cpubase.pas 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the ARM
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. {# Base unit for processor information. This unit contains
  18. enumerations of registers, opcodes, sizes, and other
  19. such things which are processor specific.
  20. }
  21. unit cpubase;
  22. {$i fpcdefs.inc}
  23. interface
  24. uses
  25. cutils,cclasses,
  26. globtype,globals,
  27. cpuinfo,
  28. aasmbase,
  29. cgbase
  30. ;
  31. {*****************************************************************************
  32. Assembler Opcodes
  33. *****************************************************************************}
  34. type
  35. TAsmOp= {$i armop.inc}
  36. { This should define the array of instructions as string }
  37. op2strtable=array[tasmop] of string[11];
  38. const
  39. { First value of opcode enumeration }
  40. firstop = low(tasmop);
  41. { Last value of opcode enumeration }
  42. lastop = high(tasmop);
  43. {*****************************************************************************
  44. Registers
  45. *****************************************************************************}
  46. type
  47. { Number of registers used for indexing in tables }
  48. tregisterindex=0..{$i rarmnor.inc}-1;
  49. const
  50. { Available Superregisters }
  51. {$i rarmsup.inc}
  52. RS_PC = RS_R15;
  53. { No Subregisters }
  54. R_SUBWHOLE = R_SUBNONE;
  55. { Available Registers }
  56. {$i rarmcon.inc}
  57. { aliases }
  58. NR_PC = NR_R15;
  59. { Integer Super registers first and last }
  60. first_int_supreg = RS_R0;
  61. first_int_imreg = $10;
  62. { Float Super register first and last }
  63. first_fpu_supreg = RS_F0;
  64. first_fpu_imreg = $08;
  65. { MM Super register first and last }
  66. first_mm_supreg = RS_S0;
  67. first_mm_imreg = $30;
  68. { TODO: Calculate bsstart}
  69. regnumber_count_bsstart = 64;
  70. regnumber_table : array[tregisterindex] of tregister = (
  71. {$i rarmnum.inc}
  72. );
  73. regstabs_table : array[tregisterindex] of shortint = (
  74. {$i rarmsta.inc}
  75. );
  76. regdwarf_table : array[tregisterindex] of shortint = (
  77. {$i rarmdwa.inc}
  78. );
  79. { registers which may be destroyed by calls }
  80. VOLATILE_INTREGISTERS = [RS_R0..RS_R3,RS_R12..RS_R14];
  81. VOLATILE_FPUREGISTERS = [RS_F0..RS_F3];
  82. VOLATILE_MMREGISTERS = [RS_D0..RS_D7,RS_D16..RS_D31,RS_S1..RS_S15];
  83. VOLATILE_INTREGISTERS_DARWIN = [RS_R0..RS_R3,RS_R9,RS_R12..RS_R14];
  84. type
  85. totherregisterset = set of tregisterindex;
  86. {*****************************************************************************
  87. Instruction post fixes
  88. *****************************************************************************}
  89. type
  90. { ARM instructions load/store and arithmetic instructions
  91. can have several instruction post fixes which are collected
  92. in this enumeration
  93. }
  94. TOpPostfix = (PF_None,
  95. { update condition flags
  96. or floating point single }
  97. PF_S,
  98. { floating point size }
  99. PF_D,PF_E,PF_P,PF_EP,
  100. { load/store }
  101. PF_B,PF_SB,PF_BT,PF_H,PF_SH,PF_T,
  102. { multiple load/store address modes }
  103. PF_IA,PF_IB,PF_DA,PF_DB,PF_FD,PF_FA,PF_ED,PF_EA,
  104. { multiple load/store vfp address modes }
  105. PF_IAD,PF_DBD,PF_FDD,PF_EAD,
  106. PF_IAS,PF_DBS,PF_FDS,PF_EAS,
  107. PF_IAX,PF_DBX,PF_FDX,PF_EAX
  108. );
  109. TRoundingMode = (RM_None,RM_P,RM_M,RM_Z);
  110. const
  111. cgsize2fpuoppostfix : array[OS_NO..OS_F128] of toppostfix = (
  112. PF_None,
  113. PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,
  114. PF_S,PF_D,PF_E,PF_None,PF_None);
  115. oppostfix2str : array[TOpPostfix] of string[3] = ('',
  116. 's',
  117. 'd','e','p','ep',
  118. 'b','sb','bt','h','sh','t',
  119. 'ia','ib','da','db','fd','fa','ed','ea',
  120. 'iad','dbd','fdd','ead',
  121. 'ias','dbs','fds','eas',
  122. 'iax','dbx','fdx','eax');
  123. roundingmode2str : array[TRoundingMode] of string[1] = ('',
  124. 'p','m','z');
  125. {*****************************************************************************
  126. Conditions
  127. *****************************************************************************}
  128. type
  129. TAsmCond=(C_None,
  130. C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
  131. C_GE,C_LT,C_GT,C_LE,C_AL,C_NV
  132. );
  133. const
  134. cond2str : array[TAsmCond] of string[2]=('',
  135. 'eq','ne','cs','cc','mi','pl','vs','vc','hi','ls',
  136. 'ge','lt','gt','le','al','nv'
  137. );
  138. uppercond2str : array[TAsmCond] of string[2]=('',
  139. 'EQ','NE','CS','CC','MI','PL','VS','VC','HI','LS',
  140. 'GE','LT','GT','LE','AL','NV'
  141. );
  142. {*****************************************************************************
  143. Flags
  144. *****************************************************************************}
  145. type
  146. TResFlags = (F_EQ,F_NE,F_CS,F_CC,F_MI,F_PL,F_VS,F_VC,F_HI,F_LS,
  147. F_GE,F_LT,F_GT,F_LE);
  148. {*****************************************************************************
  149. Operands
  150. *****************************************************************************}
  151. taddressmode = (AM_OFFSET,AM_PREINDEXED,AM_POSTINDEXED);
  152. tshiftmode = (SM_None,SM_LSL,SM_LSR,SM_ASR,SM_ROR,SM_RRX);
  153. tupdatereg = (UR_None,UR_Update);
  154. pshifterop = ^tshifterop;
  155. tshifterop = record
  156. shiftmode : tshiftmode;
  157. rs : tregister;
  158. shiftimm : byte;
  159. end;
  160. tcpumodeflag = (mfA, mfI, mfF);
  161. tcpumodeflags = set of tcpumodeflag;
  162. {*****************************************************************************
  163. Constants
  164. *****************************************************************************}
  165. const
  166. max_operands = 4;
  167. maxintregs = 15;
  168. maxfpuregs = 8;
  169. maxaddrregs = 0;
  170. {*****************************************************************************
  171. Operand Sizes
  172. *****************************************************************************}
  173. type
  174. topsize = (S_NO,
  175. S_B,S_W,S_L,S_BW,S_BL,S_WL,
  176. S_IS,S_IL,S_IQ,
  177. S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX
  178. );
  179. {*****************************************************************************
  180. Constants
  181. *****************************************************************************}
  182. const
  183. maxvarregs = 7;
  184. varregs : Array [1..maxvarregs] of tsuperregister =
  185. (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
  186. maxfpuvarregs = 4;
  187. fpuvarregs : Array [1..maxfpuvarregs] of tsuperregister =
  188. (RS_F4,RS_F5,RS_F6,RS_F7);
  189. {*****************************************************************************
  190. Default generic sizes
  191. *****************************************************************************}
  192. { Defines the default address size for a processor, }
  193. OS_ADDR = OS_32;
  194. { the natural int size for a processor, }
  195. OS_INT = OS_32;
  196. OS_SINT = OS_S32;
  197. { the maximum float size for a processor, }
  198. OS_FLOAT = OS_F64;
  199. { the size of a vector register for a processor }
  200. OS_VECTOR = OS_M32;
  201. {*****************************************************************************
  202. Generic Register names
  203. *****************************************************************************}
  204. { Stack pointer register }
  205. NR_STACK_POINTER_REG = NR_R13;
  206. RS_STACK_POINTER_REG = RS_R13;
  207. { Frame pointer register (initialized in tarmprocinfo.init_framepointer) }
  208. RS_FRAME_POINTER_REG: tsuperregister = RS_NO;
  209. NR_FRAME_POINTER_REG: tregister = NR_NO;
  210. { Register for addressing absolute data in a position independant way,
  211. such as in PIC code. The exact meaning is ABI specific. For
  212. further information look at GCC source : PIC_OFFSET_TABLE_REGNUM
  213. }
  214. NR_PIC_OFFSET_REG = NR_R9;
  215. { Results are returned in this register (32-bit values) }
  216. NR_FUNCTION_RETURN_REG = NR_R0;
  217. RS_FUNCTION_RETURN_REG = RS_R0;
  218. { The value returned from a function is available in this register }
  219. NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG;
  220. RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG;
  221. NR_FPU_RESULT_REG = NR_F0;
  222. NR_MM_RESULT_REG = NR_D0;
  223. NR_RETURN_ADDRESS_REG = NR_FUNCTION_RETURN_REG;
  224. { Offset where the parent framepointer is pushed }
  225. PARENT_FRAMEPOINTER_OFFSET = 0;
  226. { Low part of 64bit return value }
  227. function NR_FUNCTION_RESULT64_LOW_REG: tregister;
  228. function RS_FUNCTION_RESULT64_LOW_REG: shortint;
  229. { High part of 64bit return value }
  230. function NR_FUNCTION_RESULT64_HIGH_REG: tregister;
  231. function RS_FUNCTION_RESULT64_HIGH_REG: shortint;
  232. {*****************************************************************************
  233. GCC /ABI linking information
  234. *****************************************************************************}
  235. const
  236. { Registers which must be saved when calling a routine declared as
  237. cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers
  238. saved should be the ones as defined in the target ABI and / or GCC.
  239. This value can be deduced from the CALLED_USED_REGISTERS array in the
  240. GCC source.
  241. }
  242. saved_standard_registers : array[0..6] of tsuperregister =
  243. (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
  244. { this is only for the generic code which is not used for this architecture }
  245. saved_mm_registers : array[0..0] of tsuperregister = (RS_NO);
  246. { Required parameter alignment when calling a routine declared as
  247. stdcall and cdecl. The alignment value should be the one defined
  248. by GCC or the target ABI.
  249. The value of this constant is equal to the constant
  250. PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
  251. }
  252. std_param_align = 4;
  253. {*****************************************************************************
  254. Helpers
  255. *****************************************************************************}
  256. { Returns the tcgsize corresponding with the size of reg.}
  257. function reg_cgsize(const reg: tregister) : tcgsize;
  258. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  259. function is_calljmp(o:tasmop):boolean;
  260. procedure inverse_flags(var f: TResFlags);
  261. function flags_to_cond(const f: TResFlags) : TAsmCond;
  262. function findreg_by_number(r:Tregister):tregisterindex;
  263. function std_regnum_search(const s:string):Tregister;
  264. function std_regname(r:Tregister):string;
  265. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  266. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  267. procedure shifterop_reset(var so : tshifterop);
  268. function is_pc(const r : tregister) : boolean;
  269. function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
  270. function dwarf_reg(r:tregister):shortint;
  271. implementation
  272. uses
  273. systems,rgBase,verbose;
  274. const
  275. std_regname_table : array[tregisterindex] of string[7] = (
  276. {$i rarmstd.inc}
  277. );
  278. regnumber_index : array[tregisterindex] of tregisterindex = (
  279. {$i rarmrni.inc}
  280. );
  281. std_regname_index : array[tregisterindex] of tregisterindex = (
  282. {$i rarmsri.inc}
  283. );
  284. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  285. begin
  286. case regtype of
  287. R_MMREGISTER:
  288. begin
  289. case s of
  290. OS_F32:
  291. cgsize2subreg:=R_SUBFS;
  292. OS_F64:
  293. cgsize2subreg:=R_SUBFD;
  294. else
  295. internalerror(2009112701);
  296. end;
  297. end;
  298. else
  299. cgsize2subreg:=R_SUBWHOLE;
  300. end;
  301. end;
  302. function reg_cgsize(const reg: tregister): tcgsize;
  303. begin
  304. case getregtype(reg) of
  305. R_INTREGISTER :
  306. reg_cgsize:=OS_32;
  307. R_FPUREGISTER :
  308. reg_cgsize:=OS_F80;
  309. R_MMREGISTER :
  310. begin
  311. case getsubreg(reg) of
  312. R_SUBFD,
  313. R_SUBWHOLE:
  314. result:=OS_F64;
  315. R_SUBFS:
  316. result:=OS_F32;
  317. else
  318. internalerror(2009112903);
  319. end;
  320. end;
  321. else
  322. internalerror(200303181);
  323. end;
  324. end;
  325. function is_calljmp(o:tasmop):boolean;
  326. begin
  327. { This isn't 100% perfect because the arm allows jumps also by writing to PC=R15.
  328. To overcome this problem we simply forbid that FPC generates jumps by loading R15 }
  329. is_calljmp:= o in [A_B,A_BL,A_BX,A_BLX];
  330. end;
  331. procedure inverse_flags(var f: TResFlags);
  332. const
  333. inv_flags: array[TResFlags] of TResFlags =
  334. (F_NE,F_EQ,F_CC,F_CS,F_PL,F_MI,F_VC,F_VS,F_LS,F_HI,
  335. F_LT,F_GE,F_LE,F_GT);
  336. begin
  337. f:=inv_flags[f];
  338. end;
  339. function flags_to_cond(const f: TResFlags) : TAsmCond;
  340. const
  341. flag_2_cond: array[F_EQ..F_LE] of TAsmCond =
  342. (C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
  343. C_GE,C_LT,C_GT,C_LE);
  344. begin
  345. if f>high(flag_2_cond) then
  346. internalerror(200112301);
  347. result:=flag_2_cond[f];
  348. end;
  349. function findreg_by_number(r:Tregister):tregisterindex;
  350. begin
  351. result:=rgBase.findreg_by_number_table(r,regnumber_index);
  352. end;
  353. function std_regnum_search(const s:string):Tregister;
  354. begin
  355. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  356. end;
  357. function std_regname(r:Tregister):string;
  358. var
  359. p : tregisterindex;
  360. begin
  361. p:=findreg_by_number_table(r,regnumber_index);
  362. if p<>0 then
  363. result:=std_regname_table[p]
  364. else
  365. result:=generic_regname(r);
  366. end;
  367. procedure shifterop_reset(var so : tshifterop);
  368. begin
  369. FillChar(so,sizeof(so),0);
  370. end;
  371. function is_pc(const r : tregister) : boolean;
  372. begin
  373. is_pc:=(r=NR_R15);
  374. end;
  375. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  376. const
  377. inverse: array[TAsmCond] of TAsmCond=(C_None,
  378. C_NE,C_EQ,C_CC,C_CS,C_PL,C_MI,C_VC,C_VS,C_LS,C_HI,
  379. C_LT,C_GE,C_LE,C_GT,C_None,C_None
  380. );
  381. begin
  382. result := inverse[c];
  383. end;
  384. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  385. begin
  386. result := c1 = c2;
  387. end;
  388. function rotl(d : dword;b : byte) : dword;
  389. begin
  390. result:=(d shr (32-b)) or (d shl b);
  391. end;
  392. function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
  393. var
  394. i : longint;
  395. begin
  396. if current_settings.cputype in cpu_thumb2 then
  397. begin
  398. for i:=0 to 24 do
  399. begin
  400. if (dword(d) and not($ff shl i))=0 then
  401. begin
  402. imm_shift:=i;
  403. result:=true;
  404. exit;
  405. end;
  406. end;
  407. end
  408. else
  409. begin
  410. for i:=0 to 15 do
  411. begin
  412. if (dword(d) and not(rotl($ff,i*2)))=0 then
  413. begin
  414. imm_shift:=i*2;
  415. result:=true;
  416. exit;
  417. end;
  418. end;
  419. end;
  420. result:=false;
  421. end;
  422. function dwarf_reg(r:tregister):shortint;
  423. begin
  424. result:=regdwarf_table[findreg_by_number(r)];
  425. if result=-1 then
  426. internalerror(200603251);
  427. end;
  428. { Low part of 64bit return value }
  429. function NR_FUNCTION_RESULT64_LOW_REG: tregister;
  430. begin
  431. if target_info.endian=endian_little then
  432. result:=NR_R0
  433. else
  434. result:=NR_R1;
  435. end;
  436. function RS_FUNCTION_RESULT64_LOW_REG: shortint;
  437. begin
  438. if target_info.endian=endian_little then
  439. result:=RS_R0
  440. else
  441. result:=RS_R1;
  442. end;
  443. { High part of 64bit return value }
  444. function NR_FUNCTION_RESULT64_HIGH_REG: tregister;
  445. begin
  446. if target_info.endian=endian_little then
  447. result:=NR_R1
  448. else
  449. result:=NR_R0;
  450. end;
  451. function RS_FUNCTION_RESULT64_HIGH_REG: shortint;
  452. begin
  453. if target_info.endian=endian_little then
  454. result:=RS_R1
  455. else
  456. result:=RS_R0;
  457. end;
  458. end.