aasmcpu.pas 144 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. aasmbase,aasmtai,aasmsym,
  28. ogbase;
  29. const
  30. { "mov reg,reg" source operand number }
  31. O_MOV_SOURCE = 0;
  32. { "mov reg,reg" destination operand number }
  33. O_MOV_DEST = 1;
  34. { Operand types }
  35. OT_NONE = $00000000;
  36. { Bits 0..7: sizes }
  37. OT_BITS8 = $00000001;
  38. OT_BITS16 = $00000002;
  39. OT_BITS32 = $00000004;
  40. OT_BITS64 = $00000008; { x86_64 and FPU }
  41. OT_BITS128 = $10000000; { 16 byte SSE }
  42. OT_BITS256 = $20000000; { 32 byte AVX }
  43. OT_BITS80 = $00000010; { FPU only }
  44. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  45. OT_NEAR = $00000040;
  46. OT_SHORT = $00000080;
  47. { TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
  48. but this requires adjusting the opcode table }
  49. OT_SIZE_MASK = $3000001F; { all the size attributes }
  50. OT_NON_SIZE = longint(not OT_SIZE_MASK);
  51. { Bits 8..11: modifiers }
  52. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  53. OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
  54. OT_COLON = $00000400; { operand is followed by a colon }
  55. OT_MODIFIER_MASK = $00000F00;
  56. { Bits 12..15: type of operand }
  57. OT_REGISTER = $00001000;
  58. OT_IMMEDIATE = $00002000;
  59. OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
  60. OT_REGMEM = $00008000; { for r/m, ie EA, operands }
  61. OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
  62. OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
  63. { Bits 20..22, 24..26: register classes
  64. otf_* consts are not used alone, only to build other constants. }
  65. otf_reg_cdt = $00100000;
  66. otf_reg_gpr = $00200000;
  67. otf_reg_sreg = $00400000;
  68. otf_reg_fpu = $01000000;
  69. otf_reg_mmx = $02000000;
  70. otf_reg_xmm = $04000000;
  71. otf_reg_ymm = $08000000;
  72. { Bits 16..19: subclasses, meaning depends on classes field }
  73. otf_sub0 = $00010000;
  74. otf_sub1 = $00020000;
  75. otf_sub2 = $00040000;
  76. otf_sub3 = $00080000;
  77. OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
  78. OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_fpu or otf_reg_mmx or otf_reg_xmm or otf_reg_ymm;
  79. { register class 0: CRx, DRx and TRx }
  80. {$ifdef x86_64}
  81. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
  82. {$else x86_64}
  83. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
  84. {$endif x86_64}
  85. OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
  86. OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
  87. OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
  88. OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
  89. { register class 1: general-purpose registers }
  90. OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
  91. OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
  92. OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
  93. OT_REG16 = OT_REG_GPR or OT_BITS16;
  94. OT_REG32 = OT_REG_GPR or OT_BITS32;
  95. OT_REG64 = OT_REG_GPR or OT_BITS64;
  96. { GPR subclass 0: accumulator: AL, AX, EAX or RAX }
  97. OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
  98. OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
  99. OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
  100. OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
  101. {$ifdef x86_64}
  102. OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
  103. {$endif x86_64}
  104. { GPR subclass 1: counter: CL, CX, ECX or RCX }
  105. OT_REG_COUNT = OT_REG_GPR or otf_sub1;
  106. OT_REG_CL = OT_REG_COUNT or OT_BITS8;
  107. OT_REG_CX = OT_REG_COUNT or OT_BITS16;
  108. OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
  109. {$ifdef x86_64}
  110. OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
  111. {$endif x86_64}
  112. { GPR subclass 2: data register: DL, DX, EDX or RDX }
  113. OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
  114. OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
  115. { register class 2: Segment registers }
  116. OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
  117. OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
  118. OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
  119. OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
  120. { register class 3: FPU registers }
  121. OT_FPUREG = OT_REGISTER or otf_reg_fpu;
  122. OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
  123. { register class 4: MMX (both reg and r/m) }
  124. OT_MMXREG = OT_REGNORM or otf_reg_mmx;
  125. OT_MMXRM = OT_REGMEM or otf_reg_mmx;
  126. { register class 5: XMM (both reg and r/m) }
  127. OT_XMMREG = OT_REGNORM or otf_reg_xmm;
  128. OT_XMMRM = OT_REGMEM or otf_reg_xmm;
  129. OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
  130. OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
  131. { register class 5: XMM (both reg and r/m) }
  132. OT_YMMREG = OT_REGNORM or otf_reg_ymm;
  133. OT_YMMRM = OT_REGMEM or otf_reg_ymm;
  134. OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
  135. OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
  136. { Vector-Memory operands }
  137. OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64;
  138. { Memory operands }
  139. OT_MEM8 = OT_MEMORY or OT_BITS8;
  140. OT_MEM16 = OT_MEMORY or OT_BITS16;
  141. OT_MEM32 = OT_MEMORY or OT_BITS32;
  142. OT_MEM64 = OT_MEMORY or OT_BITS64;
  143. OT_MEM128 = OT_MEMORY or OT_BITS128;
  144. OT_MEM256 = OT_MEMORY or OT_BITS256;
  145. OT_MEM80 = OT_MEMORY or OT_BITS80;
  146. OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
  147. { simple [address] offset }
  148. { Matches any type of r/m operand }
  149. OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM;
  150. { Immediate operands }
  151. OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
  152. OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
  153. OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
  154. OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
  155. OT_ONENESS = otf_sub0; { special type of immediate operand }
  156. OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
  157. { Size of the instruction table converted by nasmconv.pas }
  158. {$if defined(x86_64)}
  159. instabentries = {$i x8664nop.inc}
  160. {$elseif defined(i386)}
  161. instabentries = {$i i386nop.inc}
  162. {$elseif defined(i8086)}
  163. instabentries = {$i i8086nop.inc}
  164. {$endif}
  165. maxinfolen = 8;
  166. type
  167. { What an instruction can change. Needed for optimizer and spilling code.
  168. Note: The order of this enumeration is should not be changed! }
  169. TInsChange = (Ch_None,
  170. {Read from a register}
  171. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  172. {write from a register}
  173. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  174. {read and write from/to a register}
  175. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  176. {modify the contents of a register with the purpose of using
  177. this changed content afterwards (add/sub/..., but e.g. not rep
  178. or movsd)}
  179. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  180. {read individual flag bits from the flags register}
  181. Ch_RCarryFlag,Ch_RParityFlag,Ch_RAuxiliaryFlag,Ch_RZeroFlag,Ch_RSignFlag,Ch_ROverflowFlag,
  182. {write individual flag bits to the flags register}
  183. Ch_WCarryFlag,Ch_WParityFlag,Ch_WAuxiliaryFlag,Ch_WZeroFlag,Ch_WSignFlag,Ch_WOverflowFlag,
  184. {set individual flag bits to 0 in the flags register}
  185. Ch_W0CarryFlag,Ch_W0ParityFlag,Ch_W0AuxiliaryFlag,Ch_W0ZeroFlag,Ch_W0SignFlag,Ch_W0OverflowFlag,
  186. {set individual flag bits to 1 in the flags register}
  187. Ch_W1CarryFlag,Ch_W1ParityFlag,Ch_W1AuxiliaryFlag,Ch_W1ZeroFlag,Ch_W1SignFlag,Ch_W1OverflowFlag,
  188. {write an undefined value to individual flag bits in the flags register}
  189. Ch_WUCarryFlag,Ch_WUParityFlag,Ch_WUAuxiliaryFlag,Ch_WUZeroFlag,Ch_WUSignFlag,Ch_WUOverflowFlag,
  190. {read and write flag bits}
  191. Ch_RWCarryFlag,Ch_RWParityFlag,Ch_RWAuxiliaryFlag,Ch_RWZeroFlag,Ch_RWSignFlag,Ch_RWOverflowFlag,
  192. {more specialized flag bits (not considered part of NR_DEFAULTFLAGS by the compiler)}
  193. Ch_RDirFlag,Ch_W0DirFlag,Ch_W1DirFlag,Ch_W0IntFlag,Ch_W1IntFlag,
  194. {instruction reads flag bits, according to its condition (used by Jcc/SETcc/CMOVcc)}
  195. Ch_RFLAGScc,
  196. {read/write/read+write the entire flags/eflags/rflags register}
  197. Ch_RFlags, Ch_WFlags, Ch_RWFlags,
  198. Ch_FPU,
  199. Ch_Rop1, Ch_Wop1, Ch_RWop1, Ch_Mop1,
  200. Ch_Rop2, Ch_Wop2, Ch_RWop2, Ch_Mop2,
  201. Ch_Rop3, Ch_WOp3, Ch_RWOp3, Ch_Mop3,
  202. Ch_Rop4, Ch_WOp4, Ch_RWOp4, Ch_Mop4,
  203. { instruction doesn't read it's input register, in case both parameters
  204. are the same register (e.g. xor eax,eax; sub eax,eax; sbb eax,eax (reads flags only), etc.) }
  205. Ch_NoReadIfEqualRegs,
  206. Ch_RMemEDI,Ch_WMemEDI,
  207. Ch_All,
  208. { x86_64 registers }
  209. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  210. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  211. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  212. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
  213. );
  214. TInsProp = packed record
  215. Ch : set of TInsChange;
  216. end;
  217. TMemRefSizeInfo = (msiUnkown, msiUnsupported, msiNoSize,
  218. msiMultiple, msiMultiple8, msiMultiple16, msiMultiple32,
  219. msiMultiple64, msiMultiple128, msiMultiple256,
  220. msiMemRegSize, msiMemRegx16y32, msiMemRegx32y64, msiMemRegx64y128, msiMemRegx64y256,
  221. msiMem8, msiMem16, msiMem32, msiMem64, msiMem128, msiMem256,
  222. msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  223. msiVMemMultiple, msiVMemRegSize);
  224. TConstSizeInfo = (csiUnkown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
  225. TInsTabMemRefSizeInfoRec = record
  226. MemRefSize : TMemRefSizeInfo;
  227. ExistsSSEAVX: boolean;
  228. ConstSize : TConstSizeInfo;
  229. end;
  230. const
  231. MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultiple8,
  232. msiMultiple16, msiMultiple32,
  233. msiMultiple64, msiMultiple128,
  234. msiMultiple256, msiVMemMultiple];
  235. MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  236. msiVMemMultiple, msiVMemRegSize];
  237. InsProp : array[tasmop] of TInsProp =
  238. {$if defined(x86_64)}
  239. {$i x8664pro.inc}
  240. {$elseif defined(i386)}
  241. {$i i386prop.inc}
  242. {$elseif defined(i8086)}
  243. {$i i8086prop.inc}
  244. {$endif}
  245. type
  246. TOperandOrder = (op_intel,op_att);
  247. {Instruction flags }
  248. tinsflag = (
  249. { please keep these in order and in sync with IF_SMASK }
  250. IF_SM, { size match first two operands }
  251. IF_SM2,
  252. IF_SB, { unsized operands can't be non-byte }
  253. IF_SW, { unsized operands can't be non-word }
  254. IF_SD, { unsized operands can't be nondword }
  255. { unsized argument spec }
  256. { please keep these in order and in sync with IF_ARMASK }
  257. IF_AR0, { SB, SW, SD applies to argument 0 }
  258. IF_AR1, { SB, SW, SD applies to argument 1 }
  259. IF_AR2, { SB, SW, SD applies to argument 2 }
  260. IF_PRIV, { it's a privileged instruction }
  261. IF_SMM, { it's only valid in SMM }
  262. IF_PROT, { it's protected mode only }
  263. IF_NOX86_64, { removed instruction in x86_64 }
  264. IF_UNDOC, { it's an undocumented instruction }
  265. IF_FPU, { it's an FPU instruction }
  266. IF_MMX, { it's an MMX instruction }
  267. { it's a 3DNow! instruction }
  268. IF_3DNOW,
  269. { it's a SSE (KNI, MMX2) instruction }
  270. IF_SSE,
  271. { SSE2 instructions }
  272. IF_SSE2,
  273. { SSE3 instructions }
  274. IF_SSE3,
  275. { SSE64 instructions }
  276. IF_SSE64,
  277. { SVM instructions }
  278. IF_SVM,
  279. { SSE4 instructions }
  280. IF_SSE4,
  281. IF_SSSE3,
  282. IF_SSE41,
  283. IF_SSE42,
  284. IF_AVX,
  285. IF_AVX2,
  286. IF_BMI1,
  287. IF_BMI2,
  288. IF_16BITONLY,
  289. IF_FMA,
  290. IF_FMA4,
  291. IF_TSX,
  292. IF_RAND,
  293. IF_XSAVE,
  294. IF_PREFETCHWT1,
  295. { mask for processor level }
  296. { please keep these in order and in sync with IF_PLEVEL }
  297. IF_8086, { 8086 instruction }
  298. IF_186, { 186+ instruction }
  299. IF_286, { 286+ instruction }
  300. IF_386, { 386+ instruction }
  301. IF_486, { 486+ instruction }
  302. IF_PENT, { Pentium instruction }
  303. IF_P6, { P6 instruction }
  304. IF_KATMAI, { Katmai instructions }
  305. IF_WILLAMETTE, { Willamette instructions }
  306. IF_PRESCOTT, { Prescott instructions }
  307. IF_X86_64,
  308. IF_SANDYBRIDGE, { Sandybridge-specific instruction }
  309. IF_NEC, { NEC V20/V30 instruction }
  310. { the following are not strictly part of the processor level, because
  311. they are never used standalone, but always in combination with a
  312. separate processor level flag. Therefore, they use bits outside of
  313. IF_PLEVEL, otherwise they would mess up the processor level they're
  314. used in combination with.
  315. The following combinations are currently used:
  316. [IF_AMD, IF_P6],
  317. [IF_CYRIX, IF_486],
  318. [IF_CYRIX, IF_PENT],
  319. [IF_CYRIX, IF_P6] }
  320. IF_CYRIX, { Cyrix, Centaur or VIA-specific instruction }
  321. IF_AMD, { AMD-specific instruction }
  322. { added flags }
  323. IF_PRE, { it's a prefix instruction }
  324. IF_PASS2, { if the instruction can change in a second pass }
  325. IF_IMM4, { immediate operand is a nibble (must be in range [0..15]) }
  326. IF_IMM3 { immediate operand is a triad (must be in range [0..7]) }
  327. );
  328. tinsflags=set of tinsflag;
  329. const
  330. IF_SMASK=[IF_SM,IF_SM2,IF_SB,IF_SW,IF_SD];
  331. IF_ARMASK=[IF_AR0,IF_AR1,IF_AR2]; { mask for unsized argument spec }
  332. IF_PLEVEL=[IF_8086..IF_NEC]; { mask for processor level }
  333. type
  334. tinsentry=packed record
  335. opcode : tasmop;
  336. ops : byte;
  337. optypes : array[0..max_operands-1] of longint;
  338. code : array[0..maxinfolen] of char;
  339. flags : tinsflags;
  340. end;
  341. pinsentry=^tinsentry;
  342. { alignment for operator }
  343. tai_align = class(tai_align_abstract)
  344. reg : tregister;
  345. constructor create(b:byte);override;
  346. constructor create_op(b: byte; _op: byte);override;
  347. function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
  348. end;
  349. taicpu = class(tai_cpu_abstract_sym)
  350. opsize : topsize;
  351. constructor op_none(op : tasmop);
  352. constructor op_none(op : tasmop;_size : topsize);
  353. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  354. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  355. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  356. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  357. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  358. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  359. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  360. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  361. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  362. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  363. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  364. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  365. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  366. constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  367. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  368. constructor op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  369. constructor op_const_reg_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2, _op3, _op4 : tregister);
  370. { this is for Jmp instructions }
  371. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  372. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  373. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  374. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  375. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  376. procedure changeopsize(siz:topsize);
  377. function GetString:string;
  378. { This is a workaround for the GAS non commutative fpu instruction braindamage.
  379. Early versions of the UnixWare assembler had a bug where some fpu instructions
  380. were reversed and GAS still keeps this "feature" for compatibility.
  381. for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
  382. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
  383. http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
  384. Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
  385. when generating output for other assemblers, the opcodes must be fixed before writing them.
  386. This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
  387. because in case of smartlinking assembler is generated twice so at the second run wrong
  388. assembler is generated.
  389. }
  390. function FixNonCommutativeOpcodes: tasmop;
  391. private
  392. FOperandOrder : TOperandOrder;
  393. procedure init(_size : topsize); { this need to be called by all constructor }
  394. public
  395. { the next will reset all instructions that can change in pass 2 }
  396. procedure ResetPass1;override;
  397. procedure ResetPass2;override;
  398. function CheckIfValid:boolean;
  399. function Pass1(objdata:TObjData):longint;override;
  400. procedure Pass2(objdata:TObjData);override;
  401. procedure SetOperandOrder(order:TOperandOrder);
  402. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  403. { register spilling code }
  404. function spilling_get_operation_type(opnr: longint): topertype;override;
  405. {$ifdef i8086}
  406. procedure loadsegsymbol(opidx:longint;s:tasmsymbol);
  407. {$endif i8086}
  408. property OperandOrder : TOperandOrder read FOperandOrder;
  409. private
  410. { next fields are filled in pass1, so pass2 is faster }
  411. insentry : PInsEntry;
  412. insoffset : longint;
  413. LastInsOffset : longint; { need to be public to be reset }
  414. inssize : shortint;
  415. {$ifdef x86_64}
  416. rex : byte;
  417. {$endif x86_64}
  418. function InsEnd:longint;
  419. procedure create_ot(objdata:TObjData);
  420. function Matches(p:PInsEntry):boolean;
  421. function calcsize(p:PInsEntry):shortint;
  422. procedure gencode(objdata:TObjData);
  423. function NeedAddrPrefix(opidx:byte):boolean;
  424. function NeedAddrPrefix:boolean;
  425. procedure write0x66prefix(objdata:TObjData);
  426. procedure write0x67prefix(objdata:TObjData);
  427. procedure Swapoperands;
  428. function FindInsentry(objdata:TObjData):boolean;
  429. end;
  430. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  431. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  432. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  433. procedure InitAsm;
  434. procedure DoneAsm;
  435. {*****************************************************************************
  436. External Symbol Chain
  437. used for agx86nsm and agx86int
  438. *****************************************************************************}
  439. type
  440. PExternChain = ^TExternChain;
  441. TExternChain = Record
  442. psym : pshortstring;
  443. is_defined : boolean;
  444. next : PExternChain;
  445. end;
  446. const
  447. FEC : PExternChain = nil;
  448. procedure AddSymbol(symname : string; defined : boolean);
  449. procedure FreeExternChainList;
  450. implementation
  451. uses
  452. cutils,
  453. globals,
  454. systems,
  455. itcpugas,
  456. cpuinfo;
  457. procedure AddSymbol(symname : string; defined : boolean);
  458. var
  459. EC : PExternChain;
  460. begin
  461. EC:=FEC;
  462. while assigned(EC) do
  463. begin
  464. if EC^.psym^=symname then
  465. begin
  466. if defined then
  467. EC^.is_defined:=true;
  468. exit;
  469. end;
  470. EC:=EC^.next;
  471. end;
  472. New(EC);
  473. EC^.next:=FEC;
  474. FEC:=EC;
  475. FEC^.psym:=stringdup(symname);
  476. FEC^.is_defined := defined;
  477. end;
  478. procedure FreeExternChainList;
  479. var
  480. EC : PExternChain;
  481. begin
  482. EC:=FEC;
  483. while assigned(EC) do
  484. begin
  485. FEC:=EC^.next;
  486. stringdispose(EC^.psym);
  487. Dispose(EC);
  488. EC:=FEC;
  489. end;
  490. end;
  491. {*****************************************************************************
  492. Instruction table
  493. *****************************************************************************}
  494. type
  495. TInsTabCache=array[TasmOp] of longint;
  496. PInsTabCache=^TInsTabCache;
  497. TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
  498. PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
  499. const
  500. {$if defined(x86_64)}
  501. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  502. {$elseif defined(i386)}
  503. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  504. {$elseif defined(i8086)}
  505. InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
  506. {$endif}
  507. var
  508. InsTabCache : PInsTabCache;
  509. InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
  510. const
  511. {$if defined(x86_64)}
  512. { Intel style operands ! }
  513. opsize_2_type:array[0..2,topsize] of longint=(
  514. (OT_NONE,
  515. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  516. OT_BITS16,OT_BITS32,OT_BITS64,
  517. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  518. OT_BITS64,
  519. OT_NEAR,OT_FAR,OT_SHORT,
  520. OT_NONE,
  521. OT_BITS128,
  522. OT_BITS256
  523. ),
  524. (OT_NONE,
  525. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  526. OT_BITS16,OT_BITS32,OT_BITS64,
  527. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  528. OT_BITS64,
  529. OT_NEAR,OT_FAR,OT_SHORT,
  530. OT_NONE,
  531. OT_BITS128,
  532. OT_BITS256
  533. ),
  534. (OT_NONE,
  535. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  536. OT_BITS16,OT_BITS32,OT_BITS64,
  537. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  538. OT_BITS64,
  539. OT_NEAR,OT_FAR,OT_SHORT,
  540. OT_NONE,
  541. OT_BITS128,
  542. OT_BITS256
  543. )
  544. );
  545. reg_ot_table : array[tregisterindex] of longint = (
  546. {$i r8664ot.inc}
  547. );
  548. {$elseif defined(i386)}
  549. { Intel style operands ! }
  550. opsize_2_type:array[0..2,topsize] of longint=(
  551. (OT_NONE,
  552. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  553. OT_BITS16,OT_BITS32,OT_BITS64,
  554. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  555. OT_BITS64,
  556. OT_NEAR,OT_FAR,OT_SHORT,
  557. OT_NONE,
  558. OT_BITS128,
  559. OT_BITS256
  560. ),
  561. (OT_NONE,
  562. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  563. OT_BITS16,OT_BITS32,OT_BITS64,
  564. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  565. OT_BITS64,
  566. OT_NEAR,OT_FAR,OT_SHORT,
  567. OT_NONE,
  568. OT_BITS128,
  569. OT_BITS256
  570. ),
  571. (OT_NONE,
  572. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  573. OT_BITS16,OT_BITS32,OT_BITS64,
  574. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  575. OT_BITS64,
  576. OT_NEAR,OT_FAR,OT_SHORT,
  577. OT_NONE,
  578. OT_BITS128,
  579. OT_BITS256
  580. )
  581. );
  582. reg_ot_table : array[tregisterindex] of longint = (
  583. {$i r386ot.inc}
  584. );
  585. {$elseif defined(i8086)}
  586. { Intel style operands ! }
  587. opsize_2_type:array[0..2,topsize] of longint=(
  588. (OT_NONE,
  589. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  590. OT_BITS16,OT_BITS32,OT_BITS64,
  591. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  592. OT_BITS64,
  593. OT_NEAR,OT_FAR,OT_SHORT,
  594. OT_NONE,
  595. OT_BITS128,
  596. OT_BITS256
  597. ),
  598. (OT_NONE,
  599. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  600. OT_BITS16,OT_BITS32,OT_BITS64,
  601. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  602. OT_BITS64,
  603. OT_NEAR,OT_FAR,OT_SHORT,
  604. OT_NONE,
  605. OT_BITS128,
  606. OT_BITS256
  607. ),
  608. (OT_NONE,
  609. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  610. OT_BITS16,OT_BITS32,OT_BITS64,
  611. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  612. OT_BITS64,
  613. OT_NEAR,OT_FAR,OT_SHORT,
  614. OT_NONE,
  615. OT_BITS128,
  616. OT_BITS256
  617. )
  618. );
  619. reg_ot_table : array[tregisterindex] of longint = (
  620. {$i r8086ot.inc}
  621. );
  622. {$endif}
  623. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  624. begin
  625. result := InsTabMemRefSizeInfoCache^[aAsmop];
  626. end;
  627. { Operation type for spilling code }
  628. type
  629. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  630. var
  631. operation_type_table : ^toperation_type_table;
  632. {****************************************************************************
  633. TAI_ALIGN
  634. ****************************************************************************}
  635. constructor tai_align.create(b: byte);
  636. begin
  637. inherited create(b);
  638. reg:=NR_ECX;
  639. end;
  640. constructor tai_align.create_op(b: byte; _op: byte);
  641. begin
  642. inherited create_op(b,_op);
  643. reg:=NR_NO;
  644. end;
  645. function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
  646. const
  647. { Updated according to
  648. Software Optimization Guide for AMD Family 15h Processors, Verison 3.08, January 2014
  649. and
  650. Intel 64 and IA-32 Architectures Software Developer’s Manual
  651. Volume 2B: Instruction Set Reference, N-Z, January 2015
  652. }
  653. alignarray_cmovcpus:array[0..10] of string[11]=(
  654. #$66#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  655. #$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  656. #$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  657. #$0F#$1F#$84#$00#$00#$00#$00#$00,
  658. #$0F#$1F#$80#$00#$00#$00#$00,
  659. #$66#$0F#$1F#$44#$00#$00,
  660. #$0F#$1F#$44#$00#$00,
  661. #$0F#$1F#$40#$00,
  662. #$0F#$1F#$00,
  663. #$66#$90,
  664. #$90);
  665. {$ifdef i8086}
  666. alignarray:array[0..5] of string[8]=(
  667. #$90#$90#$90#$90#$90#$90#$90,
  668. #$90#$90#$90#$90#$90#$90,
  669. #$90#$90#$90#$90,
  670. #$90#$90#$90,
  671. #$90#$90,
  672. #$90);
  673. {$else i8086}
  674. alignarray:array[0..5] of string[8]=(
  675. #$8D#$B4#$26#$00#$00#$00#$00,
  676. #$8D#$B6#$00#$00#$00#$00,
  677. #$8D#$74#$26#$00,
  678. #$8D#$76#$00,
  679. #$89#$F6,
  680. #$90);
  681. {$endif i8086}
  682. var
  683. bufptr : pchar;
  684. j : longint;
  685. localsize: byte;
  686. begin
  687. inherited calculatefillbuf(buf,executable);
  688. if not(use_op) and executable then
  689. begin
  690. bufptr:=pchar(@buf);
  691. { fillsize may still be used afterwards, so don't modify }
  692. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  693. localsize:=fillsize;
  694. while (localsize>0) do
  695. begin
  696. {$ifndef i8086}
  697. if CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype] then
  698. begin
  699. for j:=low(alignarray_cmovcpus) to high(alignarray_cmovcpus) do
  700. if (localsize>=length(alignarray_cmovcpus[j])) then
  701. break;
  702. move(alignarray_cmovcpus[j][1],bufptr^,length(alignarray_cmovcpus[j]));
  703. inc(bufptr,length(alignarray_cmovcpus[j]));
  704. dec(localsize,length(alignarray_cmovcpus[j]));
  705. end
  706. else
  707. {$endif not i8086}
  708. begin
  709. for j:=low(alignarray) to high(alignarray) do
  710. if (localsize>=length(alignarray[j])) then
  711. break;
  712. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  713. inc(bufptr,length(alignarray[j]));
  714. dec(localsize,length(alignarray[j]));
  715. end
  716. end;
  717. end;
  718. calculatefillbuf:=pchar(@buf);
  719. end;
  720. {*****************************************************************************
  721. Taicpu Constructors
  722. *****************************************************************************}
  723. procedure taicpu.changeopsize(siz:topsize);
  724. begin
  725. opsize:=siz;
  726. end;
  727. procedure taicpu.init(_size : topsize);
  728. begin
  729. { default order is att }
  730. FOperandOrder:=op_att;
  731. segprefix:=NR_NO;
  732. opsize:=_size;
  733. insentry:=nil;
  734. LastInsOffset:=-1;
  735. InsOffset:=0;
  736. InsSize:=0;
  737. end;
  738. constructor taicpu.op_none(op : tasmop);
  739. begin
  740. inherited create(op);
  741. init(S_NO);
  742. end;
  743. constructor taicpu.op_none(op : tasmop;_size : topsize);
  744. begin
  745. inherited create(op);
  746. init(_size);
  747. end;
  748. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  749. begin
  750. inherited create(op);
  751. init(_size);
  752. ops:=1;
  753. loadreg(0,_op1);
  754. end;
  755. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  756. begin
  757. inherited create(op);
  758. init(_size);
  759. ops:=1;
  760. loadconst(0,_op1);
  761. end;
  762. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  763. begin
  764. inherited create(op);
  765. init(_size);
  766. ops:=1;
  767. loadref(0,_op1);
  768. end;
  769. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  770. begin
  771. inherited create(op);
  772. init(_size);
  773. ops:=2;
  774. loadreg(0,_op1);
  775. loadreg(1,_op2);
  776. end;
  777. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  778. begin
  779. inherited create(op);
  780. init(_size);
  781. ops:=2;
  782. loadreg(0,_op1);
  783. loadconst(1,_op2);
  784. end;
  785. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  786. begin
  787. inherited create(op);
  788. init(_size);
  789. ops:=2;
  790. loadreg(0,_op1);
  791. loadref(1,_op2);
  792. end;
  793. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  794. begin
  795. inherited create(op);
  796. init(_size);
  797. ops:=2;
  798. loadconst(0,_op1);
  799. loadreg(1,_op2);
  800. end;
  801. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  802. begin
  803. inherited create(op);
  804. init(_size);
  805. ops:=2;
  806. loadconst(0,_op1);
  807. loadconst(1,_op2);
  808. end;
  809. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  810. begin
  811. inherited create(op);
  812. init(_size);
  813. ops:=2;
  814. loadconst(0,_op1);
  815. loadref(1,_op2);
  816. end;
  817. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  818. begin
  819. inherited create(op);
  820. init(_size);
  821. ops:=2;
  822. loadref(0,_op1);
  823. loadreg(1,_op2);
  824. end;
  825. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  826. begin
  827. inherited create(op);
  828. init(_size);
  829. ops:=3;
  830. loadreg(0,_op1);
  831. loadreg(1,_op2);
  832. loadreg(2,_op3);
  833. end;
  834. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  835. begin
  836. inherited create(op);
  837. init(_size);
  838. ops:=3;
  839. loadconst(0,_op1);
  840. loadreg(1,_op2);
  841. loadreg(2,_op3);
  842. end;
  843. constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  844. begin
  845. inherited create(op);
  846. init(_size);
  847. ops:=3;
  848. loadref(0,_op1);
  849. loadreg(1,_op2);
  850. loadreg(2,_op3);
  851. end;
  852. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  853. begin
  854. inherited create(op);
  855. init(_size);
  856. ops:=3;
  857. loadconst(0,_op1);
  858. loadref(1,_op2);
  859. loadreg(2,_op3);
  860. end;
  861. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  862. begin
  863. inherited create(op);
  864. init(_size);
  865. ops:=3;
  866. loadconst(0,_op1);
  867. loadreg(1,_op2);
  868. loadref(2,_op3);
  869. end;
  870. constructor taicpu.op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  871. begin
  872. inherited create(op);
  873. init(_size);
  874. ops:=3;
  875. loadreg(0,_op1);
  876. loadreg(1,_op2);
  877. loadref(2,_op3);
  878. end;
  879. constructor taicpu.op_const_reg_reg_reg(op : tasmop; _size : topsize; _op1 : aint; _op2, _op3, _op4 : tregister);
  880. begin
  881. inherited create(op);
  882. init(_size);
  883. ops:=4;
  884. loadconst(0,_op1);
  885. loadreg(1,_op2);
  886. loadreg(2,_op3);
  887. loadreg(3,_op4);
  888. end;
  889. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  890. begin
  891. inherited create(op);
  892. init(_size);
  893. condition:=cond;
  894. ops:=1;
  895. loadsymbol(0,_op1,0);
  896. end;
  897. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  898. begin
  899. inherited create(op);
  900. init(_size);
  901. ops:=1;
  902. loadsymbol(0,_op1,0);
  903. end;
  904. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  905. begin
  906. inherited create(op);
  907. init(_size);
  908. ops:=1;
  909. loadsymbol(0,_op1,_op1ofs);
  910. end;
  911. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  912. begin
  913. inherited create(op);
  914. init(_size);
  915. ops:=2;
  916. loadsymbol(0,_op1,_op1ofs);
  917. loadreg(1,_op2);
  918. end;
  919. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  920. begin
  921. inherited create(op);
  922. init(_size);
  923. ops:=2;
  924. loadsymbol(0,_op1,_op1ofs);
  925. loadref(1,_op2);
  926. end;
  927. function taicpu.GetString:string;
  928. var
  929. i : longint;
  930. s : string;
  931. addsize : boolean;
  932. begin
  933. s:='['+std_op2str[opcode];
  934. for i:=0 to ops-1 do
  935. begin
  936. with oper[i]^ do
  937. begin
  938. if i=0 then
  939. s:=s+' '
  940. else
  941. s:=s+',';
  942. { type }
  943. addsize:=false;
  944. if (ot and OT_XMMREG)=OT_XMMREG then
  945. s:=s+'xmmreg'
  946. else
  947. if (ot and OT_YMMREG)=OT_YMMREG then
  948. s:=s+'ymmreg'
  949. else
  950. if (ot and OT_MMXREG)=OT_MMXREG then
  951. s:=s+'mmxreg'
  952. else
  953. if (ot and OT_FPUREG)=OT_FPUREG then
  954. s:=s+'fpureg'
  955. else
  956. if (ot and OT_REGISTER)=OT_REGISTER then
  957. begin
  958. s:=s+'reg';
  959. addsize:=true;
  960. end
  961. else
  962. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  963. begin
  964. s:=s+'imm';
  965. addsize:=true;
  966. end
  967. else
  968. if (ot and OT_MEMORY)=OT_MEMORY then
  969. begin
  970. s:=s+'mem';
  971. addsize:=true;
  972. end
  973. else
  974. s:=s+'???';
  975. { size }
  976. if addsize then
  977. begin
  978. if (ot and OT_BITS8)<>0 then
  979. s:=s+'8'
  980. else
  981. if (ot and OT_BITS16)<>0 then
  982. s:=s+'16'
  983. else
  984. if (ot and OT_BITS32)<>0 then
  985. s:=s+'32'
  986. else
  987. if (ot and OT_BITS64)<>0 then
  988. s:=s+'64'
  989. else
  990. if (ot and OT_BITS128)<>0 then
  991. s:=s+'128'
  992. else
  993. if (ot and OT_BITS256)<>0 then
  994. s:=s+'256'
  995. else
  996. s:=s+'??';
  997. { signed }
  998. if (ot and OT_SIGNED)<>0 then
  999. s:=s+'s';
  1000. end;
  1001. end;
  1002. end;
  1003. GetString:=s+']';
  1004. end;
  1005. procedure taicpu.Swapoperands;
  1006. var
  1007. p : POper;
  1008. begin
  1009. { Fix the operands which are in AT&T style and we need them in Intel style }
  1010. case ops of
  1011. 0,1:
  1012. ;
  1013. 2 : begin
  1014. { 0,1 -> 1,0 }
  1015. p:=oper[0];
  1016. oper[0]:=oper[1];
  1017. oper[1]:=p;
  1018. end;
  1019. 3 : begin
  1020. { 0,1,2 -> 2,1,0 }
  1021. p:=oper[0];
  1022. oper[0]:=oper[2];
  1023. oper[2]:=p;
  1024. end;
  1025. 4 : begin
  1026. { 0,1,2,3 -> 3,2,1,0 }
  1027. p:=oper[0];
  1028. oper[0]:=oper[3];
  1029. oper[3]:=p;
  1030. p:=oper[1];
  1031. oper[1]:=oper[2];
  1032. oper[2]:=p;
  1033. end;
  1034. else
  1035. internalerror(201108141);
  1036. end;
  1037. end;
  1038. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  1039. begin
  1040. if FOperandOrder<>order then
  1041. begin
  1042. Swapoperands;
  1043. FOperandOrder:=order;
  1044. end;
  1045. end;
  1046. function taicpu.FixNonCommutativeOpcodes: tasmop;
  1047. begin
  1048. result:=opcode;
  1049. { we need ATT order }
  1050. SetOperandOrder(op_att);
  1051. if (
  1052. (ops=2) and
  1053. (oper[0]^.typ=top_reg) and
  1054. (oper[1]^.typ=top_reg) and
  1055. { if the first is ST and the second is also a register
  1056. it is necessarily ST1 .. ST7 }
  1057. ((oper[0]^.reg=NR_ST) or
  1058. (oper[0]^.reg=NR_ST0))
  1059. ) or
  1060. { ((ops=1) and
  1061. (oper[0]^.typ=top_reg) and
  1062. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  1063. (ops=0) then
  1064. begin
  1065. if opcode=A_FSUBR then
  1066. result:=A_FSUB
  1067. else if opcode=A_FSUB then
  1068. result:=A_FSUBR
  1069. else if opcode=A_FDIVR then
  1070. result:=A_FDIV
  1071. else if opcode=A_FDIV then
  1072. result:=A_FDIVR
  1073. else if opcode=A_FSUBRP then
  1074. result:=A_FSUBP
  1075. else if opcode=A_FSUBP then
  1076. result:=A_FSUBRP
  1077. else if opcode=A_FDIVRP then
  1078. result:=A_FDIVP
  1079. else if opcode=A_FDIVP then
  1080. result:=A_FDIVRP;
  1081. end;
  1082. if (
  1083. (ops=1) and
  1084. (oper[0]^.typ=top_reg) and
  1085. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  1086. (oper[0]^.reg<>NR_ST)
  1087. ) then
  1088. begin
  1089. if opcode=A_FSUBRP then
  1090. result:=A_FSUBP
  1091. else if opcode=A_FSUBP then
  1092. result:=A_FSUBRP
  1093. else if opcode=A_FDIVRP then
  1094. result:=A_FDIVP
  1095. else if opcode=A_FDIVP then
  1096. result:=A_FDIVRP;
  1097. end;
  1098. end;
  1099. {*****************************************************************************
  1100. Assembler
  1101. *****************************************************************************}
  1102. type
  1103. ea = packed record
  1104. sib_present : boolean;
  1105. bytes : byte;
  1106. size : byte;
  1107. modrm : byte;
  1108. sib : byte;
  1109. {$ifdef x86_64}
  1110. rex : byte;
  1111. {$endif x86_64}
  1112. end;
  1113. procedure taicpu.create_ot(objdata:TObjData);
  1114. {
  1115. this function will also fix some other fields which only needs to be once
  1116. }
  1117. var
  1118. i,l,relsize : longint;
  1119. currsym : TObjSymbol;
  1120. begin
  1121. if ops=0 then
  1122. exit;
  1123. { update oper[].ot field }
  1124. for i:=0 to ops-1 do
  1125. with oper[i]^ do
  1126. begin
  1127. case typ of
  1128. top_reg :
  1129. begin
  1130. ot:=reg_ot_table[findreg_by_number(reg)];
  1131. end;
  1132. top_ref :
  1133. begin
  1134. if (ref^.refaddr=addr_no)
  1135. {$ifdef i386}
  1136. or (
  1137. (ref^.refaddr in [addr_pic]) and
  1138. (ref^.base<>NR_NO)
  1139. )
  1140. {$endif i386}
  1141. {$ifdef x86_64}
  1142. or (
  1143. (ref^.refaddr in [addr_pic,addr_pic_no_got]) and
  1144. (ref^.base<>NR_NO)
  1145. )
  1146. {$endif x86_64}
  1147. then
  1148. begin
  1149. { create ot field }
  1150. if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
  1151. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1152. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1153. ) then
  1154. // AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
  1155. ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
  1156. (reg_ot_table[findreg_by_number(ref^.index)])
  1157. else if (ref^.base = NR_NO) and
  1158. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1159. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1160. ) then
  1161. // AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
  1162. ot := (OT_REG_GPR) or
  1163. (reg_ot_table[findreg_by_number(ref^.index)])
  1164. else if (ot and OT_SIZE_MASK)=0 then
  1165. ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
  1166. else
  1167. ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
  1168. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  1169. ot:=ot or OT_MEM_OFFS;
  1170. { fix scalefactor }
  1171. if (ref^.index=NR_NO) then
  1172. ref^.scalefactor:=0
  1173. else
  1174. if (ref^.scalefactor=0) then
  1175. ref^.scalefactor:=1;
  1176. end
  1177. else
  1178. begin
  1179. { Jumps use a relative offset which can be 8bit,
  1180. for other opcodes we always need to generate the full
  1181. 32bit address }
  1182. if assigned(objdata) and
  1183. is_jmp then
  1184. begin
  1185. currsym:=objdata.symbolref(ref^.symbol);
  1186. l:=ref^.offset;
  1187. {$push}
  1188. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  1189. if assigned(currsym) then
  1190. inc(l,currsym.address);
  1191. {$pop}
  1192. { when it is a forward jump we need to compensate the
  1193. offset of the instruction since the previous time,
  1194. because the symbol address is then still using the
  1195. 'old-style' addressing.
  1196. For backwards jumps this is not required because the
  1197. address of the symbol is already adjusted to the
  1198. new offset }
  1199. if (l>InsOffset) and (LastInsOffset<>-1) then
  1200. inc(l,InsOffset-LastInsOffset);
  1201. { instruction size will then always become 2 (PFV) }
  1202. relsize:=(InsOffset+2)-l;
  1203. if (relsize>=-128) and (relsize<=127) and
  1204. (
  1205. not assigned(currsym) or
  1206. (currsym.objsection=objdata.currobjsec)
  1207. ) then
  1208. ot:=OT_IMM8 or OT_SHORT
  1209. else
  1210. {$ifdef i8086}
  1211. ot:=OT_IMM16 or OT_NEAR;
  1212. {$else i8086}
  1213. ot:=OT_IMM32 or OT_NEAR;
  1214. {$endif i8086}
  1215. end
  1216. else
  1217. {$ifdef i8086}
  1218. if opsize=S_FAR then
  1219. ot:=OT_IMM16 or OT_FAR
  1220. else
  1221. ot:=OT_IMM16 or OT_NEAR;
  1222. {$else i8086}
  1223. ot:=OT_IMM32 or OT_NEAR;
  1224. {$endif i8086}
  1225. end;
  1226. end;
  1227. top_local :
  1228. begin
  1229. if (ot and OT_SIZE_MASK)=0 then
  1230. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  1231. else
  1232. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  1233. end;
  1234. top_const :
  1235. begin
  1236. // if opcode is a SSE or AVX-instruction then we need a
  1237. // special handling (opsize can different from const-size)
  1238. // (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
  1239. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
  1240. (not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnkown])) then
  1241. begin
  1242. case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
  1243. csiNoSize: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE;
  1244. csiMem8: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS8;
  1245. csiMem16: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS16;
  1246. csiMem32: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS32;
  1247. csiMem64: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS64;
  1248. end;
  1249. end
  1250. else
  1251. begin
  1252. { allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
  1253. { further, allow AAD and AAM with imm. operand }
  1254. if (opsize=S_NO) and not((i in [1,2,3])
  1255. {$ifndef x86_64}
  1256. or ((i=0) and (opcode in [A_AAD,A_AAM]))
  1257. {$endif x86_64}
  1258. ) then
  1259. message(asmr_e_invalid_opcode_and_operand);
  1260. if
  1261. {$ifndef i8086}
  1262. (opsize<>S_W) and
  1263. {$endif not i8086}
  1264. (aint(val)>=-128) and (val<=127) then
  1265. ot:=OT_IMM8 or OT_SIGNED
  1266. else
  1267. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  1268. if (val=1) and (i=1) then
  1269. ot := ot or OT_ONENESS;
  1270. end;
  1271. end;
  1272. top_none :
  1273. begin
  1274. { generated when there was an error in the
  1275. assembler reader. It never happends when generating
  1276. assembler }
  1277. end;
  1278. else
  1279. internalerror(200402266);
  1280. end;
  1281. end;
  1282. end;
  1283. function taicpu.InsEnd:longint;
  1284. begin
  1285. InsEnd:=InsOffset+InsSize;
  1286. end;
  1287. function taicpu.Matches(p:PInsEntry):boolean;
  1288. { * IF_SM stands for Size Match: any operand whose size is not
  1289. * explicitly specified by the template is `really' intended to be
  1290. * the same size as the first size-specified operand.
  1291. * Non-specification is tolerated in the input instruction, but
  1292. * _wrong_ specification is not.
  1293. *
  1294. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  1295. * three-operand instructions such as SHLD: it implies that the
  1296. * first two operands must match in size, but that the third is
  1297. * required to be _unspecified_.
  1298. *
  1299. * IF_SB invokes Size Byte: operands with unspecified size in the
  1300. * template are really bytes, and so no non-byte specification in
  1301. * the input instruction will be tolerated. IF_SW similarly invokes
  1302. * Size Word, and IF_SD invokes Size Doubleword.
  1303. *
  1304. * (The default state if neither IF_SM nor IF_SM2 is specified is
  1305. * that any operand with unspecified size in the template is
  1306. * required to have unspecified size in the instruction too...)
  1307. }
  1308. var
  1309. insot,
  1310. currot,
  1311. i,j,asize,oprs : longint;
  1312. insflags:tinsflags;
  1313. siz : array[0..max_operands-1] of longint;
  1314. begin
  1315. result:=false;
  1316. { Check the opcode and operands }
  1317. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  1318. exit;
  1319. {$ifdef i8086}
  1320. { On i8086, we need to skip the i386+ version of Jcc near, if the target
  1321. cpu is earlier than 386. There's another entry, later in the table for
  1322. i8086, which simulates it with i8086 instructions:
  1323. JNcc short +3
  1324. JMP near target }
  1325. if (p^.opcode=A_Jcc) and (current_settings.cputype<cpu_386) and
  1326. (IF_386 in p^.flags) then
  1327. exit;
  1328. {$endif i8086}
  1329. for i:=0 to p^.ops-1 do
  1330. begin
  1331. insot:=p^.optypes[i];
  1332. currot:=oper[i]^.ot;
  1333. { Check the operand flags }
  1334. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1335. exit;
  1336. { Check if the passed operand size matches with one of
  1337. the supported operand sizes }
  1338. if ((insot and OT_SIZE_MASK)<>0) and
  1339. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1340. exit;
  1341. { "far" matches only with "far" }
  1342. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1343. exit;
  1344. end;
  1345. { Check operand sizes }
  1346. insflags:=p^.flags;
  1347. if (insflags*IF_SMASK)<>[] then
  1348. begin
  1349. { as default an untyped size can get all the sizes, this is different
  1350. from nasm, but else we need to do a lot checking which opcodes want
  1351. size or not with the automatic size generation }
  1352. asize:=-1;
  1353. if IF_SB in insflags then
  1354. asize:=OT_BITS8
  1355. else if IF_SW in insflags then
  1356. asize:=OT_BITS16
  1357. else if IF_SD in insflags then
  1358. asize:=OT_BITS32;
  1359. if insflags*IF_ARMASK<>[] then
  1360. begin
  1361. siz[0]:=-1;
  1362. siz[1]:=-1;
  1363. siz[2]:=-1;
  1364. if IF_AR0 in insflags then
  1365. siz[0]:=asize
  1366. else if IF_AR1 in insflags then
  1367. siz[1]:=asize
  1368. else if IF_AR2 in insflags then
  1369. siz[2]:=asize
  1370. else
  1371. internalerror(2017092101);
  1372. end
  1373. else
  1374. begin
  1375. siz[0]:=asize;
  1376. siz[1]:=asize;
  1377. siz[2]:=asize;
  1378. end;
  1379. if insflags*[IF_SM,IF_SM2]<>[] then
  1380. begin
  1381. if IF_SM2 in insflags then
  1382. oprs:=2
  1383. else
  1384. oprs:=p^.ops;
  1385. for i:=0 to oprs-1 do
  1386. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  1387. begin
  1388. for j:=0 to oprs-1 do
  1389. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  1390. break;
  1391. end;
  1392. end
  1393. else
  1394. oprs:=2;
  1395. { Check operand sizes }
  1396. for i:=0 to p^.ops-1 do
  1397. begin
  1398. insot:=p^.optypes[i];
  1399. currot:=oper[i]^.ot;
  1400. if ((insot and OT_SIZE_MASK)=0) and
  1401. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  1402. { Immediates can always include smaller size }
  1403. ((currot and OT_IMMEDIATE)=0) and
  1404. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1405. exit;
  1406. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1407. exit;
  1408. end;
  1409. end;
  1410. if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
  1411. (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1412. begin
  1413. for i:=0 to p^.ops-1 do
  1414. begin
  1415. insot:=p^.optypes[i];
  1416. if ((insot and OT_XMMRM) = OT_XMMRM) OR
  1417. ((insot and OT_YMMRM) = OT_YMMRM) then
  1418. begin
  1419. if (insot and OT_SIZE_MASK) = 0 then
  1420. begin
  1421. case insot and (OT_XMMRM or OT_YMMRM) of
  1422. OT_XMMRM: insot := insot or OT_BITS128;
  1423. OT_YMMRM: insot := insot or OT_BITS256;
  1424. end;
  1425. end;
  1426. end;
  1427. currot:=oper[i]^.ot;
  1428. { Check the operand flags }
  1429. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1430. exit;
  1431. { Check if the passed operand size matches with one of
  1432. the supported operand sizes }
  1433. if ((insot and OT_SIZE_MASK)<>0) and
  1434. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1435. exit;
  1436. end;
  1437. end;
  1438. result:=true;
  1439. end;
  1440. procedure taicpu.ResetPass1;
  1441. begin
  1442. { we need to reset everything here, because the choosen insentry
  1443. can be invalid for a new situation where the previously optimized
  1444. insentry is not correct }
  1445. InsEntry:=nil;
  1446. InsSize:=0;
  1447. LastInsOffset:=-1;
  1448. end;
  1449. procedure taicpu.ResetPass2;
  1450. begin
  1451. { we are here in a second pass, check if the instruction can be optimized }
  1452. if assigned(InsEntry) and
  1453. (IF_PASS2 in InsEntry^.flags) then
  1454. begin
  1455. InsEntry:=nil;
  1456. InsSize:=0;
  1457. end;
  1458. LastInsOffset:=-1;
  1459. end;
  1460. function taicpu.CheckIfValid:boolean;
  1461. begin
  1462. result:=FindInsEntry(nil);
  1463. end;
  1464. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1465. var
  1466. i : longint;
  1467. begin
  1468. result:=false;
  1469. { Things which may only be done once, not when a second pass is done to
  1470. optimize }
  1471. if (Insentry=nil) or (IF_PASS2 in InsEntry^.flags) then
  1472. begin
  1473. current_filepos:=fileinfo;
  1474. { We need intel style operands }
  1475. SetOperandOrder(op_intel);
  1476. { create the .ot fields }
  1477. create_ot(objdata);
  1478. { set the file postion }
  1479. end
  1480. else
  1481. begin
  1482. { we've already an insentry so it's valid }
  1483. result:=true;
  1484. exit;
  1485. end;
  1486. { Lookup opcode in the table }
  1487. InsSize:=-1;
  1488. i:=instabcache^[opcode];
  1489. if i=-1 then
  1490. begin
  1491. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1492. exit;
  1493. end;
  1494. insentry:=@instab[i];
  1495. while (insentry^.opcode=opcode) do
  1496. begin
  1497. if matches(insentry) then
  1498. begin
  1499. result:=true;
  1500. exit;
  1501. end;
  1502. inc(insentry);
  1503. end;
  1504. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1505. { No instruction found, set insentry to nil and inssize to -1 }
  1506. insentry:=nil;
  1507. inssize:=-1;
  1508. end;
  1509. function taicpu.Pass1(objdata:TObjData):longint;
  1510. begin
  1511. Pass1:=0;
  1512. { Save the old offset and set the new offset }
  1513. InsOffset:=ObjData.CurrObjSec.Size;
  1514. { Error? }
  1515. if (Insentry=nil) and (InsSize=-1) then
  1516. exit;
  1517. { set the file postion }
  1518. current_filepos:=fileinfo;
  1519. { Get InsEntry }
  1520. if FindInsEntry(ObjData) then
  1521. begin
  1522. { Calculate instruction size }
  1523. InsSize:=calcsize(insentry);
  1524. if segprefix<>NR_NO then
  1525. inc(InsSize);
  1526. if NeedAddrPrefix then
  1527. inc(InsSize);
  1528. { Fix opsize if size if forced }
  1529. if insentry^.flags*[IF_SB,IF_SW,IF_SD]<>[] then
  1530. begin
  1531. if insentry^.flags*IF_ARMASK=[] then
  1532. begin
  1533. if IF_SB in insentry^.flags then
  1534. begin
  1535. if opsize=S_NO then
  1536. opsize:=S_B;
  1537. end
  1538. else if IF_SW in insentry^.flags then
  1539. begin
  1540. if opsize=S_NO then
  1541. opsize:=S_W;
  1542. end
  1543. else if IF_SD in insentry^.flags then
  1544. begin
  1545. if opsize=S_NO then
  1546. opsize:=S_L;
  1547. end;
  1548. end;
  1549. end;
  1550. LastInsOffset:=InsOffset;
  1551. Pass1:=InsSize;
  1552. exit;
  1553. end;
  1554. LastInsOffset:=-1;
  1555. end;
  1556. const
  1557. segprefixes: array[NR_ES..NR_GS] of Byte=(
  1558. // es cs ss ds fs gs
  1559. $26, $2E, $36, $3E, $64, $65
  1560. );
  1561. procedure taicpu.Pass2(objdata:TObjData);
  1562. begin
  1563. { error in pass1 ? }
  1564. if insentry=nil then
  1565. exit;
  1566. current_filepos:=fileinfo;
  1567. { Segment override }
  1568. if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
  1569. begin
  1570. {$ifdef i8086}
  1571. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) and
  1572. ((segprefix=NR_FS) or (segprefix=NR_GS)) then
  1573. Message(asmw_e_instruction_not_supported_by_cpu);
  1574. {$endif i8086}
  1575. objdata.writebytes(segprefixes[segprefix],1);
  1576. { fix the offset for GenNode }
  1577. inc(InsOffset);
  1578. end
  1579. else if segprefix<>NR_NO then
  1580. InternalError(201001071);
  1581. { Address size prefix? }
  1582. if NeedAddrPrefix then
  1583. begin
  1584. write0x67prefix(objdata);
  1585. { fix the offset for GenNode }
  1586. inc(InsOffset);
  1587. end;
  1588. { Generate the instruction }
  1589. GenCode(objdata);
  1590. end;
  1591. function is_16_bit_ref(const input:toper):boolean;
  1592. var
  1593. ir,br : Tregister;
  1594. isub,bsub : tsubregister;
  1595. has_16_bit_regs: Boolean;
  1596. begin
  1597. if (input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) then
  1598. exit(false);
  1599. ir:=input.ref^.index;
  1600. br:=input.ref^.base;
  1601. isub:=getsubreg(ir);
  1602. bsub:=getsubreg(br);
  1603. { it's a direct address }
  1604. if (br=NR_NO) and (ir=NR_NO) then
  1605. begin
  1606. {$ifdef i8086}
  1607. result:=true;
  1608. {$else i8086}
  1609. result:=false;
  1610. {$endif}
  1611. end
  1612. else
  1613. { it's an indirection }
  1614. begin
  1615. result := ((ir<>NR_NO) and (isub=R_SUBW)) or
  1616. ((br<>NR_NO) and (bsub=R_SUBW));
  1617. end;
  1618. end;
  1619. function taicpu.needaddrprefix(opidx:byte):boolean;
  1620. begin
  1621. {$if defined(x86_64)}
  1622. result:=(oper[opidx]^.typ=top_ref) and
  1623. (oper[opidx]^.ref^.refaddr=addr_no) and
  1624. {$ifdef x86_64}
  1625. (oper[opidx]^.ref^.base<>NR_RIP) and
  1626. {$endif x86_64}
  1627. (
  1628. (
  1629. (oper[opidx]^.ref^.index<>NR_NO) and
  1630. (getsubreg(oper[opidx]^.ref^.index)<>R_SUBADDR)
  1631. ) or
  1632. (
  1633. (oper[opidx]^.ref^.base<>NR_NO) and
  1634. (getsubreg(oper[opidx]^.ref^.base)<>R_SUBADDR)
  1635. )
  1636. );
  1637. {$elseif defined(i386)}
  1638. result:=(oper[opidx]^.typ=top_ref) and is_16_bit_ref(oper[opidx]^);
  1639. {$elseif defined(i8086)}
  1640. result:=(oper[opidx]^.typ=top_ref) and not is_16_bit_ref(oper[opidx]^);
  1641. {$endif}
  1642. end;
  1643. function taicpu.NeedAddrPrefix:boolean;
  1644. var
  1645. i: Integer;
  1646. begin
  1647. for i:=0 to ops-1 do
  1648. if needaddrprefix(i) then
  1649. exit(true);
  1650. result:=false;
  1651. end;
  1652. procedure badreg(r:Tregister);
  1653. begin
  1654. Message1(asmw_e_invalid_register,generic_regname(r));
  1655. end;
  1656. function regval(r:Tregister):byte;
  1657. const
  1658. intsupreg2opcode: array[0..7] of byte=
  1659. // ax cx dx bx si di bp sp -- in x86reg.dat
  1660. // ax cx dx bx sp bp si di -- needed order
  1661. (0, 1, 2, 3, 6, 7, 5, 4);
  1662. maxsupreg: array[tregistertype] of tsuperregister=
  1663. {$ifdef x86_64}
  1664. (0, 16, 9, 8, 16, 32, 0, 0);
  1665. {$else x86_64}
  1666. (0, 8, 9, 8, 8, 32, 0, 0);
  1667. {$endif x86_64}
  1668. var
  1669. rs: tsuperregister;
  1670. rt: tregistertype;
  1671. begin
  1672. rs:=getsupreg(r);
  1673. rt:=getregtype(r);
  1674. if (rs>=maxsupreg[rt]) then
  1675. badreg(r);
  1676. result:=rs and 7;
  1677. if (rt=R_INTREGISTER) then
  1678. begin
  1679. if (rs<8) then
  1680. result:=intsupreg2opcode[rs];
  1681. if getsubreg(r)=R_SUBH then
  1682. inc(result,4);
  1683. end;
  1684. end;
  1685. {$if defined(x86_64)}
  1686. function rexbits(r: tregister): byte;
  1687. begin
  1688. result:=0;
  1689. case getregtype(r) of
  1690. R_INTREGISTER:
  1691. if (getsupreg(r)>=RS_R8) then
  1692. { Either B,X or R bits can be set, depending on register role in instruction.
  1693. Set all three bits here, caller will discard unnecessary ones. }
  1694. result:=result or $47
  1695. else if (getsubreg(r)=R_SUBL) and
  1696. (getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1697. result:=result or $40
  1698. else if (getsubreg(r)=R_SUBH) then
  1699. { Not an actual REX bit, used to detect incompatible usage of
  1700. AH/BH/CH/DH }
  1701. result:=result or $80;
  1702. R_MMREGISTER:
  1703. if getsupreg(r)>=RS_XMM8 then
  1704. result:=result or $47;
  1705. end;
  1706. end;
  1707. function process_ea_ref_64_32(const input:toper;var output:ea;rfield:longint):boolean;
  1708. var
  1709. sym : tasmsymbol;
  1710. md,s : byte;
  1711. base,index,scalefactor,
  1712. o : longint;
  1713. ir,br : Tregister;
  1714. isub,bsub : tsubregister;
  1715. begin
  1716. result:=false;
  1717. ir:=input.ref^.index;
  1718. br:=input.ref^.base;
  1719. isub:=getsubreg(ir);
  1720. bsub:=getsubreg(br);
  1721. s:=input.ref^.scalefactor;
  1722. o:=input.ref^.offset;
  1723. sym:=input.ref^.symbol;
  1724. //if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  1725. // ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1726. if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
  1727. ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
  1728. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1729. internalerror(200301081);
  1730. { it's direct address }
  1731. if (br=NR_NO) and (ir=NR_NO) then
  1732. begin
  1733. output.sib_present:=true;
  1734. output.bytes:=4;
  1735. output.modrm:=4 or (rfield shl 3);
  1736. output.sib:=$25;
  1737. end
  1738. else if (br=NR_RIP) and (ir=NR_NO) then
  1739. begin
  1740. { rip based }
  1741. output.sib_present:=false;
  1742. output.bytes:=4;
  1743. output.modrm:=5 or (rfield shl 3);
  1744. end
  1745. else
  1746. { it's an indirection }
  1747. begin
  1748. { 16 bit? }
  1749. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1750. (br<>NR_NO) and (bsub=R_SUBQ)
  1751. ) then
  1752. begin
  1753. // vector memory (AVX2) =>> ignore
  1754. end
  1755. else if ((ir<>NR_NO) and (isub<>R_SUBQ) and (isub<>R_SUBD)) or
  1756. ((br<>NR_NO) and (bsub<>R_SUBQ) and (bsub<>R_SUBD)) then
  1757. begin
  1758. message(asmw_e_16bit_32bit_not_supported);
  1759. end;
  1760. { wrong, for various reasons }
  1761. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1762. exit;
  1763. output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
  1764. result:=true;
  1765. { base }
  1766. case br of
  1767. NR_R8D,
  1768. NR_EAX,
  1769. NR_R8,
  1770. NR_RAX : base:=0;
  1771. NR_R9D,
  1772. NR_ECX,
  1773. NR_R9,
  1774. NR_RCX : base:=1;
  1775. NR_R10D,
  1776. NR_EDX,
  1777. NR_R10,
  1778. NR_RDX : base:=2;
  1779. NR_R11D,
  1780. NR_EBX,
  1781. NR_R11,
  1782. NR_RBX : base:=3;
  1783. NR_R12D,
  1784. NR_ESP,
  1785. NR_R12,
  1786. NR_RSP : base:=4;
  1787. NR_R13D,
  1788. NR_EBP,
  1789. NR_R13,
  1790. NR_NO,
  1791. NR_RBP : base:=5;
  1792. NR_R14D,
  1793. NR_ESI,
  1794. NR_R14,
  1795. NR_RSI : base:=6;
  1796. NR_R15D,
  1797. NR_EDI,
  1798. NR_R15,
  1799. NR_RDI : base:=7;
  1800. else
  1801. exit;
  1802. end;
  1803. { index }
  1804. case ir of
  1805. NR_R8D,
  1806. NR_EAX,
  1807. NR_R8,
  1808. NR_RAX,
  1809. NR_XMM0,
  1810. NR_XMM8,
  1811. NR_YMM0,
  1812. NR_YMM8 : index:=0;
  1813. NR_R9D,
  1814. NR_ECX,
  1815. NR_R9,
  1816. NR_RCX,
  1817. NR_XMM1,
  1818. NR_XMM9,
  1819. NR_YMM1,
  1820. NR_YMM9 : index:=1;
  1821. NR_R10D,
  1822. NR_EDX,
  1823. NR_R10,
  1824. NR_RDX,
  1825. NR_XMM2,
  1826. NR_XMM10,
  1827. NR_YMM2,
  1828. NR_YMM10 : index:=2;
  1829. NR_R11D,
  1830. NR_EBX,
  1831. NR_R11,
  1832. NR_RBX,
  1833. NR_XMM3,
  1834. NR_XMM11,
  1835. NR_YMM3,
  1836. NR_YMM11 : index:=3;
  1837. NR_R12D,
  1838. NR_ESP,
  1839. NR_R12,
  1840. NR_NO,
  1841. NR_XMM4,
  1842. NR_XMM12,
  1843. NR_YMM4,
  1844. NR_YMM12 : index:=4;
  1845. NR_R13D,
  1846. NR_EBP,
  1847. NR_R13,
  1848. NR_RBP,
  1849. NR_XMM5,
  1850. NR_XMM13,
  1851. NR_YMM5,
  1852. NR_YMM13: index:=5;
  1853. NR_R14D,
  1854. NR_ESI,
  1855. NR_R14,
  1856. NR_RSI,
  1857. NR_XMM6,
  1858. NR_XMM14,
  1859. NR_YMM6,
  1860. NR_YMM14: index:=6;
  1861. NR_R15D,
  1862. NR_EDI,
  1863. NR_R15,
  1864. NR_RDI,
  1865. NR_XMM7,
  1866. NR_XMM15,
  1867. NR_YMM7,
  1868. NR_YMM15: index:=7;
  1869. else
  1870. exit;
  1871. end;
  1872. case s of
  1873. 0,
  1874. 1 : scalefactor:=0;
  1875. 2 : scalefactor:=1;
  1876. 4 : scalefactor:=2;
  1877. 8 : scalefactor:=3;
  1878. else
  1879. exit;
  1880. end;
  1881. { If rbp or r13 is used we must always include an offset }
  1882. if (br=NR_NO) or
  1883. ((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
  1884. md:=0
  1885. else
  1886. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1887. md:=1
  1888. else
  1889. md:=2;
  1890. if (br=NR_NO) or (md=2) then
  1891. output.bytes:=4
  1892. else
  1893. output.bytes:=md;
  1894. { SIB needed ? }
  1895. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
  1896. begin
  1897. output.sib_present:=false;
  1898. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  1899. end
  1900. else
  1901. begin
  1902. output.sib_present:=true;
  1903. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  1904. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1905. end;
  1906. end;
  1907. output.size:=1+ord(output.sib_present)+output.bytes;
  1908. result:=true;
  1909. end;
  1910. {$elseif defined(i386) or defined(i8086)}
  1911. function process_ea_ref_32(const input:toper;out output:ea;rfield:longint):boolean;
  1912. var
  1913. sym : tasmsymbol;
  1914. md,s : byte;
  1915. base,index,scalefactor,
  1916. o : longint;
  1917. ir,br : Tregister;
  1918. isub,bsub : tsubregister;
  1919. begin
  1920. result:=false;
  1921. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) and (input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) or // vector memory (AVX2)
  1922. ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER) and (getregtype(input.ref^.index)<>R_MMREGISTER)) or
  1923. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1924. internalerror(200301081);
  1925. ir:=input.ref^.index;
  1926. br:=input.ref^.base;
  1927. isub:=getsubreg(ir);
  1928. bsub:=getsubreg(br);
  1929. s:=input.ref^.scalefactor;
  1930. o:=input.ref^.offset;
  1931. sym:=input.ref^.symbol;
  1932. { it's direct address }
  1933. if (br=NR_NO) and (ir=NR_NO) then
  1934. begin
  1935. { it's a pure offset }
  1936. output.sib_present:=false;
  1937. output.bytes:=4;
  1938. output.modrm:=5 or (rfield shl 3);
  1939. end
  1940. else
  1941. { it's an indirection }
  1942. begin
  1943. { 16 bit address? }
  1944. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1945. (br<>NR_NO) and (bsub=R_SUBD)
  1946. ) then
  1947. begin
  1948. // vector memory (AVX2) =>> ignore
  1949. end
  1950. else if ((ir<>NR_NO) and (isub<>R_SUBD)) or
  1951. ((br<>NR_NO) and (bsub<>R_SUBD)) then
  1952. message(asmw_e_16bit_not_supported);
  1953. {$ifdef OPTEA}
  1954. { make single reg base }
  1955. if (br=NR_NO) and (s=1) then
  1956. begin
  1957. br:=ir;
  1958. ir:=NR_NO;
  1959. end;
  1960. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  1961. if (br=NR_NO) and
  1962. (((s=2) and (ir<>NR_ESP)) or
  1963. (s=3) or (s=5) or (s=9)) then
  1964. begin
  1965. br:=ir;
  1966. dec(s);
  1967. end;
  1968. { swap ESP into base if scalefactor is 1 }
  1969. if (s=1) and (ir=NR_ESP) then
  1970. begin
  1971. ir:=br;
  1972. br:=NR_ESP;
  1973. end;
  1974. {$endif OPTEA}
  1975. { wrong, for various reasons }
  1976. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1977. exit;
  1978. { base }
  1979. case br of
  1980. NR_EAX : base:=0;
  1981. NR_ECX : base:=1;
  1982. NR_EDX : base:=2;
  1983. NR_EBX : base:=3;
  1984. NR_ESP : base:=4;
  1985. NR_NO,
  1986. NR_EBP : base:=5;
  1987. NR_ESI : base:=6;
  1988. NR_EDI : base:=7;
  1989. else
  1990. exit;
  1991. end;
  1992. { index }
  1993. case ir of
  1994. NR_EAX,
  1995. NR_XMM0,
  1996. NR_YMM0: index:=0;
  1997. NR_ECX,
  1998. NR_XMM1,
  1999. NR_YMM1: index:=1;
  2000. NR_EDX,
  2001. NR_XMM2,
  2002. NR_YMM2: index:=2;
  2003. NR_EBX,
  2004. NR_XMM3,
  2005. NR_YMM3: index:=3;
  2006. NR_NO,
  2007. NR_XMM4,
  2008. NR_YMM4: index:=4;
  2009. NR_EBP,
  2010. NR_XMM5,
  2011. NR_YMM5: index:=5;
  2012. NR_ESI,
  2013. NR_XMM6,
  2014. NR_YMM6: index:=6;
  2015. NR_EDI,
  2016. NR_XMM7,
  2017. NR_YMM7: index:=7;
  2018. else
  2019. exit;
  2020. end;
  2021. case s of
  2022. 0,
  2023. 1 : scalefactor:=0;
  2024. 2 : scalefactor:=1;
  2025. 4 : scalefactor:=2;
  2026. 8 : scalefactor:=3;
  2027. else
  2028. exit;
  2029. end;
  2030. if (br=NR_NO) or
  2031. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  2032. md:=0
  2033. else
  2034. if ((o>=-128) and (o<=127) and (sym=nil)) then
  2035. md:=1
  2036. else
  2037. md:=2;
  2038. if (br=NR_NO) or (md=2) then
  2039. output.bytes:=4
  2040. else
  2041. output.bytes:=md;
  2042. { SIB needed ? }
  2043. if (ir=NR_NO) and (br<>NR_ESP) then
  2044. begin
  2045. output.sib_present:=false;
  2046. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  2047. end
  2048. else
  2049. begin
  2050. output.sib_present:=true;
  2051. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
  2052. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  2053. end;
  2054. end;
  2055. if output.sib_present then
  2056. output.size:=2+output.bytes
  2057. else
  2058. output.size:=1+output.bytes;
  2059. result:=true;
  2060. end;
  2061. procedure maybe_swap_index_base(var br,ir:Tregister);
  2062. var
  2063. tmpreg: Tregister;
  2064. begin
  2065. if ((br=NR_NO) or (br=NR_SI) or (br=NR_DI)) and
  2066. ((ir=NR_NO) or (ir=NR_BP) or (ir=NR_BX)) then
  2067. begin
  2068. tmpreg:=br;
  2069. br:=ir;
  2070. ir:=tmpreg;
  2071. end;
  2072. end;
  2073. function process_ea_ref_16(const input:toper;out output:ea;rfield:longint):boolean;
  2074. var
  2075. sym : tasmsymbol;
  2076. md,s,rv : byte;
  2077. base,
  2078. o : longint;
  2079. ir,br : Tregister;
  2080. isub,bsub : tsubregister;
  2081. begin
  2082. result:=false;
  2083. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  2084. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  2085. internalerror(200301081);
  2086. ir:=input.ref^.index;
  2087. br:=input.ref^.base;
  2088. isub:=getsubreg(ir);
  2089. bsub:=getsubreg(br);
  2090. s:=input.ref^.scalefactor;
  2091. o:=input.ref^.offset;
  2092. sym:=input.ref^.symbol;
  2093. { it's a direct address }
  2094. if (br=NR_NO) and (ir=NR_NO) then
  2095. begin
  2096. { it's a pure offset }
  2097. output.bytes:=2;
  2098. output.modrm:=6 or (rfield shl 3);
  2099. end
  2100. else
  2101. { it's an indirection }
  2102. begin
  2103. { 32 bit address? }
  2104. if ((ir<>NR_NO) and (isub<>R_SUBW)) or
  2105. ((br<>NR_NO) and (bsub<>R_SUBW)) then
  2106. message(asmw_e_32bit_not_supported);
  2107. { scalefactor can only be 1 in 16-bit addresses }
  2108. if (s<>1) and (ir<>NR_NO) then
  2109. exit;
  2110. maybe_swap_index_base(br,ir);
  2111. if (br=NR_BX) and (ir=NR_SI) then
  2112. base:=0
  2113. else if (br=NR_BX) and (ir=NR_DI) then
  2114. base:=1
  2115. else if (br=NR_BP) and (ir=NR_SI) then
  2116. base:=2
  2117. else if (br=NR_BP) and (ir=NR_DI) then
  2118. base:=3
  2119. else if (br=NR_NO) and (ir=NR_SI) then
  2120. base:=4
  2121. else if (br=NR_NO) and (ir=NR_DI) then
  2122. base:=5
  2123. else if (br=NR_BP) and (ir=NR_NO) then
  2124. base:=6
  2125. else if (br=NR_BX) and (ir=NR_NO) then
  2126. base:=7
  2127. else
  2128. exit;
  2129. if (base<>6) and (o=0) and (sym=nil) then
  2130. md:=0
  2131. else if ((o>=-128) and (o<=127) and (sym=nil)) then
  2132. md:=1
  2133. else
  2134. md:=2;
  2135. output.bytes:=md;
  2136. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  2137. end;
  2138. output.size:=1+output.bytes;
  2139. output.sib_present:=false;
  2140. result:=true;
  2141. end;
  2142. {$endif}
  2143. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  2144. var
  2145. rv : byte;
  2146. begin
  2147. result:=false;
  2148. fillchar(output,sizeof(output),0);
  2149. {Register ?}
  2150. if (input.typ=top_reg) then
  2151. begin
  2152. rv:=regval(input.reg);
  2153. output.modrm:=$c0 or (rfield shl 3) or rv;
  2154. output.size:=1;
  2155. {$ifdef x86_64}
  2156. output.rex:=output.rex or (rexbits(input.reg) and $F1);
  2157. {$endif x86_64}
  2158. result:=true;
  2159. exit;
  2160. end;
  2161. {No register, so memory reference.}
  2162. if input.typ<>top_ref then
  2163. internalerror(200409263);
  2164. {$if defined(x86_64)}
  2165. result:=process_ea_ref_64_32(input,output,rfield);
  2166. {$elseif defined(i386) or defined(i8086)}
  2167. if is_16_bit_ref(input) then
  2168. result:=process_ea_ref_16(input,output,rfield)
  2169. else
  2170. result:=process_ea_ref_32(input,output,rfield);
  2171. {$endif}
  2172. end;
  2173. function taicpu.calcsize(p:PInsEntry):shortint;
  2174. var
  2175. codes : pchar;
  2176. c : byte;
  2177. len : shortint;
  2178. ea_data : ea;
  2179. exists_vex: boolean;
  2180. exists_vex_extension: boolean;
  2181. exists_prefix_66: boolean;
  2182. exists_prefix_F2: boolean;
  2183. exists_prefix_F3: boolean;
  2184. {$ifdef x86_64}
  2185. omit_rexw : boolean;
  2186. {$endif x86_64}
  2187. begin
  2188. len:=0;
  2189. codes:=@p^.code[0];
  2190. exists_vex := false;
  2191. exists_vex_extension := false;
  2192. exists_prefix_66 := false;
  2193. exists_prefix_F2 := false;
  2194. exists_prefix_F3 := false;
  2195. {$ifdef x86_64}
  2196. rex:=0;
  2197. omit_rexw:=false;
  2198. {$endif x86_64}
  2199. repeat
  2200. c:=ord(codes^);
  2201. inc(codes);
  2202. case c of
  2203. &0 :
  2204. break;
  2205. &1,&2,&3 :
  2206. begin
  2207. inc(codes,c);
  2208. inc(len,c);
  2209. end;
  2210. &10,&11,&12 :
  2211. begin
  2212. {$ifdef x86_64}
  2213. rex:=rex or (rexbits(oper[c-&10]^.reg) and $F1);
  2214. {$endif x86_64}
  2215. inc(codes);
  2216. inc(len);
  2217. end;
  2218. &13,&23 :
  2219. begin
  2220. inc(codes);
  2221. inc(len);
  2222. end;
  2223. &4,&5,&6,&7 :
  2224. begin
  2225. if opsize={$ifdef i8086}S_L{$else}S_W{$endif} then
  2226. inc(len,2)
  2227. else
  2228. inc(len);
  2229. end;
  2230. &14,&15,&16,
  2231. &20,&21,&22,
  2232. &24,&25,&26,&27,
  2233. &50,&51,&52 :
  2234. inc(len);
  2235. &30,&31,&32,
  2236. &37,
  2237. &60,&61,&62 :
  2238. inc(len,2);
  2239. &34,&35,&36:
  2240. begin
  2241. {$ifdef i8086}
  2242. inc(len,2);
  2243. {$else i8086}
  2244. if opsize=S_Q then
  2245. inc(len,8)
  2246. else
  2247. inc(len,4);
  2248. {$endif i8086}
  2249. end;
  2250. &44,&45,&46:
  2251. inc(len,sizeof(pint));
  2252. &54,&55,&56:
  2253. inc(len,8);
  2254. &40,&41,&42,
  2255. &70,&71,&72,
  2256. &254,&255,&256 :
  2257. inc(len,4);
  2258. &64,&65,&66:
  2259. {$ifdef i8086}
  2260. inc(len,2);
  2261. {$else i8086}
  2262. inc(len,4);
  2263. {$endif i8086}
  2264. &74,&75,&76,&77: ; // ignore vex-coded operand-idx
  2265. &320,&321,&322 :
  2266. begin
  2267. case (oper[c-&320]^.ot and OT_SIZE_MASK) of
  2268. {$if defined(i386) or defined(x86_64)}
  2269. OT_BITS16 :
  2270. {$elseif defined(i8086)}
  2271. OT_BITS32 :
  2272. {$endif}
  2273. inc(len);
  2274. {$ifdef x86_64}
  2275. OT_BITS64:
  2276. begin
  2277. rex:=rex or $48;
  2278. end;
  2279. {$endif x86_64}
  2280. end;
  2281. end;
  2282. &310 :
  2283. {$if defined(x86_64)}
  2284. { every insentry with code 0310 must be marked with NOX86_64 }
  2285. InternalError(2011051301);
  2286. {$elseif defined(i386)}
  2287. inc(len);
  2288. {$elseif defined(i8086)}
  2289. {nothing};
  2290. {$endif}
  2291. &311 :
  2292. {$if defined(x86_64) or defined(i8086)}
  2293. inc(len)
  2294. {$endif x86_64 or i8086}
  2295. ;
  2296. &324 :
  2297. {$ifndef i8086}
  2298. inc(len)
  2299. {$endif not i8086}
  2300. ;
  2301. &326 :
  2302. begin
  2303. {$ifdef x86_64}
  2304. rex:=rex or $48;
  2305. {$endif x86_64}
  2306. end;
  2307. &312,
  2308. &323,
  2309. &327,
  2310. &331,&332: ;
  2311. &325:
  2312. {$ifdef i8086}
  2313. inc(len)
  2314. {$endif i8086}
  2315. ;
  2316. &333:
  2317. begin
  2318. inc(len);
  2319. exists_prefix_F2 := true;
  2320. end;
  2321. &334:
  2322. begin
  2323. inc(len);
  2324. exists_prefix_F3 := true;
  2325. end;
  2326. &361:
  2327. begin
  2328. {$ifndef i8086}
  2329. inc(len);
  2330. exists_prefix_66 := true;
  2331. {$endif not i8086}
  2332. end;
  2333. &335:
  2334. {$ifdef x86_64}
  2335. omit_rexw:=true
  2336. {$endif x86_64}
  2337. ;
  2338. &100..&227 :
  2339. begin
  2340. {$ifdef x86_64}
  2341. if (c<&177) then
  2342. begin
  2343. if (oper[c and 7]^.typ=top_reg) then
  2344. begin
  2345. rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
  2346. end;
  2347. end;
  2348. {$endif x86_64}
  2349. if not process_ea(oper[(c shr 3) and 7]^, ea_data, 0) then
  2350. Message(asmw_e_invalid_effective_address)
  2351. else
  2352. inc(len,ea_data.size);
  2353. {$ifdef x86_64}
  2354. rex:=rex or ea_data.rex;
  2355. {$endif x86_64}
  2356. end;
  2357. &362: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
  2358. // =>> DEFAULT = 2 Bytes
  2359. begin
  2360. if not(exists_vex) then
  2361. begin
  2362. inc(len, 2);
  2363. exists_vex := true;
  2364. end;
  2365. end;
  2366. &363: // REX.W = 1
  2367. // =>> VEX prefix length = 3
  2368. begin
  2369. if not(exists_vex_extension) then
  2370. begin
  2371. inc(len);
  2372. exists_vex_extension := true;
  2373. end;
  2374. end;
  2375. &364: ; // VEX length bit
  2376. &366, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
  2377. &367: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
  2378. &370: // VEX-Extension prefix $0F
  2379. // ignore for calculating length
  2380. ;
  2381. &371, // VEX-Extension prefix $0F38
  2382. &372: // VEX-Extension prefix $0F3A
  2383. begin
  2384. if not(exists_vex_extension) then
  2385. begin
  2386. inc(len);
  2387. exists_vex_extension := true;
  2388. end;
  2389. end;
  2390. &300,&301,&302:
  2391. begin
  2392. {$if defined(x86_64) or defined(i8086)}
  2393. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2394. inc(len);
  2395. {$endif x86_64 or i8086}
  2396. end;
  2397. else
  2398. InternalError(200603141);
  2399. end;
  2400. until false;
  2401. {$ifdef x86_64}
  2402. if ((rex and $80)<>0) and ((rex and $4F)<>0) then
  2403. Message(asmw_e_bad_reg_with_rex);
  2404. rex:=rex and $4F; { reset extra bits in upper nibble }
  2405. if omit_rexw then
  2406. begin
  2407. if rex=$48 then { remove rex entirely? }
  2408. rex:=0
  2409. else
  2410. rex:=rex and $F7;
  2411. end;
  2412. if not(exists_vex) then
  2413. begin
  2414. if rex<>0 then
  2415. Inc(len);
  2416. end;
  2417. {$endif}
  2418. if exists_vex then
  2419. begin
  2420. if exists_prefix_66 then dec(len);
  2421. if exists_prefix_F2 then dec(len);
  2422. if exists_prefix_F3 then dec(len);
  2423. {$ifdef x86_64}
  2424. if not(exists_vex_extension) then
  2425. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  2426. {$endif x86_64}
  2427. end;
  2428. calcsize:=len;
  2429. end;
  2430. procedure taicpu.write0x66prefix(objdata:TObjData);
  2431. const
  2432. b66: Byte=$66;
  2433. begin
  2434. {$ifdef i8086}
  2435. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  2436. Message(asmw_e_instruction_not_supported_by_cpu);
  2437. {$endif i8086}
  2438. objdata.writebytes(b66,1);
  2439. end;
  2440. procedure taicpu.write0x67prefix(objdata:TObjData);
  2441. const
  2442. b67: Byte=$67;
  2443. begin
  2444. {$ifdef i8086}
  2445. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  2446. Message(asmw_e_instruction_not_supported_by_cpu);
  2447. {$endif i8086}
  2448. objdata.writebytes(b67,1);
  2449. end;
  2450. procedure taicpu.GenCode(objdata:TObjData);
  2451. {
  2452. * the actual codes (C syntax, i.e. octal):
  2453. * \0 - terminates the code. (Unless it's a literal of course.)
  2454. * \1, \2, \3 - that many literal bytes follow in the code stream
  2455. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  2456. * (POP is never used for CS) depending on operand 0
  2457. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  2458. * on operand 0
  2459. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  2460. * to the register value of operand 0, 1 or 2
  2461. * \13 - a literal byte follows in the code stream, to be added
  2462. * to the condition code value of the instruction.
  2463. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  2464. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  2465. * \23 - a literal byte follows in the code stream, to be added
  2466. * to the inverted condition code value of the instruction
  2467. * (inverted version of \13).
  2468. * \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
  2469. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  2470. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  2471. * assembly mode or the address-size override on the operand
  2472. * \37 - a word constant, from the _segment_ part of operand 0
  2473. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  2474. * \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
  2475. on the address size of instruction
  2476. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  2477. * \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
  2478. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  2479. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  2480. * assembly mode or the address-size override on the operand
  2481. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  2482. * \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
  2483. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  2484. * field the register value of operand b.
  2485. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  2486. * field equal to digit b.
  2487. * \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
  2488. * \300,\301,\302 - might be an 0x67, depending on the address size of
  2489. * the memory reference in operand x.
  2490. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  2491. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  2492. * \312 - (disassembler only) invalid with non-default address size.
  2493. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  2494. * size of operand x.
  2495. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  2496. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  2497. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  2498. * \327 - indicates that this instruction is only valid when the
  2499. * operand size is the default (instruction to disassembler,
  2500. * generates no code in the assembler)
  2501. * \331 - instruction not valid with REP prefix. Hint for
  2502. * disassembler only; for SSE instructions.
  2503. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  2504. * \333 - 0xF3 prefix for SSE instructions
  2505. * \334 - 0xF2 prefix for SSE instructions
  2506. * \335 - Indicates 64-bit operand size with REX.W not necessary
  2507. * \361 - 0x66 prefix for SSE instructions
  2508. * \362 - VEX prefix for AVX instructions
  2509. * \363 - VEX W1
  2510. * \364 - VEX Vector length 256
  2511. * \366 - operand 2 (ymmreg) encoded in bit 4-7 of the immediate byte
  2512. * \367 - operand 3 (ymmreg) encoded in bit 4-7 of the immediate byte
  2513. * \370 - VEX 0F-FLAG
  2514. * \371 - VEX 0F38-FLAG
  2515. * \372 - VEX 0F3A-FLAG
  2516. }
  2517. var
  2518. currval : aint;
  2519. currsym : tobjsymbol;
  2520. currrelreloc,
  2521. currabsreloc,
  2522. currabsreloc32 : TObjRelocationType;
  2523. {$ifdef x86_64}
  2524. rexwritten : boolean;
  2525. {$endif x86_64}
  2526. procedure getvalsym(opidx:longint);
  2527. begin
  2528. case oper[opidx]^.typ of
  2529. top_ref :
  2530. begin
  2531. currval:=oper[opidx]^.ref^.offset;
  2532. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  2533. {$ifdef i8086}
  2534. if oper[opidx]^.ref^.refaddr=addr_seg then
  2535. begin
  2536. currrelreloc:=RELOC_SEGREL;
  2537. currabsreloc:=RELOC_SEG;
  2538. currabsreloc32:=RELOC_SEG;
  2539. end
  2540. else if oper[opidx]^.ref^.refaddr=addr_dgroup then
  2541. begin
  2542. currrelreloc:=RELOC_DGROUPREL;
  2543. currabsreloc:=RELOC_DGROUP;
  2544. currabsreloc32:=RELOC_DGROUP;
  2545. end
  2546. else if oper[opidx]^.ref^.refaddr=addr_fardataseg then
  2547. begin
  2548. currrelreloc:=RELOC_FARDATASEGREL;
  2549. currabsreloc:=RELOC_FARDATASEG;
  2550. currabsreloc32:=RELOC_FARDATASEG;
  2551. end
  2552. else
  2553. {$endif i8086}
  2554. {$ifdef i386}
  2555. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2556. (tf_pic_uses_got in target_info.flags) then
  2557. begin
  2558. currrelreloc:=RELOC_PLT32;
  2559. currabsreloc:=RELOC_GOT32;
  2560. currabsreloc32:=RELOC_GOT32;
  2561. end
  2562. else
  2563. {$endif i386}
  2564. {$ifdef x86_64}
  2565. if oper[opidx]^.ref^.refaddr=addr_pic then
  2566. begin
  2567. currrelreloc:=RELOC_PLT32;
  2568. currabsreloc:=RELOC_GOTPCREL;
  2569. currabsreloc32:=RELOC_GOTPCREL;
  2570. end
  2571. else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
  2572. begin
  2573. currrelreloc:=RELOC_RELATIVE;
  2574. currabsreloc:=RELOC_RELATIVE;
  2575. currabsreloc32:=RELOC_RELATIVE;
  2576. end
  2577. else
  2578. {$endif x86_64}
  2579. begin
  2580. currrelreloc:=RELOC_RELATIVE;
  2581. currabsreloc:=RELOC_ABSOLUTE;
  2582. currabsreloc32:=RELOC_ABSOLUTE32;
  2583. end;
  2584. end;
  2585. top_const :
  2586. begin
  2587. currval:=aint(oper[opidx]^.val);
  2588. currsym:=nil;
  2589. currabsreloc:=RELOC_ABSOLUTE;
  2590. currabsreloc32:=RELOC_ABSOLUTE32;
  2591. end;
  2592. else
  2593. Message(asmw_e_immediate_or_reference_expected);
  2594. end;
  2595. end;
  2596. {$ifdef x86_64}
  2597. procedure maybewriterex;
  2598. begin
  2599. if (rex<>0) and not(rexwritten) then
  2600. begin
  2601. rexwritten:=true;
  2602. objdata.writebytes(rex,1);
  2603. end;
  2604. end;
  2605. {$endif x86_64}
  2606. procedure objdata_writereloc(Data:TRelocDataInt;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
  2607. begin
  2608. {$ifdef i386}
  2609. { Special case of '_GLOBAL_OFFSET_TABLE_'
  2610. which needs a special relocation type R_386_GOTPC }
  2611. if assigned (p) and
  2612. (p.name='_GLOBAL_OFFSET_TABLE_') and
  2613. (tf_pic_uses_got in target_info.flags) then
  2614. begin
  2615. { nothing else than a 4 byte relocation should occur
  2616. for GOT }
  2617. if len<>4 then
  2618. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  2619. Reloctype:=RELOC_GOTPC;
  2620. { We need to add the offset of the relocation
  2621. of _GLOBAL_OFFSET_TABLE symbol within
  2622. the current instruction }
  2623. inc(data,objdata.currobjsec.size-insoffset);
  2624. end;
  2625. {$endif i386}
  2626. objdata.writereloc(data,len,p,Reloctype);
  2627. end;
  2628. const
  2629. CondVal:array[TAsmCond] of byte=($0,
  2630. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  2631. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  2632. $0, $A, $A, $B, $8, $4);
  2633. var
  2634. c : byte;
  2635. pb : pbyte;
  2636. codes : pchar;
  2637. bytes : array[0..3] of byte;
  2638. rfield,
  2639. data,s,opidx : longint;
  2640. ea_data : ea;
  2641. relsym : TObjSymbol;
  2642. needed_VEX_Extension: boolean;
  2643. needed_VEX: boolean;
  2644. opmode: integer;
  2645. VEXvvvv: byte;
  2646. VEXmmmmm: byte;
  2647. begin
  2648. { safety check }
  2649. if objdata.currobjsec.size<>longword(insoffset) then
  2650. internalerror(200130121);
  2651. { those variables are initialized inside local procedures, the dfa cannot handle this yet }
  2652. currsym:=nil;
  2653. currabsreloc:=RELOC_NONE;
  2654. currabsreloc32:=RELOC_NONE;
  2655. currrelreloc:=RELOC_NONE;
  2656. currval:=0;
  2657. { check instruction's processor level }
  2658. { todo: maybe adapt and enable this code for i386 and x86_64 as well }
  2659. {$ifdef i8086}
  2660. if objdata.CPUType<>cpu_none then
  2661. begin
  2662. if IF_8086 in insentry^.flags then
  2663. else if IF_186 in insentry^.flags then
  2664. begin
  2665. if objdata.CPUType<cpu_186 then
  2666. Message(asmw_e_instruction_not_supported_by_cpu);
  2667. end
  2668. else if IF_286 in insentry^.flags then
  2669. begin
  2670. if objdata.CPUType<cpu_286 then
  2671. Message(asmw_e_instruction_not_supported_by_cpu);
  2672. end
  2673. else if IF_386 in insentry^.flags then
  2674. begin
  2675. if objdata.CPUType<cpu_386 then
  2676. Message(asmw_e_instruction_not_supported_by_cpu);
  2677. end
  2678. else if IF_486 in insentry^.flags then
  2679. begin
  2680. if objdata.CPUType<cpu_486 then
  2681. Message(asmw_e_instruction_not_supported_by_cpu);
  2682. end
  2683. else if IF_PENT in insentry^.flags then
  2684. begin
  2685. if objdata.CPUType<cpu_Pentium then
  2686. Message(asmw_e_instruction_not_supported_by_cpu);
  2687. end
  2688. else if IF_P6 in insentry^.flags then
  2689. begin
  2690. if objdata.CPUType<cpu_Pentium2 then
  2691. Message(asmw_e_instruction_not_supported_by_cpu);
  2692. end
  2693. else if IF_KATMAI in insentry^.flags then
  2694. begin
  2695. if objdata.CPUType<cpu_Pentium3 then
  2696. Message(asmw_e_instruction_not_supported_by_cpu);
  2697. end
  2698. else if insentry^.flags*[IF_WILLAMETTE,IF_PRESCOTT]<>[] then
  2699. begin
  2700. if objdata.CPUType<cpu_Pentium4 then
  2701. Message(asmw_e_instruction_not_supported_by_cpu);
  2702. end
  2703. else if IF_NEC in insentry^.flags then
  2704. begin
  2705. { the NEC V20/V30 extensions are incompatible with 386+, due to overlapping opcodes }
  2706. if objdata.CPUType>=cpu_386 then
  2707. Message(asmw_e_instruction_not_supported_by_cpu);
  2708. end
  2709. else if IF_SANDYBRIDGE in insentry^.flags then
  2710. begin
  2711. { todo: handle these properly }
  2712. end;
  2713. end;
  2714. {$endif i8086}
  2715. { load data to write }
  2716. codes:=insentry^.code;
  2717. {$ifdef x86_64}
  2718. rexwritten:=false;
  2719. {$endif x86_64}
  2720. { Force word push/pop for registers }
  2721. if (opsize={$ifdef i8086}S_L{$else}S_W{$endif}) and ((codes[0]=#4) or (codes[0]=#6) or
  2722. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  2723. write0x66prefix(objdata);
  2724. // needed VEX Prefix (for AVX etc.)
  2725. needed_VEX := false;
  2726. needed_VEX_Extension := false;
  2727. opmode := -1;
  2728. VEXvvvv := 0;
  2729. VEXmmmmm := 0;
  2730. repeat
  2731. c:=ord(codes^);
  2732. inc(codes);
  2733. case c of
  2734. &0: break;
  2735. &1,
  2736. &2,
  2737. &3: inc(codes,c);
  2738. &74: opmode := 0;
  2739. &75: opmode := 1;
  2740. &76: opmode := 2;
  2741. &333: VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
  2742. &334: VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
  2743. &361: VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
  2744. &362: needed_VEX := true;
  2745. &363: begin
  2746. needed_VEX_Extension := true;
  2747. VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
  2748. end;
  2749. &364: VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
  2750. &370: VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
  2751. &371: begin
  2752. needed_VEX_Extension := true;
  2753. VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
  2754. end;
  2755. &372: begin
  2756. needed_VEX_Extension := true;
  2757. VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
  2758. end;
  2759. end;
  2760. until false;
  2761. if needed_VEX then
  2762. begin
  2763. if (opmode > ops) or
  2764. (opmode < -1) then
  2765. begin
  2766. Internalerror(777100);
  2767. end
  2768. else if opmode = -1 then
  2769. begin
  2770. VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
  2771. end
  2772. else if oper[opmode]^.typ = top_reg then
  2773. begin
  2774. VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
  2775. {$ifdef x86_64}
  2776. if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
  2777. {$else}
  2778. VEXvvvv := VEXvvvv or (1 shl 6);
  2779. {$endif x86_64}
  2780. end
  2781. else Internalerror(777101);
  2782. if not(needed_VEX_Extension) then
  2783. begin
  2784. {$ifdef x86_64}
  2785. if rex and $0B <> 0 then needed_VEX_Extension := true;
  2786. {$endif x86_64}
  2787. end;
  2788. if needed_VEX_Extension then
  2789. begin
  2790. // VEX-Prefix-Length = 3 Bytes
  2791. {$ifdef x86_64}
  2792. VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
  2793. VEXvvvv := VEXvvvv or ((rex and $08) shl 7); // set REX.w
  2794. {$else}
  2795. VEXmmmmm := VEXmmmmm or (7 shl 5); //
  2796. {$endif x86_64}
  2797. bytes[0]:=$C4;
  2798. bytes[1]:=VEXmmmmm;
  2799. bytes[2]:=VEXvvvv;
  2800. objdata.writebytes(bytes,3);
  2801. end
  2802. else
  2803. begin
  2804. // VEX-Prefix-Length = 2 Bytes
  2805. {$ifdef x86_64}
  2806. if rex and $04 = 0 then
  2807. {$endif x86_64}
  2808. begin
  2809. VEXvvvv := VEXvvvv or (1 shl 7);
  2810. end;
  2811. bytes[0]:=$C5;
  2812. bytes[1]:=VEXvvvv;
  2813. objdata.writebytes(bytes,2);
  2814. end;
  2815. end
  2816. else
  2817. begin
  2818. needed_VEX_Extension := false;
  2819. opmode := -1;
  2820. end;
  2821. { load data to write }
  2822. codes:=insentry^.code;
  2823. repeat
  2824. c:=ord(codes^);
  2825. inc(codes);
  2826. case c of
  2827. &0 :
  2828. break;
  2829. &1,&2,&3 :
  2830. begin
  2831. {$ifdef x86_64}
  2832. if not(needed_VEX) then // TG
  2833. maybewriterex;
  2834. {$endif x86_64}
  2835. objdata.writebytes(codes^,c);
  2836. inc(codes,c);
  2837. end;
  2838. &4,&6 :
  2839. begin
  2840. case oper[0]^.reg of
  2841. NR_CS:
  2842. bytes[0]:=$e;
  2843. NR_NO,
  2844. NR_DS:
  2845. bytes[0]:=$1e;
  2846. NR_ES:
  2847. bytes[0]:=$6;
  2848. NR_SS:
  2849. bytes[0]:=$16;
  2850. else
  2851. internalerror(777004);
  2852. end;
  2853. if c=&4 then
  2854. inc(bytes[0]);
  2855. objdata.writebytes(bytes,1);
  2856. end;
  2857. &5,&7 :
  2858. begin
  2859. case oper[0]^.reg of
  2860. NR_FS:
  2861. bytes[0]:=$a0;
  2862. NR_GS:
  2863. bytes[0]:=$a8;
  2864. else
  2865. internalerror(777005);
  2866. end;
  2867. if c=&5 then
  2868. inc(bytes[0]);
  2869. objdata.writebytes(bytes,1);
  2870. end;
  2871. &10,&11,&12 :
  2872. begin
  2873. {$ifdef x86_64}
  2874. if not(needed_VEX) then // TG
  2875. maybewriterex;
  2876. {$endif x86_64}
  2877. bytes[0]:=ord(codes^)+regval(oper[c-&10]^.reg);
  2878. inc(codes);
  2879. objdata.writebytes(bytes,1);
  2880. end;
  2881. &13 :
  2882. begin
  2883. bytes[0]:=ord(codes^)+condval[condition];
  2884. inc(codes);
  2885. objdata.writebytes(bytes,1);
  2886. end;
  2887. &14,&15,&16 :
  2888. begin
  2889. getvalsym(c-&14);
  2890. if (currval<-128) or (currval>127) then
  2891. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  2892. if assigned(currsym) then
  2893. objdata_writereloc(currval,1,currsym,currabsreloc)
  2894. else
  2895. objdata.writebytes(currval,1);
  2896. end;
  2897. &20,&21,&22 :
  2898. begin
  2899. getvalsym(c-&20);
  2900. if (currval<-256) or (currval>255) then
  2901. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  2902. if assigned(currsym) then
  2903. objdata_writereloc(currval,1,currsym,currabsreloc)
  2904. else
  2905. objdata.writebytes(currval,1);
  2906. end;
  2907. &23 :
  2908. begin
  2909. bytes[0]:=ord(codes^)+condval[inverse_cond(condition)];
  2910. inc(codes);
  2911. objdata.writebytes(bytes,1);
  2912. end;
  2913. &24,&25,&26,&27 :
  2914. begin
  2915. getvalsym(c-&24);
  2916. if IF_IMM3 in insentry^.flags then
  2917. begin
  2918. if (currval<0) or (currval>7) then
  2919. Message2(asmw_e_value_exceeds_bounds,'unsigned triad',tostr(currval));
  2920. end
  2921. else if IF_IMM4 in insentry^.flags then
  2922. begin
  2923. if (currval<0) or (currval>15) then
  2924. Message2(asmw_e_value_exceeds_bounds,'unsigned nibble',tostr(currval));
  2925. end
  2926. else
  2927. if (currval<0) or (currval>255) then
  2928. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  2929. if assigned(currsym) then
  2930. objdata_writereloc(currval,1,currsym,currabsreloc)
  2931. else
  2932. objdata.writebytes(currval,1);
  2933. end;
  2934. &30,&31,&32 : // 030..032
  2935. begin
  2936. getvalsym(c-&30);
  2937. {$ifndef i8086}
  2938. { currval is an aint so this cannot happen on i8086 and causes only a warning }
  2939. if (currval<-65536) or (currval>65535) then
  2940. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  2941. {$endif i8086}
  2942. if assigned(currsym)
  2943. {$ifdef i8086}
  2944. or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
  2945. {$endif i8086}
  2946. then
  2947. objdata_writereloc(currval,2,currsym,currabsreloc)
  2948. else
  2949. objdata.writebytes(currval,2);
  2950. end;
  2951. &34,&35,&36 : // 034..036
  2952. { !!! These are intended (and used in opcode table) to select depending
  2953. on address size, *not* operand size. Works by coincidence only. }
  2954. begin
  2955. getvalsym(c-&34);
  2956. {$ifdef i8086}
  2957. if assigned(currsym) then
  2958. objdata_writereloc(currval,2,currsym,currabsreloc)
  2959. else
  2960. objdata.writebytes(currval,2);
  2961. {$else i8086}
  2962. if opsize=S_Q then
  2963. begin
  2964. if assigned(currsym) then
  2965. objdata_writereloc(currval,8,currsym,currabsreloc)
  2966. else
  2967. objdata.writebytes(currval,8);
  2968. end
  2969. else
  2970. begin
  2971. if assigned(currsym) then
  2972. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2973. else
  2974. objdata.writebytes(currval,4);
  2975. end
  2976. {$endif i8086}
  2977. end;
  2978. &40,&41,&42 : // 040..042
  2979. begin
  2980. getvalsym(c-&40);
  2981. if assigned(currsym) then
  2982. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2983. else
  2984. objdata.writebytes(currval,4);
  2985. end;
  2986. &44,&45,&46 :// 044..046 - select between word/dword/qword depending on
  2987. begin // address size (we support only default address sizes).
  2988. getvalsym(c-&44);
  2989. {$if defined(x86_64)}
  2990. if assigned(currsym) then
  2991. objdata_writereloc(currval,8,currsym,currabsreloc)
  2992. else
  2993. objdata.writebytes(currval,8);
  2994. {$elseif defined(i386)}
  2995. if assigned(currsym) then
  2996. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2997. else
  2998. objdata.writebytes(currval,4);
  2999. {$elseif defined(i8086)}
  3000. if assigned(currsym) then
  3001. objdata_writereloc(currval,2,currsym,currabsreloc)
  3002. else
  3003. objdata.writebytes(currval,2);
  3004. {$endif}
  3005. end;
  3006. &50,&51,&52 : // 050..052 - byte relative operand
  3007. begin
  3008. getvalsym(c-&50);
  3009. data:=currval-insend;
  3010. {$push}
  3011. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  3012. if assigned(currsym) then
  3013. inc(data,currsym.address);
  3014. {$pop}
  3015. if (data>127) or (data<-128) then
  3016. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  3017. objdata.writebytes(data,1);
  3018. end;
  3019. &54,&55,&56: // 054..056 - qword immediate operand
  3020. begin
  3021. getvalsym(c-&54);
  3022. if assigned(currsym) then
  3023. objdata_writereloc(currval,8,currsym,currabsreloc)
  3024. else
  3025. objdata.writebytes(currval,8);
  3026. end;
  3027. &60,&61,&62 :
  3028. begin
  3029. getvalsym(c-&60);
  3030. {$ifdef i8086}
  3031. if assigned(currsym) then
  3032. objdata_writereloc(currval,2,currsym,currrelreloc)
  3033. else
  3034. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  3035. {$else i8086}
  3036. InternalError(777006);
  3037. {$endif i8086}
  3038. end;
  3039. &64,&65,&66 : // 064..066 - select between 16/32 address mode, but we support only 32 (only 16 on i8086)
  3040. begin
  3041. getvalsym(c-&64);
  3042. {$ifdef i8086}
  3043. if assigned(currsym) then
  3044. objdata_writereloc(currval,2,currsym,currrelreloc)
  3045. else
  3046. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  3047. {$else i8086}
  3048. if assigned(currsym) then
  3049. objdata_writereloc(currval,4,currsym,currrelreloc)
  3050. else
  3051. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  3052. {$endif i8086}
  3053. end;
  3054. &70,&71,&72 : // 070..072 - long relative operand
  3055. begin
  3056. getvalsym(c-&70);
  3057. if assigned(currsym) then
  3058. objdata_writereloc(currval,4,currsym,currrelreloc)
  3059. else
  3060. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  3061. end;
  3062. &74,&75,&76 : ; // 074..076 - vex-coded vector operand
  3063. // ignore
  3064. &254,&255,&256 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
  3065. begin
  3066. getvalsym(c-&254);
  3067. {$ifdef x86_64}
  3068. { for i386 as aint type is longint the
  3069. following test is useless }
  3070. if (currval<low(longint)) or (currval>high(longint)) then
  3071. Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
  3072. {$endif x86_64}
  3073. if assigned(currsym) then
  3074. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3075. else
  3076. objdata.writebytes(currval,4);
  3077. end;
  3078. &300,&301,&302:
  3079. begin
  3080. {$if defined(x86_64) or defined(i8086)}
  3081. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  3082. write0x67prefix(objdata);
  3083. {$endif x86_64 or i8086}
  3084. end;
  3085. &310 : { fixed 16-bit addr }
  3086. {$if defined(x86_64)}
  3087. { every insentry having code 0310 must be marked with NOX86_64 }
  3088. InternalError(2011051302);
  3089. {$elseif defined(i386)}
  3090. write0x67prefix(objdata);
  3091. {$elseif defined(i8086)}
  3092. {nothing};
  3093. {$endif}
  3094. &311 : { fixed 32-bit addr }
  3095. {$if defined(x86_64) or defined(i8086)}
  3096. write0x67prefix(objdata)
  3097. {$endif x86_64 or i8086}
  3098. ;
  3099. &320,&321,&322 :
  3100. begin
  3101. case oper[c-&320]^.ot and OT_SIZE_MASK of
  3102. {$if defined(i386) or defined(x86_64)}
  3103. OT_BITS16 :
  3104. {$elseif defined(i8086)}
  3105. OT_BITS32 :
  3106. {$endif}
  3107. write0x66prefix(objdata);
  3108. {$ifndef x86_64}
  3109. OT_BITS64 :
  3110. Message(asmw_e_64bit_not_supported);
  3111. {$endif x86_64}
  3112. end;
  3113. end;
  3114. &323 : {no action needed};
  3115. &325:
  3116. {$ifdef i8086}
  3117. write0x66prefix(objdata);
  3118. {$else i8086}
  3119. {no action needed};
  3120. {$endif i8086}
  3121. &324,
  3122. &361:
  3123. begin
  3124. {$ifndef i8086}
  3125. if not(needed_VEX) then
  3126. write0x66prefix(objdata);
  3127. {$endif not i8086}
  3128. end;
  3129. &326 :
  3130. begin
  3131. {$ifndef x86_64}
  3132. Message(asmw_e_64bit_not_supported);
  3133. {$endif x86_64}
  3134. end;
  3135. &333 :
  3136. begin
  3137. if not(needed_VEX) then
  3138. begin
  3139. bytes[0]:=$f3;
  3140. objdata.writebytes(bytes,1);
  3141. end;
  3142. end;
  3143. &334 :
  3144. begin
  3145. if not(needed_VEX) then
  3146. begin
  3147. bytes[0]:=$f2;
  3148. objdata.writebytes(bytes,1);
  3149. end;
  3150. end;
  3151. &335:
  3152. ;
  3153. &312,
  3154. &327,
  3155. &331,&332 :
  3156. begin
  3157. { these are dissambler hints or 32 bit prefixes which
  3158. are not needed }
  3159. end;
  3160. &362..&364: ; // VEX flags =>> nothing todo
  3161. &366, &367:
  3162. begin
  3163. opidx:=c-&364; { 0366->operand 2, 0367->operand 3 }
  3164. if needed_VEX and
  3165. (ops=4) and
  3166. (oper[opidx]^.typ=top_reg) and
  3167. (oper[opidx]^.ot and (otf_reg_xmm or otf_reg_ymm)<>0) then
  3168. begin
  3169. bytes[0] := ((getsupreg(oper[opidx]^.reg) and 15) shl 4);
  3170. objdata.writebytes(bytes,1);
  3171. end
  3172. else
  3173. Internalerror(2014032001);
  3174. end;
  3175. &370..&372: ; // VEX flags =>> nothing todo
  3176. &37:
  3177. begin
  3178. {$ifdef i8086}
  3179. if assigned(currsym) then
  3180. objdata_writereloc(0,2,currsym,RELOC_SEG)
  3181. else
  3182. InternalError(2015041503);
  3183. {$else i8086}
  3184. InternalError(777006);
  3185. {$endif i8086}
  3186. end;
  3187. else
  3188. begin
  3189. { rex should be written at this point }
  3190. {$ifdef x86_64}
  3191. if not(needed_VEX) then // TG
  3192. if (rex<>0) and not(rexwritten) then
  3193. internalerror(200603191);
  3194. {$endif x86_64}
  3195. if (c>=&100) and (c<=&227) then // 0100..0227
  3196. begin
  3197. if (c<&177) then // 0177
  3198. begin
  3199. if (oper[c and 7]^.typ=top_reg) then
  3200. rfield:=regval(oper[c and 7]^.reg)
  3201. else
  3202. rfield:=regval(oper[c and 7]^.ref^.base);
  3203. end
  3204. else
  3205. rfield:=c and 7;
  3206. opidx:=(c shr 3) and 7;
  3207. if not process_ea(oper[opidx]^,ea_data,rfield) then
  3208. Message(asmw_e_invalid_effective_address);
  3209. pb:=@bytes[0];
  3210. pb^:=ea_data.modrm;
  3211. inc(pb);
  3212. if ea_data.sib_present then
  3213. begin
  3214. pb^:=ea_data.sib;
  3215. inc(pb);
  3216. end;
  3217. s:=pb-@bytes[0];
  3218. objdata.writebytes(bytes,s);
  3219. case ea_data.bytes of
  3220. 0 : ;
  3221. 1 :
  3222. begin
  3223. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  3224. begin
  3225. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  3226. {$ifdef i386}
  3227. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3228. (tf_pic_uses_got in target_info.flags) then
  3229. currabsreloc:=RELOC_GOT32
  3230. else
  3231. {$endif i386}
  3232. {$ifdef x86_64}
  3233. if oper[opidx]^.ref^.refaddr=addr_pic then
  3234. currabsreloc:=RELOC_GOTPCREL
  3235. else
  3236. {$endif x86_64}
  3237. currabsreloc:=RELOC_ABSOLUTE;
  3238. objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  3239. end
  3240. else
  3241. begin
  3242. bytes[0]:=oper[opidx]^.ref^.offset;
  3243. objdata.writebytes(bytes,1);
  3244. end;
  3245. inc(s);
  3246. end;
  3247. 2,4 :
  3248. begin
  3249. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  3250. currval:=oper[opidx]^.ref^.offset;
  3251. {$ifdef x86_64}
  3252. if oper[opidx]^.ref^.refaddr=addr_pic then
  3253. currabsreloc:=RELOC_GOTPCREL
  3254. else
  3255. if oper[opidx]^.ref^.base=NR_RIP then
  3256. begin
  3257. currabsreloc:=RELOC_RELATIVE;
  3258. { Adjust reloc value by number of bytes following the displacement,
  3259. but not if displacement is specified by literal constant }
  3260. if Assigned(currsym) then
  3261. Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
  3262. end
  3263. else
  3264. {$endif x86_64}
  3265. {$ifdef i386}
  3266. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3267. (tf_pic_uses_got in target_info.flags) then
  3268. currabsreloc:=RELOC_GOT32
  3269. else
  3270. {$endif i386}
  3271. {$ifdef i8086}
  3272. if ea_data.bytes=2 then
  3273. currabsreloc:=RELOC_ABSOLUTE
  3274. else
  3275. {$endif i8086}
  3276. currabsreloc:=RELOC_ABSOLUTE32;
  3277. if (currabsreloc in [RELOC_ABSOLUTE32{$ifdef i8086},RELOC_ABSOLUTE{$endif}]) and
  3278. (Assigned(oper[opidx]^.ref^.relsymbol)) then
  3279. begin
  3280. relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
  3281. if relsym.objsection=objdata.CurrObjSec then
  3282. begin
  3283. currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
  3284. {$ifdef i8086}
  3285. if ea_data.bytes=4 then
  3286. currabsreloc:=RELOC_RELATIVE32
  3287. else
  3288. {$endif i8086}
  3289. currabsreloc:=RELOC_RELATIVE;
  3290. end
  3291. else
  3292. begin
  3293. currabsreloc:=RELOC_PIC_PAIR;
  3294. currval:=relsym.offset;
  3295. end;
  3296. end;
  3297. objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
  3298. inc(s,ea_data.bytes);
  3299. end;
  3300. end;
  3301. end
  3302. else
  3303. InternalError(777007);
  3304. end;
  3305. end;
  3306. until false;
  3307. end;
  3308. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  3309. begin
  3310. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  3311. (regtype = R_INTREGISTER) and
  3312. (ops=2) and
  3313. (oper[0]^.typ=top_reg) and
  3314. (oper[1]^.typ=top_reg) and
  3315. (oper[0]^.reg=oper[1]^.reg)
  3316. ) or
  3317. (((opcode=A_MOVSS) or (opcode=A_MOVSD) or (opcode=A_MOVQ) or
  3318. (opcode=A_MOVAPS) or (opcode=A_MOVAPD) or
  3319. (opcode=A_VMOVSS) or (opcode=A_VMOVSD) or (opcode=A_VMOVQ) or
  3320. (opcode=A_VMOVAPS) or (opcode=A_VMOVAPD)) and
  3321. (regtype = R_MMREGISTER) and
  3322. (ops=2) and
  3323. (oper[0]^.typ=top_reg) and
  3324. (oper[1]^.typ=top_reg) and
  3325. (oper[0]^.reg=oper[1]^.reg)
  3326. );
  3327. end;
  3328. procedure build_spilling_operation_type_table;
  3329. var
  3330. opcode : tasmop;
  3331. i : integer;
  3332. begin
  3333. new(operation_type_table);
  3334. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  3335. for opcode:=low(tasmop) to high(tasmop) do
  3336. with InsProp[opcode] do
  3337. begin
  3338. if Ch_Rop1 in Ch then
  3339. operation_type_table^[opcode,0]:=operand_read;
  3340. if Ch_Wop1 in Ch then
  3341. operation_type_table^[opcode,0]:=operand_write;
  3342. if [Ch_RWop1,Ch_Mop1]*Ch<>[] then
  3343. operation_type_table^[opcode,0]:=operand_readwrite;
  3344. if Ch_Rop2 in Ch then
  3345. operation_type_table^[opcode,1]:=operand_read;
  3346. if Ch_Wop2 in Ch then
  3347. operation_type_table^[opcode,1]:=operand_write;
  3348. if [Ch_RWop2,Ch_Mop2]*Ch<>[] then
  3349. operation_type_table^[opcode,1]:=operand_readwrite;
  3350. if Ch_Rop3 in Ch then
  3351. operation_type_table^[opcode,2]:=operand_read;
  3352. if Ch_Wop3 in Ch then
  3353. operation_type_table^[opcode,2]:=operand_write;
  3354. if [Ch_RWop3,Ch_Mop3]*Ch<>[] then
  3355. operation_type_table^[opcode,2]:=operand_readwrite;
  3356. if Ch_Rop4 in Ch then
  3357. operation_type_table^[opcode,3]:=operand_read;
  3358. if Ch_Wop4 in Ch then
  3359. operation_type_table^[opcode,3]:=operand_write;
  3360. if [Ch_RWop4,Ch_Mop4]*Ch<>[] then
  3361. operation_type_table^[opcode,3]:=operand_readwrite;
  3362. end;
  3363. end;
  3364. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  3365. begin
  3366. { the information in the instruction table is made for the string copy
  3367. operation MOVSD so hack here (FK)
  3368. VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
  3369. so fix it here (FK)
  3370. }
  3371. if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
  3372. begin
  3373. case opnr of
  3374. 0:
  3375. result:=operand_read;
  3376. 1:
  3377. result:=operand_write;
  3378. else
  3379. internalerror(200506055);
  3380. end
  3381. end
  3382. { IMUL has 1, 2 and 3-operand forms }
  3383. else if opcode=A_IMUL then
  3384. begin
  3385. case ops of
  3386. 1:
  3387. if opnr=0 then
  3388. result:=operand_read
  3389. else
  3390. internalerror(2014011802);
  3391. 2:
  3392. begin
  3393. case opnr of
  3394. 0:
  3395. result:=operand_read;
  3396. 1:
  3397. result:=operand_readwrite;
  3398. else
  3399. internalerror(2014011803);
  3400. end;
  3401. end;
  3402. 3:
  3403. begin
  3404. case opnr of
  3405. 0,1:
  3406. result:=operand_read;
  3407. 2:
  3408. result:=operand_write;
  3409. else
  3410. internalerror(2014011804);
  3411. end;
  3412. end;
  3413. else
  3414. internalerror(2014011805);
  3415. end;
  3416. end
  3417. else
  3418. result:=operation_type_table^[opcode,opnr];
  3419. end;
  3420. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  3421. var
  3422. tmpref: treference;
  3423. begin
  3424. tmpref:=ref;
  3425. {$ifdef i8086}
  3426. if tmpref.segment=NR_SS then
  3427. tmpref.segment:=NR_NO;
  3428. {$endif i8086}
  3429. case getregtype(r) of
  3430. R_INTREGISTER :
  3431. begin
  3432. if getsubreg(r)=R_SUBH then
  3433. inc(tmpref.offset);
  3434. { we don't need special code here for 32 bit loads on x86_64, since
  3435. those will automatically zero-extend the upper 32 bits. }
  3436. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
  3437. end;
  3438. R_MMREGISTER :
  3439. if current_settings.fputype in fpu_avx_instructionsets then
  3440. case getsubreg(r) of
  3441. R_SUBMMD:
  3442. result:=taicpu.op_ref_reg(A_VMOVSD,S_NO,tmpref,r);
  3443. R_SUBMMS:
  3444. result:=taicpu.op_ref_reg(A_VMOVSS,S_NO,tmpref,r);
  3445. R_SUBQ,
  3446. R_SUBMMWHOLE:
  3447. result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
  3448. else
  3449. internalerror(200506043);
  3450. end
  3451. else
  3452. case getsubreg(r) of
  3453. R_SUBMMD:
  3454. result:=taicpu.op_ref_reg(A_MOVSD,S_NO,tmpref,r);
  3455. R_SUBMMS:
  3456. result:=taicpu.op_ref_reg(A_MOVSS,S_NO,tmpref,r);
  3457. R_SUBQ,
  3458. R_SUBMMWHOLE:
  3459. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
  3460. else
  3461. internalerror(200506043);
  3462. end;
  3463. else
  3464. internalerror(200401041);
  3465. end;
  3466. end;
  3467. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  3468. var
  3469. size: topsize;
  3470. tmpref: treference;
  3471. begin
  3472. tmpref:=ref;
  3473. {$ifdef i8086}
  3474. if tmpref.segment=NR_SS then
  3475. tmpref.segment:=NR_NO;
  3476. {$endif i8086}
  3477. case getregtype(r) of
  3478. R_INTREGISTER :
  3479. begin
  3480. if getsubreg(r)=R_SUBH then
  3481. inc(tmpref.offset);
  3482. size:=reg2opsize(r);
  3483. {$ifdef x86_64}
  3484. { even if it's a 32 bit reg, we still have to spill 64 bits
  3485. because we often perform 64 bit operations on them }
  3486. if (size=S_L) then
  3487. begin
  3488. size:=S_Q;
  3489. r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
  3490. end;
  3491. {$endif x86_64}
  3492. result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
  3493. end;
  3494. R_MMREGISTER :
  3495. if current_settings.fputype in fpu_avx_instructionsets then
  3496. case getsubreg(r) of
  3497. R_SUBMMD:
  3498. result:=taicpu.op_reg_ref(A_VMOVSD,S_NO,r,tmpref);
  3499. R_SUBMMS:
  3500. result:=taicpu.op_reg_ref(A_VMOVSS,S_NO,r,tmpref);
  3501. R_SUBQ,
  3502. R_SUBMMWHOLE:
  3503. result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
  3504. else
  3505. internalerror(200506042);
  3506. end
  3507. else
  3508. case getsubreg(r) of
  3509. R_SUBMMD:
  3510. result:=taicpu.op_reg_ref(A_MOVSD,S_NO,r,tmpref);
  3511. R_SUBMMS:
  3512. result:=taicpu.op_reg_ref(A_MOVSS,S_NO,r,tmpref);
  3513. R_SUBQ,
  3514. R_SUBMMWHOLE:
  3515. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
  3516. else
  3517. internalerror(200506042);
  3518. end;
  3519. else
  3520. internalerror(200401041);
  3521. end;
  3522. end;
  3523. {$ifdef i8086}
  3524. procedure taicpu.loadsegsymbol(opidx:longint;s:tasmsymbol);
  3525. var
  3526. r: treference;
  3527. begin
  3528. reference_reset_symbol(r,s,0,1,[]);
  3529. r.refaddr:=addr_seg;
  3530. loadref(opidx,r);
  3531. end;
  3532. {$endif i8086}
  3533. {*****************************************************************************
  3534. Instruction table
  3535. *****************************************************************************}
  3536. procedure BuildInsTabCache;
  3537. var
  3538. i : longint;
  3539. begin
  3540. new(instabcache);
  3541. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  3542. i:=0;
  3543. while (i<InsTabEntries) do
  3544. begin
  3545. if InsTabCache^[InsTab[i].OPcode]=-1 then
  3546. InsTabCache^[InsTab[i].OPcode]:=i;
  3547. inc(i);
  3548. end;
  3549. end;
  3550. procedure BuildInsTabMemRefSizeInfoCache;
  3551. var
  3552. AsmOp: TasmOp;
  3553. i,j: longint;
  3554. insentry : PInsEntry;
  3555. MRefInfo: TMemRefSizeInfo;
  3556. SConstInfo: TConstSizeInfo;
  3557. actRegSize: int64;
  3558. actMemSize: int64;
  3559. actConstSize: int64;
  3560. actRegCount: integer;
  3561. actMemCount: integer;
  3562. actConstCount: integer;
  3563. actRegTypes : int64;
  3564. actRegMemTypes: int64;
  3565. NewRegSize: int64;
  3566. actVMemCount : integer;
  3567. actVMemTypes : int64;
  3568. RegMMXSizeMask: int64;
  3569. RegXMMSizeMask: int64;
  3570. RegYMMSizeMask: int64;
  3571. bitcount: integer;
  3572. function bitcnt(aValue: int64): integer;
  3573. var
  3574. i: integer;
  3575. begin
  3576. result := 0;
  3577. for i := 0 to 63 do
  3578. begin
  3579. if (aValue mod 2) = 1 then
  3580. begin
  3581. inc(result);
  3582. end;
  3583. aValue := aValue shr 1;
  3584. end;
  3585. end;
  3586. begin
  3587. new(InsTabMemRefSizeInfoCache);
  3588. FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
  3589. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3590. begin
  3591. i := InsTabCache^[AsmOp];
  3592. if i >= 0 then
  3593. begin
  3594. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3595. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3596. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
  3597. insentry:=@instab[i];
  3598. RegMMXSizeMask := 0;
  3599. RegXMMSizeMask := 0;
  3600. RegYMMSizeMask := 0;
  3601. while (insentry^.opcode=AsmOp) do
  3602. begin
  3603. MRefInfo := msiUnkown;
  3604. actRegSize := 0;
  3605. actRegCount := 0;
  3606. actRegTypes := 0;
  3607. NewRegSize := 0;
  3608. actMemSize := 0;
  3609. actMemCount := 0;
  3610. actRegMemTypes := 0;
  3611. actVMemCount := 0;
  3612. actVMemTypes := 0;
  3613. actConstSize := 0;
  3614. actConstCount := 0;
  3615. for j := 0 to insentry^.ops -1 do
  3616. begin
  3617. if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
  3618. ((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
  3619. ((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
  3620. ((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) then
  3621. begin
  3622. inc(actVMemCount);
  3623. case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64) of
  3624. OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
  3625. OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
  3626. OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
  3627. OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
  3628. else InternalError(777206);
  3629. end;
  3630. end
  3631. else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
  3632. begin
  3633. inc(actRegCount);
  3634. NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
  3635. if NewRegSize = 0 then
  3636. begin
  3637. case insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG) of
  3638. OT_MMXREG: begin
  3639. NewRegSize := OT_BITS64;
  3640. end;
  3641. OT_XMMREG: begin
  3642. NewRegSize := OT_BITS128;
  3643. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3644. end;
  3645. OT_YMMREG: begin
  3646. NewRegSize := OT_BITS256;
  3647. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3648. end;
  3649. else NewRegSize := not(0);
  3650. end;
  3651. end;
  3652. actRegSize := actRegSize or NewRegSize;
  3653. actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG));
  3654. end
  3655. else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
  3656. begin
  3657. inc(actMemCount);
  3658. actMemSize:=actMemSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3659. if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
  3660. begin
  3661. actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
  3662. end;
  3663. end
  3664. else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
  3665. begin
  3666. inc(actConstCount);
  3667. actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3668. end
  3669. end;
  3670. if actConstCount > 0 then
  3671. begin
  3672. case actConstSize of
  3673. 0: SConstInfo := csiNoSize;
  3674. OT_BITS8: SConstInfo := csiMem8;
  3675. OT_BITS16: SConstInfo := csiMem16;
  3676. OT_BITS32: SConstInfo := csiMem32;
  3677. OT_BITS64: SConstInfo := csiMem64;
  3678. else SConstInfo := csiMultiple;
  3679. end;
  3680. if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnkown then
  3681. begin
  3682. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
  3683. end
  3684. else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
  3685. begin
  3686. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
  3687. end;
  3688. end;
  3689. if actVMemCount > 0 then
  3690. begin
  3691. if actVMemCount = 1 then
  3692. begin
  3693. if actVMemTypes > 0 then
  3694. begin
  3695. case actVMemTypes of
  3696. OT_XMEM32: MRefInfo := msiXMem32;
  3697. OT_XMEM64: MRefInfo := msiXMem64;
  3698. OT_YMEM32: MRefInfo := msiYMem32;
  3699. OT_YMEM64: MRefInfo := msiYMem64;
  3700. else InternalError(777208);
  3701. end;
  3702. case actRegTypes of
  3703. OT_XMMREG: case MRefInfo of
  3704. msiXMem32,
  3705. msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
  3706. msiYMem32,
  3707. msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
  3708. else InternalError(777210);
  3709. end;
  3710. OT_YMMREG: case MRefInfo of
  3711. msiXMem32,
  3712. msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
  3713. msiYMem32,
  3714. msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
  3715. else InternalError(777211);
  3716. end;
  3717. //else InternalError(777209);
  3718. end;
  3719. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3720. begin
  3721. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3722. end
  3723. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3724. begin
  3725. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64] then
  3726. begin
  3727. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
  3728. end
  3729. else InternalError(777212);
  3730. end;
  3731. end;
  3732. end
  3733. else InternalError(777207);
  3734. end
  3735. else
  3736. begin
  3737. if (actMemCount=2) and ((AsmOp=A_MOVS) or (AsmOp=A_CMPS)) then
  3738. actMemCount:=1;
  3739. case actMemCount of
  3740. 0: ; // nothing todo
  3741. 1: begin
  3742. MRefInfo := msiUnkown;
  3743. case actRegMemTypes and (OT_MMXRM OR OT_XMMRM OR OT_YMMRM) of
  3744. OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
  3745. OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
  3746. OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
  3747. end;
  3748. case actMemSize of
  3749. 0: MRefInfo := msiNoSize;
  3750. OT_BITS8: MRefInfo := msiMem8;
  3751. OT_BITS16: MRefInfo := msiMem16;
  3752. OT_BITS32: MRefInfo := msiMem32;
  3753. OT_BITS64: MRefInfo := msiMem64;
  3754. OT_BITS128: MRefInfo := msiMem128;
  3755. OT_BITS256: MRefInfo := msiMem256;
  3756. OT_BITS80,
  3757. OT_FAR,
  3758. OT_NEAR,
  3759. OT_SHORT: ; // ignore
  3760. else
  3761. begin
  3762. bitcount := bitcnt(actMemSize);
  3763. if bitcount > 1 then MRefInfo := msiMultiple
  3764. else InternalError(777203);
  3765. end;
  3766. end;
  3767. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3768. begin
  3769. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3770. end
  3771. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3772. begin
  3773. with InsTabMemRefSizeInfoCache^[AsmOp] do
  3774. begin
  3775. if ((MemRefSize = msiMem8) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultiple8
  3776. else if ((MemRefSize = msiMem16) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultiple16
  3777. else if ((MemRefSize = msiMem32) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultiple32
  3778. else if ((MemRefSize = msiMem64) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultiple64
  3779. else if ((MemRefSize = msiMem128) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultiple128
  3780. else if ((MemRefSize = msiMem256) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultiple256
  3781. else MemRefSize := msiMultiple;
  3782. end;
  3783. end;
  3784. if actRegCount > 0 then
  3785. begin
  3786. case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG) of
  3787. OT_MMXREG: RegMMXSizeMask := RegMMXSizeMask or actMemSize;
  3788. OT_XMMREG: RegXMMSizeMask := RegXMMSizeMask or actMemSize;
  3789. OT_YMMREG: RegYMMSizeMask := RegYMMSizeMask or actMemSize;
  3790. else begin
  3791. RegMMXSizeMask := not(0);
  3792. RegXMMSizeMask := not(0);
  3793. RegYMMSizeMask := not(0);
  3794. end;
  3795. end;
  3796. end;
  3797. end;
  3798. else InternalError(777202);
  3799. end;
  3800. end;
  3801. inc(insentry);
  3802. end;
  3803. if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
  3804. (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
  3805. begin
  3806. case RegXMMSizeMask of
  3807. OT_BITS16: case RegYMMSizeMask of
  3808. OT_BITS32: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
  3809. end;
  3810. OT_BITS32: case RegYMMSizeMask of
  3811. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
  3812. end;
  3813. OT_BITS64: case RegYMMSizeMask of
  3814. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3815. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
  3816. end;
  3817. OT_BITS128: begin
  3818. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
  3819. begin
  3820. // vector-memory-operand AVX2 (e.g. VGATHER..)
  3821. case RegYMMSizeMask of
  3822. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
  3823. end;
  3824. end
  3825. else if RegMMXSizeMask = 0 then
  3826. begin
  3827. case RegYMMSizeMask of
  3828. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3829. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3830. end;
  3831. end
  3832. else if RegYMMSizeMask = 0 then
  3833. begin
  3834. case RegMMXSizeMask of
  3835. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3836. end;
  3837. end
  3838. else InternalError(777205);
  3839. end;
  3840. end;
  3841. end;
  3842. end;
  3843. end;
  3844. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3845. begin
  3846. // only supported intructiones with SSE- or AVX-operands
  3847. if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
  3848. begin
  3849. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3850. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3851. end;
  3852. end;
  3853. end;
  3854. procedure InitAsm;
  3855. begin
  3856. build_spilling_operation_type_table;
  3857. if not assigned(instabcache) then
  3858. BuildInsTabCache;
  3859. if not assigned(InsTabMemRefSizeInfoCache) then
  3860. BuildInsTabMemRefSizeInfoCache;
  3861. end;
  3862. procedure DoneAsm;
  3863. begin
  3864. if assigned(operation_type_table) then
  3865. begin
  3866. dispose(operation_type_table);
  3867. operation_type_table:=nil;
  3868. end;
  3869. if assigned(instabcache) then
  3870. begin
  3871. dispose(instabcache);
  3872. instabcache:=nil;
  3873. end;
  3874. if assigned(InsTabMemRefSizeInfoCache) then
  3875. begin
  3876. dispose(InsTabMemRefSizeInfoCache);
  3877. InsTabMemRefSizeInfoCache:=nil;
  3878. end;
  3879. end;
  3880. begin
  3881. cai_align:=tai_align;
  3882. cai_cpu:=taicpu;
  3883. end.