rgx86.pas 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl
  3. This unit implements the x86 specific class for the register
  4. allocator
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; if not, write to the Free Software
  15. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  16. ****************************************************************************
  17. }
  18. unit rgx86;
  19. {$i fpcdefs.inc}
  20. interface
  21. uses
  22. cpubase,cgbase,cgutils,
  23. aasmtai,aasmdata,aasmsym,aasmcpu,
  24. rgobj;
  25. type
  26. trgx86 = class(trgobj)
  27. function get_spill_subreg(r : tregister) : tsubregister;override;
  28. function do_spill_replace(list:TAsmList;instr:tai_cpu_abstract_sym;orgreg:tsuperregister;const spilltemp:treference):boolean;override;
  29. end;
  30. tpushedsavedloc = record
  31. case byte of
  32. 0: (pushed: boolean);
  33. 1: (ofs: longint);
  34. end;
  35. tpushedsavedfpu = array[tsuperregister] of tpushedsavedloc;
  36. trgx86fpu = class
  37. { these counters contain the number of elements in the }
  38. { unusedregsxxx/usableregsxxx sets }
  39. countunusedregsfpu : byte;
  40. { Contains the registers which are really used by the proc itself.
  41. It doesn't take care of registers used by called procedures
  42. }
  43. used_in_proc : tcpuregisterset;
  44. {reg_pushes_other : regvarother_longintarray;
  45. is_reg_var_other : regvarother_booleanarray;
  46. regvar_loaded_other : regvarother_booleanarray;}
  47. fpuvaroffset : byte;
  48. constructor create;
  49. function getregisterfpu(list: TAsmList) : tregister;
  50. procedure ungetregisterfpu(list: TAsmList; r : tregister);
  51. { pushes and restores registers }
  52. procedure saveusedfpuregisters(list:TAsmList;
  53. var saved:Tpushedsavedfpu;
  54. const s:Tcpuregisterset);
  55. procedure restoreusedfpuregisters(list:TAsmList;
  56. const saved:Tpushedsavedfpu);
  57. { corrects the fpu stack register by ofs }
  58. function correct_fpuregister(r : tregister;ofs : byte) : tregister;
  59. end;
  60. implementation
  61. uses
  62. verbose;
  63. const
  64. { This value is used in tsaved. If the array value is equal
  65. to this, then this means that this register is not used.}
  66. reg_not_saved = $7fffffff;
  67. {******************************************************************************
  68. Trgcpu
  69. ******************************************************************************}
  70. function trgx86.get_spill_subreg(r : tregister) : tsubregister;
  71. begin
  72. result:=getsubreg(r);
  73. end;
  74. { Decide wether a "replace" spill is possible, i.e. wether we can replace a register
  75. in an instruction by a memory reference. For example, in "mov ireg26d,0", the imaginary
  76. register ireg26d can be replaced by a memory reference.}
  77. function trgx86.do_spill_replace(list:TAsmList;instr:tai_cpu_abstract_sym;orgreg:tsuperregister;const spilltemp:treference):boolean;
  78. { returns true if opcde is an avx opcode which allows only the first (zero) operand might be a memory reference }
  79. function avx_opcode_only_op0_may_be_memref(opcode : TAsmOp) : boolean;
  80. begin
  81. case opcode of
  82. A_VMULSS,
  83. A_VMULSD,
  84. A_VSUBSS,
  85. A_VSUBSD,
  86. A_VADDSD,
  87. A_VADDSS,
  88. A_VDIVSD,
  89. A_VDIVSS,
  90. A_VSQRTSD,
  91. A_VSQRTSS,
  92. A_VCVTDQ2PD,
  93. A_VCVTDQ2PS,
  94. A_VCVTPD2DQ,
  95. A_VCVTPD2PS,
  96. A_VCVTPS2DQ,
  97. A_VCVTPS2PD,
  98. A_VCVTSD2SI,
  99. A_VCVTSD2SS,
  100. A_VCVTSI2SD,
  101. A_VCVTSS2SD,
  102. A_VCVTTPD2DQ,
  103. A_VCVTTPS2DQ,
  104. A_VCVTTSD2SI,
  105. A_VCVTSI2SS,
  106. A_VCVTSS2SI,
  107. A_VCVTTSS2SI,
  108. A_VXORPD,
  109. A_VXORPS,
  110. A_VORPD,
  111. A_VORPS,
  112. A_VANDPD,
  113. A_VANDPS,
  114. A_VUNPCKLPS,
  115. A_VUNPCKHPS,
  116. A_VSHUFPD,
  117. A_VREDUCEPD,
  118. A_VREDUCEPS,
  119. A_VREDUCESD,
  120. A_VREDUCESS,
  121. A_VROUNDSS,
  122. A_VROUNDSD:
  123. result:=true;
  124. else
  125. result:=false;
  126. end;
  127. end;
  128. var
  129. n,replaceoper : longint;
  130. is_subh: Boolean;
  131. begin
  132. result:=false;
  133. with taicpu(instr) do
  134. begin
  135. replaceoper:=-1;
  136. case ops of
  137. 1 :
  138. begin
  139. if (oper[0]^.typ=top_reg) and
  140. (getregtype(oper[0]^.reg)=regtype) then
  141. begin
  142. if get_alias(getsupreg(oper[0]^.reg))<>orgreg then
  143. internalerror(200410101);
  144. replaceoper:=0;
  145. end;
  146. end;
  147. 2,3 :
  148. begin
  149. { avx instruction?
  150. currently this rule is sufficient but it might be extended }
  151. if (ops=3) and (opcode<>A_SHRD) and (opcode<>A_SHLD) and (opcode<>A_IMUL) then
  152. begin
  153. { BMI shifting/rotating instructions have special requirements regarding spilling, only
  154. the middle operand can be replaced }
  155. if ((opcode=A_RORX) or (opcode=A_SHRX) or (opcode=A_SARX) or (opcode=A_SHLX)) then
  156. begin
  157. if (oper[1]^.typ=top_reg) and (getregtype(oper[1]^.reg)=regtype) and (get_alias(getsupreg(oper[1]^.reg))=orgreg) then
  158. replaceoper:=1;
  159. end
  160. { avx instructions allow only the first operand (at&t counting) to be a register operand
  161. all operands must be registers ... }
  162. else if (oper[0]^.typ=top_reg) and
  163. (oper[1]^.typ=top_reg) and
  164. (oper[2]^.typ=top_reg) and
  165. { but they must be different }
  166. ((getregtype(oper[1]^.reg)<>regtype) or
  167. (get_alias(getsupreg(oper[0]^.reg))<>get_alias(getsupreg(oper[1]^.reg)))
  168. ) and
  169. ((getregtype(oper[2]^.reg)<>regtype) or
  170. (get_alias(getsupreg(oper[0]^.reg))<>get_alias(getsupreg(oper[2]^.reg)))
  171. ) and
  172. (get_alias(getsupreg(oper[0]^.reg))=orgreg) then
  173. replaceoper:=0;
  174. end
  175. else
  176. begin
  177. { We can handle opcodes with 2 and 3-op imul/shrd/shld the same way, where the 3rd operand is const or CL,
  178. that doesn't need spilling.
  179. However, due to AT&T order inside the compiler, the 3rd operand is
  180. numbered 0, so look at operand no. 1 and 2 if we have 3 operands by
  181. adding a "n". }
  182. n:=0;
  183. if ops=3 then
  184. n:=1;
  185. { lea is tricky: part of operand 0 can be spilled and the instruction can converted into an
  186. add, if base or index shall be spilled and the other one is equal the destination }
  187. if (opcode=A_LEA) then
  188. begin
  189. if (oper[0]^.ref^.offset=0) and
  190. (oper[0]^.ref^.scalefactor in [0,1]) and
  191. (((getregtype(oper[0]^.ref^.base)=regtype) and
  192. (get_alias(getsupreg(oper[0]^.ref^.base))=orgreg) and
  193. (getregtype(oper[0]^.ref^.index)=getregtype(oper[1]^.reg)) and
  194. (get_alias(getsupreg(oper[0]^.ref^.index))=get_alias(getsupreg(oper[1]^.reg)))) or
  195. ((getregtype(oper[0]^.ref^.index)=regtype) and
  196. (get_alias(getsupreg(oper[0]^.ref^.index))=orgreg) and
  197. (getregtype(oper[0]^.ref^.base)=getregtype(oper[1]^.reg)) and
  198. (get_alias(getsupreg(oper[0]^.ref^.base))=get_alias(getsupreg(oper[1]^.reg))))
  199. ) then
  200. replaceoper:=0;
  201. end
  202. else if (oper[n+0]^.typ=top_reg) and
  203. (oper[n+1]^.typ=top_reg) and
  204. ((getregtype(oper[n+0]^.reg)<>regtype) or
  205. (getregtype(oper[n+1]^.reg)<>regtype) or
  206. (get_alias(getsupreg(oper[n+0]^.reg))<>get_alias(getsupreg(oper[n+1]^.reg)))) then
  207. begin
  208. if (getregtype(oper[n+0]^.reg)=regtype) and
  209. (get_alias(getsupreg(oper[n+0]^.reg))=orgreg) then
  210. replaceoper:=0+n
  211. else if (getregtype(oper[n+1]^.reg)=regtype) and
  212. (get_alias(getsupreg(oper[n+1]^.reg))=orgreg) then
  213. replaceoper:=1+n;
  214. end
  215. else if (oper[n+0]^.typ=top_reg) and
  216. (oper[n+1]^.typ=top_const) then
  217. begin
  218. if (getregtype(oper[0+n]^.reg)=regtype) and
  219. (get_alias(getsupreg(oper[0+n]^.reg))=orgreg) then
  220. replaceoper:=0+n
  221. else
  222. internalerror(200704282);
  223. end
  224. else if (oper[n+0]^.typ=top_const) and
  225. (oper[n+1]^.typ=top_reg) then
  226. begin
  227. if (getregtype(oper[1+n]^.reg)=regtype) and
  228. (get_alias(getsupreg(oper[1+n]^.reg))=orgreg) then
  229. replaceoper:=1+n
  230. else
  231. internalerror(200704283);
  232. end;
  233. case replaceoper of
  234. 0 :
  235. begin
  236. { Some instructions don't allow memory references
  237. for source }
  238. case opcode of
  239. A_BT,
  240. A_BTS,
  241. A_BTC,
  242. A_BTR,
  243. { shufp*/unpcklp* would require 16 byte alignment for memory locations so we force the source
  244. operand into a register }
  245. A_SHUFPD,
  246. A_SHUFPS,
  247. A_UNPCKLPD,
  248. A_UNPCKLPS :
  249. replaceoper:=-1;
  250. { movlhps/movhlps requires the second parameter to be XMM registers }
  251. A_MOVHLPS,
  252. A_MOVLHPS:
  253. replaceoper:=-1;
  254. else
  255. ;
  256. end;
  257. end;
  258. 1 :
  259. begin
  260. { Some instructions don't allow memory references
  261. for destination }
  262. case opcode of
  263. A_CMOVcc,
  264. A_MOVZX,
  265. A_MOVSX,
  266. {$ifdef x86_64}
  267. A_MOVSXD,
  268. {$endif x86_64}
  269. A_MULSS,
  270. A_MULSD,
  271. A_SUBSS,
  272. A_SUBSD,
  273. A_ADDSD,
  274. A_ADDSS,
  275. A_DIVSD,
  276. A_DIVSS,
  277. A_SQRTSD,
  278. A_SQRTSS,
  279. A_SHLD,
  280. A_SHRD,
  281. A_COMISD,
  282. A_COMISS,
  283. A_CVTDQ2PD,
  284. A_CVTDQ2PS,
  285. A_CVTPD2DQ,
  286. A_CVTPD2PI,
  287. A_CVTPD2PS,
  288. A_CVTPI2PD,
  289. A_CVTPS2DQ,
  290. A_CVTPS2PD,
  291. A_CVTSD2SI,
  292. A_CVTSD2SS,
  293. A_CVTSI2SD,
  294. A_CVTSS2SD,
  295. A_CVTTPD2PI,
  296. A_CVTTPD2DQ,
  297. A_CVTTPS2DQ,
  298. A_CVTTSD2SI,
  299. A_CVTPI2PS,
  300. A_CVTPS2PI,
  301. A_CVTSI2SS,
  302. A_CVTSS2SI,
  303. A_CVTTPS2PI,
  304. A_CVTTSS2SI,
  305. A_XORPD,
  306. A_XORPS,
  307. A_PXOR,
  308. A_PAND,
  309. A_POR,
  310. A_ORPD,
  311. A_ORPS,
  312. A_ANDPD,
  313. A_ANDPS,
  314. A_UNPCKLPS,
  315. A_UNPCKHPS,
  316. A_SHUFPD,
  317. A_SHUFPS,
  318. A_VCOMISD,
  319. A_VCOMISS:
  320. replaceoper:=-1;
  321. A_IMUL:
  322. if ops<>3 then
  323. replaceoper:=-1;
  324. {$ifdef x86_64}
  325. A_MOV:
  326. { 64 bit constants can only be moved into registers }
  327. if (oper[0]^.typ=top_const) and
  328. (oper[1]^.typ=top_reg) and
  329. ((oper[0]^.val<low(longint)) or
  330. (oper[0]^.val>high(longint))) then
  331. replaceoper:=-1;
  332. {$endif x86_64}
  333. else
  334. if avx_opcode_only_op0_may_be_memref(opcode) then
  335. replaceoper:=-1;
  336. end;
  337. end;
  338. 2 :
  339. begin
  340. { Some 3-op instructions don't allow memory references
  341. for destination }
  342. case instr.opcode of
  343. A_IMUL:
  344. replaceoper:=-1;
  345. else
  346. if avx_opcode_only_op0_may_be_memref(opcode) then
  347. replaceoper:=-1;
  348. end;
  349. end;
  350. end;
  351. end;
  352. end;
  353. end;
  354. {$ifdef x86_64}
  355. { 32 bit operations on 32 bit registers on x86_64 can result in
  356. zeroing the upper 32 bits of the register. This does not happen
  357. with memory operations, so we have to perform these calculations
  358. in registers. }
  359. if (opsize=S_L) then
  360. replaceoper:=-1;
  361. {$endif x86_64}
  362. { Replace register with spill reference }
  363. if replaceoper<>-1 then
  364. begin
  365. if opcode=A_LEA then
  366. begin
  367. opcode:=A_ADD;
  368. oper[0]^.ref^:=spilltemp;
  369. end
  370. else
  371. begin
  372. is_subh:=getsubreg(oper[replaceoper]^.reg)=R_SUBH;
  373. oper[replaceoper]^.typ:=top_ref;
  374. new(oper[replaceoper]^.ref);
  375. oper[replaceoper]^.ref^:=spilltemp;
  376. if is_subh then
  377. inc(oper[replaceoper]^.ref^.offset);
  378. { memory locations aren't guaranteed to be aligned }
  379. case opcode of
  380. A_MOVAPS:
  381. opcode:=A_MOVSS;
  382. A_MOVAPD:
  383. opcode:=A_MOVSD;
  384. A_VMOVAPS:
  385. opcode:=A_VMOVSS;
  386. A_VMOVAPD:
  387. opcode:=A_VMOVSD;
  388. else
  389. ;
  390. end;
  391. end;
  392. result:=true;
  393. end;
  394. end;
  395. end;
  396. {******************************************************************************
  397. Trgx86fpu
  398. ******************************************************************************}
  399. constructor Trgx86fpu.create;
  400. begin
  401. used_in_proc:=[];
  402. end;
  403. function trgx86fpu.getregisterfpu(list: TAsmList) : tregister;
  404. begin
  405. { note: don't return R_ST0, see comments above implementation of }
  406. { a_loadfpu_* methods in cgcpu (JM) }
  407. result:=NR_ST;
  408. end;
  409. procedure trgx86fpu.ungetregisterfpu(list : TAsmList; r : tregister);
  410. begin
  411. { nothing to do, fpu stack management is handled by the load/ }
  412. { store operations in cgcpu (JM) }
  413. end;
  414. function trgx86fpu.correct_fpuregister(r : tregister;ofs : byte) : tregister;
  415. begin
  416. correct_fpuregister:=r;
  417. setsupreg(correct_fpuregister,ofs);
  418. end;
  419. procedure trgx86fpu.saveusedfpuregisters(list: TAsmList;
  420. var saved : tpushedsavedfpu;
  421. const s: tcpuregisterset);
  422. { var
  423. r : tregister;
  424. hr : treference; }
  425. begin
  426. used_in_proc:=used_in_proc+s;
  427. { TODO: firstsavefpureg}
  428. (*
  429. { don't try to save the fpu registers if not desired (e.g. for }
  430. { the 80x86) }
  431. if firstsavefpureg <> R_NO then
  432. for r.enum:=firstsavefpureg to lastsavefpureg do
  433. begin
  434. saved[r.enum].ofs:=reg_not_saved;
  435. { if the register is used by the calling subroutine and if }
  436. { it's not a regvar (those are handled separately) }
  437. if not is_reg_var_other[r.enum] and
  438. (r.enum in s) and
  439. { and is present in use }
  440. not(r.enum in unusedregsfpu) then
  441. begin
  442. { then save it }
  443. tg.GetTemp(list,extended_size,tt_persistent,hr);
  444. saved[r.enum].ofs:=hr.offset;
  445. cg.a_loadfpu_reg_ref(list,OS_FLOAT,OS_FLOAT,r,hr);
  446. cg.a_reg_dealloc(list,r);
  447. include(unusedregsfpu,r.enum);
  448. inc(countunusedregsfpu);
  449. end;
  450. end;
  451. *)
  452. end;
  453. procedure trgx86fpu.restoreusedfpuregisters(list : TAsmList;
  454. const saved : tpushedsavedfpu);
  455. {
  456. var
  457. r,r2 : tregister;
  458. hr : treference;
  459. }
  460. begin
  461. { TODO: firstsavefpureg}
  462. (*
  463. if firstsavefpureg <> R_NO then
  464. for r.enum:=lastsavefpureg downto firstsavefpureg do
  465. begin
  466. if saved[r.enum].ofs <> reg_not_saved then
  467. begin
  468. r2.enum:=R_INTREGISTER;
  469. r2.number:=NR_FRAME_POINTER_REG;
  470. reference_reset_base(hr,r2,saved[r.enum].ofs);
  471. cg.a_reg_alloc(list,r);
  472. cg.a_loadfpu_ref_reg(list,OS_FLOAT,OS_FLOAT,hr,r);
  473. if not (r.enum in unusedregsfpu) then
  474. { internalerror(10)
  475. in n386cal we always save/restore the reg *state*
  476. using save/restoreunusedstate -> the current state
  477. may not be real (JM) }
  478. else
  479. begin
  480. dec(countunusedregsfpu);
  481. exclude(unusedregsfpu,r.enum);
  482. end;
  483. tg.UnGetTemp(list,hr);
  484. end;
  485. end;
  486. *)
  487. end;
  488. (*
  489. procedure Trgx86fpu.saveotherregvars(list: TAsmList; const s: totherregisterset);
  490. var
  491. r: Tregister;
  492. begin
  493. if not(cs_opt_regvar in current_settings.optimizerswitches) then
  494. exit;
  495. if firstsavefpureg <> NR_NO then
  496. for r.enum := firstsavefpureg to lastsavefpureg do
  497. if is_reg_var_other[r.enum] and
  498. (r.enum in s) then
  499. store_regvar(list,r);
  500. end;
  501. *)
  502. end.