cpubase.pas 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the i8086, i386 and x86-64 architecture
  4. * This code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. {# Base unit for processor information. This unit contains
  21. enumerations of registers, opcodes, sizes, and other
  22. such things which are processor specific.
  23. }
  24. unit cpubase;
  25. {$i fpcdefs.inc}
  26. interface
  27. uses
  28. cutils,cclasses,
  29. globtype,globals,
  30. cgbase
  31. ;
  32. {*****************************************************************************
  33. Assembler Opcodes
  34. *****************************************************************************}
  35. type
  36. {$if defined(x86_64)}
  37. TAsmOp={$i x8664op.inc}
  38. {$elseif defined(i386)}
  39. TAsmOp={$i i386op.inc}
  40. {$elseif defined(i8086)}
  41. TAsmOp={$i i8086op.inc}
  42. {$endif}
  43. { This should define the array of instructions as string }
  44. op2strtable=array[tasmop] of string[16];
  45. {$ifdef i8086}
  46. ImmInt = SmallInt;
  47. {$else i8086}
  48. ImmInt = Longint;
  49. {$endif i8086}
  50. const
  51. { First value of opcode enumeration }
  52. firstop = low(tasmop);
  53. { Last value of opcode enumeration }
  54. lastop = high(tasmop);
  55. {*****************************************************************************
  56. Registers
  57. *****************************************************************************}
  58. const
  59. { Integer Super registers }
  60. RS_NO = $ffffffff;
  61. RS_RAX = $00; {EAX}
  62. RS_RCX = $01; {ECX}
  63. RS_RDX = $02; {EDX}
  64. RS_RBX = $03; {EBX}
  65. RS_RSI = $04; {ESI}
  66. RS_RDI = $05; {EDI}
  67. RS_RBP = $06; {EBP}
  68. RS_RSP = $07; {ESP}
  69. RS_R8 = $08; {R8}
  70. RS_R9 = $09; {R9}
  71. RS_R10 = $0a; {R10}
  72. RS_R11 = $0b; {R11}
  73. RS_R12 = $0c; {R12}
  74. RS_R13 = $0d; {R13}
  75. RS_R14 = $0e; {R14}
  76. RS_R15 = $0f; {R15}
  77. { create aliases to allow code sharing between x86-64 and i386 }
  78. RS_EAX = RS_RAX;
  79. RS_EBX = RS_RBX;
  80. RS_ECX = RS_RCX;
  81. RS_EDX = RS_RDX;
  82. RS_ESI = RS_RSI;
  83. RS_EDI = RS_RDI;
  84. RS_EBP = RS_RBP;
  85. RS_ESP = RS_RSP;
  86. { create aliases to allow code sharing between i386 and i8086 }
  87. RS_AX = RS_RAX;
  88. RS_BX = RS_RBX;
  89. RS_CX = RS_RCX;
  90. RS_DX = RS_RDX;
  91. RS_SI = RS_RSI;
  92. RS_DI = RS_RDI;
  93. RS_BP = RS_RBP;
  94. RS_SP = RS_RSP;
  95. { Number of first imaginary register }
  96. first_int_imreg = $10;
  97. { Float Super registers }
  98. RS_ST0 = $00;
  99. RS_ST1 = $01;
  100. RS_ST2 = $02;
  101. RS_ST3 = $03;
  102. RS_ST4 = $04;
  103. RS_ST5 = $05;
  104. RS_ST6 = $06;
  105. RS_ST7 = $07;
  106. RS_ST = $08;
  107. { Number of first imaginary register }
  108. first_fpu_imreg = $09;
  109. { MM Super registers }
  110. RS_XMM0 = $00;
  111. RS_XMM1 = $01;
  112. RS_XMM2 = $02;
  113. RS_XMM3 = $03;
  114. RS_XMM4 = $04;
  115. RS_XMM5 = $05;
  116. RS_XMM6 = $06;
  117. RS_XMM7 = $07;
  118. RS_XMM8 = $08;
  119. RS_XMM9 = $09;
  120. RS_XMM10 = $0a;
  121. RS_XMM11 = $0b;
  122. RS_XMM12 = $0c;
  123. RS_XMM13 = $0d;
  124. RS_XMM14 = $0e;
  125. RS_XMM15 = $0f;
  126. RS_FLAGS = $07;
  127. { Number of first imaginary register }
  128. {$ifdef x86_64}
  129. first_mm_imreg = $10;
  130. {$else x86_64}
  131. first_mm_imreg = $08;
  132. {$endif x86_64}
  133. { The subregister that specifies the entire register and an address }
  134. {$if defined(x86_64)}
  135. { Hammer }
  136. R_SUBWHOLE = R_SUBQ;
  137. R_SUBADDR = R_SUBQ;
  138. {$elseif defined(i386)}
  139. { i386 }
  140. R_SUBWHOLE = R_SUBD;
  141. R_SUBADDR = R_SUBD;
  142. {$elseif defined(i8086)}
  143. { i8086 }
  144. R_SUBWHOLE = R_SUBW;
  145. R_SUBADDR = R_SUBW;
  146. {$endif}
  147. { Available Registers }
  148. {$if defined(x86_64)}
  149. {$i r8664con.inc}
  150. {$elseif defined(i386)}
  151. {$i r386con.inc}
  152. {$elseif defined(i8086)}
  153. {$i r8086con.inc}
  154. {$endif}
  155. type
  156. { Number of registers used for indexing in tables }
  157. {$if defined(x86_64)}
  158. tregisterindex=0..{$i r8664nor.inc}-1;
  159. {$elseif defined(i386)}
  160. tregisterindex=0..{$i r386nor.inc}-1;
  161. {$elseif defined(i8086)}
  162. tregisterindex=0..{$i r8086nor.inc}-1;
  163. {$endif}
  164. const
  165. regnumber_table : array[tregisterindex] of tregister = (
  166. {$if defined(x86_64)}
  167. {$i r8664num.inc}
  168. {$elseif defined(i386)}
  169. {$i r386num.inc}
  170. {$elseif defined(i8086)}
  171. {$i r8086num.inc}
  172. {$endif}
  173. );
  174. regstabs_table : array[tregisterindex] of shortint = (
  175. {$if defined(x86_64)}
  176. {$i r8664stab.inc}
  177. {$elseif defined(i386)}
  178. {$i r386stab.inc}
  179. {$elseif defined(i8086)}
  180. {$i r8086stab.inc}
  181. {$endif}
  182. );
  183. regdwarf_table : array[tregisterindex] of shortint = (
  184. {$if defined(x86_64)}
  185. {$i r8664dwrf.inc}
  186. {$elseif defined(i386)}
  187. {$i r386dwrf.inc}
  188. {$elseif defined(i8086)}
  189. {$i r8086dwrf.inc}
  190. {$endif}
  191. );
  192. RS_DEFAULTFLAGS = RS_FLAGS;
  193. NR_DEFAULTFLAGS = NR_FLAGS;
  194. type
  195. totherregisterset = set of tregisterindex;
  196. {*****************************************************************************
  197. Conditions
  198. *****************************************************************************}
  199. type
  200. TAsmCond=(C_None,
  201. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  202. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  203. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  204. );
  205. const
  206. cond2str:array[TAsmCond] of string[3]=('',
  207. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  208. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  209. 'ns','nz','o','p','pe','po','s','z'
  210. );
  211. {*****************************************************************************
  212. Flags
  213. *****************************************************************************}
  214. type
  215. TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
  216. F_A,F_AE,F_B,F_BE,
  217. F_S,F_NS,F_O,F_NO,
  218. { For IEEE-compliant floating-point compares,
  219. same as normal counterparts but additionally check PF }
  220. F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
  221. const
  222. FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
  223. FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
  224. F_E,F_NE,F_A,F_AE,F_B,F_BE
  225. );
  226. {*****************************************************************************
  227. Constants
  228. *****************************************************************************}
  229. const
  230. { declare aliases }
  231. LOC_SSEREGISTER = LOC_MMREGISTER;
  232. LOC_CSSEREGISTER = LOC_CMMREGISTER;
  233. max_operands = 4;
  234. maxfpuregs = 8;
  235. {*****************************************************************************
  236. CPU Dependent Constants
  237. *****************************************************************************}
  238. {$i cpubase.inc}
  239. {*****************************************************************************
  240. Helpers
  241. *****************************************************************************}
  242. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  243. function reg2opsize(r:Tregister):topsize;
  244. function reg_cgsize(const reg: tregister): tcgsize;
  245. function is_calljmp(o:tasmop):boolean;
  246. procedure inverse_flags(var f: TResFlags);
  247. function flags_to_cond(const f: TResFlags) : TAsmCond;
  248. function is_segment_reg(r:tregister):boolean;
  249. function findreg_by_number(r:Tregister):tregisterindex;
  250. function std_regnum_search(const s:string):Tregister;
  251. function std_regname(r:Tregister):string;
  252. function dwarf_reg(r:tregister):shortint;
  253. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  254. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  255. { checks whether two segment registers are normally equal in the current memory model }
  256. function segment_regs_equal(r1,r2:tregister):boolean;
  257. {$ifdef i8086}
  258. { returns the next virtual register }
  259. function GetNextReg(const r : TRegister) : TRegister;
  260. { return whether we need to add an extra FWAIT instruction before the given
  261. instruction, when we're targeting the i8087. This includes almost all x87
  262. instructions, but certain ones, which always have or have not a built in
  263. FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
  264. function requires_fwait_on_8087(op: TAsmOp): boolean;
  265. {$endif i8086}
  266. implementation
  267. uses
  268. rgbase,verbose;
  269. const
  270. {$if defined(x86_64)}
  271. std_regname_table : TRegNameTable = (
  272. {$i r8664std.inc}
  273. );
  274. regnumber_index : array[tregisterindex] of tregisterindex = (
  275. {$i r8664rni.inc}
  276. );
  277. std_regname_index : array[tregisterindex] of tregisterindex = (
  278. {$i r8664sri.inc}
  279. );
  280. {$elseif defined(i386)}
  281. std_regname_table : TRegNameTable = (
  282. {$i r386std.inc}
  283. );
  284. regnumber_index : array[tregisterindex] of tregisterindex = (
  285. {$i r386rni.inc}
  286. );
  287. std_regname_index : array[tregisterindex] of tregisterindex = (
  288. {$i r386sri.inc}
  289. );
  290. {$elseif defined(i8086)}
  291. std_regname_table : TRegNameTable = (
  292. {$i r8086std.inc}
  293. );
  294. regnumber_index : array[tregisterindex] of tregisterindex = (
  295. {$i r8086rni.inc}
  296. );
  297. std_regname_index : array[tregisterindex] of tregisterindex = (
  298. {$i r8086sri.inc}
  299. );
  300. {$endif}
  301. {*****************************************************************************
  302. Helpers
  303. *****************************************************************************}
  304. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  305. begin
  306. case s of
  307. OS_8,OS_S8:
  308. cgsize2subreg:=R_SUBL;
  309. OS_16,OS_S16:
  310. cgsize2subreg:=R_SUBW;
  311. OS_32,OS_S32:
  312. cgsize2subreg:=R_SUBD;
  313. OS_64,OS_S64:
  314. cgsize2subreg:=R_SUBQ;
  315. OS_M64:
  316. cgsize2subreg:=R_SUBNONE;
  317. OS_F32,OS_F64,OS_C64:
  318. case regtype of
  319. R_FPUREGISTER:
  320. cgsize2subreg:=R_SUBWHOLE;
  321. R_MMREGISTER:
  322. case s of
  323. OS_F32:
  324. cgsize2subreg:=R_SUBMMS;
  325. OS_F64:
  326. cgsize2subreg:=R_SUBMMD;
  327. else
  328. internalerror(2009071901);
  329. end;
  330. else
  331. internalerror(2009071902);
  332. end;
  333. OS_M128,OS_MS128:
  334. cgsize2subreg:=R_SUBMMX;
  335. OS_M256,OS_MS256:
  336. cgsize2subreg:=R_SUBMMY;
  337. OS_NO:
  338. { error message should have been thrown already before, so avoid only
  339. an internal error }
  340. cgsize2subreg:=R_SUBNONE;
  341. else
  342. internalerror(200301231);
  343. end;
  344. end;
  345. function reg_cgsize(const reg: tregister): tcgsize;
  346. const subreg2cgsize:array[Tsubregister] of Tcgsize =
  347. (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256);
  348. begin
  349. case getregtype(reg) of
  350. R_INTREGISTER :
  351. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  352. R_FPUREGISTER :
  353. reg_cgsize:=OS_F80;
  354. R_MMXREGISTER:
  355. reg_cgsize:=OS_M64;
  356. R_MMREGISTER:
  357. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  358. R_SPECIALREGISTER :
  359. case reg of
  360. NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
  361. reg_cgsize:=OS_16;
  362. {$ifdef x86_64}
  363. NR_DR0..NR_TR7:
  364. reg_cgsize:=OS_64;
  365. {$endif x86_64}
  366. else
  367. reg_cgsize:=OS_32
  368. end
  369. else
  370. internalerror(2003031801);
  371. end;
  372. end;
  373. function reg2opsize(r:Tregister):topsize;
  374. const
  375. subreg2opsize : array[tsubregister] of topsize =
  376. (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  377. begin
  378. reg2opsize:=S_L;
  379. case getregtype(r) of
  380. R_INTREGISTER :
  381. reg2opsize:=subreg2opsize[getsubreg(r)];
  382. R_FPUREGISTER :
  383. reg2opsize:=S_FL;
  384. R_MMXREGISTER,
  385. R_MMREGISTER :
  386. reg2opsize:=S_MD;
  387. R_SPECIALREGISTER :
  388. begin
  389. case r of
  390. NR_CS,NR_DS,NR_ES,
  391. NR_SS,NR_FS,NR_GS :
  392. reg2opsize:=S_W;
  393. end;
  394. end;
  395. else
  396. internalerror(200303181);
  397. end;
  398. end;
  399. function is_calljmp(o:tasmop):boolean;
  400. begin
  401. case o of
  402. A_CALL,
  403. {$if defined(i386) or defined(i8086)}
  404. A_JCXZ,
  405. {$endif defined(i386) or defined(i8086)}
  406. A_JECXZ,
  407. {$ifdef x86_64}
  408. A_JRCXZ,
  409. {$endif x86_64}
  410. A_JMP,
  411. A_LOOP,
  412. A_LOOPE,
  413. A_LOOPNE,
  414. A_LOOPNZ,
  415. A_LOOPZ,
  416. A_LCALL,
  417. A_LJMP,
  418. A_Jcc :
  419. is_calljmp:=true;
  420. else
  421. is_calljmp:=false;
  422. end;
  423. end;
  424. procedure inverse_flags(var f: TResFlags);
  425. const
  426. inv_flags: array[TResFlags] of TResFlags =
  427. (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
  428. F_BE,F_B,F_AE,F_A,
  429. F_NS,F_S,F_NO,F_O,
  430. F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
  431. begin
  432. f:=inv_flags[f];
  433. end;
  434. function flags_to_cond(const f: TResFlags) : TAsmCond;
  435. const
  436. flags_2_cond : array[TResFlags] of TAsmCond =
  437. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
  438. C_None,C_None,C_None,C_None,C_None,C_None);
  439. begin
  440. result := flags_2_cond[f];
  441. if (result=C_None) then
  442. InternalError(2014041301);
  443. end;
  444. function is_segment_reg(r:tregister):boolean;
  445. begin
  446. result:=false;
  447. case r of
  448. NR_CS,NR_DS,NR_ES,
  449. NR_SS,NR_FS,NR_GS :
  450. result:=true;
  451. end;
  452. end;
  453. function findreg_by_number(r:Tregister):tregisterindex;
  454. var
  455. hr : tregister;
  456. begin
  457. { for the name the sub reg doesn't matter }
  458. hr:=r;
  459. if (getregtype(hr)=R_MMREGISTER) and
  460. (getsubreg(hr)<>R_SUBMMY) then
  461. setsubreg(hr,R_SUBMMX);
  462. result:=findreg_by_number_table(hr,regnumber_index);
  463. end;
  464. function std_regnum_search(const s:string):Tregister;
  465. begin
  466. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  467. end;
  468. function std_regname(r:Tregister):string;
  469. var
  470. p : tregisterindex;
  471. begin
  472. if getregtype(r) in [R_MMREGISTER,R_MMXREGISTER] then
  473. r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
  474. p:=findreg_by_number(r);
  475. if p<>0 then
  476. result:=std_regname_table[p]
  477. else
  478. result:=generic_regname(r);
  479. end;
  480. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  481. const
  482. inverse: array[TAsmCond] of TAsmCond=(C_None,
  483. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  484. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  485. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  486. );
  487. begin
  488. result := inverse[c];
  489. end;
  490. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  491. begin
  492. result := c1 = c2;
  493. end;
  494. function dwarf_reg(r:tregister):shortint;
  495. begin
  496. result:=regdwarf_table[findreg_by_number(r)];
  497. if result=-1 then
  498. internalerror(200603251);
  499. end;
  500. function segment_regs_equal(r1, r2: tregister): boolean;
  501. begin
  502. if not is_segment_reg(r1) or not is_segment_reg(r2) then
  503. internalerror(2013062301);
  504. { every segment register is equal to itself }
  505. if r1=r2 then
  506. exit(true);
  507. {$if defined(i8086)}
  508. case current_settings.x86memorymodel of
  509. mm_tiny:
  510. begin
  511. { CS=DS=SS }
  512. if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
  513. ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
  514. exit(true);
  515. { the remaining are distinct from each other }
  516. exit(false);
  517. end;
  518. mm_small,mm_medium:
  519. begin
  520. { DS=SS }
  521. if ((r1=NR_DS) or (r1=NR_SS)) and
  522. ((r2=NR_DS) or (r2=NR_SS)) then
  523. exit(true);
  524. { the remaining are distinct from each other }
  525. exit(false);
  526. end;
  527. mm_compact,mm_large,mm_huge:
  528. { all segment registers are different in these models }
  529. exit(false);
  530. else
  531. internalerror(2013062302);
  532. end;
  533. {$elseif defined(i386) or defined(x86_64)}
  534. { DS=SS=ES }
  535. if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
  536. ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
  537. exit(true);
  538. { the remaining are distinct from each other }
  539. exit(false);
  540. {$endif}
  541. end;
  542. {$ifdef i8086}
  543. function GetNextReg(const r: TRegister): TRegister;
  544. begin
  545. if getsupreg(r)<first_int_imreg then
  546. internalerror(2013051401);
  547. result:=TRegister(longint(r)+1);
  548. end;
  549. function requires_fwait_on_8087(op: TAsmOp): boolean;
  550. begin
  551. case op of
  552. A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
  553. A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
  554. A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
  555. A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
  556. A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
  557. A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
  558. A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
  559. A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
  560. A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
  561. result:=true;
  562. else
  563. result:=false;
  564. end;
  565. end;
  566. {$endif i8086}
  567. end.