cpubase.pas 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the i8086, i386 and x86-64 architecture
  4. * This code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. {# Base unit for processor information. This unit contains
  21. enumerations of registers, opcodes, sizes, and other
  22. such things which are processor specific.
  23. }
  24. unit cpubase;
  25. {$i fpcdefs.inc}
  26. interface
  27. uses
  28. globals,
  29. cgbase
  30. ;
  31. {*****************************************************************************
  32. Assembler Opcodes
  33. *****************************************************************************}
  34. type
  35. {$if defined(x86_64)}
  36. TAsmOp={$i x8664op.inc}
  37. {$elseif defined(i386)}
  38. TAsmOp={$i i386op.inc}
  39. {$elseif defined(i8086)}
  40. TAsmOp={$i i8086op.inc}
  41. {$endif}
  42. { This should define the array of instructions as string }
  43. op2strtable=array[tasmop] of string[16];
  44. {$ifdef i8086}
  45. ImmInt = SmallInt;
  46. {$else i8086}
  47. ImmInt = Longint;
  48. {$endif i8086}
  49. const
  50. { First value of opcode enumeration }
  51. firstop = low(tasmop);
  52. { Last value of opcode enumeration }
  53. lastop = high(tasmop);
  54. {*****************************************************************************
  55. Registers
  56. *****************************************************************************}
  57. const
  58. { Integer Super registers }
  59. RS_NO = $ffffffff;
  60. RS_RAX = $00; {EAX}
  61. RS_RCX = $01; {ECX}
  62. RS_RDX = $02; {EDX}
  63. RS_RBX = $03; {EBX}
  64. RS_RSI = $04; {ESI}
  65. RS_RDI = $05; {EDI}
  66. RS_RBP = $06; {EBP}
  67. RS_RSP = $07; {ESP}
  68. RS_R8 = $08; {R8}
  69. RS_R9 = $09; {R9}
  70. RS_R10 = $0a; {R10}
  71. RS_R11 = $0b; {R11}
  72. RS_R12 = $0c; {R12}
  73. RS_R13 = $0d; {R13}
  74. RS_R14 = $0e; {R14}
  75. RS_R15 = $0f; {R15}
  76. { create aliases to allow code sharing between x86-64 and i386 }
  77. RS_EAX = RS_RAX;
  78. RS_EBX = RS_RBX;
  79. RS_ECX = RS_RCX;
  80. RS_EDX = RS_RDX;
  81. RS_ESI = RS_RSI;
  82. RS_EDI = RS_RDI;
  83. RS_EBP = RS_RBP;
  84. RS_ESP = RS_RSP;
  85. { create aliases to allow code sharing between i386 and i8086 }
  86. RS_AX = RS_RAX;
  87. RS_BX = RS_RBX;
  88. RS_CX = RS_RCX;
  89. RS_DX = RS_RDX;
  90. RS_SI = RS_RSI;
  91. RS_DI = RS_RDI;
  92. RS_BP = RS_RBP;
  93. RS_SP = RS_RSP;
  94. { Number of first imaginary register }
  95. first_int_imreg = $10;
  96. { Float Super registers }
  97. RS_ST0 = $00;
  98. RS_ST1 = $01;
  99. RS_ST2 = $02;
  100. RS_ST3 = $03;
  101. RS_ST4 = $04;
  102. RS_ST5 = $05;
  103. RS_ST6 = $06;
  104. RS_ST7 = $07;
  105. RS_ST = $08;
  106. { Number of first imaginary register }
  107. first_fpu_imreg = $09;
  108. { MM Super registers }
  109. RS_XMM0 = $00;
  110. RS_XMM1 = $01;
  111. RS_XMM2 = $02;
  112. RS_XMM3 = $03;
  113. RS_XMM4 = $04;
  114. RS_XMM5 = $05;
  115. RS_XMM6 = $06;
  116. RS_XMM7 = $07;
  117. RS_XMM8 = $08;
  118. RS_XMM9 = $09;
  119. RS_XMM10 = $0a;
  120. RS_XMM11 = $0b;
  121. RS_XMM12 = $0c;
  122. RS_XMM13 = $0d;
  123. RS_XMM14 = $0e;
  124. RS_XMM15 = $0f;
  125. RS_XMM16 = $10;
  126. RS_XMM17 = $11;
  127. RS_XMM18 = $12;
  128. RS_XMM19 = $13;
  129. RS_XMM20 = $14;
  130. RS_XMM21 = $15;
  131. RS_XMM22 = $16;
  132. RS_XMM23 = $17;
  133. RS_XMM24 = $18;
  134. RS_XMM25 = $19;
  135. RS_XMM26 = $1a;
  136. RS_XMM27 = $1b;
  137. RS_XMM28 = $1c;
  138. RS_XMM29 = $1d;
  139. RS_XMM30 = $1e;
  140. RS_XMM31 = $1f;
  141. {$if defined(x86_64)}
  142. RS_RFLAGS = $06;
  143. {$elseif defined(i386)}
  144. RS_EFLAGS = $06;
  145. {$elseif defined(i8086)}
  146. RS_FLAGS = $06;
  147. {$endif}
  148. { Number of first imaginary register }
  149. {$ifdef x86_64}
  150. first_mm_imreg = $20;
  151. {$else x86_64}
  152. first_mm_imreg = $08;
  153. {$endif x86_64}
  154. { The subregister that specifies the entire register and an address }
  155. {$if defined(x86_64)}
  156. { Hammer }
  157. R_SUBWHOLE = R_SUBQ;
  158. R_SUBADDR = R_SUBQ;
  159. {$elseif defined(i386)}
  160. { i386 }
  161. R_SUBWHOLE = R_SUBD;
  162. R_SUBADDR = R_SUBD;
  163. {$elseif defined(i8086)}
  164. { i8086 }
  165. R_SUBWHOLE = R_SUBW;
  166. R_SUBADDR = R_SUBW;
  167. {$endif}
  168. { Available Registers }
  169. {$if defined(x86_64)}
  170. {$i r8664con.inc}
  171. {$elseif defined(i386)}
  172. {$i r386con.inc}
  173. {$elseif defined(i8086)}
  174. {$i r8086con.inc}
  175. {$endif}
  176. type
  177. { Number of registers used for indexing in tables }
  178. {$if defined(x86_64)}
  179. tregisterindex=0..{$i r8664nor.inc}-1;
  180. {$elseif defined(i386)}
  181. tregisterindex=0..{$i r386nor.inc}-1;
  182. {$elseif defined(i8086)}
  183. tregisterindex=0..{$i r8086nor.inc}-1;
  184. {$endif}
  185. const
  186. regnumber_table : array[tregisterindex] of tregister = (
  187. {$if defined(x86_64)}
  188. {$i r8664num.inc}
  189. {$elseif defined(i386)}
  190. {$i r386num.inc}
  191. {$elseif defined(i8086)}
  192. {$i r8086num.inc}
  193. {$endif}
  194. );
  195. regstabs_table : array[tregisterindex] of shortint = (
  196. {$if defined(x86_64)}
  197. {$i r8664stab.inc}
  198. {$elseif defined(i386)}
  199. {$i r386stab.inc}
  200. {$elseif defined(i8086)}
  201. {$i r8086stab.inc}
  202. {$endif}
  203. );
  204. regdwarf_table : array[tregisterindex] of shortint = (
  205. {$if defined(x86_64)}
  206. {$i r8664dwrf.inc}
  207. {$elseif defined(i386)}
  208. {$i r386dwrf.inc}
  209. {$elseif defined(i8086)}
  210. {$i r8086dwrf.inc}
  211. {$endif}
  212. );
  213. {$if defined(x86_64)}
  214. RS_DEFAULTFLAGS = RS_RFLAGS;
  215. NR_DEFAULTFLAGS = NR_RFLAGS;
  216. {$elseif defined(i386)}
  217. RS_DEFAULTFLAGS = RS_EFLAGS;
  218. NR_DEFAULTFLAGS = NR_EFLAGS;
  219. {$elseif defined(i8086)}
  220. RS_DEFAULTFLAGS = RS_FLAGS;
  221. NR_DEFAULTFLAGS = NR_FLAGS;
  222. {$endif}
  223. {*****************************************************************************
  224. Conditions
  225. *****************************************************************************}
  226. type
  227. TAsmCond=(C_None,
  228. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  229. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  230. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  231. );
  232. const
  233. cond2str:array[TAsmCond] of string[3]=('',
  234. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  235. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  236. 'ns','nz','o','p','pe','po','s','z'
  237. );
  238. {*****************************************************************************
  239. Flags
  240. *****************************************************************************}
  241. type
  242. TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
  243. F_A,F_AE,F_B,F_BE,
  244. F_S,F_NS,F_O,F_NO,
  245. { For IEEE-compliant floating-point compares,
  246. same as normal counterparts but additionally check PF }
  247. F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
  248. const
  249. FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
  250. FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
  251. F_E,F_NE,F_A,F_AE,F_B,F_BE
  252. );
  253. {*****************************************************************************
  254. Constants
  255. *****************************************************************************}
  256. const
  257. { declare aliases }
  258. LOC_SSEREGISTER = LOC_MMREGISTER;
  259. LOC_CSSEREGISTER = LOC_CMMREGISTER;
  260. max_operands = 4;
  261. maxfpuregs = 8;
  262. {*****************************************************************************
  263. CPU Dependent Constants
  264. *****************************************************************************}
  265. {$i cpubase.inc}
  266. const
  267. {$ifdef x86_64}
  268. topsize2memsize: array[topsize] of integer =
  269. (0, 8,16,32,64,8,8,16,8,16,32,
  270. 16,32,64,
  271. 16,32,64,0,0,
  272. 64,
  273. 0,0,0,
  274. 80,
  275. 128,
  276. 256,
  277. 512
  278. );
  279. {$else}
  280. topsize2memsize: array[topsize] of integer =
  281. (0, 8,16,32,64,8,8,16,
  282. 16,32,64,
  283. 16,32,64,0,0,
  284. 64,
  285. 0,0,0,
  286. 80,
  287. 128,
  288. 256,
  289. 512
  290. );
  291. {$endif}
  292. {*****************************************************************************
  293. Helpers
  294. *****************************************************************************}
  295. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  296. function reg2opsize(r:Tregister):topsize;
  297. function reg_cgsize(const reg: tregister): tcgsize;
  298. function is_calljmp(o:tasmop):boolean;
  299. procedure inverse_flags(var f: TResFlags);
  300. function flags_to_cond(const f: TResFlags) : TAsmCond;
  301. function is_segment_reg(r:tregister):boolean;
  302. function findreg_by_number(r:Tregister):tregisterindex;
  303. function std_regnum_search(const s:string):Tregister;
  304. function std_regname(r:Tregister):string;
  305. function dwarf_reg(r:tregister):shortint;
  306. function dwarf_reg_no_error(r:tregister):shortint;
  307. function eh_return_data_regno(nr: longint): longint;
  308. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  309. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  310. { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
  311. function condition_in(const Subset, c: TAsmCond): Boolean;
  312. { checks whether two segment registers are normally equal in the current memory model }
  313. function segment_regs_equal(r1,r2:tregister):boolean;
  314. { checks whether the specified op is an x86 string instruction (e.g. cmpsb, movsd, scasw, etc.) }
  315. function is_x86_string_op(op: TAsmOp): boolean;
  316. { checks whether the specified op is an x86 parameterless string instruction
  317. (e.g. returns true for movsb, cmpsw, etc, but returns false for movs, cmps, etc.) }
  318. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  319. { checks whether the specified op is an x86 parameterized string instruction
  320. (e.g. returns true for movs, cmps, etc, but returns false for movsb, cmpsb, etc.) }
  321. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  322. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  323. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  324. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  325. { returns the 0-based operand number (intel syntax) of the ds:[si] param of
  326. a x86 string instruction }
  327. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  328. { returns the 0-based operand number (intel syntax) of the es:[di] param of
  329. a x86 string instruction }
  330. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  331. {$ifdef i8086}
  332. { return whether we need to add an extra FWAIT instruction before the given
  333. instruction, when we're targeting the i8087. This includes almost all x87
  334. instructions, but certain ones, which always have or have not a built in
  335. FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
  336. function requires_fwait_on_8087(op: TAsmOp): boolean;
  337. {$endif i8086}
  338. function UseAVX: boolean;
  339. function UseAVX512: boolean;
  340. implementation
  341. uses
  342. globtype,
  343. rgbase,verbose,
  344. cpuinfo;
  345. const
  346. {$if defined(x86_64)}
  347. std_regname_table : TRegNameTable = (
  348. {$i r8664std.inc}
  349. );
  350. regnumber_index : array[tregisterindex] of tregisterindex = (
  351. {$i r8664rni.inc}
  352. );
  353. std_regname_index : array[tregisterindex] of tregisterindex = (
  354. {$i r8664sri.inc}
  355. );
  356. {$elseif defined(i386)}
  357. std_regname_table : TRegNameTable = (
  358. {$i r386std.inc}
  359. );
  360. regnumber_index : array[tregisterindex] of tregisterindex = (
  361. {$i r386rni.inc}
  362. );
  363. std_regname_index : array[tregisterindex] of tregisterindex = (
  364. {$i r386sri.inc}
  365. );
  366. {$elseif defined(i8086)}
  367. std_regname_table : TRegNameTable = (
  368. {$i r8086std.inc}
  369. );
  370. regnumber_index : array[tregisterindex] of tregisterindex = (
  371. {$i r8086rni.inc}
  372. );
  373. std_regname_index : array[tregisterindex] of tregisterindex = (
  374. {$i r8086sri.inc}
  375. );
  376. {$endif}
  377. {*****************************************************************************
  378. Helpers
  379. *****************************************************************************}
  380. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  381. begin
  382. case s of
  383. OS_8,OS_S8:
  384. cgsize2subreg:=R_SUBL;
  385. OS_16,OS_S16:
  386. cgsize2subreg:=R_SUBW;
  387. OS_32,OS_S32:
  388. cgsize2subreg:=R_SUBD;
  389. OS_64,OS_S64:
  390. cgsize2subreg:=R_SUBQ;
  391. OS_M64:
  392. cgsize2subreg:=R_SUBNONE;
  393. OS_F32,OS_F64,OS_C64:
  394. case regtype of
  395. R_FPUREGISTER:
  396. cgsize2subreg:=R_SUBWHOLE;
  397. R_MMREGISTER:
  398. case s of
  399. OS_F32:
  400. cgsize2subreg:=R_SUBMMS;
  401. OS_F64:
  402. cgsize2subreg:=R_SUBMMD;
  403. else
  404. internalerror(2009071901);
  405. end;
  406. else
  407. internalerror(2009071902);
  408. end;
  409. OS_M128:
  410. cgsize2subreg:=R_SUBMMX;
  411. OS_M256:
  412. cgsize2subreg:=R_SUBMMY;
  413. OS_M512:
  414. cgsize2subreg:=R_SUBMMZ;
  415. OS_NO:
  416. { error message should have been thrown already before, so avoid only
  417. an internal error }
  418. cgsize2subreg:=R_SUBNONE;
  419. else
  420. internalerror(200301231);
  421. end;
  422. end;
  423. function reg_cgsize(const reg: tregister): tcgsize;
  424. const subreg2cgsize:array[Tsubregister] of Tcgsize =
  425. (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256,OS_M512,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO);
  426. begin
  427. case getregtype(reg) of
  428. R_INTREGISTER :
  429. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  430. R_FPUREGISTER :
  431. reg_cgsize:=OS_F80;
  432. R_MMXREGISTER:
  433. reg_cgsize:=OS_M64;
  434. R_MMREGISTER:
  435. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  436. R_SPECIALREGISTER :
  437. case reg of
  438. NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
  439. reg_cgsize:=OS_16;
  440. {$ifdef x86_64}
  441. NR_DR0..NR_TR7:
  442. reg_cgsize:=OS_64;
  443. {$endif x86_64}
  444. else
  445. reg_cgsize:=OS_32
  446. end;
  447. R_ADDRESSREGISTER:
  448. case reg of
  449. NR_K0..NR_K7: reg_cgsize:=OS_NO;
  450. else internalerror(2003031801);
  451. end;
  452. else
  453. internalerror(2003031802);
  454. end;
  455. end;
  456. function reg2opsize(r:Tregister):topsize;
  457. const
  458. subreg2opsize : array[tsubregister] of topsize =
  459. (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  460. begin
  461. reg2opsize:=S_L;
  462. case getregtype(r) of
  463. R_INTREGISTER :
  464. reg2opsize:=subreg2opsize[getsubreg(r)];
  465. R_FPUREGISTER :
  466. reg2opsize:=S_FL;
  467. R_MMXREGISTER,
  468. R_MMREGISTER :
  469. reg2opsize:=S_MD;
  470. R_SPECIALREGISTER :
  471. begin
  472. case r of
  473. NR_CS,NR_DS,NR_ES,
  474. NR_SS,NR_FS,NR_GS :
  475. reg2opsize:=S_W;
  476. else
  477. ;
  478. end;
  479. end;
  480. else
  481. internalerror(200303181);
  482. end;
  483. end;
  484. function is_calljmp(o:tasmop):boolean;
  485. begin
  486. case o of
  487. A_CALL,
  488. {$if defined(i386) or defined(i8086)}
  489. A_JCXZ,
  490. {$endif defined(i386) or defined(i8086)}
  491. A_JECXZ,
  492. {$ifdef x86_64}
  493. A_JRCXZ,
  494. {$endif x86_64}
  495. A_JMP,
  496. A_LOOP,
  497. A_LOOPE,
  498. A_LOOPNE,
  499. A_LOOPNZ,
  500. A_LOOPZ,
  501. A_LCALL,
  502. A_LJMP,
  503. A_Jcc :
  504. is_calljmp:=true;
  505. else
  506. is_calljmp:=false;
  507. end;
  508. end;
  509. procedure inverse_flags(var f: TResFlags);
  510. const
  511. inv_flags: array[TResFlags] of TResFlags =
  512. (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
  513. F_BE,F_B,F_AE,F_A,
  514. F_NS,F_S,F_NO,F_O,
  515. F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
  516. begin
  517. f:=inv_flags[f];
  518. end;
  519. function flags_to_cond(const f: TResFlags) : TAsmCond;
  520. const
  521. flags_2_cond : array[TResFlags] of TAsmCond =
  522. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
  523. C_None,C_None,C_None,C_None,C_None,C_None);
  524. begin
  525. result := flags_2_cond[f];
  526. if (result=C_None) then
  527. InternalError(2014041302);
  528. end;
  529. function is_segment_reg(r:tregister):boolean;
  530. begin
  531. case r of
  532. NR_CS,NR_DS,NR_ES,
  533. NR_SS,NR_FS,NR_GS :
  534. result:=true;
  535. else
  536. result:=false;
  537. end;
  538. end;
  539. function findreg_by_number(r:Tregister):tregisterindex;
  540. var
  541. hr : tregister;
  542. begin
  543. { for the name the sub reg doesn't matter }
  544. hr:=r;
  545. if (getregtype(hr)=R_MMREGISTER) and
  546. (getsubreg(hr)<>R_SUBMMY) and
  547. (getsubreg(hr)<>R_SUBMMZ) then
  548. setsubreg(hr,R_SUBMMX);
  549. //// TG TODO check
  550. //if (getregtype(hr)=R_MMREGISTER) then
  551. // case getsubreg(hr) of
  552. // R_SUBMMX: setsubreg(hr,R_SUBMMX);
  553. // R_SUBMMY: setsubreg(hr,R_SUBMMY);
  554. // R_SUBMMZ: setsubreg(hr,R_SUBMMZ);
  555. // else setsubreg(hr,R_SUBMMX);
  556. // end;
  557. result:=findreg_by_number_table(hr,regnumber_index);
  558. end;
  559. function std_regnum_search(const s:string):Tregister;
  560. begin
  561. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  562. end;
  563. function std_regname(r:Tregister):string;
  564. var
  565. p : tregisterindex;
  566. begin
  567. if (getregtype(r)=R_MMXREGISTER) or
  568. ((getregtype(r)=R_MMREGISTER) and not(getsubreg(r) in [R_SUBMMX,R_SUBMMY])) then
  569. r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
  570. p:=findreg_by_number(r);
  571. if p<>0 then
  572. result:=std_regname_table[p]
  573. else
  574. result:=generic_regname(r);
  575. end;
  576. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  577. const
  578. inverse: array[TAsmCond] of TAsmCond=(C_None,
  579. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  580. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  581. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  582. );
  583. begin
  584. result := inverse[c];
  585. end;
  586. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  587. begin
  588. result := c1 = c2;
  589. end;
  590. { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
  591. function condition_in(const Subset, c: TAsmCond): Boolean;
  592. begin
  593. Result := (c = C_None) or conditions_equal(Subset, c);
  594. if not Result then
  595. case Subset of
  596. C_A, C_NBE:
  597. Result := (c in [C_A, C_AE, C_NB, C_NBE]);
  598. C_AE, C_NB:
  599. Result := (c in [C_AE, C_NB]);
  600. C_B, C_NAE:
  601. Result := (c in [C_B, C_BE, C_C, C_NA, C_NAE]);
  602. C_BE, C_NA:
  603. Result := (c in [C_BE, C_NA]);
  604. C_C:
  605. { C_B / C_NAE: CF = 1
  606. C_BE / C_NA: CF = 1 or ZF = 1 }
  607. Result := (c in [C_B, C_BE, C_NA, C_NAE]);
  608. C_E, C_Z:
  609. Result := (c in [C_AE, C_BE, C_E, C_NA, C_NB, C_NG, C_NL]);
  610. C_G, C_NLE:
  611. Result := (c in [C_G, C_GE, C_NL, C_NLE]);
  612. C_GE, C_NL:
  613. Result := (c in [C_GE, C_NL]);
  614. C_L, C_NGE:
  615. Result := (c in [C_L, C_LE, C_NG, C_NGE]);
  616. C_LE, C_NG:
  617. Result := (c in [C_LE, C_NG]);
  618. C_NC:
  619. { C_A / C_NBE: CF = 0 and ZF = 0; not a subset because ZF has to be zero as well
  620. C_AE / C_NB: CF = 0 }
  621. Result := (c in [C_AE, C_NB]);
  622. C_NE, C_NZ:
  623. Result := (c in [C_NE, C_NZ, C_A, C_B, C_NAE,C_NBE,C_L, C_G, C_NLE,C_NGE]);
  624. C_NP, C_PO:
  625. Result := (c in [C_NP, C_PO]);
  626. C_P, C_PE:
  627. Result := (c in [C_P, C_PE]);
  628. else
  629. Result := False;
  630. end;
  631. end;
  632. function dwarf_reg(r:tregister):shortint;
  633. begin
  634. result:=regdwarf_table[findreg_by_number(r)];
  635. if result=-1 then
  636. internalerror(200603251);
  637. end;
  638. function dwarf_reg_no_error(r:tregister):shortint;
  639. begin
  640. result:=regdwarf_table[findreg_by_number(r)];
  641. end;
  642. function eh_return_data_regno(nr: longint): longint;
  643. begin
  644. case nr of
  645. 0: result:=0;
  646. {$ifdef x86_64}
  647. 1: result:=1;
  648. {$else}
  649. 1: result:=2;
  650. {$endif}
  651. else
  652. result:=-1;
  653. end;
  654. end;
  655. function segment_regs_equal(r1, r2: tregister): boolean;
  656. begin
  657. if not is_segment_reg(r1) or not is_segment_reg(r2) then
  658. internalerror(2013062301);
  659. { every segment register is equal to itself }
  660. if r1=r2 then
  661. exit(true);
  662. {$if defined(i8086)}
  663. case current_settings.x86memorymodel of
  664. mm_tiny:
  665. begin
  666. { CS=DS=SS }
  667. if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
  668. ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
  669. exit(true);
  670. { the remaining are distinct from each other }
  671. exit(false);
  672. end;
  673. mm_small,mm_medium:
  674. begin
  675. { DS=SS }
  676. if ((r1=NR_DS) or (r1=NR_SS)) and
  677. ((r2=NR_DS) or (r2=NR_SS)) then
  678. exit(true);
  679. { the remaining are distinct from each other }
  680. exit(false);
  681. end;
  682. mm_compact,mm_large,mm_huge:
  683. { all segment registers are different in these models }
  684. exit(false);
  685. end;
  686. {$elseif defined(i386) or defined(x86_64)}
  687. { DS=SS=ES }
  688. if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
  689. ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
  690. exit(true);
  691. { the remaining are distinct from each other }
  692. exit(false);
  693. {$endif}
  694. end;
  695. function is_x86_string_op(op: TAsmOp): boolean;
  696. begin
  697. case op of
  698. {$ifdef x86_64}
  699. A_MOVSQ,
  700. A_CMPSQ,
  701. A_SCASQ,
  702. A_LODSQ,
  703. A_STOSQ,
  704. {$endif x86_64}
  705. A_MOVSB,A_MOVSW,A_MOVSD,
  706. A_CMPSB,A_CMPSW,A_CMPSD,
  707. A_SCASB,A_SCASW,A_SCASD,
  708. A_LODSB,A_LODSW,A_LODSD,
  709. A_STOSB,A_STOSW,A_STOSD,
  710. A_INSB, A_INSW, A_INSD,
  711. A_OUTSB,A_OUTSW,A_OUTSD,
  712. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  713. result:=true;
  714. else
  715. result:=false;
  716. end;
  717. end;
  718. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  719. begin
  720. case op of
  721. {$ifdef x86_64}
  722. A_MOVSQ,
  723. A_CMPSQ,
  724. A_SCASQ,
  725. A_LODSQ,
  726. A_STOSQ,
  727. {$endif x86_64}
  728. A_MOVSB,A_MOVSW,A_MOVSD,
  729. A_CMPSB,A_CMPSW,A_CMPSD,
  730. A_SCASB,A_SCASW,A_SCASD,
  731. A_LODSB,A_LODSW,A_LODSD,
  732. A_STOSB,A_STOSW,A_STOSD,
  733. A_INSB, A_INSW, A_INSD,
  734. A_OUTSB,A_OUTSW,A_OUTSD:
  735. result:=true;
  736. else
  737. result:=false;
  738. end;
  739. end;
  740. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  741. begin
  742. case op of
  743. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  744. result:=true;
  745. else
  746. result:=false;
  747. end;
  748. end;
  749. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  750. begin
  751. case op of
  752. A_MOVS,A_CMPS,A_INS,A_OUTS:
  753. result:=2;
  754. A_SCAS,A_LODS,A_STOS:
  755. result:=1;
  756. else
  757. internalerror(2017101203);
  758. end;
  759. end;
  760. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  761. begin
  762. case op of
  763. A_MOVSB,A_MOVSW,A_MOVSD{$ifdef x86_64},A_MOVSQ{$endif}:
  764. result:=A_MOVS;
  765. A_CMPSB,A_CMPSW,A_CMPSD{$ifdef x86_64},A_CMPSQ{$endif}:
  766. result:=A_CMPS;
  767. A_SCASB,A_SCASW,A_SCASD{$ifdef x86_64},A_SCASQ{$endif}:
  768. result:=A_SCAS;
  769. A_LODSB,A_LODSW,A_LODSD{$ifdef x86_64},A_LODSQ{$endif}:
  770. result:=A_LODS;
  771. A_STOSB,A_STOSW,A_STOSD{$ifdef x86_64},A_STOSQ{$endif}:
  772. result:=A_STOS;
  773. A_INSB, A_INSW, A_INSD:
  774. result:=A_INS;
  775. A_OUTSB,A_OUTSW,A_OUTSD:
  776. result:=A_OUTS;
  777. else
  778. internalerror(2017101201);
  779. end;
  780. end;
  781. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  782. begin
  783. case op of
  784. A_MOVSB,A_CMPSB,A_SCASB,A_LODSB,A_STOSB,A_INSB,A_OUTSB:
  785. result:=S_B;
  786. A_MOVSW,A_CMPSW,A_SCASW,A_LODSW,A_STOSW,A_INSW,A_OUTSW:
  787. result:=S_W;
  788. A_MOVSD,A_CMPSD,A_SCASD,A_LODSD,A_STOSD,A_INSD,A_OUTSD:
  789. result:=S_L;
  790. {$ifdef x86_64}
  791. A_MOVSQ,A_CMPSQ,A_SCASQ,A_LODSQ,A_STOSQ:
  792. result:=S_Q;
  793. {$endif x86_64}
  794. else
  795. internalerror(2017101202);
  796. end;
  797. end;
  798. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  799. begin
  800. case op of
  801. A_MOVS,A_OUTS:
  802. result:=1;
  803. A_CMPS,A_LODS:
  804. result:=0;
  805. A_SCAS,A_STOS,A_INS:
  806. result:=-1;
  807. else
  808. internalerror(2017101102);
  809. end;
  810. end;
  811. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  812. begin
  813. case op of
  814. A_MOVS,A_SCAS,A_STOS,A_INS:
  815. result:=0;
  816. A_CMPS:
  817. result:=1;
  818. A_LODS,A_OUTS:
  819. result:=-1;
  820. else
  821. internalerror(2017101204);
  822. end;
  823. end;
  824. {$ifdef i8086}
  825. function requires_fwait_on_8087(op: TAsmOp): boolean;
  826. begin
  827. case op of
  828. A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
  829. A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
  830. A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
  831. A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
  832. A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
  833. A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
  834. A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
  835. A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
  836. A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
  837. result:=true;
  838. else
  839. result:=false;
  840. end;
  841. end;
  842. {$endif i8086}
  843. function UseAVX: boolean;
  844. begin
  845. Result:={$ifdef i8086}false{$else i8086}(FPUX86_HAS_AVXUNIT in fpu_capabilities[current_settings.fputype]){$endif i8086};
  846. end;
  847. function UseAVX512: boolean;
  848. begin
  849. Result:={$ifdef i8086}false{$else i8086}UseAVX and (FPUX86_HAS_AVX512F in fpu_capabilities[current_settings.fputype]){$endif i8086};
  850. end;
  851. end.