cpubase.pas 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the i8086, i386 and x86-64 architecture
  4. * This code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. {# Base unit for processor information. This unit contains
  21. enumerations of registers, opcodes, sizes, and other
  22. such things which are processor specific.
  23. }
  24. unit cpubase;
  25. {$i fpcdefs.inc}
  26. interface
  27. uses
  28. globals,
  29. cgbase
  30. ;
  31. {*****************************************************************************
  32. Assembler Opcodes
  33. *****************************************************************************}
  34. type
  35. {$if defined(x86_64)}
  36. TAsmOp={$i x8664op.inc}
  37. {$elseif defined(i386)}
  38. TAsmOp={$i i386op.inc}
  39. {$elseif defined(i8086)}
  40. TAsmOp={$i i8086op.inc}
  41. {$endif}
  42. { This should define the array of instructions as string }
  43. op2strtable=array[tasmop] of string[16];
  44. {$ifdef i8086}
  45. ImmInt = SmallInt;
  46. {$else i8086}
  47. ImmInt = Longint;
  48. {$endif i8086}
  49. const
  50. { First value of opcode enumeration }
  51. firstop = low(tasmop);
  52. { Last value of opcode enumeration }
  53. lastop = high(tasmop);
  54. {*****************************************************************************
  55. Registers
  56. *****************************************************************************}
  57. const
  58. { Integer Super registers }
  59. RS_NO = $ffffffff;
  60. RS_RAX = $00; {EAX}
  61. RS_RCX = $01; {ECX}
  62. RS_RDX = $02; {EDX}
  63. RS_RBX = $03; {EBX}
  64. RS_RSI = $04; {ESI}
  65. RS_RDI = $05; {EDI}
  66. RS_RBP = $06; {EBP}
  67. RS_RSP = $07; {ESP}
  68. RS_R8 = $08; {R8}
  69. RS_R9 = $09; {R9}
  70. RS_R10 = $0a; {R10}
  71. RS_R11 = $0b; {R11}
  72. RS_R12 = $0c; {R12}
  73. RS_R13 = $0d; {R13}
  74. RS_R14 = $0e; {R14}
  75. RS_R15 = $0f; {R15}
  76. { create aliases to allow code sharing between x86-64 and i386 }
  77. RS_EAX = RS_RAX;
  78. RS_EBX = RS_RBX;
  79. RS_ECX = RS_RCX;
  80. RS_EDX = RS_RDX;
  81. RS_ESI = RS_RSI;
  82. RS_EDI = RS_RDI;
  83. RS_EBP = RS_RBP;
  84. RS_ESP = RS_RSP;
  85. { create aliases to allow code sharing between i386 and i8086 }
  86. RS_AX = RS_RAX;
  87. RS_BX = RS_RBX;
  88. RS_CX = RS_RCX;
  89. RS_DX = RS_RDX;
  90. RS_SI = RS_RSI;
  91. RS_DI = RS_RDI;
  92. RS_BP = RS_RBP;
  93. RS_SP = RS_RSP;
  94. { Number of first imaginary register }
  95. first_int_imreg = $10;
  96. { Float Super registers }
  97. RS_ST0 = $00;
  98. RS_ST1 = $01;
  99. RS_ST2 = $02;
  100. RS_ST3 = $03;
  101. RS_ST4 = $04;
  102. RS_ST5 = $05;
  103. RS_ST6 = $06;
  104. RS_ST7 = $07;
  105. RS_ST = $08;
  106. { Number of first imaginary register }
  107. first_fpu_imreg = $09;
  108. { MM Super registers }
  109. RS_XMM0 = $00;
  110. RS_XMM1 = $01;
  111. RS_XMM2 = $02;
  112. RS_XMM3 = $03;
  113. RS_XMM4 = $04;
  114. RS_XMM5 = $05;
  115. RS_XMM6 = $06;
  116. RS_XMM7 = $07;
  117. RS_XMM8 = $08;
  118. RS_XMM9 = $09;
  119. RS_XMM10 = $0a;
  120. RS_XMM11 = $0b;
  121. RS_XMM12 = $0c;
  122. RS_XMM13 = $0d;
  123. RS_XMM14 = $0e;
  124. RS_XMM15 = $0f;
  125. RS_XMM16 = $10;
  126. RS_XMM17 = $11;
  127. RS_XMM18 = $12;
  128. RS_XMM19 = $13;
  129. RS_XMM20 = $14;
  130. RS_XMM21 = $15;
  131. RS_XMM22 = $16;
  132. RS_XMM23 = $17;
  133. RS_XMM24 = $18;
  134. RS_XMM25 = $19;
  135. RS_XMM26 = $1a;
  136. RS_XMM27 = $1b;
  137. RS_XMM28 = $1c;
  138. RS_XMM29 = $1d;
  139. RS_XMM30 = $1e;
  140. RS_XMM31 = $1f;
  141. {$if defined(x86_64)}
  142. RS_RFLAGS = $06;
  143. {$elseif defined(i386)}
  144. RS_EFLAGS = $06;
  145. {$elseif defined(i8086)}
  146. RS_FLAGS = $06;
  147. {$endif}
  148. { Number of first imaginary register }
  149. {$ifdef x86_64}
  150. first_mm_imreg = $10;
  151. {$else x86_64}
  152. first_mm_imreg = $08;
  153. {$endif x86_64}
  154. { The subregister that specifies the entire register and an address }
  155. {$if defined(x86_64)}
  156. { Hammer }
  157. R_SUBWHOLE = R_SUBQ;
  158. R_SUBADDR = R_SUBQ;
  159. {$elseif defined(i386)}
  160. { i386 }
  161. R_SUBWHOLE = R_SUBD;
  162. R_SUBADDR = R_SUBD;
  163. {$elseif defined(i8086)}
  164. { i8086 }
  165. R_SUBWHOLE = R_SUBW;
  166. R_SUBADDR = R_SUBW;
  167. {$endif}
  168. { Available Registers }
  169. {$if defined(x86_64)}
  170. {$i r8664con.inc}
  171. {$elseif defined(i386)}
  172. {$i r386con.inc}
  173. {$elseif defined(i8086)}
  174. {$i r8086con.inc}
  175. {$endif}
  176. type
  177. { Number of registers used for indexing in tables }
  178. {$if defined(x86_64)}
  179. tregisterindex=0..{$i r8664nor.inc}-1;
  180. {$elseif defined(i386)}
  181. tregisterindex=0..{$i r386nor.inc}-1;
  182. {$elseif defined(i8086)}
  183. tregisterindex=0..{$i r8086nor.inc}-1;
  184. {$endif}
  185. const
  186. regnumber_table : array[tregisterindex] of tregister = (
  187. {$if defined(x86_64)}
  188. {$i r8664num.inc}
  189. {$elseif defined(i386)}
  190. {$i r386num.inc}
  191. {$elseif defined(i8086)}
  192. {$i r8086num.inc}
  193. {$endif}
  194. );
  195. regstabs_table : array[tregisterindex] of shortint = (
  196. {$if defined(x86_64)}
  197. {$i r8664stab.inc}
  198. {$elseif defined(i386)}
  199. {$i r386stab.inc}
  200. {$elseif defined(i8086)}
  201. {$i r8086stab.inc}
  202. {$endif}
  203. );
  204. regdwarf_table : array[tregisterindex] of shortint = (
  205. {$if defined(x86_64)}
  206. {$i r8664dwrf.inc}
  207. {$elseif defined(i386)}
  208. {$i r386dwrf.inc}
  209. {$elseif defined(i8086)}
  210. {$i r8086dwrf.inc}
  211. {$endif}
  212. );
  213. {$if defined(x86_64)}
  214. RS_DEFAULTFLAGS = RS_RFLAGS;
  215. NR_DEFAULTFLAGS = NR_RFLAGS;
  216. {$elseif defined(i386)}
  217. RS_DEFAULTFLAGS = RS_EFLAGS;
  218. NR_DEFAULTFLAGS = NR_EFLAGS;
  219. {$elseif defined(i8086)}
  220. RS_DEFAULTFLAGS = RS_FLAGS;
  221. NR_DEFAULTFLAGS = NR_FLAGS;
  222. {$endif}
  223. {*****************************************************************************
  224. Conditions
  225. *****************************************************************************}
  226. type
  227. TAsmCond=(C_None,
  228. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  229. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  230. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  231. );
  232. const
  233. cond2str:array[TAsmCond] of string[3]=('',
  234. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  235. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  236. 'ns','nz','o','p','pe','po','s','z'
  237. );
  238. {*****************************************************************************
  239. Flags
  240. *****************************************************************************}
  241. type
  242. TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
  243. F_A,F_AE,F_B,F_BE,
  244. F_S,F_NS,F_O,F_NO,
  245. { For IEEE-compliant floating-point compares,
  246. same as normal counterparts but additionally check PF }
  247. F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
  248. const
  249. FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
  250. FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
  251. F_E,F_NE,F_A,F_AE,F_B,F_BE
  252. );
  253. {*****************************************************************************
  254. Constants
  255. *****************************************************************************}
  256. const
  257. { declare aliases }
  258. LOC_SSEREGISTER = LOC_MMREGISTER;
  259. LOC_CSSEREGISTER = LOC_CMMREGISTER;
  260. max_operands = 4;
  261. maxfpuregs = 8;
  262. {*****************************************************************************
  263. CPU Dependent Constants
  264. *****************************************************************************}
  265. {$i cpubase.inc}
  266. const
  267. {$ifdef x86_64}
  268. topsize2memsize: array[topsize] of integer =
  269. (0, 8,16,32,64,8,8,16,8,16,32,
  270. 16,32,64,
  271. 16,32,64,0,0,
  272. 64,
  273. 0,0,0,
  274. 80,
  275. 128,
  276. 256,
  277. 512
  278. );
  279. {$else}
  280. topsize2memsize: array[topsize] of integer =
  281. (0, 8,16,32,64,8,8,16,
  282. 16,32,64,
  283. 16,32,64,0,0,
  284. 64,
  285. 0,0,0,
  286. 80,
  287. 128,
  288. 256,
  289. 512
  290. );
  291. {$endif}
  292. {*****************************************************************************
  293. Helpers
  294. *****************************************************************************}
  295. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  296. function reg2opsize(r:Tregister):topsize;
  297. function reg_cgsize(const reg: tregister): tcgsize;
  298. function is_calljmp(o:tasmop):boolean;
  299. procedure inverse_flags(var f: TResFlags);
  300. function flags_to_cond(const f: TResFlags) : TAsmCond;
  301. function is_segment_reg(r:tregister):boolean;
  302. function findreg_by_number(r:Tregister):tregisterindex;
  303. function std_regnum_search(const s:string):Tregister;
  304. function std_regname(r:Tregister):string;
  305. function dwarf_reg(r:tregister):shortint;
  306. function dwarf_reg_no_error(r:tregister):shortint;
  307. function eh_return_data_regno(nr: longint): longint;
  308. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  309. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  310. { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
  311. function condition_in(const Subset, c: TAsmCond): Boolean;
  312. { checks whether two segment registers are normally equal in the current memory model }
  313. function segment_regs_equal(r1,r2:tregister):boolean;
  314. { checks whether the specified op is an x86 string instruction (e.g. cmpsb, movsd, scasw, etc.) }
  315. function is_x86_string_op(op: TAsmOp): boolean;
  316. { checks whether the specified op is an x86 parameterless string instruction
  317. (e.g. returns true for movsb, cmpsw, etc, but returns false for movs, cmps, etc.) }
  318. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  319. { checks whether the specified op is an x86 parameterized string instruction
  320. (e.g. returns true for movs, cmps, etc, but returns false for movsb, cmpsb, etc.) }
  321. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  322. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  323. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  324. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  325. { returns the 0-based operand number (intel syntax) of the ds:[si] param of
  326. a x86 string instruction }
  327. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  328. { returns the 0-based operand number (intel syntax) of the es:[di] param of
  329. a x86 string instruction }
  330. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  331. {$ifdef i8086}
  332. { return whether we need to add an extra FWAIT instruction before the given
  333. instruction, when we're targeting the i8087. This includes almost all x87
  334. instructions, but certain ones, which always have or have not a built in
  335. FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
  336. function requires_fwait_on_8087(op: TAsmOp): boolean;
  337. {$endif i8086}
  338. implementation
  339. uses
  340. globtype,
  341. rgbase,verbose;
  342. const
  343. {$if defined(x86_64)}
  344. std_regname_table : TRegNameTable = (
  345. {$i r8664std.inc}
  346. );
  347. regnumber_index : array[tregisterindex] of tregisterindex = (
  348. {$i r8664rni.inc}
  349. );
  350. std_regname_index : array[tregisterindex] of tregisterindex = (
  351. {$i r8664sri.inc}
  352. );
  353. {$elseif defined(i386)}
  354. std_regname_table : TRegNameTable = (
  355. {$i r386std.inc}
  356. );
  357. regnumber_index : array[tregisterindex] of tregisterindex = (
  358. {$i r386rni.inc}
  359. );
  360. std_regname_index : array[tregisterindex] of tregisterindex = (
  361. {$i r386sri.inc}
  362. );
  363. {$elseif defined(i8086)}
  364. std_regname_table : TRegNameTable = (
  365. {$i r8086std.inc}
  366. );
  367. regnumber_index : array[tregisterindex] of tregisterindex = (
  368. {$i r8086rni.inc}
  369. );
  370. std_regname_index : array[tregisterindex] of tregisterindex = (
  371. {$i r8086sri.inc}
  372. );
  373. {$endif}
  374. {*****************************************************************************
  375. Helpers
  376. *****************************************************************************}
  377. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  378. begin
  379. case s of
  380. OS_8,OS_S8:
  381. cgsize2subreg:=R_SUBL;
  382. OS_16,OS_S16:
  383. cgsize2subreg:=R_SUBW;
  384. OS_32,OS_S32:
  385. cgsize2subreg:=R_SUBD;
  386. OS_64,OS_S64:
  387. cgsize2subreg:=R_SUBQ;
  388. OS_M64:
  389. cgsize2subreg:=R_SUBNONE;
  390. OS_F32,OS_F64,OS_C64:
  391. case regtype of
  392. R_FPUREGISTER:
  393. cgsize2subreg:=R_SUBWHOLE;
  394. R_MMREGISTER:
  395. case s of
  396. OS_F32:
  397. cgsize2subreg:=R_SUBMMS;
  398. OS_F64:
  399. cgsize2subreg:=R_SUBMMD;
  400. else
  401. internalerror(2009071901);
  402. end;
  403. else
  404. internalerror(2009071902);
  405. end;
  406. OS_M128:
  407. cgsize2subreg:=R_SUBMMX;
  408. OS_M256:
  409. cgsize2subreg:=R_SUBMMY;
  410. OS_M512:
  411. cgsize2subreg:=R_SUBMMZ;
  412. OS_NO:
  413. { error message should have been thrown already before, so avoid only
  414. an internal error }
  415. cgsize2subreg:=R_SUBNONE;
  416. else
  417. internalerror(200301231);
  418. end;
  419. end;
  420. function reg_cgsize(const reg: tregister): tcgsize;
  421. const subreg2cgsize:array[Tsubregister] of Tcgsize =
  422. (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256,OS_M512,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO);
  423. begin
  424. case getregtype(reg) of
  425. R_INTREGISTER :
  426. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  427. R_FPUREGISTER :
  428. reg_cgsize:=OS_F80;
  429. R_MMXREGISTER:
  430. reg_cgsize:=OS_M64;
  431. R_MMREGISTER:
  432. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  433. R_SPECIALREGISTER :
  434. case reg of
  435. NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
  436. reg_cgsize:=OS_16;
  437. {$ifdef x86_64}
  438. NR_DR0..NR_TR7:
  439. reg_cgsize:=OS_64;
  440. {$endif x86_64}
  441. else
  442. reg_cgsize:=OS_32
  443. end;
  444. R_ADDRESSREGISTER:
  445. case reg of
  446. //NR_K0..NR_K7: reg_cgsize:=OS_64;
  447. NR_K0..NR_K7: reg_cgsize:=OS_NO;
  448. else internalerror(2003031801);
  449. end;
  450. else
  451. internalerror(2003031801);
  452. end;
  453. end;
  454. function reg2opsize(r:Tregister):topsize;
  455. const
  456. subreg2opsize : array[tsubregister] of topsize =
  457. (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  458. begin
  459. reg2opsize:=S_L;
  460. case getregtype(r) of
  461. R_INTREGISTER :
  462. reg2opsize:=subreg2opsize[getsubreg(r)];
  463. R_FPUREGISTER :
  464. reg2opsize:=S_FL;
  465. R_MMXREGISTER,
  466. R_MMREGISTER :
  467. reg2opsize:=S_MD;
  468. R_SPECIALREGISTER :
  469. begin
  470. case r of
  471. NR_CS,NR_DS,NR_ES,
  472. NR_SS,NR_FS,NR_GS :
  473. reg2opsize:=S_W;
  474. else
  475. ;
  476. end;
  477. end;
  478. else
  479. internalerror(200303181);
  480. end;
  481. end;
  482. function is_calljmp(o:tasmop):boolean;
  483. begin
  484. case o of
  485. A_CALL,
  486. {$if defined(i386) or defined(i8086)}
  487. A_JCXZ,
  488. {$endif defined(i386) or defined(i8086)}
  489. A_JECXZ,
  490. {$ifdef x86_64}
  491. A_JRCXZ,
  492. {$endif x86_64}
  493. A_JMP,
  494. A_LOOP,
  495. A_LOOPE,
  496. A_LOOPNE,
  497. A_LOOPNZ,
  498. A_LOOPZ,
  499. A_LCALL,
  500. A_LJMP,
  501. A_Jcc :
  502. is_calljmp:=true;
  503. else
  504. is_calljmp:=false;
  505. end;
  506. end;
  507. procedure inverse_flags(var f: TResFlags);
  508. const
  509. inv_flags: array[TResFlags] of TResFlags =
  510. (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
  511. F_BE,F_B,F_AE,F_A,
  512. F_NS,F_S,F_NO,F_O,
  513. F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
  514. begin
  515. f:=inv_flags[f];
  516. end;
  517. function flags_to_cond(const f: TResFlags) : TAsmCond;
  518. const
  519. flags_2_cond : array[TResFlags] of TAsmCond =
  520. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
  521. C_None,C_None,C_None,C_None,C_None,C_None);
  522. begin
  523. result := flags_2_cond[f];
  524. if (result=C_None) then
  525. InternalError(2014041301);
  526. end;
  527. function is_segment_reg(r:tregister):boolean;
  528. begin
  529. case r of
  530. NR_CS,NR_DS,NR_ES,
  531. NR_SS,NR_FS,NR_GS :
  532. result:=true;
  533. else
  534. result:=false;
  535. end;
  536. end;
  537. function findreg_by_number(r:Tregister):tregisterindex;
  538. var
  539. hr : tregister;
  540. begin
  541. { for the name the sub reg doesn't matter }
  542. hr:=r;
  543. if (getregtype(hr)=R_MMREGISTER) and
  544. (getsubreg(hr)<>R_SUBMMY) and
  545. (getsubreg(hr)<>R_SUBMMZ) then
  546. setsubreg(hr,R_SUBMMX);
  547. //// TG TODO check
  548. //if (getregtype(hr)=R_MMREGISTER) then
  549. // case getsubreg(hr) of
  550. // R_SUBMMX: setsubreg(hr,R_SUBMMX);
  551. // R_SUBMMY: setsubreg(hr,R_SUBMMY);
  552. // R_SUBMMZ: setsubreg(hr,R_SUBMMZ);
  553. // else setsubreg(hr,R_SUBMMX);
  554. // end;
  555. result:=findreg_by_number_table(hr,regnumber_index);
  556. end;
  557. function std_regnum_search(const s:string):Tregister;
  558. begin
  559. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  560. end;
  561. function std_regname(r:Tregister):string;
  562. var
  563. p : tregisterindex;
  564. begin
  565. if (getregtype(r)=R_MMXREGISTER) or
  566. ((getregtype(r)=R_MMREGISTER) and not(getsubreg(r) in [R_SUBMMX,R_SUBMMY])) then
  567. r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
  568. p:=findreg_by_number(r);
  569. if p<>0 then
  570. result:=std_regname_table[p]
  571. else
  572. result:=generic_regname(r);
  573. end;
  574. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  575. const
  576. inverse: array[TAsmCond] of TAsmCond=(C_None,
  577. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  578. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  579. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  580. );
  581. begin
  582. result := inverse[c];
  583. end;
  584. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  585. begin
  586. result := c1 = c2;
  587. end;
  588. { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
  589. function condition_in(const Subset, c: TAsmCond): Boolean;
  590. begin
  591. Result := (c = C_None) or conditions_equal(Subset, c);
  592. if not Result then
  593. case Subset of
  594. C_A, C_NBE:
  595. Result := (c in [C_A, C_AE, C_NB, C_NBE]);
  596. C_AE, C_NB:
  597. Result := (c in [C_AE, C_NB]);
  598. C_B, C_NAE:
  599. Result := (c in [C_B, C_BE, C_C, C_NA, C_NAE]);
  600. C_BE, C_NA:
  601. Result := (c in [C_BE, C_NA]);
  602. C_C:
  603. { C_B / C_NAE: CF = 1
  604. C_BE / C_NA: CF = 1 or ZF = 1 }
  605. Result := (c in [C_B, C_BE, C_NA, C_NAE]);
  606. C_E, C_Z:
  607. Result := (c in [C_AE, C_BE, C_E, C_NA, C_NB, C_NG, C_NL]);
  608. C_G, C_NLE:
  609. Result := (c in [C_G, C_GE, C_NL, C_NLE]);
  610. C_GE, C_NL:
  611. Result := (c in [C_GE, C_NL]);
  612. C_L, C_NGE:
  613. Result := (c in [C_L, C_LE, C_NG, C_NGE]);
  614. C_LE, C_NG:
  615. Result := (c in [C_LE, C_NG]);
  616. C_NC:
  617. { C_A / C_NBE: CF = 0 and ZF = 0; not a subset because ZF has to be zero as well
  618. C_AE / C_NB: CF = 0 }
  619. Result := (c in [C_AE, C_NB]);
  620. C_NE, C_NZ:
  621. Result := (c in [C_NE, C_NZ, C_A, C_B, C_NAE,C_NBE,C_L, C_G, C_NLE,C_NGE]);
  622. C_NP, C_PO:
  623. Result := (c in [C_NP, C_PO]);
  624. C_P, C_PE:
  625. Result := (c in [C_P, C_PE]);
  626. else
  627. Result := False;
  628. end;
  629. end;
  630. function dwarf_reg(r:tregister):shortint;
  631. begin
  632. result:=regdwarf_table[findreg_by_number(r)];
  633. if result=-1 then
  634. internalerror(200603251);
  635. end;
  636. function dwarf_reg_no_error(r:tregister):shortint;
  637. begin
  638. result:=regdwarf_table[findreg_by_number(r)];
  639. end;
  640. function eh_return_data_regno(nr: longint): longint;
  641. begin
  642. case nr of
  643. 0: result:=0;
  644. {$ifdef x86_64}
  645. 1: result:=1;
  646. {$else}
  647. 1: result:=2;
  648. {$endif}
  649. else
  650. result:=-1;
  651. end;
  652. end;
  653. function segment_regs_equal(r1, r2: tregister): boolean;
  654. begin
  655. if not is_segment_reg(r1) or not is_segment_reg(r2) then
  656. internalerror(2013062301);
  657. { every segment register is equal to itself }
  658. if r1=r2 then
  659. exit(true);
  660. {$if defined(i8086)}
  661. case current_settings.x86memorymodel of
  662. mm_tiny:
  663. begin
  664. { CS=DS=SS }
  665. if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
  666. ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
  667. exit(true);
  668. { the remaining are distinct from each other }
  669. exit(false);
  670. end;
  671. mm_small,mm_medium:
  672. begin
  673. { DS=SS }
  674. if ((r1=NR_DS) or (r1=NR_SS)) and
  675. ((r2=NR_DS) or (r2=NR_SS)) then
  676. exit(true);
  677. { the remaining are distinct from each other }
  678. exit(false);
  679. end;
  680. mm_compact,mm_large,mm_huge:
  681. { all segment registers are different in these models }
  682. exit(false);
  683. end;
  684. {$elseif defined(i386) or defined(x86_64)}
  685. { DS=SS=ES }
  686. if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
  687. ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
  688. exit(true);
  689. { the remaining are distinct from each other }
  690. exit(false);
  691. {$endif}
  692. end;
  693. function is_x86_string_op(op: TAsmOp): boolean;
  694. begin
  695. case op of
  696. {$ifdef x86_64}
  697. A_MOVSQ,
  698. A_CMPSQ,
  699. A_SCASQ,
  700. A_LODSQ,
  701. A_STOSQ,
  702. {$endif x86_64}
  703. A_MOVSB,A_MOVSW,A_MOVSD,
  704. A_CMPSB,A_CMPSW,A_CMPSD,
  705. A_SCASB,A_SCASW,A_SCASD,
  706. A_LODSB,A_LODSW,A_LODSD,
  707. A_STOSB,A_STOSW,A_STOSD,
  708. A_INSB, A_INSW, A_INSD,
  709. A_OUTSB,A_OUTSW,A_OUTSD,
  710. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  711. result:=true;
  712. else
  713. result:=false;
  714. end;
  715. end;
  716. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  717. begin
  718. case op of
  719. {$ifdef x86_64}
  720. A_MOVSQ,
  721. A_CMPSQ,
  722. A_SCASQ,
  723. A_LODSQ,
  724. A_STOSQ,
  725. {$endif x86_64}
  726. A_MOVSB,A_MOVSW,A_MOVSD,
  727. A_CMPSB,A_CMPSW,A_CMPSD,
  728. A_SCASB,A_SCASW,A_SCASD,
  729. A_LODSB,A_LODSW,A_LODSD,
  730. A_STOSB,A_STOSW,A_STOSD,
  731. A_INSB, A_INSW, A_INSD,
  732. A_OUTSB,A_OUTSW,A_OUTSD:
  733. result:=true;
  734. else
  735. result:=false;
  736. end;
  737. end;
  738. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  739. begin
  740. case op of
  741. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  742. result:=true;
  743. else
  744. result:=false;
  745. end;
  746. end;
  747. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  748. begin
  749. case op of
  750. A_MOVS,A_CMPS,A_INS,A_OUTS:
  751. result:=2;
  752. A_SCAS,A_LODS,A_STOS:
  753. result:=1;
  754. else
  755. internalerror(2017101203);
  756. end;
  757. end;
  758. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  759. begin
  760. case op of
  761. A_MOVSB,A_MOVSW,A_MOVSD{$ifdef x86_64},A_MOVSQ{$endif}:
  762. result:=A_MOVS;
  763. A_CMPSB,A_CMPSW,A_CMPSD{$ifdef x86_64},A_CMPSQ{$endif}:
  764. result:=A_CMPS;
  765. A_SCASB,A_SCASW,A_SCASD{$ifdef x86_64},A_SCASQ{$endif}:
  766. result:=A_SCAS;
  767. A_LODSB,A_LODSW,A_LODSD{$ifdef x86_64},A_LODSQ{$endif}:
  768. result:=A_LODS;
  769. A_STOSB,A_STOSW,A_STOSD{$ifdef x86_64},A_STOSQ{$endif}:
  770. result:=A_STOS;
  771. A_INSB, A_INSW, A_INSD:
  772. result:=A_INS;
  773. A_OUTSB,A_OUTSW,A_OUTSD:
  774. result:=A_OUTS;
  775. else
  776. internalerror(2017101201);
  777. end;
  778. end;
  779. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  780. begin
  781. case op of
  782. A_MOVSB,A_CMPSB,A_SCASB,A_LODSB,A_STOSB,A_INSB,A_OUTSB:
  783. result:=S_B;
  784. A_MOVSW,A_CMPSW,A_SCASW,A_LODSW,A_STOSW,A_INSW,A_OUTSW:
  785. result:=S_W;
  786. A_MOVSD,A_CMPSD,A_SCASD,A_LODSD,A_STOSD,A_INSD,A_OUTSD:
  787. result:=S_L;
  788. {$ifdef x86_64}
  789. A_MOVSQ,A_CMPSQ,A_SCASQ,A_LODSQ,A_STOSQ:
  790. result:=S_Q;
  791. {$endif x86_64}
  792. else
  793. internalerror(2017101202);
  794. end;
  795. end;
  796. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  797. begin
  798. case op of
  799. A_MOVS,A_OUTS:
  800. result:=1;
  801. A_CMPS,A_LODS:
  802. result:=0;
  803. A_SCAS,A_STOS,A_INS:
  804. result:=-1;
  805. else
  806. internalerror(2017101102);
  807. end;
  808. end;
  809. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  810. begin
  811. case op of
  812. A_MOVS,A_SCAS,A_STOS,A_INS:
  813. result:=0;
  814. A_CMPS:
  815. result:=1;
  816. A_LODS,A_OUTS:
  817. result:=-1;
  818. else
  819. internalerror(2017101204);
  820. end;
  821. end;
  822. {$ifdef i8086}
  823. function requires_fwait_on_8087(op: TAsmOp): boolean;
  824. begin
  825. case op of
  826. A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
  827. A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
  828. A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
  829. A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
  830. A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
  831. A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
  832. A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
  833. A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
  834. A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
  835. result:=true;
  836. else
  837. result:=false;
  838. end;
  839. end;
  840. {$endif i8086}
  841. end.