1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258 |
- {$ifndef NO_SMART_LINK}
- {$smartlink on}
- {$endif}
- unit zlib;
- interface
- { Needed for array of const }
- {$mode objfpc}
- { for linux for linking with libc }
- {$ifdef unix}
- {$linklib c}
- {$endif}
- {$packrecords c}
- uses
- ctypes;
- const
- {$ifdef netware} {zlib.nlm comes with netware6}
- libz='zlib';
- {$else}
- {$ifdef windows}
- libz='zlib1';
- {$else windows}
- libz='z';
- {$endif windows}
- {$endif}
- {$ifndef windows}
- {$linklib libz}
- {$endif windows}
- (*
- The 'zlib' compression library provides in-memory compression and
- decompression functions, including integrity checks of the uncompressed
- data. This version of the library supports only one compression method
- (deflation) but other algorithms will be added later and will have the same
- stream interface.
- Compression can be done in a single step if the buffers are large
- enough (for example if an input file is mmap'ed), or can be done by
- repeated calls of the compression function. In the latter case, the
- application must provide more input and/or consume the output
- (providing more output space) before each call.
- The compressed data format used by default by the in-memory functions is
- the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped
- around a deflate stream, which is itself documented in RFC 1951.
- The library also supports reading and writing files in gzip (.gz) format
- with an interface similar to that of stdio using the functions that start
- with "gz". The gzip format is different from the zlib format. gzip is a
- gzip wrapper, documented in RFC 1952, wrapped around a deflate stream.
- This library can optionally read and write gzip streams in memory as well.
- The zlib format was designed to be compact and fast for use in memory
- and on communications channels. The gzip format was designed for single-
- file compression on file systems, has a larger header than zlib to maintain
- directory information, and uses a different, slower check method than zlib.
- The library does not install any signal handler. The decoder checks
- the consistency of the compressed data, so the library should never
- crash even in case of corrupted input.
- *)
- const
- ZLIB_VERSION = '1.2.3';
- ZLIB_VERNUM = $1230;
- type
- uInt = cuint;
- puIntf = ^uIntf;
- uIntf = uInt;
- uLong = culong;
- puLongf = ^uLongf;
- uLongf = uLong;
- pBytef = ^Bytef;
- Bytef = cchar;
- alloc_func = function(opaque: pointer; items: uInt; size: uInt): pointer; cdecl;
- TAllocfunc = alloc_func;
- free_func = procedure(opaque: pointer; items: uInt; size: uInt); cdecl;
- TFreeFunc = free_func;
- internal_statep = ^internal_state;
- internal_state = record end;
- TInternalState = internal_state;
- PInternalState = internal_statep;
- z_off_t = coff_t;
- z_streamp = ^z_stream;
- z_stream = record
- next_in : pBytef; // next input byte
- avail_in : uInt; // number of bytes available at next_in
- total_in : uLong; // total nb of input bytes read so far
- next_out : pBytef; // next output byte should be put there
- avail_out : uInt; // remaining free space at next_out
- total_out : uLong; // total nb of bytes output so far
- msg : pBytef; // last error message, NULL if no error
- state : internal_statep; // not visible by applications
- zalloc : alloc_func; // used to allocate the internal state
- zfree : free_func; // used to free the internal state
- opaque : pointer; // private data object passed to zalloc and zfree
- data_type : cint; // best guess about the data type: binary or text
- adler : uLong; // adler32 value of the uncompressed data
- reserved : uLong; // reserved for future use
- end;
- TZStreamRec = z_stream;
- TZStream = z_stream;
- PZStream = z_streamp;
- (*
- gzip header information passed to and from zlib routines. See RFC 1952
- for more details on the meanings of these fields.
- *)
- gz_headerp = ^gz_header;
- gz_header = record
- text : cint; // true if compressed data believed to be text
- time : uLong; // modification time
- xflags : cint; // extra flags (not used when writing a gzip file)
- os : cint; // operating system
- extra : pBytef; // pointer to extra field or Z_NULL if none
- extra_len : uInt; // extra field length (valid if extra != Z_NULL)
- extra_max : uInt; // space at extra (only when reading header)
- name : pBytef; // pointer to zero-terminated file name or Z_NULL
- name_max : uInt; // space at name (only when reading header)
- comment : Bytef; // pointer to zero-terminated comment or Z_NULL
- comm_max : uInt; // space at comment (only when reading header)
- hcrc : cint; // true if there was or will be a header crc
- done : cint; // true when done reading gzip header (not used when writing a gzip file)
- end;
- (*
- The application must update next_in and avail_in when avail_in has
- dropped to zero. It must update next_out and avail_out when avail_out
- has dropped to zero. The application must initialize zalloc, zfree and
- opaque before calling the init function. All other fields are set by the
- compression library and must not be updated by the application.
- The opaque value provided by the application will be passed as the first
- parameter for calls of zalloc and zfree. This can be useful for custom
- memory management. The compression library attaches no meaning to the
- opaque value.
- zalloc must return Z_NULL if there is not enough memory for the object.
- If zlib is used in a multi-threaded application, zalloc and zfree must be
- thread safe.
- On 16-bit systems, the functions zalloc and zfree must be able to allocate
- exactly 65536 bytes, but will not be required to allocate more than this
- if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS,
- pointers returned by zalloc for objects of exactly 65536 bytes *must*
- have their offset normalized to zero. The default allocation function
- provided by this library ensures this (see zutil.c). To reduce memory
- requirements and avoid any allocation of 64K objects, at the expense of
- compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h).
- The fields total_in and total_out can be used for statistics or
- progress reports. After compression, total_in holds the total size of
- the uncompressed data and may be saved for use in the decompressor
- (particularly if the decompressor wants to decompress everything in
- a single step).
- *)
- const
- Z_NO_FLUSH = 0;
- Z_PARTIAL_FLUSH = 1; // will be removed, use Z_SYNC_FLUSH instead
- Z_SYNC_FLUSH = 2;
- Z_FULL_FLUSH = 3;
- Z_FINISH = 4;
- Z_BLOCK = 5;
- (* Allowed flush values; see deflate() and inflate() below for details *)
- Z_OK = 0;
- Z_STREAM_END = 1;
- Z_NEED_DICT = 2;
- Z_ERRNO = (-1);
- Z_STREAM_ERROR = (-2);
- Z_DATA_ERROR = (-3);
- Z_MEM_ERROR = (-4);
- Z_BUF_ERROR = (-5);
- Z_VERSION_ERROR = (-6);
- (* Return codes for the compression/decompression functions. Negative
- * values are errors, positive values are used for special but normal events.
- *)
- Z_NO_COMPRESSION = 0;
- Z_BEST_SPEED = 1;
- Z_BEST_COMPRESSION = 9;
- Z_DEFAULT_COMPRESSION = -(1);
- (* compression levels *)
- Z_FILTERED = 1;
- Z_HUFFMAN_ONLY = 2;
- Z_RLE = 3;
- Z_FIXED = 4;
- Z_DEFAULT_STRATEGY = 0;
- (* compression strategy; see deflateInit2() below for details *)
- Z_BINARY = 0;
- Z_TEXT = 1;
- Z_ASCII = Z_TEXT; // for compatibility with 1.2.2 and earlier
- Z_UNKNOWN = 2;
- (* Possible values of the data_type field (though see inflate()) *)
- Z_DEFLATED = 8;
- (* The deflate compression method (the only one supported in this version) *)
- Z_NULL = 0;
- (* for initializing zalloc, zfree, opaque *)
- function zlibVersion:pchar; cdecl; external libz name 'zlibVersion';
- (*
- The application can compare zlibVersion and ZLIB_VERSION for consistency.
- If the first character differs, the library code actually used is
- not compatible with the zlib.h header file used by the application.
- This check is automatically made by deflateInit and inflateInit.
- *)
- function deflateInit_(var strm: z_stream; level: cint; version: pchar; stream_size: cint): cint; cdecl; external libz name 'deflateInit_';
- function deflateInit(var strm: z_stream; level: cint): cint;
- (*
- Initializes the internal stream state for compression. The fields
- zalloc, zfree and opaque must be initialized before by the caller.
- If zalloc and zfree are set to Z_NULL, deflateInit updates them to
- use default allocation functions.
- The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
- 1 gives best speed, 9 gives best compression, 0 gives no compression at
- all (the input data is simply copied a block at a time).
- Z_DEFAULT_COMPRESSION requests a default compromise between speed and
- compression (currently equivalent to level 6).
- deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_STREAM_ERROR if level is not a valid compression level,
- Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible
- with the version assumed by the caller (ZLIB_VERSION).
- msg is set to null if there is no error message. deflateInit does not
- perform any compression: this will be done by deflate().
- *)
- function deflate(var strm: z_stream; flush: cint): cint; cdecl; external libz name 'deflate';
- (*
- deflate compresses as much data as possible, and stops when the input
- buffer becomes empty or the output buffer becomes full. It may introduce some
- output latency (reading input without producing any output) except when
- forced to flush.
- The detailed semantics are as follows. deflate performs one or both of the
- following actions:
- - Compress more input starting at next_in and update next_in and avail_in
- accordingly. If not all input can be processed (because there is not
- enough room in the output buffer), next_in and avail_in are updated and
- processing will resume at this point for the next call of deflate().
- - Provide more output starting at next_out and update next_out and avail_out
- accordingly. This action is forced if the parameter flush is non zero.
- Forcing flush frequently degrades the compression ratio, so this parameter
- should be set only when necessary (in interactive applications).
- Some output may be provided even if flush is not set.
- Before the call of deflate(), the application should ensure that at least
- one of the actions is possible, by providing more input and/or consuming
- more output, and updating avail_in or avail_out accordingly; avail_out
- should never be zero before the call. The application can consume the
- compressed output when it wants, for example when the output buffer is full
- (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK
- and with zero avail_out, it must be called again after making room in the
- output buffer because there might be more output pending.
- Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to
- decide how much data to accumualte before producing output, in order to
- maximize compression.
- If the parameter flush is set to Z_SYNC_FLUSH, all pending output is
- flushed to the output buffer and the output is aligned on a byte boundary, so
- that the decompressor can get all input data available so far. (In particular
- avail_in is zero after the call if enough output space has been provided
- before the call.) Flushing may degrade compression for some compression
- algorithms and so it should be used only when necessary.
- If flush is set to Z_FULL_FLUSH, all output is flushed as with
- Z_SYNC_FLUSH, and the compression state is reset so that decompression can
- restart from this point if previous compressed data has been damaged or if
- random access is desired. Using Z_FULL_FLUSH too often can seriously degrade
- compression.
- If deflate returns with avail_out == 0, this function must be called again
- with the same value of the flush parameter and more output space (updated
- avail_out), until the flush is complete (deflate returns with non-zero
- avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
- avail_out is greater than six to avoid repeated flush markers due to
- avail_out == 0 on return.
- If the parameter flush is set to Z_FINISH, pending input is processed,
- pending output is flushed and deflate returns with Z_STREAM_END if there
- was enough output space; if deflate returns with Z_OK, this function must be
- called again with Z_FINISH and more output space (updated avail_out) but no
- more input data, until it returns with Z_STREAM_END or an error. After
- deflate has returned Z_STREAM_END, the only possible operations on the
- stream are deflateReset or deflateEnd.
- Z_FINISH can be used immediately after deflateInit if all the compression
- is to be done in a single step. In this case, avail_out must be at least
- the value returned by deflateBound (see below). If deflate does not return
- Z_STREAM_END, then it must be called again as described above.
- deflate() sets strm->adler to the adler32 checksum of all input read
- so far (that is, total_in bytes).
- deflate() may update strm->data_type if it can make a good guess about
- the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered
- binary. This field is only for information purposes and does not affect
- the compression algorithm in any manner.
- deflate() returns Z_OK if some progress has been made (more input
- processed or more output produced), Z_STREAM_END if all input has been
- consumed and all output has been produced (only when flush is set to
- Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
- if next_in or next_out was NULL), Z_BUF_ERROR if no progress is possible
- (for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not
- fatal, and deflate() can be called again with more input and more output
- space to continue compressing.
- *)
- function deflateEnd(var strm: z_stream): cint; cdecl; external libz name 'deflateEnd';
- (*
- All dynamically allocated data structures for this stream are freed.
- This function discards any unprocessed input and does not flush any
- pending output.
- deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
- stream state was inconsistent, Z_DATA_ERROR if the stream was freed
- prematurely (some input or output was discarded). In the error case,
- msg may be set but then points to a static string (which must not be
- deallocated).
- *)
- function inflateInit_(var strm: z_stream; version: pchar; stream_size: cint): cint; cdecl; external libz name 'inflateInit_';
- function inflateInit(var strm: z_stream): cint;
- (*
- Initializes the internal stream state for decompression. The fields
- next_in, avail_in, zalloc, zfree and opaque must be initialized before by
- the caller. If next_in is not Z_NULL and avail_in is large enough (the exact
- value depends on the compression method), inflateInit determines the
- compression method from the zlib header and allocates all data structures
- accordingly; otherwise the allocation will be deferred to the first call of
- inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to
- use default allocation functions.
- inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
- memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
- version assumed by the caller. msg is set to null if there is no error
- message. inflateInit does not perform any decompression apart from reading
- the zlib header if present: this will be done by inflate(). (So next_in and
- avail_in may be modified, but next_out and avail_out are unchanged.)
- *)
- function inflate(var strm: z_stream; flush: cint): cint; cdecl; external libz name 'inflate';
- (*
- inflate decompresses as much data as possible, and stops when the input
- buffer becomes empty or the output buffer becomes full. It may introduce
- some output latency (reading input without producing any output) except when
- forced to flush.
- The detailed semantics are as follows. inflate performs one or both of the
- following actions:
- - Decompress more input starting at next_in and update next_in and avail_in
- accordingly. If not all input can be processed (because there is not
- enough room in the output buffer), next_in is updated and processing
- will resume at this point for the next call of inflate().
- - Provide more output starting at next_out and update next_out and avail_out
- accordingly. inflate() provides as much output as possible, until there
- is no more input data or no more space in the output buffer (see below
- about the flush parameter).
- Before the call of inflate(), the application should ensure that at least
- one of the actions is possible, by providing more input and/or consuming
- more output, and updating the next_* and avail_* values accordingly.
- The application can consume the uncompressed output when it wants, for
- example when the output buffer is full (avail_out == 0), or after each
- call of inflate(). If inflate returns Z_OK and with zero avail_out, it
- must be called again after making room in the output buffer because there
- might be more output pending.
- The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH,
- Z_FINISH, or Z_BLOCK. Z_SYNC_FLUSH requests that inflate() flush as much
- output as possible to the output buffer. Z_BLOCK requests that inflate() stop
- if and when it gets to the next deflate block boundary. When decoding the
- zlib or gzip format, this will cause inflate() to return immediately after
- the header and before the first block. When doing a raw inflate, inflate()
- will go ahead and process the first block, and will return when it gets to
- the end of that block, or when it runs out of data.
- The Z_BLOCK option assists in appending to or combining deflate streams.
- Also to assist in this, on return inflate() will set strm->data_type to the
- number of unused bits in the last byte taken from strm->next_in, plus 64
- if inflate() is currently decoding the last block in the deflate stream,
- plus 128 if inflate() returned immediately after decoding an end-of-block
- code or decoding the complete header up to just before the first byte of the
- deflate stream. The end-of-block will not be indicated until all of the
- uncompressed data from that block has been written to strm->next_out. The
- number of unused bits may in general be greater than seven, except when
- bit 7 of data_type is set, in which case the number of unused bits will be
- less than eight.
- inflate() should normally be called until it returns Z_STREAM_END or an
- error. However if all decompression is to be performed in a single step
- (a single call of inflate), the parameter flush should be set to
- Z_FINISH. In this case all pending input is processed and all pending
- output is flushed; avail_out must be large enough to hold all the
- uncompressed data. (The size of the uncompressed data may have been saved
- by the compressor for this purpose.) The next operation on this stream must
- be inflateEnd to deallocate the decompression state. The use of Z_FINISH
- is never required, but can be used to inform inflate that a faster approach
- may be used for the single inflate() call.
- In this implementation, inflate() always flushes as much output as
- possible to the output buffer, and always uses the faster approach on the
- first call. So the only effect of the flush parameter in this implementation
- is on the return value of inflate(), as noted below, or when it returns early
- because Z_BLOCK is used.
- If a preset dictionary is needed after this call (see inflateSetDictionary
- below), inflate sets strm->adler to the adler32 checksum of the dictionary
- chosen by the compressor and returns Z_NEED_DICT; otherwise it sets
- strm->adler to the adler32 checksum of all output produced so far (that is,
- total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described
- below. At the end of the stream, inflate() checks that its computed adler32
- checksum is equal to that saved by the compressor and returns Z_STREAM_END
- only if the checksum is correct.
- inflate() will decompress and check either zlib-wrapped or gzip-wrapped
- deflate data. The header type is detected automatically. Any information
- contained in the gzip header is not retained, so applications that need that
- information should instead use raw inflate, see inflateInit2() below, or
- inflateBack() and perform their own processing of the gzip header and
- trailer.
- inflate() returns Z_OK if some progress has been made (more input processed
- or more output produced), Z_STREAM_END if the end of the compressed data has
- been reached and all uncompressed output has been produced, Z_NEED_DICT if a
- preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
- corrupted (input stream not conforming to the zlib format or incorrect check
- value), Z_STREAM_ERROR if the stream structure was inconsistent (for example
- if next_in or next_out was NULL), Z_MEM_ERROR if there was not enough memory,
- Z_BUF_ERROR if no progress is possible or if there was not enough room in the
- output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and
- inflate() can be called again with more input and more output space to
- continue decompressing. If Z_DATA_ERROR is returned, the application may then
- call inflateSync() to look for a good compression block if a partial recovery
- of the data is desired.
- *)
- function inflateEnd(var strm: z_stream): cint; cdecl; external libz name 'inflateEnd';
- (*
- All dynamically allocated data structures for this stream are freed.
- This function discards any unprocessed input and does not flush any
- pending output.
- inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state
- was inconsistent. In the error case, msg may be set but then points to a
- static string (which must not be deallocated).
- *)
- function deflateInit2_(var strm: z_stream; level, method, windowBits, memLevel, strategy: cint; version: pchar; stream_size: cint): cint; cdecl; external libz name 'deflateInit2_';
- function deflateInit2(var strm: z_stream; level, method, windowBits, memLevel, strategy: cint): longint;
- (*
- This is another version of deflateInit with more compression options. The
- fields next_in, zalloc, zfree and opaque must be initialized before by
- the caller.
- The method parameter is the compression method. It must be Z_DEFLATED in
- this version of the library.
- The windowBits parameter is the base two logarithm of the window size
- (the size of the history buffer). It should be in the range 8..15 for this
- version of the library. Larger values of this parameter result in better
- compression at the expense of memory usage. The default value is 15 if
- deflateInit is used instead.
- windowBits can also be -8..-15 for raw deflate. In this case, -windowBits
- determines the window size. deflate() will then generate raw deflate data
- with no zlib header or trailer, and will not compute an adler32 check value.
- windowBits can also be greater than 15 for optional gzip encoding. Add
- 16 to windowBits to write a simple gzip header and trailer around the
- compressed data instead of a zlib wrapper. The gzip header will have no
- file name, no extra data, no comment, no modification time (set to zero),
- no header crc, and the operating system will be set to 255 (unknown). If a
- gzip stream is being written, strm->adler is a crc32 instead of an adler32.
- The memLevel parameter specifies how much memory should be allocated
- for the internal compression state. memLevel=1 uses minimum memory but
- is slow and reduces compression ratio; memLevel=9 uses maximum memory
- for optimal speed. The default value is 8. See zconf.h for total memory
- usage as a function of windowBits and memLevel.
- The strategy parameter is used to tune the compression algorithm. Use the
- value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a
- filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no
- string match), or Z_RLE to limit match distances to one (run-length
- encoding). Filtered data consists mostly of small values with a somewhat
- random distribution. In this case, the compression algorithm is tuned to
- compress them better. The effect of Z_FILTERED is to force more Huffman
- coding and less string matching; it is somewhat intermediate between
- Z_DEFAULT and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as fast as
- Z_HUFFMAN_ONLY, but give better compression for PNG image data. The strategy
- parameter only affects the compression ratio but not the correctness of the
- compressed output even if it is not set appropriately. Z_FIXED prevents the
- use of dynamic Huffman codes, allowing for a simpler decoder for special
- applications.
- deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
- memory, Z_STREAM_ERROR if a parameter is invalid (such as an invalid
- method). msg is set to null if there is no error message. deflateInit2 does
- not perform any compression: this will be done by deflate().
- *)
- function deflateSetDictionary(var strm: z_stream; dictionary: pbytef; dictLength: uInt): cint; cdecl; external libz name 'deflateSetDictionary';
- (*
- Initializes the compression dictionary from the given byte sequence
- without producing any compressed output. This function must be called
- immediately after deflateInit, deflateInit2 or deflateReset, before any
- call of deflate. The compressor and decompressor must use exactly the same
- dictionary (see inflateSetDictionary).
- The dictionary should consist of strings (byte sequences) that are likely
- to be encountered later in the data to be compressed, with the most commonly
- used strings preferably put towards the end of the dictionary. Using a
- dictionary is most useful when the data to be compressed is short and can be
- predicted with good accuracy; the data can then be compressed better than
- with the default empty dictionary.
- Depending on the size of the compression data structures selected by
- deflateInit or deflateInit2, a part of the dictionary may in effect be
- discarded, for example if the dictionary is larger than the window size in
- deflate or deflate2. Thus the strings most likely to be useful should be
- put at the end of the dictionary, not at the front. In addition, the
- current implementation of deflate will use at most the window size minus
- 262 bytes of the provided dictionary.
- Upon return of this function, strm->adler is set to the adler32 value
- of the dictionary; the decompressor may later use this value to determine
- which dictionary has been used by the compressor. (The adler32 value
- applies to the whole dictionary even if only a subset of the dictionary is
- actually used by the compressor.) If a raw deflate was requested, then the
- adler32 value is not computed and strm->adler is not set.
- deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
- parameter is invalid (such as NULL dictionary) or the stream state is
- inconsistent (for example if deflate has already been called for this stream
- or if the compression method is bsort). deflateSetDictionary does not
- perform any compression: this will be done by deflate().
- *)
- function deflateCopy(var dest, source: z_stream): cint; cdecl; external libz name 'deflateCopy';
- (*
- Sets the destination stream as a complete copy of the source stream.
- This function can be useful when several compression strategies will be
- tried, for example when there are several ways of pre-processing the input
- data with a filter. The streams that will be discarded should then be freed
- by calling deflateEnd. Note that deflateCopy duplicates the internal
- compression state which can be quite large, so this strategy is slow and
- can consume lots of memory.
- deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
- (such as zalloc being NULL). msg is left unchanged in both source and
- destination.
- *)
- function deflateReset(var strm: z_stream): cint; cdecl; external libz name 'deflateReset';
- (*
- This function is equivalent to deflateEnd followed by deflateInit,
- but does not free and reallocate all the internal compression state.
- The stream will keep the same compression level and any other attributes
- that may have been set by deflateInit2.
- deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent (such as zalloc or state being NULL).
- *)
- function deflateParams(var strm: z_stream; level: cint; strategy: cint): cint; cdecl; external libz name 'deflateParams';
- (*
- Dynamically update the compression level and compression strategy. The
- interpretation of level and strategy is as in deflateInit2. This can be
- used to switch between compression and straight copy of the input data, or
- to switch to a different kind of input data requiring a different
- strategy. If the compression level is changed, the input available so far
- is compressed with the old level (and may be flushed); the new level will
- take effect only at the next call of deflate().
- Before the call of deflateParams, the stream state must be set as for
- a call of deflate(), since the currently available input may have to
- be compressed and flushed. In particular, strm->avail_out must be non-zero.
- deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source
- stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR
- if strm->avail_out was zero.
- *)
- function deflateTune(var strm: z_stream; good_length, max_lazy, nice_length, max_chain: cint): cint; cdecl; external libz name 'deflateTune';
- (*
- Fine tune deflate's internal compression parameters. This should only be
- used by someone who understands the algorithm used by zlib's deflate for
- searching for the best matching string, and even then only by the most
- fanatic optimizer trying to squeeze out the last compressed bit for their
- specific input data. Read the deflate.c source code for the meaning of the
- max_lazy, good_length, nice_length, and max_chain parameters.
- deflateTune() can be called after deflateInit() or deflateInit2(), and
- returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream.
- *)
- function deflateBound(var strm: z_stream; sourceLen: uLong): uLong; cdecl; external libz name 'deflateBound';
- (*
- deflateBound() returns an upper bound on the compressed size after
- deflation of sourceLen bytes. It must be called after deflateInit()
- or deflateInit2(). This would be used to allocate an output buffer
- for deflation in a single pass, and so would be called before deflate().
- *)
- function deflatePrime(var strm: z_stream; bits, value: cint): cint; cdecl; external libz name 'deflatePrime';
- (*
- deflatePrime() inserts bits in the deflate output stream. The intent
- is that this function is used to start off the deflate output with the
- bits leftover from a previous deflate stream when appending to it. As such,
- this function can only be used for raw deflate, and must be used before the
- first deflate() call after a deflateInit2() or deflateReset(). bits must be
- less than or equal to 16, and that many of the least significant bits of
- value will be inserted in the output.
- deflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent.
- *)
- function deflateSetHeader(var strm: z_stream; var head: gz_header): cint; cdecl; external libz name 'deflateSetHeader';
- (*
- deflateSetHeader() provides gzip header information for when a gzip
- stream is requested by deflateInit2(). deflateSetHeader() may be called
- after deflateInit2() or deflateReset() and before the first call of
- deflate(). The text, time, os, extra field, name, and comment information
- in the provided gz_header structure are written to the gzip header (xflag is
- ignored -- the extra flags are set according to the compression level). The
- caller must assure that, if not Z_NULL, name and comment are terminated with
- a zero byte, and that if extra is not Z_NULL, that extra_len bytes are
- available there. If hcrc is true, a gzip header crc is included. Note that
- the current versions of the command-line version of gzip (up through version
- 1.3.x) do not support header crc's, and will report that it is a "multi-part
- gzip file" and give up.
- If deflateSetHeader is not used, the default gzip header has text false,
- the time set to zero, and os set to 255, with no extra, name, or comment
- fields. The gzip header is returned to the default state by deflateReset().
- deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent.
- *)
- function inflateInit2_(var strm: z_stream; windowBits: cint; version:pchar; stream_size: cint): cint; cdecl; external libz name 'inflateInit2_';
- function inflateInit2(var strm: z_stream; windowBits: cint): cint;
- (*
- This is another version of inflateInit with an extra parameter. The
- fields next_in, avail_in, zalloc, zfree and opaque must be initialized
- before by the caller.
- The windowBits parameter is the base two logarithm of the maximum window
- size (the size of the history buffer). It should be in the range 8..15 for
- this version of the library. The default value is 15 if inflateInit is used
- instead. windowBits must be greater than or equal to the windowBits value
- provided to deflateInit2() while compressing, or it must be equal to 15 if
- deflateInit2() was not used. If a compressed stream with a larger window
- size is given as input, inflate() will return with the error code
- Z_DATA_ERROR instead of trying to allocate a larger window.
- windowBits can also be -8..-15 for raw inflate. In this case, -windowBits
- determines the window size. inflate() will then process raw deflate data,
- not looking for a zlib or gzip header, not generating a check value, and not
- looking for any check values for comparison at the end of the stream. This
- is for use with other formats that use the deflate compressed data format
- such as zip. Those formats provide their own check values. If a custom
- format is developed using the raw deflate format for compressed data, it is
- recommended that a check value such as an adler32 or a crc32 be applied to
- the uncompressed data as is done in the zlib, gzip, and zip formats. For
- most applications, the zlib format should be used as is. Note that comments
- above on the use in deflateInit2() applies to the magnitude of windowBits.
- windowBits can also be greater than 15 for optional gzip decoding. Add
- 32 to windowBits to enable zlib and gzip decoding with automatic header
- detection, or add 16 to decode only the gzip format (the zlib format will
- return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is
- a crc32 instead of an adler32.
- inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
- memory, Z_STREAM_ERROR if a parameter is invalid (such as a null strm). msg
- is set to null if there is no error message. inflateInit2 does not perform
- any decompression apart from reading the zlib header if present: this will
- be done by inflate(). (So next_in and avail_in may be modified, but next_out
- and avail_out are unchanged.)
- *)
- function inflateSetDictionary(var strm: z_stream; dictionary: pbytef; dictLength: uInt): cint; cdecl; external libz name 'inflateSetDictionary';
- (*
- Initializes the decompression dictionary from the given uncompressed byte
- sequence. This function must be called immediately after a call of inflate,
- if that call returned Z_NEED_DICT. The dictionary chosen by the compressor
- can be determined from the adler32 value returned by that call of inflate.
- The compressor and decompressor must use exactly the same dictionary (see
- deflateSetDictionary). For raw inflate, this function can be called
- immediately after inflateInit2() or inflateReset() and before any call of
- inflate() to set the dictionary. The application must insure that the
- dictionary that was used for compression is provided.
- inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
- parameter is invalid (such as NULL dictionary) or the stream state is
- inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the
- expected one (incorrect adler32 value). inflateSetDictionary does not
- perform any decompression: this will be done by subsequent calls of
- inflate().
- *)
- function inflateSync(var strm: z_stream): cint; cdecl; external libz name 'inflateSync';
- (*
- Skips invalid compressed data until a full flush point (see above the
- description of deflate with Z_FULL_FLUSH) can be found, or until all
- available input is skipped. No output is provided.
- inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR
- if no more input was provided, Z_DATA_ERROR if no flush point has been found,
- or Z_STREAM_ERROR if the stream structure was inconsistent. In the success
- case, the application may save the current current value of total_in which
- indicates where valid compressed data was found. In the error case, the
- application may repeatedly call inflateSync, providing more input each time,
- until success or end of the input data.
- *)
- function inflateCopy(var dest, source: z_stream): cint; cdecl; external libz name 'inflateCopy';
- (*
- Sets the destination stream as a complete copy of the source stream.
- This function can be useful when randomly accessing a large stream. The
- first pass through the stream can periodically record the inflate state,
- allowing restarting inflate at those points when randomly accessing the
- stream.
- inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
- (such as zalloc being NULL). msg is left unchanged in both source and
- destination.
- *)
- function inflateReset(var strm: z_stream): cint; cdecl; external libz name 'inflateReset';
- (*
- This function is equivalent to inflateEnd followed by inflateInit,
- but does not free and reallocate all the internal decompression state.
- The stream will keep attributes that may have been set by inflateInit2.
- inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent (such as zalloc or state being NULL).
- *)
- function inflatePrime(var strm: z_stream; bits, value: cint): cint; cdecl; external libz name 'inflateReset';
- (*
- This function inserts bits in the inflate input stream. The intent is
- that this function is used to start inflating at a bit position in the
- middle of a byte. The provided bits will be used before any bytes are used
- from next_in. This function should only be used with raw inflate, and
- should be used before the first inflate() call after inflateInit2() or
- inflateReset(). bits must be less than or equal to 16, and that many of the
- least significant bits of value will be inserted in the input.
- inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent.
- *)
- function inflateGetHeader(var strm: z_stream; var head: gz_header): cint; cdecl; external libz name 'inflateGetHeader';
- (*
- inflateGetHeader() requests that gzip header information be stored in the
- provided gz_header structure. inflateGetHeader() may be called after
- inflateInit2() or inflateReset(), and before the first call of inflate().
- As inflate() processes the gzip stream, head->done is zero until the header
- is completed, at which time head->done is set to one. If a zlib stream is
- being decoded, then head->done is set to -1 to indicate that there will be
- no gzip header information forthcoming. Note that Z_BLOCK can be used to
- force inflate() to return immediately after header processing is complete
- and before any actual data is decompressed.
- The text, time, xflags, and os fields are filled in with the gzip header
- contents. hcrc is set to true if there is a header CRC. (The header CRC
- was valid if done is set to one.) If extra is not Z_NULL, then extra_max
- contains the maximum number of bytes to write to extra. Once done is true,
- extra_len contains the actual extra field length, and extra contains the
- extra field, or that field truncated if extra_max is less than extra_len.
- If name is not Z_NULL, then up to name_max characters are written there,
- terminated with a zero unless the length is greater than name_max. If
- comment is not Z_NULL, then up to comm_max characters are written there,
- terminated with a zero unless the length is greater than comm_max. When
- any of extra, name, or comment are not Z_NULL and the respective field is
- not present in the header, then that field is set to Z_NULL to signal its
- absence. This allows the use of deflateSetHeader() with the returned
- structure to duplicate the header. However if those fields are set to
- allocated memory, then the application will need to save those pointers
- elsewhere so that they can be eventually freed.
- If inflateGetHeader is not used, then the header information is simply
- discarded. The header is always checked for validity, including the header
- CRC if present. inflateReset() will reset the process to discard the header
- information. The application would need to call inflateGetHeader() again to
- retrieve the header from the next gzip stream.
- inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent.
- *)
- function inflateBackInit_(var strm: z_stream; windowBits: cint; window: pointer; version: pchar; stream_size: cint): cint; cdecl; external libz name 'inflateBackInit_';
- function inflateBackInit(var strm: z_stream; windowBits: cint; window: pointer): cint;
- (*
- Initialize the internal stream state for decompression using inflateBack()
- calls. The fields zalloc, zfree and opaque in strm must be initialized
- before the call. If zalloc and zfree are Z_NULL, then the default library-
- derived memory allocation routines are used. windowBits is the base two
- logarithm of the window size, in the range 8..15. window is a caller
- supplied buffer of that size. Except for special applications where it is
- assured that deflate was used with small window sizes, windowBits must be 15
- and a 32K byte window must be supplied to be able to decompress general
- deflate streams.
- See inflateBack() for the usage of these routines.
- inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of
- the paramaters are invalid, Z_MEM_ERROR if the internal state could not
- be allocated, or Z_VERSION_ERROR if the version of the library does not
- match the version of the header file.
- *)
- type
- in_func = function(in_desc: pointer; var c: pcuchar): cuint; cdecl;
- out_func = function(out_desc: pointer; c: pcuchar; i: cuint): cint; cdecl;
- //typedef unsigned (*in_func) OF((void FAR *, unsigned char FAR * FAR *));
- //typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned));
- function inflateBack(var strm: z_stream; inf: in_func; in_desc: pointer; outf: out_func; out_desc: pointer): cint; cdecl; external libz name 'inflateBack';
- (*
- inflateBack() does a raw inflate with a single call using a call-back
- interface for input and output. This is more efficient than inflate() for
- file i/o applications in that it avoids copying between the output and the
- sliding window by simply making the window itself the output buffer. This
- function trusts the application to not change the output buffer passed by
- the output function, at least until inflateBack() returns.
- inflateBackInit() must be called first to allocate the internal state
- and to initialize the state with the user-provided window buffer.
- inflateBack() may then be used multiple times to inflate a complete, raw
- deflate stream with each call. inflateBackEnd() is then called to free
- the allocated state.
- A raw deflate stream is one with no zlib or gzip header or trailer.
- This routine would normally be used in a utility that reads zip or gzip
- files and writes out uncompressed files. The utility would decode the
- header and process the trailer on its own, hence this routine expects
- only the raw deflate stream to decompress. This is different from the
- normal behavior of inflate(), which expects either a zlib or gzip header and
- trailer around the deflate stream.
- inflateBack() uses two subroutines supplied by the caller that are then
- called by inflateBack() for input and output. inflateBack() calls those
- routines until it reads a complete deflate stream and writes out all of the
- uncompressed data, or until it encounters an error. The function's
- parameters and return types are defined above in the in_func and out_func
- typedefs. inflateBack() will call in(in_desc, &buf) which should return the
- number of bytes of provided input, and a pointer to that input in buf. If
- there is no input available, in() must return zero--buf is ignored in that
- case--and inflateBack() will return a buffer error. inflateBack() will call
- out(out_desc, buf, len) to write the uncompressed data buf[0..len-1]. out()
- should return zero on success, or non-zero on failure. If out() returns
- non-zero, inflateBack() will return with an error. Neither in() nor out()
- are permitted to change the contents of the window provided to
- inflateBackInit(), which is also the buffer that out() uses to write from.
- The length written by out() will be at most the window size. Any non-zero
- amount of input may be provided by in().
- For convenience, inflateBack() can be provided input on the first call by
- setting strm->next_in and strm->avail_in. If that input is exhausted, then
- in() will be called. Therefore strm->next_in must be initialized before
- calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called
- immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in
- must also be initialized, and then if strm->avail_in is not zero, input will
- initially be taken from strm->next_in[0 .. strm->avail_in - 1].
- The in_desc and out_desc parameters of inflateBack() is passed as the
- first parameter of in() and out() respectively when they are called. These
- descriptors can be optionally used to pass any information that the caller-
- supplied in() and out() functions need to do their job.
- On return, inflateBack() will set strm->next_in and strm->avail_in to
- pass back any unused input that was provided by the last in() call. The
- return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR
- if in() or out() returned an error, Z_DATA_ERROR if there was a format
- error in the deflate stream (in which case strm->msg is set to indicate the
- nature of the error), or Z_STREAM_ERROR if the stream was not properly
- initialized. In the case of Z_BUF_ERROR, an input or output error can be
- distinguished using strm->next_in which will be Z_NULL only if in() returned
- an error. If strm->next is not Z_NULL, then the Z_BUF_ERROR was due to
- out() returning non-zero. (in() will always be called before out(), so
- strm->next_in is assured to be defined if out() returns non-zero.) Note
- that inflateBack() cannot return Z_OK.
- *)
- function inflateBackEnd(var strm: z_stream): cint; cdecl; external libz name 'inflateBackEnd';
- (*
- All memory allocated by inflateBackInit() is freed.
- inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream
- state was inconsistent.
- *)
- function compress(dest: pbytef; destLen: puLongf; source: pbytef; sourceLen: uLong): cint; cdecl; external libz name 'compress';
- (*
- Compresses the source buffer into the destination buffer. sourceLen is
- the byte length of the source buffer. Upon entry, destLen is the total
- size of the destination buffer, which must be at least the value returned
- by compressBound(sourceLen). Upon exit, destLen is the actual size of the
- compressed buffer.
- This function can be used to compress a whole file at once if the
- input file is mmap'ed.
- compress returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_BUF_ERROR if there was not enough room in the output
- buffer.
- *)
- function compress2(dest: pbytef; destLen: puLongf; source: pbytef; sourceLen: uLong; level: cint): cint; cdecl; external libz name 'compress2';
- (*
- Compresses the source buffer into the destination buffer. The level
- parameter has the same meaning as in deflateInit. sourceLen is the byte
- length of the source buffer. Upon entry, destLen is the total size of the
- destination buffer, which must be at least the value returned by
- compressBound(sourceLen). Upon exit, destLen is the actual size of the
- compressed buffer.
- compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
- memory, Z_BUF_ERROR if there was not enough room in the output buffer,
- Z_STREAM_ERROR if the level parameter is invalid.
- *)
- function compressBound(sourceLen: uLong): uLong; cdecl; external libz name 'compressBound';
- (*
- compressBound() returns an upper bound on the compressed size after
- compress() or compress2() on sourceLen bytes. It would be used before
- a compress() or compress2() call to allocate the destination buffer.
- *)
- function uncompress(dest: pbytef; destLen: puLongf; source: pbytef; sourceLen: uLong):cint; cdecl; external libz name 'uncompress';
- (*
- Decompresses the source buffer into the destination buffer. sourceLen is
- the byte length of the source buffer. Upon entry, destLen is the total
- size of the destination buffer, which must be large enough to hold the
- entire uncompressed data. (The size of the uncompressed data must have
- been saved previously by the compressor and transmitted to the decompressor
- by some mechanism outside the scope of this compression library.)
- Upon exit, destLen is the actual size of the compressed buffer.
- This function can be used to decompress a whole file at once if the
- input file is mmap'ed.
- uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_BUF_ERROR if there was not enough room in the output
- buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete.
- *)
- type
- gzFile = pointer;
- function gzopen(path: pchar; mode: pchar): gzFile; cdecl; external libz name 'gzopen';
- (*
- Opens a gzip (.gz) file for reading or writing. The mode parameter
- is as in fopen ("rb" or "wb") but can also include a compression level
- ("wb9") or a strategy: 'f' for filtered data as in "wb6f", 'h' for
- Huffman only compression as in "wb1h", or 'R' for run-length encoding
- as in "wb1R". (See the description of deflateInit2 for more information
- about the strategy parameter.)
- gzopen can be used to read a file which is not in gzip format; in this
- case gzread will directly read from the file without decompression.
- gzopen returns NULL if the file could not be opened or if there was
- insufficient memory to allocate the (de)compression state; errno
- can be checked to distinguish the two cases (if errno is zero, the
- zlib error is Z_MEM_ERROR).
- *)
- function gzdopen(fd: cint; mode:pchar):gzFile; cdecl; external libz name 'gzdopen';
- (*
- gzdopen() associates a gzFile with the file descriptor fd. File
- descriptors are obtained from calls like open, dup, creat, pipe or
- fileno (in the file has been previously opened with fopen).
- The mode parameter is as in gzopen.
- The next call of gzclose on the returned gzFile will also close the
- file descriptor fd, just like fclose(fdopen(fd), mode) closes the file
- descriptor fd. If you want to keep fd open, use gzdopen(dup(fd), mode).
- gzdopen returns NULL if there was insufficient memory to allocate
- the (de)compression state.
- *)
- function gzsetparams(thefile:gzFile; level: cint; strategy: cint): cint; cdecl; external libz name 'gzsetparams';
- (*
- Dynamically update the compression level or strategy. See the description
- of deflateInit2 for the meaning of these parameters.
- gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not
- opened for writing.
- *)
- function gzread(thefile:gzFile; buf:pointer; len:cardinal): cint; cdecl; external libz name 'gzread';
- (*
- Reads the given number of uncompressed bytes from the compressed file.
- If the input file was not in gzip format, gzread copies the given number
- of bytes into the buffer.
- gzread returns the number of uncompressed bytes actually read (0 for
- end of file, -1 for error).
- *)
- function gzwrite(thefile:gzFile; buf:pointer; len:cardinal): cint; cdecl; external libz name 'gzwrite';
- (*
- Writes the given number of uncompressed bytes into the compressed file.
- gzwrite returns the number of uncompressed bytes actually written
- (0 in case of error).
- *)
- function gzprintf(thefile:gzFile; format:pbytef; args:array of const): cint; cdecl; external libz name 'gzprintf';
- (*
- Converts, formats, and writes the args to the compressed file under
- control of the format string, as in fprintf. gzprintf returns the number of
- uncompressed bytes actually written (0 in case of error). The number of
- uncompressed bytes written is limited to 4095. The caller should assure that
- this limit is not exceeded. If it is exceeded, then gzprintf() will return
- return an error (0) with nothing written. In this case, there may also be a
- buffer overflow with unpredictable consequences, which is possible only if
- zlib was compiled with the insecure functions sprintf() or vsprintf()
- because the secure snprintf() or vsnprintf() functions were not available.
- *)
- function gzputs(thefile:gzFile; s:pbytef): cint; cdecl; external libz name 'gzputs';
- (*
- Writes the given null-terminated string to the compressed file, excluding
- the terminating null character.
- gzputs returns the number of characters written, or -1 in case of error.
- *)
- function gzgets(thefile:gzFile; buf:pbytef; len: cint):pbytef; cdecl; external libz name 'gzgets';
- (*
- Reads bytes from the compressed file until len-1 characters are read, or
- a newline character is read and transferred to buf, or an end-of-file
- condition is encountered. The string is then terminated with a null
- character.
- gzgets returns buf, or Z_NULL in case of error.
- *)
- function gzputc(thefile:gzFile; c:char):char; cdecl; external libz name 'gzputc';
- (*
- Writes c, converted to an unsigned char, into the compressed file.
- gzputc returns the value that was written, or -1 in case of error.
- *)
- function gzgetc(thefile:gzFile):char; cdecl; external libz name 'gzgetc';
- (*
- Reads one byte from the compressed file. gzgetc returns this byte
- or -1 in case of end of file or error.
- *)
- function gzflush(thefile:gzFile; flush: cint): cint; cdecl; external libz name 'gzflush';
- (*
- Push one character back onto the stream to be read again later.
- Only one character of push-back is allowed. gzungetc() returns the
- character pushed, or -1 on failure. gzungetc() will fail if a
- character has been pushed but not read yet, or if c is -1. The pushed
- character will be discarded if the stream is repositioned with gzseek()
- or gzrewind().
- *)
- function gzseek(thefile:gzFile; offset:z_off_t; whence: cint):z_off_t; cdecl; external libz name 'gzseek';
- (*
- Sets the starting position for the next gzread or gzwrite on the
- given compressed file. The offset represents a number of bytes in the
- uncompressed data stream. The whence parameter is defined as in lseek(2);
- the value SEEK_END is not supported.
- If the file is opened for reading, this function is emulated but can be
- extremely slow. If the file is opened for writing, only forward seeks are
- supported; gzseek then compresses a sequence of zeroes up to the new
- starting position.
- gzseek returns the resulting offset location as measured in bytes from
- the beginning of the uncompressed stream, or -1 in case of error, in
- particular if the file is opened for writing and the new starting position
- would be before the current position.
- *)
- function gzrewind(thefile:gzFile): cint; cdecl; external libz name 'gzrewind';
- (*
- Rewinds the given file. This function is supported only for reading.
- gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET)
- *)
- function gztell(thefile:gzFile):z_off_t; cdecl; external libz name 'gztell';
- (*
- Returns the starting position for the next gzread or gzwrite on the
- given compressed file. This position represents a number of bytes in the
- uncompressed data stream.
- gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR)
- *)
- function gzeof(thefile:gzFile):longbool; cdecl; external libz name 'gzeof';
- (*
- Returns 1 when EOF has previously been detected reading the given
- input stream, otherwise zero.
- *)
- function gzclose(thefile:gzFile): cint; cdecl; external libz name 'gzclose';
- (*
- Flushes all pending output if necessary, closes the compressed file
- and deallocates all the (de)compression state. The return value is the zlib
- error number (see function gzerror below).
- *)
- function gzerror(thefile:gzFile; var errnum: cint):pbytef; cdecl; external libz name 'gzerror';
- (*
- Returns the error message for the last error which occurred on the
- given compressed file. errnum is set to zlib error number. If an
- error occurred in the file system and not in the compression library,
- errnum is set to Z_ERRNO and the application may consult errno
- to get the exact error code.
- *)
- procedure gzclearerr(thefile: gzFile); cdecl; external libz name 'gzclearerr';
- (*
- Clears the error and end-of-file flags for file. This is analogous to the
- clearerr() function in stdio. This is useful for continuing to read a gzip
- file that is being written concurrently.
- *)
- function adler32(adler: uLong; buf: pbytef; len: uInt): uLong; cdecl; external libz name 'adler32';
- (*
- Update a running Adler-32 checksum with the bytes buf[0..len-1] and
- return the updated checksum. If buf is NULL, this function returns
- the required initial value for the checksum.
- An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
- much faster. Usage example:
- uLong adler = adler32(0L, Z_NULL, 0);
- while (read_buffer(buffer, length) != EOF) {
- adler = adler32(adler, buffer, length);
- }
- if (adler != original_adler) error();
- *)
- function adler32_combine(adler1, adler2: uLong; len2: z_off_t): uLong; cdecl; external libz name 'adler32_combine';
- (*
- Combine two Adler-32 checksums into one. For two sequences of bytes, seq1
- and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for
- each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of
- seq1 and seq2 concatenated, requiring only adler1, adler2, and len2.
- *)
- function crc32(crc: uLong; buf: pbytef; len: uInt): uLong; cdecl; external libz name 'crc32';
- (*
- Update a running CRC-32 with the bytes buf[0..len-1] and return the
- updated CRC-32. If buf is NULL, this function returns the required initial
- value for the for the crc. Pre- and post-conditioning (one's complement) is
- performed within this function so it shouldn't be done by the application.
- Usage example:
- uLong crc = crc32(0L, Z_NULL, 0);
- while (read_buffer(buffer, length) != EOF) {
- crc = crc32(crc, buffer, length);
- }
- if (crc != original_crc) error();
- *)
- function crc32_combine(crc1, crc2: uLong; len2: z_off_t): uLong; cdecl; external libz name 'crc32_combine';
- (*
- Combine two CRC-32 check values into one. For two sequences of bytes,
- seq1 and seq2 with lengths len1 and len2, CRC-32 check values were
- calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32
- check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and
- len2.
- *)
- function zError(err: cint): pchar; cdecl; external libz name 'zError';
- function inflateSyncPoint(var z: z_stream): cint; cdecl; external libz name 'inflateSyncPoint';
- function get_crc_table: pointer; cdecl; external libz name 'get_crc_table';
- function zlibAllocMem(AppData: Pointer; Items, Size: UInt): Pointer; cdecl;
- procedure zlibFreeMem(AppData, Block: Pointer); cdecl;
- implementation
- function deflateInit(var strm: z_stream; level: cint): cint;
- begin
- Result := deflateInit_(strm, level, ZLIB_VERSION, sizeof(z_stream));
- end;
- function inflateInit(var strm: z_stream): cint;
- begin
- Result := inflateInit_(strm, ZLIB_VERSION, sizeof(z_stream));
- end;
- function deflateInit2(var strm: z_stream; level, method, windowBits, memLevel, strategy: cint): cint;
- begin
- Result := deflateInit2_(strm, level, method, windowBits, memLevel, strategy, ZLIB_VERSION, sizeof(z_stream));
- end;
- function inflateInit2(var strm: z_stream; windowBits: cint): cint;
- begin
- Result := inflateInit2_(strm, windowBits, ZLIB_VERSION, sizeof(z_stream));
- end;
- function inflateBackInit(var strm: z_stream; windowBits: cint; window: pointer): cint;
- begin
- Result := inflateBackInit_(strm, windowBits, window, ZLIB_VERSION, sizeof(z_stream));
- end;
- function zlibAllocMem(AppData: Pointer; Items, Size: UInt): Pointer; cdecl;
- begin
- Result := AllocMem(Items * Size);
- end;
- procedure zlibFreeMem(AppData, Block: Pointer); cdecl;
- begin
- FreeMem(Block);
- end;
- end.
|