: int16;
- aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3: bits32;
- z: float64;
- label invalid;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- bSig1 := extractFloat64Frac1( b );
- bSig0 := extractFloat64Frac0( b );
- bExp := extractFloat64Exp( b );
- bSign := extractFloat64Sign( b );
- zSign := aSign xor bSign;
- if ( aExp = $7FF ) then
- Begin
- if ( (( aSig0 OR aSig1 ) <>0)
- OR ( ( bExp = $7FF ) AND (( bSig0 OR bSig1 )<>0) ) ) then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- if ( ( bExp OR bSig0 OR bSig1 ) = 0 ) then goto invalid;
- packFloat64( zSign, $7FF, 0, 0, out );
- exit;
- End;
- if ( bExp = $7FF ) then
- Begin
- if ( bSig0 OR bSig1 )<> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- if ( ( aExp OR aSig0 OR aSig1 ) = 0 ) then
- Begin
- invalid:
- float_raise( float_flag_invalid );
- z.low := float64_default_nan_low;
- z.high := float64_default_nan_high;
- out := z;
- exit;
- End;
- packFloat64( zSign, $7FF, 0, 0, out );
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- if ( ( aSig0 OR aSig1 ) = 0 ) then
- Begin
- packFloat64( zSign, 0, 0, 0, out );
- exit;
- End;
- normalizeFloat64Subnormal( aSig0, aSig1, aExp, aSig0, aSig1 );
- End;
- if ( bExp = 0 ) then
- Begin
- if ( ( bSig0 OR bSig1 ) = 0 ) then
- Begin
- packFloat64( zSign, 0, 0, 0, out );
- exit;
- End;
- normalizeFloat64Subnormal( bSig0, bSig1, bExp, bSig0, bSig1 );
- End;
- zExp := aExp + bExp - $400;
- aSig0 := aSig0 or $00100000;
- shortShift64Left( bSig0, bSig1, 12, bSig0, bSig1 );
- mul64To128( aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3 );
- add64( zSig0, zSig1, aSig0, aSig1, zSig0, zSig1 );
- zSig2 := zSig2 or flag( zSig3 <> 0 );
- if ( $00200000 <= zSig0 ) then
- Begin
- shift64ExtraRightJamming(
- zSig0, zSig1, zSig2, 1, zSig0, zSig1, zSig2 );
- Inc(zExp);
- End;
- roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2, out );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of dividing the double-precision floating-point value `a'
- by the corresponding value `b'. The operation is performed according to the
- IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_div(a: float64; b : float64 ; var out: float64 );
- Var
- aSign, bSign, zSign: flag;
- aExp, bExp, zExp: int16;
- aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2: bits32;
- rem0, rem1, rem2, rem3, term0, term1, term2, term3: bits32;
- z: float64;
- label invalid;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- bSig1 := extractFloat64Frac1( b );
- bSig0 := extractFloat64Frac0( b );
- bExp := extractFloat64Exp( b );
- bSign := extractFloat64Sign( b );
- zSign := aSign xor bSign;
- if ( aExp = $7FF ) then
- Begin
- if ( aSig0 OR aSig1 )<> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- end;
- if ( bExp = $7FF ) then
- Begin
- if ( bSig0 OR bSig1 )<>0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- goto invalid;
- End;
- packFloat64( zSign, $7FF, 0, 0, out );
- exit;
- End;
- if ( bExp = $7FF ) then
- Begin
- if ( bSig0 OR bSig1 )<> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- packFloat64( zSign, 0, 0, 0, out );
- exit;
- End;
- if ( bExp = 0 ) then
- Begin
- if ( ( bSig0 OR bSig1 ) = 0 ) then
- Begin
- if ( ( aExp OR aSig0 OR aSig1 ) = 0 ) then
- Begin
- invalid:
- float_raise( float_flag_invalid );
- z.low := float64_default_nan_low;
- z.high := float64_default_nan_high;
- out := z;
- exit;
- End;
- float_raise( float_flag_divbyzero );
- packFloat64( zSign, $7FF, 0, 0, out );
- exit;
- End;
- normalizeFloat64Subnormal( bSig0, bSig1, bExp, bSig0, bSig1 );
- End;
- if ( aExp = 0 ) then
- Begin
- if ( ( aSig0 OR aSig1 ) = 0 ) then
- Begin
- packFloat64( zSign, 0, 0, 0, out );
- exit;
- End;
- normalizeFloat64Subnormal( aSig0, aSig1, aExp, aSig0, aSig1 );
- End;
- zExp := aExp - bExp + $3FD;
- shortShift64Left( aSig0 OR $00100000, aSig1, 11, aSig0, aSig1 );
- shortShift64Left( bSig0 OR $00100000, bSig1, 11, bSig0, bSig1 );
- if ( le64( bSig0, bSig1, aSig0, aSig1 )<>0 ) then
- Begin
- shift64Right( aSig0, aSig1, 1, aSig0, aSig1 );
- Inc(zExp);
- End;
- zSig0 := estimateDiv64To32( aSig0, aSig1, bSig0 );
- mul64By32To96( bSig0, bSig1, zSig0, term0, term1, term2 );
- sub96( aSig0, aSig1, 0, term0, term1, term2, rem0, rem1, rem2 );
- while ( sbits32 (rem0) < 0 ) do
- Begin
- Dec(zSig0);
- add96( rem0, rem1, rem2, 0, bSig0, bSig1, rem0, rem1, rem2 );
- End;
- zSig1 := estimateDiv64To32( rem1, rem2, bSig0 );
- if ( ( zSig1 and $3FF ) <= 4 ) then
- Begin
- mul64By32To96( bSig0, bSig1, zSig1, term1, term2, term3 );
- sub96( rem1, rem2, 0, term1, term2, term3, rem1, rem2, rem3 );
- while ( sbits32 (rem1) < 0 ) do
- Begin
- Dec(zSig1);
- add96( rem1, rem2, rem3, 0, bSig0, bSig1, rem1, rem2, rem3 );
- End;
- zSig1 := zSig1 or flag( ( rem1 OR rem2 OR rem3 ) <> 0 );
- End;
- shift64ExtraRightJamming( zSig0, zSig1, 0, 11, zSig0, zSig1, zSig2 );
- roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2, out );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the remainder of the double-precision floating-point value `a'
- with respect to the corresponding value `b'. The operation is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_rem(a: float64; b : float64; var out: float64);
- Var
- aSign, bSign, zSign: flag;
- aExp, bExp, expDiff: int16;
- aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2: bits32;
- allZero, alternateASig0, alternateASig1, sigMean1: bits32;
- sigMean0: sbits32;
- z: float64;
- label invalid;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- bSig1 := extractFloat64Frac1( b );
- bSig0 := extractFloat64Frac0( b );
- bExp := extractFloat64Exp( b );
- bSign := extractFloat64Sign( b );
- if ( aExp = $7FF ) then
- Begin
- if ((( aSig0 OR aSig1 )<>0)
- OR ( ( bExp = $7FF ) AND (( bSig0 OR bSig1 )<>0) ) ) then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- goto invalid;
- End;
- if ( bExp = $7FF ) then
- Begin
- if ( bSig0 OR bSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- out := a;
- exit;
- End;
- if ( bExp = 0 ) then
- Begin
- if ( ( bSig0 OR bSig1 ) = 0 ) then
- Begin
- invalid:
- float_raise( float_flag_invalid );
- z.low := float64_default_nan_low;
- z.high := float64_default_nan_high;
- out := z;
- exit;
- End;
- normalizeFloat64Subnormal( bSig0, bSig1, bExp, bSig0, bSig1 );
- End;
- if ( aExp = 0 ) then
- Begin
- if ( ( aSig0 OR aSig1 ) = 0 ) then
- Begin
- out := a;
- exit;
- End;
- normalizeFloat64Subnormal( aSig0, aSig1, aExp, aSig0, aSig1 );
- End;
- expDiff := aExp - bExp;
- if ( expDiff < -1 ) then
- Begin
- out := a;
- exit;
- End;
- shortShift64Left(
- aSig0 OR $00100000, aSig1, 11 - flag( expDiff < 0 ), aSig0, aSig1 );
- shortShift64Left( bSig0 OR $00100000, bSig1, 11, bSig0, bSig1 );
- q := le64( bSig0, bSig1, aSig0, aSig1 );
- if ( q )<>0 then
- sub64( aSig0, aSig1, bSig0, bSig1, aSig0, aSig1 );
- expDiff := expDiff - 32;
- while ( 0 < expDiff ) do
- Begin
- q := estimateDiv64To32( aSig0, aSig1, bSig0 );
- if 4 < q then
- q:= q - 4
- else
- q := 0;
- mul64By32To96( bSig0, bSig1, q, term0, term1, term2 );
- shortShift96Left( term0, term1, term2, 29, term1, term2, allZero );
- shortShift64Left( aSig0, aSig1, 29, aSig0, allZero );
- sub64( aSig0, 0, term1, term2, aSig0, aSig1 );
- expDiff := expDiff - 29;
- End;
- if ( -32 < expDiff ) then
- Begin
- q := estimateDiv64To32( aSig0, aSig1, bSig0 );
- if 4 < q then
- q := q - 4
- else
- q := 0;
- q := q shr (- expDiff);
- shift64Right( bSig0, bSig1, 8, bSig0, bSig1 );
- expDiff := expDiff + 24;
- if ( expDiff < 0 ) then
- Begin
- shift64Right( aSig0, aSig1, - expDiff, aSig0, aSig1 );
- End
- else
- Begin
- shortShift64Left( aSig0, aSig1, expDiff, aSig0, aSig1 );
- End;
- mul64By32To96( bSig0, bSig1, q, term0, term1, term2 );
- sub64( aSig0, aSig1, term1, term2, aSig0, aSig1 );
- End
- else
- Begin
- shift64Right( aSig0, aSig1, 8, aSig0, aSig1 );
- shift64Right( bSig0, bSig1, 8, bSig0, bSig1 );
- End;
- Repeat
- alternateASig0 := aSig0;
- alternateASig1 := aSig1;
- Inc(q);
- sub64( aSig0, aSig1, bSig0, bSig1, aSig0, aSig1 );
- Until not ( 0 <= sbits32 (aSig0) );
- add64(
- aSig0, aSig1, alternateASig0, alternateASig1, bits32(sigMean0), sigMean1 );
- if ( ( sigMean0 < 0 )
- OR ( ( ( sigMean0 OR sigMean1 ) = 0 ) AND (( q AND 1 )<>0) ) ) then
- Begin
- aSig0 := alternateASig0;
- aSig1 := alternateASig1;
- End;
- zSign := flag( sbits32 (aSig0) < 0 );
- if ( zSign <> 0 ) then
- sub64( 0, 0, aSig0, aSig1, aSig0, aSig1 );
- normalizeRoundAndPackFloat64( aSign xor zSign, bExp - 4, aSig0, aSig1, out );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the square root of the double-precision floating-point value `a'.
- The operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_sqrt( a: float64; var out: float64 );
- Var
- aSign: flag;
- aExp, zExp: int16;
- aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0: bits32;
- rem0, rem1, rem2, rem3, term0, term1, term2, term3: bits32;
- z: float64;
- label invalid;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- if ( aExp = $7FF ) then
- Begin
- if ( aSig0 OR aSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, a, out );
- exit;
- End;
- if ( aSign = 0) then
- Begin
- out := a;
- exit;
- End;
- goto invalid;
- End;
- if ( aSign <> 0 ) then
- Begin
- if ( ( aExp OR aSig0 OR aSig1 ) = 0 ) then
- Begin
- out := a;
- exit;
- End;
- invalid:
- float_raise( float_flag_invalid );
- z.low := float64_default_nan_low;
- z.high := float64_default_nan_high;
- out := z;
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- if ( ( aSig0 OR aSig1 ) = 0 ) then
- Begin
- packFloat64( 0, 0, 0, 0, out );
- exit;
- End;
- normalizeFloat64Subnormal( aSig0, aSig1, aExp, aSig0, aSig1 );
- End;
- zExp := ( ( aExp - $3FF ) shr 1 ) + $3FE;
- aSig0 := aSig0 or $00100000;
- shortShift64Left( aSig0, aSig1, 11, term0, term1 );
- zSig0 := ( estimateSqrt32( aExp, term0 ) shr 1 ) + 1;
- if ( zSig0 = 0 ) then
- zSig0 := $7FFFFFFF;
- doubleZSig0 := zSig0 + zSig0;
- shortShift64Left( aSig0, aSig1, 9 - ( aExp and 1 ), aSig0, aSig1 );
- mul32To64( zSig0, zSig0, term0, term1 );
- sub64( aSig0, aSig1, term0, term1, rem0, rem1 );
- while ( sbits32 (rem0) < 0 ) do
- Begin
- Dec(zSig0);
- doubleZSig0 := doubleZSig0 - 2;
- add64( rem0, rem1, 0, doubleZSig0 OR 1, rem0, rem1 );
- End;
- zSig1 := estimateDiv64To32( rem1, 0, doubleZSig0 );
- if ( ( zSig1 and $1FF ) <= 5 ) then
- Begin
- if ( zSig1 = 0 ) then
- zSig1 := 1;
- mul32To64( doubleZSig0, zSig1, term1, term2 );
- sub64( rem1, 0, term1, term2, rem1, rem2 );
- mul32To64( zSig1, zSig1, term2, term3 );
- sub96( rem1, rem2, 0, 0, term2, term3, rem1, rem2, rem3 );
- while ( sbits32 (rem1) < 0 ) do
- Begin
- Dec(zSig1);
- shortShift64Left( 0, zSig1, 1, term2, term3 );
- term3 := term3 or 1;
- term2 := term2 or doubleZSig0;
- add96( rem1, rem2, rem3, 0, term2, term3, rem1, rem2, rem3 );
- End;
- zSig1 := zSig1 or bits32( ( rem1 OR rem2 OR rem3 ) <> 0 );
- End;
- shift64ExtraRightJamming( zSig0, zSig1, 0, 10, zSig0, zSig1, zSig2 );
- roundAndPackFloat64( 0, zExp, zSig0, zSig1, zSig2, out );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is equal to
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_eq(a: float64; b: float64): flag;
- Begin
- if
- (
- ( extractFloat64Exp( a ) = $7FF )
- AND
- (
- (extractFloat64Frac0( a ) OR extractFloat64Frac1( a )) <>0
- )
- )
- OR (
- ( extractFloat64Exp( b ) = $7FF )
- AND (
- (extractFloat64Frac0( b ) OR (extractFloat64Frac1( b )) <> 0
- )
- )
- ) then
- Begin
- if ( (float64_is_signaling_nan( a )<>0) OR (float64_is_signaling_nan( b )<>0) ) then
- float_raise( float_flag_invalid );
- float64_eq := 0;
- exit;
- End;
- float64_eq := flag(
- ( a.low = b.low )
- AND ( ( a.high = b.high )
- OR ( ( a.low = 0 )
- AND ( bits32 ( ( a.high OR b.high ) shl 1 ) = 0 ) )
- ));
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than
- or equal to the corresponding value `b', and 0 otherwise. The comparison
- is performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_le(a: float64;b: float64): flag;
- Var
- aSign, bSign: flag;
- Begin
- if
- (
- ( extractFloat64Exp( a ) = $7FF )
- AND
- (
- (extractFloat64Frac0( a ) OR extractFloat64Frac1( a )) <>0
- )
- )
- OR (
- ( extractFloat64Exp( b ) = $7FF )
- AND (
- (extractFloat64Frac0( b ) OR (extractFloat64Frac1( b )) <> 0
- )
- )
- ) then
- Begin
- float_raise( float_flag_invalid );
- float64_le := 0;
- exit;
- End;
- aSign := extractFloat64Sign( a );
- bSign := extractFloat64Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float64_le := flag(
- (aSign <> 0)
- OR ( ( ( bits32 ( ( a.high OR b.high ) shl 1 ) ) OR a.low OR b.low )
- = 0 ));
- exit;
- End;
- if aSign <> 0 then
- float64_le := le64( b.high, b.low, a.high, a.low )
- else
- float64_le := le64( a.high, a.low, b.high, b.low );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_lt(a: float64;b: float64): flag;
- Var
- aSign, bSign: flag;
- Begin
- if
- (
- ( extractFloat64Exp( a ) = $7FF )
- AND
- (
- (extractFloat64Frac0( a ) OR extractFloat64Frac1( a )) <>0
- )
- )
- OR (
- ( extractFloat64Exp( b ) = $7FF )
- AND (
- (extractFloat64Frac0( b ) OR (extractFloat64Frac1( b )) <> 0
- )
- )
- ) then
- Begin
- float_raise( float_flag_invalid );
- float64_lt := 0;
- exit;
- End;
- aSign := extractFloat64Sign( a );
- bSign := extractFloat64Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float64_lt := flag(
- (aSign <> 0)
- AND ( ( ( bits32 ( ( a.high OR b.high ) shl 1 ) ) OR a.low OR b.low )
- <> 0 ));
- exit;
- End;
- if aSign <> 0 then
- float64_lt := lt64( b.high, b.low, a.high, a.low )
- else
- float64_lt := lt64( a.high, a.low, b.high, b.low );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is equal to
- the corresponding value `b', and 0 otherwise. The invalid exception is
- raised if either operand is a NaN. Otherwise, the comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_eq_signaling( a: float64; b: float64): flag;
- Begin
- if
- (
- ( extractFloat64Exp( a ) = $7FF )
- AND
- (
- (extractFloat64Frac0( a ) OR extractFloat64Frac1( a )) <>0
- )
- )
- OR (
- ( extractFloat64Exp( b ) = $7FF )
- AND (
- (extractFloat64Frac0( b ) OR (extractFloat64Frac1( b )) <> 0
- )
- )
- ) then
- Begin
- float_raise( float_flag_invalid );
- float64_eq_signaling := 0;
- exit;
- End;
- float64_eq_signaling := flag(
- ( a.low = b.low )
- AND ( ( a.high = b.high )
- OR ( ( a.low = 0 )
- AND ( bits32 ( ( a.high OR b.high ) shl 1 ) = 0 ) )
- ));
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than or
- equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
- cause an exception. Otherwise, the comparison is performed according to the
- IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_le_quiet(a: float64 ; b: float64 ): flag;
- Var
- aSign, bSign : flag;
- Begin
- if
- (
- ( extractFloat64Exp( a ) = $7FF )
- AND
- (
- (extractFloat64Frac0( a ) OR extractFloat64Frac1( a )) <>0
- )
- )
- OR (
- ( extractFloat64Exp( b ) = $7FF )
- AND (
- (extractFloat64Frac0( b ) OR (extractFloat64Frac1( b )) <> 0
- )
- )
- ) then
- Begin
- if ( (float64_is_signaling_nan( a )<>0) OR (float64_is_signaling_nan( b )<>0) ) then
- float_raise( float_flag_invalid );
- float64_le_quiet := 0;
- exit;
- End;
- aSign := extractFloat64Sign( a );
- bSign := extractFloat64Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float64_le_quiet := flag
- ((aSign <> 0)
- OR ( ( ( bits32 ( ( a.high OR b.high ) shl 1 ) ) OR a.low OR b.low )
- = 0 ));
- exit;
- End;
- if aSign <> 0 then
- float64_le_quiet := le64( b.high, b.low, a.high, a.low )
- else
- float64_le_quiet := le64( a.high, a.low, b.high, b.low );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
- exception. Otherwise, the comparison is performed according to the IEC/IEEE
- Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_lt_quiet(a: float64; b: float64 ): Flag;
- Var
- aSign, bSign: flag;
- Begin
- if
- (
- ( extractFloat64Exp( a ) = $7FF )
- AND
- (
- (extractFloat64Frac0( a ) OR extractFloat64Frac1( a )) <>0
- )
- )
- OR (
- ( extractFloat64Exp( b ) = $7FF )
- AND (
- (extractFloat64Frac0( b ) OR (extractFloat64Frac1( b )) <> 0
- )
- )
- ) then
- Begin
- if ( (float64_is_signaling_nan( a )<>0) OR (float64_is_signaling_nan( b )<>0) ) then
- float_raise( float_flag_invalid );
- float64_lt_quiet := 0;
- exit;
- End;
- aSign := extractFloat64Sign( a );
- bSign := extractFloat64Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float64_lt_quiet := flag(
- (aSign<>0)
- AND ( ( ( bits32 ( ( a.high OR b.high ) shl 1 ) ) OR a.low OR b.low )
- <> 0 ));
- exit;
- End;
- If aSign <> 0 then
- float64_lt_quiet := lt64( b.high, b.low, a.high, a.low )
- else
- float64_lt_quiet := lt64( a.high, a.low, b.high, b.low );
- End;
- {*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit two's complement integer `a'
- | to the single-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*}
- function int64_to_float32( a: int64 ): float32;
- var
- zSign : flag;
- absA : uint64;
- shiftCount: int8;
- zSig : bits32;
- intval : int64rec;
- Begin
- if ( a = 0 ) then
- begin
- int64_to_float32 := 0;
- exit;
- end;
- if a < 0 then
- zSign := flag(TRUE)
- else
- zSign := flag(FALSE);
- if zSign<>0 then
- absA := -a
- else
- absA := a;
- shiftCount := countLeadingZeros64( absA ) - 40;
- if ( 0 <= shiftCount ) then
- begin
- int64_to_float32:= packFloat32( zSign, $95 - shiftCount, absA shl shiftCount );
- end
- else
- begin
- shiftCount := shiftCount + 7;
- if ( shiftCount < 0 ) then
- begin
- intval.low := int64rec(AbsA).low;
- intval.high := int64rec(AbsA).high;
- shift64RightJamming( intval.low, intval.high, - shiftCount,
- intval.low, intval.high);
- int64rec(absA).low := intval.low;
- int64rec(absA).high := intval.high;
- end
- else
- absA := absA shl shiftCount;
- int64_to_float32:=roundAndPackFloat32( zSign, $9C - shiftCount, absA );
- end;
- End;
- {*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit two's complement integer `a'
- | to the double-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*}
- function int64_to_float64( a: int64 ): float64;
- var
- zSign : flag;
- float_result : float64;
- intval : int64rec;
- AbsA : bits64;
- shiftcount : int8;
- zSig0, zSig1 : bits32;
- Begin
- if ( a = 0 ) then
- Begin
- packFloat64( 0, 0, 0, 0, float_result );
- exit;
- end;
- zSign := flag( a < 0 );
- if ZSign<>0 then
- AbsA := -a
- else
- AbsA := a;
- shiftCount := countLeadingZeros64( absA ) - 11;
- if ( 0 <= shiftCount ) then
- Begin
- absA := absA shl shiftcount;
- zSig0:=int64rec(absA).high;
- zSig1:=int64rec(absA).low;
- End
- else
- Begin
- shift64Right( absA, 0, - shiftCount, zSig0, zSig1 );
- End;
- packFloat64( zSign, $432 - shiftCount, zSig0, zSig1, float_result );
- int64_to_float64:= float_result;
- End;
- end.
- {
- $Log$
- Revision 1.4 2002-10-13 15:47:39 carl
- * bugfix for int64 to float conversion
- Revision 1.3 2002/10/12 20:24:22 carl
- + int64_tof_loat conversion routines
- Revision 1.2 2002/10/08 20:07:08 carl
- * fix range check errors
- - overflow checking must be off always
- * debugged and works as expected
- Revision 1.1 2002/09/16 19:10:17 carl
- * first revision of FPU emulation
- }
|