cpubase.pas 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl
  3. Contains the base types for the m68k
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. { This Unit contains the base types for the m68k
  18. }
  19. unit cpubase;
  20. {$i fpcdefs.inc}
  21. interface
  22. uses
  23. globtype,globals,
  24. strings,cutils,cclasses,aasmbase,cpuinfo,cgbase;
  25. {*****************************************************************************
  26. Assembler Opcodes
  27. *****************************************************************************}
  28. type
  29. { warning: CPU32 opcodes are not fully compatible with the MC68020. }
  30. { 68000 only opcodes }
  31. tasmop = (a_none,
  32. a_abcd,a_add,a_adda,a_addi,a_addq,a_addx,a_and,a_andi,
  33. a_asl,a_asr,a_bcc,a_bcs,a_beq,a_bge,a_bgt,a_bhi,
  34. a_ble,a_bls,a_blt,a_bmi,a_bne,a_bpl,a_bvc,a_bvs,
  35. a_bchg,a_bclr,a_bra,a_bset,a_bsr,a_btst,a_chk,
  36. a_clr,a_cmp,a_cmpa,a_cmpi,a_cmpm,a_dbcc,a_dbcs,a_dbeq,a_dbge,
  37. a_dbgt,a_dbhi,a_dble,a_dbls,a_dblt,a_dbmi,a_dbne,a_dbra,
  38. a_dbpl,a_dbt,a_dbvc,a_dbvs,a_dbf,a_divs,a_divu,
  39. a_eor,a_eori,a_exg,a_illegal,a_ext,a_jmp,a_jsr,
  40. a_lea,a_link,a_lsl,a_lsr,a_move,a_movea,a_movei,a_moveq,
  41. a_movem,a_movep,a_muls,a_mulu,a_nbcd,a_neg,a_negx,
  42. a_nop,a_not,a_or,a_ori,a_pea,a_rol,a_ror,a_roxl,
  43. a_roxr,a_rtr,a_rts,a_sbcd,a_scc,a_scs,a_seq,a_sge,
  44. a_sgt,a_shi,a_sle,a_sls,a_slt,a_smi,a_sne,
  45. a_spl,a_st,a_svc,a_svs,a_sf,a_sub,a_suba,a_subi,a_subq,
  46. a_subx,a_swap,a_tas,a_trap,a_trapv,a_tst,a_unlk,
  47. a_rte,a_reset,a_stop,
  48. { mc68010 instructions }
  49. a_bkpt,a_movec,a_moves,a_rtd,
  50. { mc68020 instructions }
  51. a_bfchg,a_bfclr,a_bfexts,a_bfextu,a_bfffo,
  52. a_bfins,a_bfset,a_bftst,a_callm,a_cas,a_cas2,
  53. a_chk2,a_cmp2,a_divsl,a_divul,a_extb,a_pack,a_rtm,
  54. a_trapcc,a_tracs,a_trapeq,a_trapf,a_trapge,a_trapgt,
  55. a_traphi,a_traple,a_trapls,a_traplt,a_trapmi,a_trapne,
  56. a_trappl,a_trapt,a_trapvc,a_trapvs,a_unpk,
  57. { mc64040 instructions }
  58. a_move16,
  59. { coldfire v4 instructions }
  60. a_mov3q,a_mvz,a_mvs,a_sats,a_byterev,a_ff1,a_remu,a_rems,
  61. { fpu processor instructions - directly supported }
  62. { ieee aware and misc. condition codes not supported }
  63. a_fabs,a_fadd,
  64. a_fbeq,a_fbne,a_fbngt,a_fbgt,a_fbge,a_fbnge,
  65. a_fblt,a_fbnlt,a_fble,a_fbgl,a_fbngl,a_fbgle,a_fbngle,
  66. a_fdbeq,a_fdbne,a_fdbgt,a_fdbngt,a_fdbge,a_fdbnge,
  67. a_fdblt,a_fdbnlt,a_fdble,a_fdbgl,a_fdbngl,a_fdbgle,a_fdbngle,
  68. a_fseq,a_fsne,a_fsgt,a_fsngt,a_fsge,a_fsnge,
  69. a_fslt,a_fsnlt,a_fsle,a_fsgl,a_fsngl,a_fsgle,a_fsngle,
  70. a_fcmp,a_fdiv,a_fmove,a_fmovem,
  71. a_fmul,a_fneg,a_fnop,a_fsqrt,a_fsub,a_fsgldiv,
  72. a_fsflmul,a_ftst,
  73. a_ftrapeq,a_ftrapne,a_ftrapgt,a_ftrapngt,a_ftrapge,a_ftrapnge,
  74. a_ftraplt,a_ftrapnlt,a_ftraple,a_ftrapgl,a_ftrapngl,a_ftrapgle,a_ftrapngle,
  75. a_fint,a_fintrz,
  76. { fpu instructions - indirectly supported }
  77. a_fsin,a_fcos,
  78. { protected instructions }
  79. a_cprestore,a_cpsave,
  80. { fpu unit protected instructions }
  81. { and 68030/68851 common mmu instructions }
  82. { (this may include 68040 mmu instructions) }
  83. a_frestore,a_fsave,a_pflush,a_pflusha,a_pload,a_pmove,a_ptest,
  84. { useful for assembly language output }
  85. a_label,a_dbxx,a_sxx,a_bxx,a_fsxx,a_fbxx);
  86. {# This should define the array of instructions as string }
  87. op2strtable=array[tasmop] of string[11];
  88. Const
  89. {# First value of opcode enumeration }
  90. firstop = low(tasmop);
  91. {# Last value of opcode enumeration }
  92. lastop = high(tasmop);
  93. {*****************************************************************************
  94. Registers
  95. *****************************************************************************}
  96. type
  97. { Number of registers used for indexing in tables }
  98. tregisterindex=0..{$i r68knor.inc}-1;
  99. const
  100. { Available Superregisters }
  101. {$i r68ksup.inc}
  102. RS_SP = RS_A7;
  103. R_SUBWHOLE = R_SUBNONE;
  104. { Available Registers }
  105. {$i r68kcon.inc}
  106. NR_SP = NR_A7;
  107. { Integer Super registers first and last }
  108. first_int_imreg = RS_D7+1;
  109. { Float Super register first and last }
  110. first_fpu_imreg = RS_FP7+1;
  111. { Integer Super registers first and last }
  112. first_addr_imreg = RS_SP+1;
  113. { MM Super register first and last }
  114. first_mm_supreg = 0;
  115. first_mm_imreg = 0;
  116. maxfpuregs = 8;
  117. { include regnumber_count_bsstart }
  118. {$i r68kbss.inc}
  119. regnumber_table : array[tregisterindex] of tregister = (
  120. {$i r68knum.inc}
  121. );
  122. regstabs_table : array[tregisterindex] of shortint = (
  123. {$i r68ksta.inc}
  124. );
  125. regdwarf_table : array[tregisterindex] of shortint = (
  126. { TODO: reused stabs values!}
  127. {$i r68ksta.inc}
  128. );
  129. { registers which may be destroyed by calls }
  130. VOLATILE_INTREGISTERS = [RS_D0,RS_D1];
  131. VOLATILE_FPUREGISTERS = [RS_FP0,RS_FP1];
  132. VOLATILE_ADDRESSREGISTERS = [RS_A0,RS_A1];
  133. type
  134. totherregisterset = set of tregisterindex;
  135. {*****************************************************************************
  136. Conditions
  137. *****************************************************************************}
  138. type
  139. TAsmCond=(C_None,
  140. C_CC,C_LS,C_CS,C_LT,C_EQ,C_MI,C_F,C_NE,
  141. C_GE,C_PL,C_GT,C_T,C_HI,C_VC,C_LE,C_VS
  142. );
  143. const
  144. cond2str:array[TAsmCond] of string[3]=('',
  145. 'cc','ls','cs','lt','eq','mi','f','ne',
  146. 'ge','pl','gt','t','hi','vc','le','vs'
  147. );
  148. {*****************************************************************************
  149. Flags
  150. *****************************************************************************}
  151. type
  152. TResFlags = (
  153. F_E,F_NE,
  154. F_G,F_L,F_GE,F_LE,F_C,F_NC,F_A,F_AE,F_B,F_BE,
  155. F_FE,F_FNE,
  156. F_FG,F_FL,F_FGE,F_FLE
  157. );
  158. const
  159. FloatResFlags = [F_FE..F_FLE];
  160. {*****************************************************************************
  161. Reference
  162. *****************************************************************************}
  163. type
  164. { direction of address register : }
  165. { (An) (An)+ -(An) }
  166. tdirection = (dir_none,dir_inc,dir_dec);
  167. {*****************************************************************************
  168. Operand Sizes
  169. *****************************************************************************}
  170. { S_NO = No Size of operand }
  171. { S_B = 8-bit size operand }
  172. { S_W = 16-bit size operand }
  173. { S_L = 32-bit size operand }
  174. { Floating point types }
  175. { S_FS = single type (32 bit) }
  176. { S_FD = double/64bit integer }
  177. { S_FX = Extended type }
  178. topsize = (S_NO,S_B,S_W,S_L,S_FS,S_FD,S_FX,S_IQ);
  179. {*****************************************************************************
  180. Constants
  181. *****************************************************************************}
  182. const
  183. {# maximum number of operands in assembler instruction }
  184. max_operands = 4;
  185. {*****************************************************************************
  186. Default generic sizes
  187. *****************************************************************************}
  188. {# Defines the default address size for a processor, }
  189. OS_ADDR = OS_32;
  190. {# the natural int size for a processor,
  191. has to match osuinttype/ossinttype as initialized in psystem }
  192. OS_INT = OS_32;
  193. OS_SINT = OS_S32;
  194. {# the maximum float size for a processor, }
  195. OS_FLOAT = OS_F64;
  196. {# the size of a vector register for a processor }
  197. OS_VECTOR = OS_M128;
  198. {*****************************************************************************
  199. GDB Information
  200. *****************************************************************************}
  201. {# Register indexes for stabs information, when some
  202. parameters or variables are stored in registers.
  203. Taken from m68kelf.h (DBX_REGISTER_NUMBER)
  204. from GCC 3.x source code.
  205. This is not compatible with the m68k-sun
  206. implementation.
  207. }
  208. stab_regindex : array[tregisterindex] of shortint =
  209. (
  210. {$i r68ksta.inc}
  211. );
  212. {*****************************************************************************
  213. Generic Register names
  214. *****************************************************************************}
  215. {# Stack pointer register }
  216. NR_STACK_POINTER_REG = NR_SP;
  217. RS_STACK_POINTER_REG = RS_SP;
  218. {# Frame pointer register }
  219. { Frame pointer register (initialized in tcpuprocinfo.init_framepointer) }
  220. RS_FRAME_POINTER_REG: tsuperregister = RS_NO;
  221. NR_FRAME_POINTER_REG: tregister = NR_NO;
  222. {# Register for addressing absolute data in a position independant way,
  223. such as in PIC code. The exact meaning is ABI specific. For
  224. further information look at GCC source : PIC_OFFSET_TABLE_REGNUM
  225. }
  226. { TODO: FIX ME!!! pic offset reg conflicts with frame pointer?}
  227. NR_PIC_OFFSET_REG = NR_A5;
  228. { Return address for DWARF }
  229. NR_RETURN_ADDRESS_REG = NR_A0;
  230. RS_RETURN_ADDRESS_REG = RS_A0;
  231. { Results are returned in this register (32-bit values) }
  232. NR_FUNCTION_RETURN_REG = NR_D0;
  233. RS_FUNCTION_RETURN_REG = RS_D0;
  234. { Low part of 64bit return value }
  235. NR_FUNCTION_RETURN64_LOW_REG = NR_D0;
  236. RS_FUNCTION_RETURN64_LOW_REG = RS_D0;
  237. { High part of 64bit return value }
  238. NR_FUNCTION_RETURN64_HIGH_REG = NR_D1;
  239. RS_FUNCTION_RETURN64_HIGH_REG = RS_D1;
  240. { The value returned from a function is available in this register }
  241. NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG;
  242. RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG;
  243. { The lowh part of 64bit value returned from a function }
  244. NR_FUNCTION_RESULT64_LOW_REG = NR_FUNCTION_RETURN64_LOW_REG;
  245. RS_FUNCTION_RESULT64_LOW_REG = RS_FUNCTION_RETURN64_LOW_REG;
  246. { The high part of 64bit value returned from a function }
  247. NR_FUNCTION_RESULT64_HIGH_REG = NR_FUNCTION_RETURN64_HIGH_REG;
  248. RS_FUNCTION_RESULT64_HIGH_REG = RS_FUNCTION_RETURN64_HIGH_REG;
  249. {# Floating point results will be placed into this register }
  250. NR_FPU_RESULT_REG = NR_FP0;
  251. NR_DEFAULTFLAGS = NR_SR;
  252. RS_DEFAULTFLAGS = RS_SR;
  253. {*****************************************************************************
  254. GCC /ABI linking information
  255. *****************************************************************************}
  256. {# Registers which must be saved when calling a routine declared as
  257. cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers
  258. saved should be the ones as defined in the target ABI and / or GCC.
  259. This value can be deduced from CALLED_USED_REGISTERS array in the
  260. GCC source.
  261. }
  262. saved_standard_registers : array[0..5] of tsuperregister = (RS_D2,RS_D3,RS_D4,RS_D5,RS_D6,RS_D7);
  263. saved_address_registers : array[0..4] of tsuperregister = (RS_A2,RS_A3,RS_A4,RS_A5,RS_A6);
  264. saved_fpu_registers : array[0..5] of tsuperregister = (RS_FP2,RS_FP3,RS_FP4,RS_FP5,RS_FP6,RS_FP7);
  265. { this is only for the generic code which is not used for this architecture }
  266. saved_mm_registers : array[0..0] of tsuperregister = (RS_INVALID);
  267. {# Required parameter alignment when calling a routine declared as
  268. stdcall and cdecl. The alignment value should be the one defined
  269. by GCC or the target ABI.
  270. The value of this constant is equal to the constant
  271. PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
  272. }
  273. std_param_align = 4; { for 32-bit version only }
  274. {*****************************************************************************
  275. CPU Dependent Constants
  276. *****************************************************************************}
  277. {*****************************************************************************
  278. Helpers
  279. *****************************************************************************}
  280. const
  281. tcgsize2opsize: Array[tcgsize] of topsize =
  282. (S_NO,S_B,S_W,S_L,S_L,S_NO,S_B,S_W,S_L,S_L,S_NO,
  283. S_FS,S_FD,S_FX,S_NO,S_NO,
  284. S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,
  285. S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  286. function is_calljmp(o:tasmop):boolean;
  287. procedure inverse_flags(var r : TResFlags);
  288. function flags_to_cond(const f: TResFlags) : TAsmCond;
  289. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  290. function reg_cgsize(const reg: tregister): tcgsize;
  291. function findreg_by_number(r:Tregister):tregisterindex;
  292. function std_regnum_search(const s:string):Tregister;
  293. function std_regname(r:Tregister):string;
  294. function isaddressregister(reg : tregister) : boolean;
  295. function isintregister(reg : tregister) : boolean;
  296. function fpuregopsize: TOpSize; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  297. function fpuregsize: aint; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  298. function needs_unaligned(const refalignment: aint; const size: tcgsize): boolean;
  299. function isregoverlap(reg1: tregister; reg2: tregister): boolean;
  300. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  301. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  302. function dwarf_reg(r:tregister):shortint;
  303. function isvalue8bit(val: tcgint): boolean;
  304. function isvalue16bit(val: tcgint): boolean;
  305. function isvalueforaddqsubq(val: tcgint): boolean;
  306. implementation
  307. uses
  308. verbose,
  309. rgbase;
  310. const
  311. std_regname_table : TRegNameTable = (
  312. {$i r68kstd.inc}
  313. );
  314. regnumber_index : array[tregisterindex] of tregisterindex = (
  315. {$i r68krni.inc}
  316. );
  317. std_regname_index : array[tregisterindex] of tregisterindex = (
  318. {$i r68ksri.inc}
  319. );
  320. {*****************************************************************************
  321. Helpers
  322. *****************************************************************************}
  323. function is_calljmp(o:tasmop):boolean;
  324. begin
  325. is_calljmp :=
  326. o in [A_BXX,A_FBXX,A_DBXX,A_BCC..A_BVS,A_DBCC..A_DBVS,A_FBEQ..A_FSNGLE,
  327. A_JSR,A_BSR,A_JMP];
  328. end;
  329. procedure inverse_flags(var r: TResFlags);
  330. const flagsinvers : array[F_E..F_FLE] of tresflags =
  331. (F_NE,F_E,
  332. F_LE,F_GE,
  333. F_L,F_G,
  334. F_NC,F_C,
  335. F_BE,F_B,
  336. F_AE,F_A,
  337. F_FNE,F_FE,
  338. F_FLE,F_FGE,
  339. F_FL,F_G);
  340. begin
  341. r:=flagsinvers[r];
  342. end;
  343. function flags_to_cond(const f: TResFlags) : TAsmCond;
  344. const flags2cond: array[tresflags] of tasmcond = (
  345. C_EQ,{F_E equal}
  346. C_NE,{F_NE not equal}
  347. C_GT,{F_G gt signed}
  348. C_LT,{F_L lt signed}
  349. C_GE,{F_GE ge signed}
  350. C_LE,{F_LE le signed}
  351. C_CS,{F_C carry set}
  352. C_CC,{F_NC carry clear}
  353. C_HI,{F_A gt unsigned}
  354. C_CC,{F_AE ge unsigned}
  355. C_CS,{F_B lt unsigned}
  356. C_LS,{F_BE le unsigned}
  357. C_EQ,{F_FEQ }
  358. C_NE,{F_FNE }
  359. C_GT,{F_FG }
  360. C_LT,{F_FL }
  361. C_GE,{F_FGE }
  362. C_LE);{F_FLE }
  363. begin
  364. flags_to_cond := flags2cond[f];
  365. end;
  366. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  367. var p: pointer;
  368. begin
  369. case s of
  370. OS_NO: begin
  371. { TODO: FIX ME!!! results in bad code generation}
  372. cgsize2subreg:=R_SUBWHOLE;
  373. end;
  374. OS_8,OS_S8:
  375. cgsize2subreg:=R_SUBWHOLE;
  376. OS_16,OS_S16:
  377. cgsize2subreg:=R_SUBWHOLE;
  378. OS_32,OS_S32:
  379. cgsize2subreg:=R_SUBWHOLE;
  380. OS_64,OS_S64:
  381. begin
  382. cgsize2subreg:=R_SUBWHOLE;
  383. end;
  384. OS_F32 :
  385. cgsize2subreg:=R_SUBFS;
  386. OS_F64 :
  387. cgsize2subreg:=R_SUBFD;
  388. {
  389. begin
  390. // is this correct? (KB)
  391. cgsize2subreg:=R_SUBNONE;
  392. end;
  393. }
  394. else begin
  395. // this supposed to be debug
  396. // p:=nil; dword(p^):=0;
  397. // internalerror(200301231);
  398. cgsize2subreg:=R_SUBWHOLE;
  399. end;
  400. end;
  401. end;
  402. function reg_cgsize(const reg: tregister): tcgsize;
  403. { 68881 & compatibles -> 80 bit }
  404. { CF FPU -> 64 bit }
  405. const
  406. fpureg_cgsize: array[boolean] of tcgsize = ( OS_F80, OS_F64 );
  407. begin
  408. case getregtype(reg) of
  409. R_ADDRESSREGISTER,
  410. R_INTREGISTER :
  411. result:=OS_32;
  412. R_FPUREGISTER :
  413. result:=fpureg_cgsize[current_settings.fputype = fpu_coldfire];
  414. else
  415. internalerror(200303181);
  416. end;
  417. end;
  418. function findreg_by_number(r:Tregister):tregisterindex;
  419. begin
  420. result:=findreg_by_number_table(r,regnumber_index);
  421. end;
  422. function std_regnum_search(const s:string):Tregister;
  423. begin
  424. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  425. end;
  426. function std_regname(r:Tregister):string;
  427. var
  428. p : tregisterindex;
  429. begin
  430. p:=findreg_by_number_table(r,regnumber_index);
  431. if p<>0 then
  432. result:=std_regname_table[p]
  433. else
  434. result:=generic_regname(r);
  435. end;
  436. function isaddressregister(reg : tregister) : boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  437. begin
  438. result:=getregtype(reg)=R_ADDRESSREGISTER;
  439. end;
  440. function isintregister(reg : tregister) : boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  441. begin
  442. result:=getregtype(reg)=R_INTREGISTER;
  443. end;
  444. function fpuregopsize: TOpSize; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  445. const
  446. fpu_regopsize: array[boolean] of TOpSize = ( S_FX, S_FD );
  447. begin
  448. result:=fpu_regopsize[current_settings.fputype = fpu_coldfire];
  449. end;
  450. function fpuregsize: aint; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  451. const
  452. fpu_regsize: array[boolean] of aint = ( 12, 8 ); { S_FX is 12 bytes on '881 }
  453. begin
  454. result:=fpu_regsize[current_settings.fputype = fpu_coldfire];
  455. end;
  456. function needs_unaligned(const refalignment: aint; const size: tcgsize): boolean;
  457. begin
  458. result:=not(CPUM68K_HAS_UNALIGNED in cpu_capabilities[current_settings.cputype]) and
  459. (refalignment = 1) and
  460. (tcgsize2size[size] > 1);
  461. end;
  462. // the function returns true, if the registers overlap (subreg of the same superregister and same type)
  463. function isregoverlap(reg1: tregister; reg2: tregister): boolean;
  464. begin
  465. tregisterrec(reg1).subreg:=R_SUBNONE;
  466. tregisterrec(reg2).subreg:=R_SUBNONE;
  467. result:=reg1=reg2;
  468. end;
  469. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  470. const
  471. inverse:array[TAsmCond] of TAsmCond=(C_None,
  472. //C_CC,C_LS,C_CS,C_LT,C_EQ,C_MI,C_F,C_NE,
  473. C_CS,C_HI,C_CC,C_GE,C_NE,C_PL,C_T,C_EQ,
  474. //C_GE,C_PL,C_GT,C_T,C_HI,C_VC,C_LE,C_VS
  475. C_LT,C_MI,C_LE,C_F,C_LS,C_VS,C_GT,C_VC
  476. );
  477. begin
  478. result := inverse[c];
  479. end;
  480. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  481. begin
  482. result := c1 = c2;
  483. end;
  484. function dwarf_reg(r:tregister):shortint;
  485. begin
  486. result:=regdwarf_table[findreg_by_number(r)];
  487. if result=-1 then
  488. internalerror(200603251);
  489. end;
  490. { returns true if given value fits to an 8bit signed integer }
  491. function isvalue8bit(val: tcgint): boolean;
  492. begin
  493. isvalue8bit := (val >= low(shortint)) and (val <= high(shortint));
  494. end;
  495. { returns true if given value fits to a 16bit signed integer }
  496. function isvalue16bit(val: tcgint): boolean;
  497. begin
  498. isvalue16bit := (val >= low(smallint)) and (val <= high(smallint));
  499. end;
  500. { returns true if given value fits addq/subq argument, so in 1 - 8 range }
  501. function isvalueforaddqsubq(val: tcgint): boolean;
  502. begin
  503. isvalueforaddqsubq := (val >= 1) and (val <= 8);
  504. end;
  505. end.