cpubase.pas 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the i8086, i386 and x86-64 architecture
  4. * This code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. {# Base unit for processor information. This unit contains
  21. enumerations of registers, opcodes, sizes, and other
  22. such things which are processor specific.
  23. }
  24. unit cpubase;
  25. {$i fpcdefs.inc}
  26. interface
  27. uses
  28. globals,
  29. cgbase
  30. ;
  31. {*****************************************************************************
  32. Assembler Opcodes
  33. *****************************************************************************}
  34. type
  35. {$if defined(x86_64)}
  36. TAsmOp={$i x8664op.inc}
  37. {$elseif defined(i386)}
  38. TAsmOp={$i i386op.inc}
  39. {$elseif defined(i8086)}
  40. TAsmOp={$i i8086op.inc}
  41. {$endif}
  42. { This should define the array of instructions as string }
  43. op2strtable=array[tasmop] of string[16];
  44. {$ifdef i8086}
  45. ImmInt = SmallInt;
  46. {$else i8086}
  47. ImmInt = Longint;
  48. {$endif i8086}
  49. const
  50. { First value of opcode enumeration }
  51. firstop = low(tasmop);
  52. { Last value of opcode enumeration }
  53. lastop = high(tasmop);
  54. {*****************************************************************************
  55. Registers
  56. *****************************************************************************}
  57. const
  58. { Integer Super registers }
  59. RS_NO = $ffffffff;
  60. RS_RAX = $00; {EAX}
  61. RS_RCX = $01; {ECX}
  62. RS_RDX = $02; {EDX}
  63. RS_RBX = $03; {EBX}
  64. RS_RSI = $04; {ESI}
  65. RS_RDI = $05; {EDI}
  66. RS_RBP = $06; {EBP}
  67. RS_RSP = $07; {ESP}
  68. RS_R8 = $08; {R8}
  69. RS_R9 = $09; {R9}
  70. RS_R10 = $0a; {R10}
  71. RS_R11 = $0b; {R11}
  72. RS_R12 = $0c; {R12}
  73. RS_R13 = $0d; {R13}
  74. RS_R14 = $0e; {R14}
  75. RS_R15 = $0f; {R15}
  76. { create aliases to allow code sharing between x86-64 and i386 }
  77. RS_EAX = RS_RAX;
  78. RS_EBX = RS_RBX;
  79. RS_ECX = RS_RCX;
  80. RS_EDX = RS_RDX;
  81. RS_ESI = RS_RSI;
  82. RS_EDI = RS_RDI;
  83. RS_EBP = RS_RBP;
  84. RS_ESP = RS_RSP;
  85. { create aliases to allow code sharing between i386 and i8086 }
  86. RS_AX = RS_RAX;
  87. RS_BX = RS_RBX;
  88. RS_CX = RS_RCX;
  89. RS_DX = RS_RDX;
  90. RS_SI = RS_RSI;
  91. RS_DI = RS_RDI;
  92. RS_BP = RS_RBP;
  93. RS_SP = RS_RSP;
  94. { Number of first imaginary register }
  95. first_int_imreg = $10;
  96. { Float Super registers }
  97. RS_ST0 = $00;
  98. RS_ST1 = $01;
  99. RS_ST2 = $02;
  100. RS_ST3 = $03;
  101. RS_ST4 = $04;
  102. RS_ST5 = $05;
  103. RS_ST6 = $06;
  104. RS_ST7 = $07;
  105. RS_ST = $08;
  106. { Number of first imaginary register }
  107. first_fpu_imreg = $09;
  108. { MM Super registers }
  109. RS_XMM0 = $00;
  110. RS_XMM1 = $01;
  111. RS_XMM2 = $02;
  112. RS_XMM3 = $03;
  113. RS_XMM4 = $04;
  114. RS_XMM5 = $05;
  115. RS_XMM6 = $06;
  116. RS_XMM7 = $07;
  117. RS_XMM8 = $08;
  118. RS_XMM9 = $09;
  119. RS_XMM10 = $0a;
  120. RS_XMM11 = $0b;
  121. RS_XMM12 = $0c;
  122. RS_XMM13 = $0d;
  123. RS_XMM14 = $0e;
  124. RS_XMM15 = $0f;
  125. RS_XMM16 = $10;
  126. RS_XMM17 = $11;
  127. RS_XMM18 = $12;
  128. RS_XMM19 = $13;
  129. RS_XMM20 = $14;
  130. RS_XMM21 = $15;
  131. RS_XMM22 = $16;
  132. RS_XMM23 = $17;
  133. RS_XMM24 = $18;
  134. RS_XMM25 = $19;
  135. RS_XMM26 = $1a;
  136. RS_XMM27 = $1b;
  137. RS_XMM28 = $1c;
  138. RS_XMM29 = $1d;
  139. RS_XMM30 = $1e;
  140. RS_XMM31 = $1f;
  141. {$if defined(x86_64)}
  142. RS_RFLAGS = $06;
  143. {$elseif defined(i386)}
  144. RS_EFLAGS = $06;
  145. {$elseif defined(i8086)}
  146. RS_FLAGS = $06;
  147. {$endif}
  148. { Number of first imaginary register }
  149. {$ifdef x86_64}
  150. first_mm_imreg = $10;
  151. {$else x86_64}
  152. first_mm_imreg = $08;
  153. {$endif x86_64}
  154. { The subregister that specifies the entire register and an address }
  155. {$if defined(x86_64)}
  156. { Hammer }
  157. R_SUBWHOLE = R_SUBQ;
  158. R_SUBADDR = R_SUBQ;
  159. {$elseif defined(i386)}
  160. { i386 }
  161. R_SUBWHOLE = R_SUBD;
  162. R_SUBADDR = R_SUBD;
  163. {$elseif defined(i8086)}
  164. { i8086 }
  165. R_SUBWHOLE = R_SUBW;
  166. R_SUBADDR = R_SUBW;
  167. {$endif}
  168. { Available Registers }
  169. {$if defined(x86_64)}
  170. {$i r8664con.inc}
  171. {$elseif defined(i386)}
  172. {$i r386con.inc}
  173. {$elseif defined(i8086)}
  174. {$i r8086con.inc}
  175. {$endif}
  176. type
  177. { Number of registers used for indexing in tables }
  178. {$if defined(x86_64)}
  179. tregisterindex=0..{$i r8664nor.inc}-1;
  180. {$elseif defined(i386)}
  181. tregisterindex=0..{$i r386nor.inc}-1;
  182. {$elseif defined(i8086)}
  183. tregisterindex=0..{$i r8086nor.inc}-1;
  184. {$endif}
  185. const
  186. regnumber_table : array[tregisterindex] of tregister = (
  187. {$if defined(x86_64)}
  188. {$i r8664num.inc}
  189. {$elseif defined(i386)}
  190. {$i r386num.inc}
  191. {$elseif defined(i8086)}
  192. {$i r8086num.inc}
  193. {$endif}
  194. );
  195. regstabs_table : array[tregisterindex] of shortint = (
  196. {$if defined(x86_64)}
  197. {$i r8664stab.inc}
  198. {$elseif defined(i386)}
  199. {$i r386stab.inc}
  200. {$elseif defined(i8086)}
  201. {$i r8086stab.inc}
  202. {$endif}
  203. );
  204. regdwarf_table : array[tregisterindex] of shortint = (
  205. {$if defined(x86_64)}
  206. {$i r8664dwrf.inc}
  207. {$elseif defined(i386)}
  208. {$i r386dwrf.inc}
  209. {$elseif defined(i8086)}
  210. {$i r8086dwrf.inc}
  211. {$endif}
  212. );
  213. {$if defined(x86_64)}
  214. RS_DEFAULTFLAGS = RS_RFLAGS;
  215. NR_DEFAULTFLAGS = NR_RFLAGS;
  216. {$elseif defined(i386)}
  217. RS_DEFAULTFLAGS = RS_EFLAGS;
  218. NR_DEFAULTFLAGS = NR_EFLAGS;
  219. {$elseif defined(i8086)}
  220. RS_DEFAULTFLAGS = RS_FLAGS;
  221. NR_DEFAULTFLAGS = NR_FLAGS;
  222. {$endif}
  223. {*****************************************************************************
  224. Conditions
  225. *****************************************************************************}
  226. type
  227. TAsmCond=(C_None,
  228. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  229. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  230. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  231. );
  232. const
  233. cond2str:array[TAsmCond] of string[3]=('',
  234. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  235. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  236. 'ns','nz','o','p','pe','po','s','z'
  237. );
  238. {*****************************************************************************
  239. Flags
  240. *****************************************************************************}
  241. type
  242. TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
  243. F_A,F_AE,F_B,F_BE,
  244. F_S,F_NS,F_O,F_NO,
  245. { For IEEE-compliant floating-point compares,
  246. same as normal counterparts but additionally check PF }
  247. F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
  248. const
  249. FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
  250. FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
  251. F_E,F_NE,F_A,F_AE,F_B,F_BE
  252. );
  253. {*****************************************************************************
  254. Constants
  255. *****************************************************************************}
  256. const
  257. { declare aliases }
  258. LOC_SSEREGISTER = LOC_MMREGISTER;
  259. LOC_CSSEREGISTER = LOC_CMMREGISTER;
  260. max_operands = 4;
  261. maxfpuregs = 8;
  262. {*****************************************************************************
  263. CPU Dependent Constants
  264. *****************************************************************************}
  265. {$i cpubase.inc}
  266. const
  267. {$ifdef x86_64}
  268. topsize2memsize: array[topsize] of integer =
  269. (0, 8,16,32,64,8,8,16,8,16,32,
  270. 16,32,64,
  271. 16,32,64,0,0,
  272. 64,
  273. 0,0,0,
  274. 80,
  275. 128,
  276. 256,
  277. 512
  278. );
  279. {$else}
  280. topsize2memsize: array[topsize] of integer =
  281. (0, 8,16,32,64,8,8,16,
  282. 16,32,64,
  283. 16,32,64,0,0,
  284. 64,
  285. 0,0,0,
  286. 80,
  287. 128,
  288. 256,
  289. 512
  290. );
  291. {$endif}
  292. {*****************************************************************************
  293. Helpers
  294. *****************************************************************************}
  295. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  296. function reg2opsize(r:Tregister):topsize;
  297. function reg_cgsize(const reg: tregister): tcgsize;
  298. function is_calljmp(o:tasmop):boolean;
  299. procedure inverse_flags(var f: TResFlags);
  300. function flags_to_cond(const f: TResFlags) : TAsmCond;
  301. function is_segment_reg(r:tregister):boolean;
  302. function findreg_by_number(r:Tregister):tregisterindex;
  303. function std_regnum_search(const s:string):Tregister;
  304. function std_regname(r:Tregister):string;
  305. function dwarf_reg(r:tregister):shortint;
  306. function dwarf_reg_no_error(r:tregister):shortint;
  307. function eh_return_data_regno(nr: longint): longint;
  308. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  309. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  310. { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
  311. function condition_in(const Subset, c: TAsmCond): Boolean;
  312. { checks whether two segment registers are normally equal in the current memory model }
  313. function segment_regs_equal(r1,r2:tregister):boolean;
  314. { checks whether the specified op is an x86 string instruction (e.g. cmpsb, movsd, scasw, etc.) }
  315. function is_x86_string_op(op: TAsmOp): boolean;
  316. { checks whether the specified op is an x86 parameterless string instruction
  317. (e.g. returns true for movsb, cmpsw, etc, but returns false for movs, cmps, etc.) }
  318. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  319. { checks whether the specified op is an x86 parameterized string instruction
  320. (e.g. returns true for movs, cmps, etc, but returns false for movsb, cmpsb, etc.) }
  321. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  322. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  323. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  324. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  325. { returns the 0-based operand number (intel syntax) of the ds:[si] param of
  326. a x86 string instruction }
  327. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  328. { returns the 0-based operand number (intel syntax) of the es:[di] param of
  329. a x86 string instruction }
  330. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  331. {$ifdef i8086}
  332. { return whether we need to add an extra FWAIT instruction before the given
  333. instruction, when we're targeting the i8087. This includes almost all x87
  334. instructions, but certain ones, which always have or have not a built in
  335. FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
  336. function requires_fwait_on_8087(op: TAsmOp): boolean;
  337. {$endif i8086}
  338. implementation
  339. uses
  340. globtype,
  341. rgbase,verbose;
  342. const
  343. {$if defined(x86_64)}
  344. std_regname_table : TRegNameTable = (
  345. {$i r8664std.inc}
  346. );
  347. regnumber_index : array[tregisterindex] of tregisterindex = (
  348. {$i r8664rni.inc}
  349. );
  350. std_regname_index : array[tregisterindex] of tregisterindex = (
  351. {$i r8664sri.inc}
  352. );
  353. {$elseif defined(i386)}
  354. std_regname_table : TRegNameTable = (
  355. {$i r386std.inc}
  356. );
  357. regnumber_index : array[tregisterindex] of tregisterindex = (
  358. {$i r386rni.inc}
  359. );
  360. std_regname_index : array[tregisterindex] of tregisterindex = (
  361. {$i r386sri.inc}
  362. );
  363. {$elseif defined(i8086)}
  364. std_regname_table : TRegNameTable = (
  365. {$i r8086std.inc}
  366. );
  367. regnumber_index : array[tregisterindex] of tregisterindex = (
  368. {$i r8086rni.inc}
  369. );
  370. std_regname_index : array[tregisterindex] of tregisterindex = (
  371. {$i r8086sri.inc}
  372. );
  373. {$endif}
  374. {*****************************************************************************
  375. Helpers
  376. *****************************************************************************}
  377. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  378. begin
  379. case s of
  380. OS_8,OS_S8:
  381. cgsize2subreg:=R_SUBL;
  382. OS_16,OS_S16:
  383. cgsize2subreg:=R_SUBW;
  384. OS_32,OS_S32:
  385. cgsize2subreg:=R_SUBD;
  386. OS_64,OS_S64:
  387. cgsize2subreg:=R_SUBQ;
  388. OS_M64:
  389. cgsize2subreg:=R_SUBNONE;
  390. OS_F32,OS_F64,OS_C64:
  391. case regtype of
  392. R_FPUREGISTER:
  393. cgsize2subreg:=R_SUBWHOLE;
  394. R_MMREGISTER:
  395. case s of
  396. OS_F32:
  397. cgsize2subreg:=R_SUBMMS;
  398. OS_F64:
  399. cgsize2subreg:=R_SUBMMD;
  400. else
  401. internalerror(2009071901);
  402. end;
  403. else
  404. internalerror(2009071902);
  405. end;
  406. OS_M128,OS_MS128,OS_MF128,OS_MD128:
  407. cgsize2subreg:=R_SUBMMX;
  408. OS_M256,OS_MS256,OS_MF256,OS_MD256:
  409. cgsize2subreg:=R_SUBMMY;
  410. OS_M512,OS_MS512,OS_MF512,OS_MD512:
  411. cgsize2subreg:=R_SUBMMZ;
  412. OS_NO:
  413. { error message should have been thrown already before, so avoid only
  414. an internal error }
  415. cgsize2subreg:=R_SUBNONE;
  416. else
  417. internalerror(200301231);
  418. end;
  419. end;
  420. function reg_cgsize(const reg: tregister): tcgsize;
  421. const subreg2cgsize:array[Tsubregister] of Tcgsize =
  422. (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256,OS_M512,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO);
  423. begin
  424. case getregtype(reg) of
  425. R_INTREGISTER :
  426. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  427. R_FPUREGISTER :
  428. reg_cgsize:=OS_F80;
  429. R_MMXREGISTER:
  430. reg_cgsize:=OS_M64;
  431. R_MMREGISTER:
  432. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  433. R_SPECIALREGISTER :
  434. case reg of
  435. NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
  436. reg_cgsize:=OS_16;
  437. {$ifdef x86_64}
  438. NR_DR0..NR_TR7:
  439. reg_cgsize:=OS_64;
  440. {$endif x86_64}
  441. else
  442. reg_cgsize:=OS_32
  443. end;
  444. R_ADDRESSREGISTER:
  445. case reg of
  446. NR_K0..NR_K7: reg_cgsize:=OS_64;
  447. else internalerror(2003031801);
  448. end;
  449. else
  450. internalerror(2003031801);
  451. end;
  452. end;
  453. function reg2opsize(r:Tregister):topsize;
  454. const
  455. subreg2opsize : array[tsubregister] of topsize =
  456. (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  457. begin
  458. reg2opsize:=S_L;
  459. case getregtype(r) of
  460. R_INTREGISTER :
  461. reg2opsize:=subreg2opsize[getsubreg(r)];
  462. R_FPUREGISTER :
  463. reg2opsize:=S_FL;
  464. R_MMXREGISTER,
  465. R_MMREGISTER :
  466. reg2opsize:=S_MD;
  467. R_SPECIALREGISTER :
  468. begin
  469. case r of
  470. NR_CS,NR_DS,NR_ES,
  471. NR_SS,NR_FS,NR_GS :
  472. reg2opsize:=S_W;
  473. else
  474. ;
  475. end;
  476. end;
  477. else
  478. internalerror(200303181);
  479. end;
  480. end;
  481. function is_calljmp(o:tasmop):boolean;
  482. begin
  483. case o of
  484. A_CALL,
  485. {$if defined(i386) or defined(i8086)}
  486. A_JCXZ,
  487. {$endif defined(i386) or defined(i8086)}
  488. A_JECXZ,
  489. {$ifdef x86_64}
  490. A_JRCXZ,
  491. {$endif x86_64}
  492. A_JMP,
  493. A_LOOP,
  494. A_LOOPE,
  495. A_LOOPNE,
  496. A_LOOPNZ,
  497. A_LOOPZ,
  498. A_LCALL,
  499. A_LJMP,
  500. A_Jcc :
  501. is_calljmp:=true;
  502. else
  503. is_calljmp:=false;
  504. end;
  505. end;
  506. procedure inverse_flags(var f: TResFlags);
  507. const
  508. inv_flags: array[TResFlags] of TResFlags =
  509. (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
  510. F_BE,F_B,F_AE,F_A,
  511. F_NS,F_S,F_NO,F_O,
  512. F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
  513. begin
  514. f:=inv_flags[f];
  515. end;
  516. function flags_to_cond(const f: TResFlags) : TAsmCond;
  517. const
  518. flags_2_cond : array[TResFlags] of TAsmCond =
  519. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
  520. C_None,C_None,C_None,C_None,C_None,C_None);
  521. begin
  522. result := flags_2_cond[f];
  523. if (result=C_None) then
  524. InternalError(2014041301);
  525. end;
  526. function is_segment_reg(r:tregister):boolean;
  527. begin
  528. case r of
  529. NR_CS,NR_DS,NR_ES,
  530. NR_SS,NR_FS,NR_GS :
  531. result:=true;
  532. else
  533. result:=false;
  534. end;
  535. end;
  536. function findreg_by_number(r:Tregister):tregisterindex;
  537. var
  538. hr : tregister;
  539. begin
  540. { for the name the sub reg doesn't matter }
  541. hr:=r;
  542. if (getregtype(hr)=R_MMREGISTER) and
  543. (getsubreg(hr)<>R_SUBMMY) and
  544. (getsubreg(hr)<>R_SUBMMZ) then
  545. setsubreg(hr,R_SUBMMX);
  546. //// TG TODO check
  547. //if (getregtype(hr)=R_MMREGISTER) then
  548. // case getsubreg(hr) of
  549. // R_SUBMMX: setsubreg(hr,R_SUBMMX);
  550. // R_SUBMMY: setsubreg(hr,R_SUBMMY);
  551. // R_SUBMMZ: setsubreg(hr,R_SUBMMZ);
  552. // else setsubreg(hr,R_SUBMMX);
  553. // end;
  554. result:=findreg_by_number_table(hr,regnumber_index);
  555. end;
  556. function std_regnum_search(const s:string):Tregister;
  557. begin
  558. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  559. end;
  560. function std_regname(r:Tregister):string;
  561. var
  562. p : tregisterindex;
  563. begin
  564. if (getregtype(r)=R_MMXREGISTER) or
  565. ((getregtype(r)=R_MMREGISTER) and not(getsubreg(r) in [R_SUBMMX,R_SUBMMY])) then
  566. r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
  567. p:=findreg_by_number(r);
  568. if p<>0 then
  569. result:=std_regname_table[p]
  570. else
  571. result:=generic_regname(r);
  572. end;
  573. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  574. const
  575. inverse: array[TAsmCond] of TAsmCond=(C_None,
  576. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  577. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  578. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  579. );
  580. begin
  581. result := inverse[c];
  582. end;
  583. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  584. begin
  585. result := c1 = c2;
  586. end;
  587. { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
  588. function condition_in(const Subset, c: TAsmCond): Boolean;
  589. begin
  590. Result := (c = C_None) or conditions_equal(Subset, c);
  591. if not Result then
  592. case Subset of
  593. C_A, C_NBE:
  594. Result := (c in [C_A, C_AE, C_NB, C_NBE]);
  595. C_AE, C_NB:
  596. Result := (c in [C_AE, C_NB]);
  597. C_B, C_NAE:
  598. Result := (c in [C_B, C_BE, C_C, C_NA, C_NAE]);
  599. C_BE, C_NA:
  600. Result := (c in [C_BE, C_NA]);
  601. C_C:
  602. { C_B / C_NAE: CF = 1
  603. C_BE / C_NA: CF = 1 or ZF = 1 }
  604. Result := (c in [C_B, C_BE, C_NA, C_NAE]);
  605. C_E, C_Z:
  606. Result := (c in [C_AE, C_BE, C_E, C_NA, C_NB, C_NG, C_NL]);
  607. C_G, C_NLE:
  608. Result := (c in [C_G, C_GE, C_NL, C_NLE]);
  609. C_GE, C_NL:
  610. Result := (c in [C_GE, C_NL]);
  611. C_L, C_NGE:
  612. Result := (c in [C_L, C_LE, C_NG, C_NGE]);
  613. C_LE, C_NG:
  614. Result := (c in [C_LE, C_NG]);
  615. C_NC:
  616. { C_A / C_NBE: CF = 0 and ZF = 0; not a subset because ZF has to be zero as well
  617. C_AE / C_NB: CF = 0 }
  618. Result := (c in [C_AE, C_NB]);
  619. C_NE, C_NZ:
  620. Result := (c in [C_NE, C_NZ, C_A, C_B, C_NAE,C_NBE,C_L, C_G, C_NLE,C_NGE]);
  621. C_NP, C_PO:
  622. Result := (c in [C_NP, C_PO]);
  623. C_P, C_PE:
  624. Result := (c in [C_P, C_PE]);
  625. else
  626. Result := False;
  627. end;
  628. end;
  629. function dwarf_reg(r:tregister):shortint;
  630. begin
  631. result:=regdwarf_table[findreg_by_number(r)];
  632. if result=-1 then
  633. internalerror(200603251);
  634. end;
  635. function dwarf_reg_no_error(r:tregister):shortint;
  636. begin
  637. result:=regdwarf_table[findreg_by_number(r)];
  638. end;
  639. function eh_return_data_regno(nr: longint): longint;
  640. begin
  641. case nr of
  642. 0: result:=0;
  643. {$ifdef x86_64}
  644. 1: result:=1;
  645. {$else}
  646. 1: result:=2;
  647. {$endif}
  648. else
  649. result:=-1;
  650. end;
  651. end;
  652. function segment_regs_equal(r1, r2: tregister): boolean;
  653. begin
  654. if not is_segment_reg(r1) or not is_segment_reg(r2) then
  655. internalerror(2013062301);
  656. { every segment register is equal to itself }
  657. if r1=r2 then
  658. exit(true);
  659. {$if defined(i8086)}
  660. case current_settings.x86memorymodel of
  661. mm_tiny:
  662. begin
  663. { CS=DS=SS }
  664. if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
  665. ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
  666. exit(true);
  667. { the remaining are distinct from each other }
  668. exit(false);
  669. end;
  670. mm_small,mm_medium:
  671. begin
  672. { DS=SS }
  673. if ((r1=NR_DS) or (r1=NR_SS)) and
  674. ((r2=NR_DS) or (r2=NR_SS)) then
  675. exit(true);
  676. { the remaining are distinct from each other }
  677. exit(false);
  678. end;
  679. mm_compact,mm_large,mm_huge:
  680. { all segment registers are different in these models }
  681. exit(false);
  682. end;
  683. {$elseif defined(i386) or defined(x86_64)}
  684. { DS=SS=ES }
  685. if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
  686. ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
  687. exit(true);
  688. { the remaining are distinct from each other }
  689. exit(false);
  690. {$endif}
  691. end;
  692. function is_x86_string_op(op: TAsmOp): boolean;
  693. begin
  694. case op of
  695. {$ifdef x86_64}
  696. A_MOVSQ,
  697. A_CMPSQ,
  698. A_SCASQ,
  699. A_LODSQ,
  700. A_STOSQ,
  701. {$endif x86_64}
  702. A_MOVSB,A_MOVSW,A_MOVSD,
  703. A_CMPSB,A_CMPSW,A_CMPSD,
  704. A_SCASB,A_SCASW,A_SCASD,
  705. A_LODSB,A_LODSW,A_LODSD,
  706. A_STOSB,A_STOSW,A_STOSD,
  707. A_INSB, A_INSW, A_INSD,
  708. A_OUTSB,A_OUTSW,A_OUTSD,
  709. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  710. result:=true;
  711. else
  712. result:=false;
  713. end;
  714. end;
  715. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  716. begin
  717. case op of
  718. {$ifdef x86_64}
  719. A_MOVSQ,
  720. A_CMPSQ,
  721. A_SCASQ,
  722. A_LODSQ,
  723. A_STOSQ,
  724. {$endif x86_64}
  725. A_MOVSB,A_MOVSW,A_MOVSD,
  726. A_CMPSB,A_CMPSW,A_CMPSD,
  727. A_SCASB,A_SCASW,A_SCASD,
  728. A_LODSB,A_LODSW,A_LODSD,
  729. A_STOSB,A_STOSW,A_STOSD,
  730. A_INSB, A_INSW, A_INSD,
  731. A_OUTSB,A_OUTSW,A_OUTSD:
  732. result:=true;
  733. else
  734. result:=false;
  735. end;
  736. end;
  737. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  738. begin
  739. case op of
  740. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  741. result:=true;
  742. else
  743. result:=false;
  744. end;
  745. end;
  746. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  747. begin
  748. case op of
  749. A_MOVS,A_CMPS,A_INS,A_OUTS:
  750. result:=2;
  751. A_SCAS,A_LODS,A_STOS:
  752. result:=1;
  753. else
  754. internalerror(2017101203);
  755. end;
  756. end;
  757. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  758. begin
  759. case op of
  760. A_MOVSB,A_MOVSW,A_MOVSD{$ifdef x86_64},A_MOVSQ{$endif}:
  761. result:=A_MOVS;
  762. A_CMPSB,A_CMPSW,A_CMPSD{$ifdef x86_64},A_CMPSQ{$endif}:
  763. result:=A_CMPS;
  764. A_SCASB,A_SCASW,A_SCASD{$ifdef x86_64},A_SCASQ{$endif}:
  765. result:=A_SCAS;
  766. A_LODSB,A_LODSW,A_LODSD{$ifdef x86_64},A_LODSQ{$endif}:
  767. result:=A_LODS;
  768. A_STOSB,A_STOSW,A_STOSD{$ifdef x86_64},A_STOSQ{$endif}:
  769. result:=A_STOS;
  770. A_INSB, A_INSW, A_INSD:
  771. result:=A_INS;
  772. A_OUTSB,A_OUTSW,A_OUTSD:
  773. result:=A_OUTS;
  774. else
  775. internalerror(2017101201);
  776. end;
  777. end;
  778. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  779. begin
  780. case op of
  781. A_MOVSB,A_CMPSB,A_SCASB,A_LODSB,A_STOSB,A_INSB,A_OUTSB:
  782. result:=S_B;
  783. A_MOVSW,A_CMPSW,A_SCASW,A_LODSW,A_STOSW,A_INSW,A_OUTSW:
  784. result:=S_W;
  785. A_MOVSD,A_CMPSD,A_SCASD,A_LODSD,A_STOSD,A_INSD,A_OUTSD:
  786. result:=S_L;
  787. {$ifdef x86_64}
  788. A_MOVSQ,A_CMPSQ,A_SCASQ,A_LODSQ,A_STOSQ:
  789. result:=S_Q;
  790. {$endif x86_64}
  791. else
  792. internalerror(2017101202);
  793. end;
  794. end;
  795. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  796. begin
  797. case op of
  798. A_MOVS,A_OUTS:
  799. result:=1;
  800. A_CMPS,A_LODS:
  801. result:=0;
  802. A_SCAS,A_STOS,A_INS:
  803. result:=-1;
  804. else
  805. internalerror(2017101102);
  806. end;
  807. end;
  808. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  809. begin
  810. case op of
  811. A_MOVS,A_SCAS,A_STOS,A_INS:
  812. result:=0;
  813. A_CMPS:
  814. result:=1;
  815. A_LODS,A_OUTS:
  816. result:=-1;
  817. else
  818. internalerror(2017101204);
  819. end;
  820. end;
  821. {$ifdef i8086}
  822. function requires_fwait_on_8087(op: TAsmOp): boolean;
  823. begin
  824. case op of
  825. A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
  826. A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
  827. A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
  828. A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
  829. A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
  830. A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
  831. A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
  832. A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
  833. A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
  834. result:=true;
  835. else
  836. result:=false;
  837. end;
  838. end;
  839. {$endif i8086}
  840. end.