aasmcpu.pas 148 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. aasmbase,aasmtai,aasmsym,
  28. ogbase;
  29. const
  30. { "mov reg,reg" source operand number }
  31. O_MOV_SOURCE = 0;
  32. { "mov reg,reg" destination operand number }
  33. O_MOV_DEST = 1;
  34. { Operand types }
  35. OT_NONE = $00000000;
  36. { Bits 0..7: sizes }
  37. OT_BITS8 = $00000001;
  38. OT_BITS16 = $00000002;
  39. OT_BITS32 = $00000004;
  40. OT_BITS64 = $00000008; { x86_64 and FPU }
  41. OT_BITS128 = $10000000; { 16 byte SSE }
  42. OT_BITS256 = $20000000; { 32 byte AVX }
  43. OT_BITS80 = $00000010; { FPU only }
  44. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  45. OT_NEAR = $00000040;
  46. OT_SHORT = $00000080;
  47. { TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
  48. but this requires adjusting the opcode table }
  49. OT_SIZE_MASK = $3000001F; { all the size attributes }
  50. OT_NON_SIZE = longint(not OT_SIZE_MASK);
  51. { Bits 8..11: modifiers }
  52. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  53. OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
  54. OT_COLON = $00000400; { operand is followed by a colon }
  55. OT_MODIFIER_MASK = $00000F00;
  56. { Bits 12..15: type of operand }
  57. OT_REGISTER = $00001000;
  58. OT_IMMEDIATE = $00002000;
  59. OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
  60. OT_REGMEM = $00008000; { for r/m, ie EA, operands }
  61. OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
  62. OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
  63. { Bits 20..22, 24..26: register classes
  64. otf_* consts are not used alone, only to build other constants. }
  65. otf_reg_cdt = $00100000;
  66. otf_reg_gpr = $00200000;
  67. otf_reg_sreg = $00400000;
  68. otf_reg_fpu = $01000000;
  69. otf_reg_mmx = $02000000;
  70. otf_reg_xmm = $04000000;
  71. otf_reg_ymm = $08000000;
  72. { Bits 16..19: subclasses, meaning depends on classes field }
  73. otf_sub0 = $00010000;
  74. otf_sub1 = $00020000;
  75. otf_sub2 = $00040000;
  76. otf_sub3 = $00080000;
  77. OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
  78. OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_fpu or otf_reg_mmx or otf_reg_xmm or otf_reg_ymm;
  79. { register class 0: CRx, DRx and TRx }
  80. {$ifdef x86_64}
  81. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
  82. {$else x86_64}
  83. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
  84. {$endif x86_64}
  85. OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
  86. OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
  87. OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
  88. OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
  89. { register class 1: general-purpose registers }
  90. OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
  91. OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
  92. OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
  93. OT_REG16 = OT_REG_GPR or OT_BITS16;
  94. OT_REG32 = OT_REG_GPR or OT_BITS32;
  95. OT_REG64 = OT_REG_GPR or OT_BITS64;
  96. { GPR subclass 0: accumulator: AL, AX, EAX or RAX }
  97. OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
  98. OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
  99. OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
  100. OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
  101. {$ifdef x86_64}
  102. OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
  103. {$endif x86_64}
  104. { GPR subclass 1: counter: CL, CX, ECX or RCX }
  105. OT_REG_COUNT = OT_REG_GPR or otf_sub1;
  106. OT_REG_CL = OT_REG_COUNT or OT_BITS8;
  107. OT_REG_CX = OT_REG_COUNT or OT_BITS16;
  108. OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
  109. {$ifdef x86_64}
  110. OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
  111. {$endif x86_64}
  112. { GPR subclass 2: data register: DL, DX, EDX or RDX }
  113. OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
  114. OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
  115. { register class 2: Segment registers }
  116. OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
  117. OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
  118. OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
  119. OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
  120. { register class 3: FPU registers }
  121. OT_FPUREG = OT_REGISTER or otf_reg_fpu;
  122. OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
  123. { register class 4: MMX (both reg and r/m) }
  124. OT_MMXREG = OT_REGNORM or otf_reg_mmx;
  125. OT_MMXRM = OT_REGMEM or otf_reg_mmx;
  126. { register class 5: XMM (both reg and r/m) }
  127. OT_XMMREG = OT_REGNORM or otf_reg_xmm;
  128. OT_XMMRM = OT_REGMEM or otf_reg_xmm;
  129. OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
  130. OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
  131. { register class 5: XMM (both reg and r/m) }
  132. OT_YMMREG = OT_REGNORM or otf_reg_ymm;
  133. OT_YMMRM = OT_REGMEM or otf_reg_ymm;
  134. OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
  135. OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
  136. { Vector-Memory operands }
  137. OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64;
  138. { Memory operands }
  139. OT_MEM8 = OT_MEMORY or OT_BITS8;
  140. OT_MEM16 = OT_MEMORY or OT_BITS16;
  141. OT_MEM32 = OT_MEMORY or OT_BITS32;
  142. OT_MEM64 = OT_MEMORY or OT_BITS64;
  143. OT_MEM128 = OT_MEMORY or OT_BITS128;
  144. OT_MEM256 = OT_MEMORY or OT_BITS256;
  145. OT_MEM80 = OT_MEMORY or OT_BITS80;
  146. OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
  147. { simple [address] offset }
  148. { Matches any type of r/m operand }
  149. OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM;
  150. { Immediate operands }
  151. OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
  152. OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
  153. OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
  154. OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
  155. OT_ONENESS = otf_sub0; { special type of immediate operand }
  156. OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
  157. { Size of the instruction table converted by nasmconv.pas }
  158. {$if defined(x86_64)}
  159. instabentries = {$i x8664nop.inc}
  160. {$elseif defined(i386)}
  161. instabentries = {$i i386nop.inc}
  162. {$elseif defined(i8086)}
  163. instabentries = {$i i8086nop.inc}
  164. {$endif}
  165. maxinfolen = 8;
  166. type
  167. { What an instruction can change. Needed for optimizer and spilling code.
  168. Note: The order of this enumeration is should not be changed! }
  169. TInsChange = (Ch_None,
  170. {Read from a register}
  171. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  172. {write from a register}
  173. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  174. {read and write from/to a register}
  175. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  176. {modify the contents of a register with the purpose of using
  177. this changed content afterwards (add/sub/..., but e.g. not rep
  178. or movsd)}
  179. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  180. {read individual flag bits from the flags register}
  181. Ch_RCarryFlag,Ch_RParityFlag,Ch_RAuxiliaryFlag,Ch_RZeroFlag,Ch_RSignFlag,Ch_ROverflowFlag,
  182. {write individual flag bits to the flags register}
  183. Ch_WCarryFlag,Ch_WParityFlag,Ch_WAuxiliaryFlag,Ch_WZeroFlag,Ch_WSignFlag,Ch_WOverflowFlag,
  184. {set individual flag bits to 0 in the flags register}
  185. Ch_W0CarryFlag,Ch_W0ParityFlag,Ch_W0AuxiliaryFlag,Ch_W0ZeroFlag,Ch_W0SignFlag,Ch_W0OverflowFlag,
  186. {set individual flag bits to 1 in the flags register}
  187. Ch_W1CarryFlag,Ch_W1ParityFlag,Ch_W1AuxiliaryFlag,Ch_W1ZeroFlag,Ch_W1SignFlag,Ch_W1OverflowFlag,
  188. {write an undefined value to individual flag bits in the flags register}
  189. Ch_WUCarryFlag,Ch_WUParityFlag,Ch_WUAuxiliaryFlag,Ch_WUZeroFlag,Ch_WUSignFlag,Ch_WUOverflowFlag,
  190. {read and write flag bits}
  191. Ch_RWCarryFlag,Ch_RWParityFlag,Ch_RWAuxiliaryFlag,Ch_RWZeroFlag,Ch_RWSignFlag,Ch_RWOverflowFlag,
  192. {more specialized flag bits (not considered part of NR_DEFAULTFLAGS by the compiler)}
  193. Ch_RDirFlag,Ch_W0DirFlag,Ch_W1DirFlag,Ch_W0IntFlag,Ch_W1IntFlag,
  194. {instruction reads flag bits, according to its condition (used by Jcc/SETcc/CMOVcc)}
  195. Ch_RFLAGScc,
  196. {read/write/read+write the entire flags/eflags/rflags register}
  197. Ch_RFlags, Ch_WFlags, Ch_RWFlags,
  198. Ch_FPU,
  199. Ch_Rop1, Ch_Wop1, Ch_RWop1, Ch_Mop1,
  200. Ch_Rop2, Ch_Wop2, Ch_RWop2, Ch_Mop2,
  201. Ch_Rop3, Ch_WOp3, Ch_RWOp3, Ch_Mop3,
  202. Ch_Rop4, Ch_WOp4, Ch_RWOp4, Ch_Mop4,
  203. { instruction doesn't read it's input register, in case both parameters
  204. are the same register (e.g. xor eax,eax; sub eax,eax; sbb eax,eax (reads flags only), etc.) }
  205. Ch_NoReadIfEqualRegs,
  206. Ch_RMemEDI,Ch_WMemEDI,
  207. Ch_All,
  208. { x86_64 registers }
  209. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  210. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  211. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  212. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
  213. );
  214. TInsProp = packed record
  215. Ch : set of TInsChange;
  216. end;
  217. TMemRefSizeInfo = (msiUnkown, msiUnsupported, msiNoSize,
  218. msiMultiple, msiMultiple8, msiMultiple16, msiMultiple32,
  219. msiMultiple64, msiMultiple128, msiMultiple256,
  220. msiMemRegSize, msiMemRegx16y32, msiMemRegx32y64, msiMemRegx64y128, msiMemRegx64y256,
  221. msiMem8, msiMem16, msiMem32, msiMem64, msiMem128, msiMem256,
  222. msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  223. msiVMemMultiple, msiVMemRegSize);
  224. TConstSizeInfo = (csiUnkown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
  225. TInsTabMemRefSizeInfoRec = record
  226. MemRefSize : TMemRefSizeInfo;
  227. ExistsSSEAVX: boolean;
  228. ConstSize : TConstSizeInfo;
  229. end;
  230. const
  231. MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultiple8,
  232. msiMultiple16, msiMultiple32,
  233. msiMultiple64, msiMultiple128,
  234. msiMultiple256, msiVMemMultiple];
  235. MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  236. msiVMemMultiple, msiVMemRegSize];
  237. InsProp : array[tasmop] of TInsProp =
  238. {$if defined(x86_64)}
  239. {$i x8664pro.inc}
  240. {$elseif defined(i386)}
  241. {$i i386prop.inc}
  242. {$elseif defined(i8086)}
  243. {$i i8086prop.inc}
  244. {$endif}
  245. type
  246. TOperandOrder = (op_intel,op_att);
  247. {Instruction flags }
  248. tinsflag = (
  249. { please keep these in order and in sync with IF_SMASK }
  250. IF_SM, { size match first two operands }
  251. IF_SM2,
  252. IF_SB, { unsized operands can't be non-byte }
  253. IF_SW, { unsized operands can't be non-word }
  254. IF_SD, { unsized operands can't be nondword }
  255. { unsized argument spec }
  256. { please keep these in order and in sync with IF_ARMASK }
  257. IF_AR0, { SB, SW, SD applies to argument 0 }
  258. IF_AR1, { SB, SW, SD applies to argument 1 }
  259. IF_AR2, { SB, SW, SD applies to argument 2 }
  260. IF_PRIV, { it's a privileged instruction }
  261. IF_SMM, { it's only valid in SMM }
  262. IF_PROT, { it's protected mode only }
  263. IF_NOX86_64, { removed instruction in x86_64 }
  264. IF_UNDOC, { it's an undocumented instruction }
  265. IF_FPU, { it's an FPU instruction }
  266. IF_MMX, { it's an MMX instruction }
  267. { it's a 3DNow! instruction }
  268. IF_3DNOW,
  269. { it's a SSE (KNI, MMX2) instruction }
  270. IF_SSE,
  271. { SSE2 instructions }
  272. IF_SSE2,
  273. { SSE3 instructions }
  274. IF_SSE3,
  275. { SSE64 instructions }
  276. IF_SSE64,
  277. { SVM instructions }
  278. IF_SVM,
  279. { SSE4 instructions }
  280. IF_SSE4,
  281. IF_SSSE3,
  282. IF_SSE41,
  283. IF_SSE42,
  284. IF_AVX,
  285. IF_AVX2,
  286. IF_BMI1,
  287. IF_BMI2,
  288. IF_16BITONLY,
  289. IF_FMA,
  290. IF_FMA4,
  291. IF_TSX,
  292. IF_RAND,
  293. IF_XSAVE,
  294. IF_PREFETCHWT1,
  295. { mask for processor level }
  296. { please keep these in order and in sync with IF_PLEVEL }
  297. IF_8086, { 8086 instruction }
  298. IF_186, { 186+ instruction }
  299. IF_286, { 286+ instruction }
  300. IF_386, { 386+ instruction }
  301. IF_486, { 486+ instruction }
  302. IF_PENT, { Pentium instruction }
  303. IF_P6, { P6 instruction }
  304. IF_KATMAI, { Katmai instructions }
  305. IF_WILLAMETTE, { Willamette instructions }
  306. IF_PRESCOTT, { Prescott instructions }
  307. IF_X86_64,
  308. IF_SANDYBRIDGE, { Sandybridge-specific instruction }
  309. IF_NEC, { NEC V20/V30 instruction }
  310. { the following are not strictly part of the processor level, because
  311. they are never used standalone, but always in combination with a
  312. separate processor level flag. Therefore, they use bits outside of
  313. IF_PLEVEL, otherwise they would mess up the processor level they're
  314. used in combination with.
  315. The following combinations are currently used:
  316. [IF_AMD, IF_P6],
  317. [IF_CYRIX, IF_486],
  318. [IF_CYRIX, IF_PENT],
  319. [IF_CYRIX, IF_P6] }
  320. IF_CYRIX, { Cyrix, Centaur or VIA-specific instruction }
  321. IF_AMD, { AMD-specific instruction }
  322. { added flags }
  323. IF_PRE, { it's a prefix instruction }
  324. IF_PASS2, { if the instruction can change in a second pass }
  325. IF_IMM4, { immediate operand is a nibble (must be in range [0..15]) }
  326. IF_IMM3 { immediate operand is a triad (must be in range [0..7]) }
  327. );
  328. tinsflags=set of tinsflag;
  329. const
  330. IF_SMASK=[IF_SM,IF_SM2,IF_SB,IF_SW,IF_SD];
  331. IF_ARMASK=[IF_AR0,IF_AR1,IF_AR2]; { mask for unsized argument spec }
  332. IF_PLEVEL=[IF_8086..IF_NEC]; { mask for processor level }
  333. type
  334. tinsentry=packed record
  335. opcode : tasmop;
  336. ops : byte;
  337. optypes : array[0..max_operands-1] of longint;
  338. code : array[0..maxinfolen] of char;
  339. flags : tinsflags;
  340. end;
  341. pinsentry=^tinsentry;
  342. { alignment for operator }
  343. tai_align = class(tai_align_abstract)
  344. reg : tregister;
  345. constructor create(b:byte);override;
  346. constructor create_op(b: byte; _op: byte);override;
  347. function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
  348. end;
  349. taicpu = class(tai_cpu_abstract_sym)
  350. opsize : topsize;
  351. constructor op_none(op : tasmop);
  352. constructor op_none(op : tasmop;_size : topsize);
  353. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  354. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  355. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  356. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  357. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  358. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  359. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  360. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  361. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  362. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  363. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  364. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  365. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  366. constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  367. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  368. constructor op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  369. constructor op_const_reg_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2, _op3, _op4 : tregister);
  370. { this is for Jmp instructions }
  371. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  372. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  373. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  374. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  375. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  376. procedure changeopsize(siz:topsize);
  377. function GetString:string;
  378. { This is a workaround for the GAS non commutative fpu instruction braindamage.
  379. Early versions of the UnixWare assembler had a bug where some fpu instructions
  380. were reversed and GAS still keeps this "feature" for compatibility.
  381. for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
  382. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
  383. http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
  384. Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
  385. when generating output for other assemblers, the opcodes must be fixed before writing them.
  386. This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
  387. because in case of smartlinking assembler is generated twice so at the second run wrong
  388. assembler is generated.
  389. }
  390. function FixNonCommutativeOpcodes: tasmop;
  391. private
  392. FOperandOrder : TOperandOrder;
  393. procedure init(_size : topsize); { this need to be called by all constructor }
  394. public
  395. { the next will reset all instructions that can change in pass 2 }
  396. procedure ResetPass1;override;
  397. procedure ResetPass2;override;
  398. function CheckIfValid:boolean;
  399. function Pass1(objdata:TObjData):longint;override;
  400. procedure Pass2(objdata:TObjData);override;
  401. procedure SetOperandOrder(order:TOperandOrder);
  402. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  403. { register spilling code }
  404. function spilling_get_operation_type(opnr: longint): topertype;override;
  405. {$ifdef i8086}
  406. procedure loadsegsymbol(opidx:longint;s:tasmsymbol);
  407. {$endif i8086}
  408. property OperandOrder : TOperandOrder read FOperandOrder;
  409. private
  410. { next fields are filled in pass1, so pass2 is faster }
  411. insentry : PInsEntry;
  412. insoffset : longint;
  413. LastInsOffset : longint; { need to be public to be reset }
  414. inssize : shortint;
  415. {$ifdef x86_64}
  416. rex : byte;
  417. {$endif x86_64}
  418. function InsEnd:longint;
  419. procedure create_ot(objdata:TObjData);
  420. function Matches(p:PInsEntry):boolean;
  421. function calcsize(p:PInsEntry):shortint;
  422. procedure gencode(objdata:TObjData);
  423. function NeedAddrPrefix(opidx:byte):boolean;
  424. function NeedAddrPrefix:boolean;
  425. procedure write0x66prefix(objdata:TObjData);
  426. procedure write0x67prefix(objdata:TObjData);
  427. procedure Swapoperands;
  428. function FindInsentry(objdata:TObjData):boolean;
  429. end;
  430. function is_64_bit_ref(const ref:treference):boolean;
  431. function is_32_bit_ref(const ref:treference):boolean;
  432. function is_16_bit_ref(const ref:treference):boolean;
  433. function get_ref_address_size(const ref:treference):byte;
  434. function get_default_segment_of_ref(const ref:treference):tregister;
  435. procedure optimize_ref(var ref:treference; inlineasm: boolean);
  436. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  437. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  438. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  439. procedure InitAsm;
  440. procedure DoneAsm;
  441. {*****************************************************************************
  442. External Symbol Chain
  443. used for agx86nsm and agx86int
  444. *****************************************************************************}
  445. type
  446. PExternChain = ^TExternChain;
  447. TExternChain = Record
  448. psym : pshortstring;
  449. is_defined : boolean;
  450. next : PExternChain;
  451. end;
  452. const
  453. FEC : PExternChain = nil;
  454. procedure AddSymbol(symname : string; defined : boolean);
  455. procedure FreeExternChainList;
  456. implementation
  457. uses
  458. cutils,
  459. globals,
  460. systems,
  461. itcpugas,
  462. cpuinfo;
  463. procedure AddSymbol(symname : string; defined : boolean);
  464. var
  465. EC : PExternChain;
  466. begin
  467. EC:=FEC;
  468. while assigned(EC) do
  469. begin
  470. if EC^.psym^=symname then
  471. begin
  472. if defined then
  473. EC^.is_defined:=true;
  474. exit;
  475. end;
  476. EC:=EC^.next;
  477. end;
  478. New(EC);
  479. EC^.next:=FEC;
  480. FEC:=EC;
  481. FEC^.psym:=stringdup(symname);
  482. FEC^.is_defined := defined;
  483. end;
  484. procedure FreeExternChainList;
  485. var
  486. EC : PExternChain;
  487. begin
  488. EC:=FEC;
  489. while assigned(EC) do
  490. begin
  491. FEC:=EC^.next;
  492. stringdispose(EC^.psym);
  493. Dispose(EC);
  494. EC:=FEC;
  495. end;
  496. end;
  497. {*****************************************************************************
  498. Instruction table
  499. *****************************************************************************}
  500. type
  501. TInsTabCache=array[TasmOp] of longint;
  502. PInsTabCache=^TInsTabCache;
  503. TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
  504. PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
  505. const
  506. {$if defined(x86_64)}
  507. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  508. {$elseif defined(i386)}
  509. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  510. {$elseif defined(i8086)}
  511. InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
  512. {$endif}
  513. var
  514. InsTabCache : PInsTabCache;
  515. InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
  516. const
  517. {$if defined(x86_64)}
  518. { Intel style operands ! }
  519. opsize_2_type:array[0..2,topsize] of longint=(
  520. (OT_NONE,
  521. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  522. OT_BITS16,OT_BITS32,OT_BITS64,
  523. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  524. OT_BITS64,
  525. OT_NEAR,OT_FAR,OT_SHORT,
  526. OT_NONE,
  527. OT_BITS128,
  528. OT_BITS256
  529. ),
  530. (OT_NONE,
  531. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  532. OT_BITS16,OT_BITS32,OT_BITS64,
  533. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  534. OT_BITS64,
  535. OT_NEAR,OT_FAR,OT_SHORT,
  536. OT_NONE,
  537. OT_BITS128,
  538. OT_BITS256
  539. ),
  540. (OT_NONE,
  541. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  542. OT_BITS16,OT_BITS32,OT_BITS64,
  543. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  544. OT_BITS64,
  545. OT_NEAR,OT_FAR,OT_SHORT,
  546. OT_NONE,
  547. OT_BITS128,
  548. OT_BITS256
  549. )
  550. );
  551. reg_ot_table : array[tregisterindex] of longint = (
  552. {$i r8664ot.inc}
  553. );
  554. {$elseif defined(i386)}
  555. { Intel style operands ! }
  556. opsize_2_type:array[0..2,topsize] of longint=(
  557. (OT_NONE,
  558. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  559. OT_BITS16,OT_BITS32,OT_BITS64,
  560. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  561. OT_BITS64,
  562. OT_NEAR,OT_FAR,OT_SHORT,
  563. OT_NONE,
  564. OT_BITS128,
  565. OT_BITS256
  566. ),
  567. (OT_NONE,
  568. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  569. OT_BITS16,OT_BITS32,OT_BITS64,
  570. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  571. OT_BITS64,
  572. OT_NEAR,OT_FAR,OT_SHORT,
  573. OT_NONE,
  574. OT_BITS128,
  575. OT_BITS256
  576. ),
  577. (OT_NONE,
  578. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  579. OT_BITS16,OT_BITS32,OT_BITS64,
  580. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  581. OT_BITS64,
  582. OT_NEAR,OT_FAR,OT_SHORT,
  583. OT_NONE,
  584. OT_BITS128,
  585. OT_BITS256
  586. )
  587. );
  588. reg_ot_table : array[tregisterindex] of longint = (
  589. {$i r386ot.inc}
  590. );
  591. {$elseif defined(i8086)}
  592. { Intel style operands ! }
  593. opsize_2_type:array[0..2,topsize] of longint=(
  594. (OT_NONE,
  595. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  596. OT_BITS16,OT_BITS32,OT_BITS64,
  597. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  598. OT_BITS64,
  599. OT_NEAR,OT_FAR,OT_SHORT,
  600. OT_NONE,
  601. OT_BITS128,
  602. OT_BITS256
  603. ),
  604. (OT_NONE,
  605. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  606. OT_BITS16,OT_BITS32,OT_BITS64,
  607. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  608. OT_BITS64,
  609. OT_NEAR,OT_FAR,OT_SHORT,
  610. OT_NONE,
  611. OT_BITS128,
  612. OT_BITS256
  613. ),
  614. (OT_NONE,
  615. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  616. OT_BITS16,OT_BITS32,OT_BITS64,
  617. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  618. OT_BITS64,
  619. OT_NEAR,OT_FAR,OT_SHORT,
  620. OT_NONE,
  621. OT_BITS128,
  622. OT_BITS256
  623. )
  624. );
  625. reg_ot_table : array[tregisterindex] of longint = (
  626. {$i r8086ot.inc}
  627. );
  628. {$endif}
  629. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  630. begin
  631. result := InsTabMemRefSizeInfoCache^[aAsmop];
  632. end;
  633. { Operation type for spilling code }
  634. type
  635. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  636. var
  637. operation_type_table : ^toperation_type_table;
  638. {****************************************************************************
  639. TAI_ALIGN
  640. ****************************************************************************}
  641. constructor tai_align.create(b: byte);
  642. begin
  643. inherited create(b);
  644. reg:=NR_ECX;
  645. end;
  646. constructor tai_align.create_op(b: byte; _op: byte);
  647. begin
  648. inherited create_op(b,_op);
  649. reg:=NR_NO;
  650. end;
  651. function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
  652. const
  653. { Updated according to
  654. Software Optimization Guide for AMD Family 15h Processors, Verison 3.08, January 2014
  655. and
  656. Intel 64 and IA-32 Architectures Software Developer’s Manual
  657. Volume 2B: Instruction Set Reference, N-Z, January 2015
  658. }
  659. alignarray_cmovcpus:array[0..10] of string[11]=(
  660. #$66#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  661. #$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  662. #$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  663. #$0F#$1F#$84#$00#$00#$00#$00#$00,
  664. #$0F#$1F#$80#$00#$00#$00#$00,
  665. #$66#$0F#$1F#$44#$00#$00,
  666. #$0F#$1F#$44#$00#$00,
  667. #$0F#$1F#$40#$00,
  668. #$0F#$1F#$00,
  669. #$66#$90,
  670. #$90);
  671. {$ifdef i8086}
  672. alignarray:array[0..5] of string[8]=(
  673. #$90#$90#$90#$90#$90#$90#$90,
  674. #$90#$90#$90#$90#$90#$90,
  675. #$90#$90#$90#$90,
  676. #$90#$90#$90,
  677. #$90#$90,
  678. #$90);
  679. {$else i8086}
  680. alignarray:array[0..5] of string[8]=(
  681. #$8D#$B4#$26#$00#$00#$00#$00,
  682. #$8D#$B6#$00#$00#$00#$00,
  683. #$8D#$74#$26#$00,
  684. #$8D#$76#$00,
  685. #$89#$F6,
  686. #$90);
  687. {$endif i8086}
  688. var
  689. bufptr : pchar;
  690. j : longint;
  691. localsize: byte;
  692. begin
  693. inherited calculatefillbuf(buf,executable);
  694. if not(use_op) and executable then
  695. begin
  696. bufptr:=pchar(@buf);
  697. { fillsize may still be used afterwards, so don't modify }
  698. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  699. localsize:=fillsize;
  700. while (localsize>0) do
  701. begin
  702. {$ifndef i8086}
  703. if CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype] then
  704. begin
  705. for j:=low(alignarray_cmovcpus) to high(alignarray_cmovcpus) do
  706. if (localsize>=length(alignarray_cmovcpus[j])) then
  707. break;
  708. move(alignarray_cmovcpus[j][1],bufptr^,length(alignarray_cmovcpus[j]));
  709. inc(bufptr,length(alignarray_cmovcpus[j]));
  710. dec(localsize,length(alignarray_cmovcpus[j]));
  711. end
  712. else
  713. {$endif not i8086}
  714. begin
  715. for j:=low(alignarray) to high(alignarray) do
  716. if (localsize>=length(alignarray[j])) then
  717. break;
  718. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  719. inc(bufptr,length(alignarray[j]));
  720. dec(localsize,length(alignarray[j]));
  721. end
  722. end;
  723. end;
  724. calculatefillbuf:=pchar(@buf);
  725. end;
  726. {*****************************************************************************
  727. Taicpu Constructors
  728. *****************************************************************************}
  729. procedure taicpu.changeopsize(siz:topsize);
  730. begin
  731. opsize:=siz;
  732. end;
  733. procedure taicpu.init(_size : topsize);
  734. begin
  735. { default order is att }
  736. FOperandOrder:=op_att;
  737. segprefix:=NR_NO;
  738. opsize:=_size;
  739. insentry:=nil;
  740. LastInsOffset:=-1;
  741. InsOffset:=0;
  742. InsSize:=0;
  743. end;
  744. constructor taicpu.op_none(op : tasmop);
  745. begin
  746. inherited create(op);
  747. init(S_NO);
  748. end;
  749. constructor taicpu.op_none(op : tasmop;_size : topsize);
  750. begin
  751. inherited create(op);
  752. init(_size);
  753. end;
  754. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  755. begin
  756. inherited create(op);
  757. init(_size);
  758. ops:=1;
  759. loadreg(0,_op1);
  760. end;
  761. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  762. begin
  763. inherited create(op);
  764. init(_size);
  765. ops:=1;
  766. loadconst(0,_op1);
  767. end;
  768. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  769. begin
  770. inherited create(op);
  771. init(_size);
  772. ops:=1;
  773. loadref(0,_op1);
  774. end;
  775. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  776. begin
  777. inherited create(op);
  778. init(_size);
  779. ops:=2;
  780. loadreg(0,_op1);
  781. loadreg(1,_op2);
  782. end;
  783. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  784. begin
  785. inherited create(op);
  786. init(_size);
  787. ops:=2;
  788. loadreg(0,_op1);
  789. loadconst(1,_op2);
  790. end;
  791. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  792. begin
  793. inherited create(op);
  794. init(_size);
  795. ops:=2;
  796. loadreg(0,_op1);
  797. loadref(1,_op2);
  798. end;
  799. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  800. begin
  801. inherited create(op);
  802. init(_size);
  803. ops:=2;
  804. loadconst(0,_op1);
  805. loadreg(1,_op2);
  806. end;
  807. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  808. begin
  809. inherited create(op);
  810. init(_size);
  811. ops:=2;
  812. loadconst(0,_op1);
  813. loadconst(1,_op2);
  814. end;
  815. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  816. begin
  817. inherited create(op);
  818. init(_size);
  819. ops:=2;
  820. loadconst(0,_op1);
  821. loadref(1,_op2);
  822. end;
  823. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  824. begin
  825. inherited create(op);
  826. init(_size);
  827. ops:=2;
  828. loadref(0,_op1);
  829. loadreg(1,_op2);
  830. end;
  831. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  832. begin
  833. inherited create(op);
  834. init(_size);
  835. ops:=3;
  836. loadreg(0,_op1);
  837. loadreg(1,_op2);
  838. loadreg(2,_op3);
  839. end;
  840. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  841. begin
  842. inherited create(op);
  843. init(_size);
  844. ops:=3;
  845. loadconst(0,_op1);
  846. loadreg(1,_op2);
  847. loadreg(2,_op3);
  848. end;
  849. constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  850. begin
  851. inherited create(op);
  852. init(_size);
  853. ops:=3;
  854. loadref(0,_op1);
  855. loadreg(1,_op2);
  856. loadreg(2,_op3);
  857. end;
  858. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  859. begin
  860. inherited create(op);
  861. init(_size);
  862. ops:=3;
  863. loadconst(0,_op1);
  864. loadref(1,_op2);
  865. loadreg(2,_op3);
  866. end;
  867. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  868. begin
  869. inherited create(op);
  870. init(_size);
  871. ops:=3;
  872. loadconst(0,_op1);
  873. loadreg(1,_op2);
  874. loadref(2,_op3);
  875. end;
  876. constructor taicpu.op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  877. begin
  878. inherited create(op);
  879. init(_size);
  880. ops:=3;
  881. loadreg(0,_op1);
  882. loadreg(1,_op2);
  883. loadref(2,_op3);
  884. end;
  885. constructor taicpu.op_const_reg_reg_reg(op : tasmop; _size : topsize; _op1 : aint; _op2, _op3, _op4 : tregister);
  886. begin
  887. inherited create(op);
  888. init(_size);
  889. ops:=4;
  890. loadconst(0,_op1);
  891. loadreg(1,_op2);
  892. loadreg(2,_op3);
  893. loadreg(3,_op4);
  894. end;
  895. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  896. begin
  897. inherited create(op);
  898. init(_size);
  899. condition:=cond;
  900. ops:=1;
  901. loadsymbol(0,_op1,0);
  902. end;
  903. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  904. begin
  905. inherited create(op);
  906. init(_size);
  907. ops:=1;
  908. loadsymbol(0,_op1,0);
  909. end;
  910. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  911. begin
  912. inherited create(op);
  913. init(_size);
  914. ops:=1;
  915. loadsymbol(0,_op1,_op1ofs);
  916. end;
  917. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  918. begin
  919. inherited create(op);
  920. init(_size);
  921. ops:=2;
  922. loadsymbol(0,_op1,_op1ofs);
  923. loadreg(1,_op2);
  924. end;
  925. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  926. begin
  927. inherited create(op);
  928. init(_size);
  929. ops:=2;
  930. loadsymbol(0,_op1,_op1ofs);
  931. loadref(1,_op2);
  932. end;
  933. function taicpu.GetString:string;
  934. var
  935. i : longint;
  936. s : string;
  937. addsize : boolean;
  938. begin
  939. s:='['+std_op2str[opcode];
  940. for i:=0 to ops-1 do
  941. begin
  942. with oper[i]^ do
  943. begin
  944. if i=0 then
  945. s:=s+' '
  946. else
  947. s:=s+',';
  948. { type }
  949. addsize:=false;
  950. if (ot and OT_XMMREG)=OT_XMMREG then
  951. s:=s+'xmmreg'
  952. else
  953. if (ot and OT_YMMREG)=OT_YMMREG then
  954. s:=s+'ymmreg'
  955. else
  956. if (ot and OT_MMXREG)=OT_MMXREG then
  957. s:=s+'mmxreg'
  958. else
  959. if (ot and OT_FPUREG)=OT_FPUREG then
  960. s:=s+'fpureg'
  961. else
  962. if (ot and OT_REGISTER)=OT_REGISTER then
  963. begin
  964. s:=s+'reg';
  965. addsize:=true;
  966. end
  967. else
  968. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  969. begin
  970. s:=s+'imm';
  971. addsize:=true;
  972. end
  973. else
  974. if (ot and OT_MEMORY)=OT_MEMORY then
  975. begin
  976. s:=s+'mem';
  977. addsize:=true;
  978. end
  979. else
  980. s:=s+'???';
  981. { size }
  982. if addsize then
  983. begin
  984. if (ot and OT_BITS8)<>0 then
  985. s:=s+'8'
  986. else
  987. if (ot and OT_BITS16)<>0 then
  988. s:=s+'16'
  989. else
  990. if (ot and OT_BITS32)<>0 then
  991. s:=s+'32'
  992. else
  993. if (ot and OT_BITS64)<>0 then
  994. s:=s+'64'
  995. else
  996. if (ot and OT_BITS128)<>0 then
  997. s:=s+'128'
  998. else
  999. if (ot and OT_BITS256)<>0 then
  1000. s:=s+'256'
  1001. else
  1002. s:=s+'??';
  1003. { signed }
  1004. if (ot and OT_SIGNED)<>0 then
  1005. s:=s+'s';
  1006. end;
  1007. end;
  1008. end;
  1009. GetString:=s+']';
  1010. end;
  1011. procedure taicpu.Swapoperands;
  1012. var
  1013. p : POper;
  1014. begin
  1015. { Fix the operands which are in AT&T style and we need them in Intel style }
  1016. case ops of
  1017. 0,1:
  1018. ;
  1019. 2 : begin
  1020. { 0,1 -> 1,0 }
  1021. p:=oper[0];
  1022. oper[0]:=oper[1];
  1023. oper[1]:=p;
  1024. end;
  1025. 3 : begin
  1026. { 0,1,2 -> 2,1,0 }
  1027. p:=oper[0];
  1028. oper[0]:=oper[2];
  1029. oper[2]:=p;
  1030. end;
  1031. 4 : begin
  1032. { 0,1,2,3 -> 3,2,1,0 }
  1033. p:=oper[0];
  1034. oper[0]:=oper[3];
  1035. oper[3]:=p;
  1036. p:=oper[1];
  1037. oper[1]:=oper[2];
  1038. oper[2]:=p;
  1039. end;
  1040. else
  1041. internalerror(201108141);
  1042. end;
  1043. end;
  1044. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  1045. begin
  1046. if FOperandOrder<>order then
  1047. begin
  1048. Swapoperands;
  1049. FOperandOrder:=order;
  1050. end;
  1051. end;
  1052. function taicpu.FixNonCommutativeOpcodes: tasmop;
  1053. begin
  1054. result:=opcode;
  1055. { we need ATT order }
  1056. SetOperandOrder(op_att);
  1057. if (
  1058. (ops=2) and
  1059. (oper[0]^.typ=top_reg) and
  1060. (oper[1]^.typ=top_reg) and
  1061. { if the first is ST and the second is also a register
  1062. it is necessarily ST1 .. ST7 }
  1063. ((oper[0]^.reg=NR_ST) or
  1064. (oper[0]^.reg=NR_ST0))
  1065. ) or
  1066. { ((ops=1) and
  1067. (oper[0]^.typ=top_reg) and
  1068. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  1069. (ops=0) then
  1070. begin
  1071. if opcode=A_FSUBR then
  1072. result:=A_FSUB
  1073. else if opcode=A_FSUB then
  1074. result:=A_FSUBR
  1075. else if opcode=A_FDIVR then
  1076. result:=A_FDIV
  1077. else if opcode=A_FDIV then
  1078. result:=A_FDIVR
  1079. else if opcode=A_FSUBRP then
  1080. result:=A_FSUBP
  1081. else if opcode=A_FSUBP then
  1082. result:=A_FSUBRP
  1083. else if opcode=A_FDIVRP then
  1084. result:=A_FDIVP
  1085. else if opcode=A_FDIVP then
  1086. result:=A_FDIVRP;
  1087. end;
  1088. if (
  1089. (ops=1) and
  1090. (oper[0]^.typ=top_reg) and
  1091. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  1092. (oper[0]^.reg<>NR_ST)
  1093. ) then
  1094. begin
  1095. if opcode=A_FSUBRP then
  1096. result:=A_FSUBP
  1097. else if opcode=A_FSUBP then
  1098. result:=A_FSUBRP
  1099. else if opcode=A_FDIVRP then
  1100. result:=A_FDIVP
  1101. else if opcode=A_FDIVP then
  1102. result:=A_FDIVRP;
  1103. end;
  1104. end;
  1105. {*****************************************************************************
  1106. Assembler
  1107. *****************************************************************************}
  1108. type
  1109. ea = packed record
  1110. sib_present : boolean;
  1111. bytes : byte;
  1112. size : byte;
  1113. modrm : byte;
  1114. sib : byte;
  1115. {$ifdef x86_64}
  1116. rex : byte;
  1117. {$endif x86_64}
  1118. end;
  1119. procedure taicpu.create_ot(objdata:TObjData);
  1120. {
  1121. this function will also fix some other fields which only needs to be once
  1122. }
  1123. var
  1124. i,l,relsize : longint;
  1125. currsym : TObjSymbol;
  1126. begin
  1127. if ops=0 then
  1128. exit;
  1129. { update oper[].ot field }
  1130. for i:=0 to ops-1 do
  1131. with oper[i]^ do
  1132. begin
  1133. case typ of
  1134. top_reg :
  1135. begin
  1136. ot:=reg_ot_table[findreg_by_number(reg)];
  1137. end;
  1138. top_ref :
  1139. begin
  1140. if (ref^.refaddr=addr_no)
  1141. {$ifdef i386}
  1142. or (
  1143. (ref^.refaddr in [addr_pic]) and
  1144. (ref^.base<>NR_NO)
  1145. )
  1146. {$endif i386}
  1147. {$ifdef x86_64}
  1148. or (
  1149. (ref^.refaddr in [addr_pic,addr_pic_no_got]) and
  1150. (ref^.base<>NR_NO)
  1151. )
  1152. {$endif x86_64}
  1153. then
  1154. begin
  1155. { create ot field }
  1156. if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
  1157. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1158. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1159. ) then
  1160. // AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
  1161. ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
  1162. (reg_ot_table[findreg_by_number(ref^.index)])
  1163. else if (ref^.base = NR_NO) and
  1164. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1165. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1166. ) then
  1167. // AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
  1168. ot := (OT_REG_GPR) or
  1169. (reg_ot_table[findreg_by_number(ref^.index)])
  1170. else if (ot and OT_SIZE_MASK)=0 then
  1171. ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
  1172. else
  1173. ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
  1174. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  1175. ot:=ot or OT_MEM_OFFS;
  1176. { fix scalefactor }
  1177. if (ref^.index=NR_NO) then
  1178. ref^.scalefactor:=0
  1179. else
  1180. if (ref^.scalefactor=0) then
  1181. ref^.scalefactor:=1;
  1182. end
  1183. else
  1184. begin
  1185. { Jumps use a relative offset which can be 8bit,
  1186. for other opcodes we always need to generate the full
  1187. 32bit address }
  1188. if assigned(objdata) and
  1189. is_jmp then
  1190. begin
  1191. currsym:=objdata.symbolref(ref^.symbol);
  1192. l:=ref^.offset;
  1193. {$push}
  1194. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  1195. if assigned(currsym) then
  1196. inc(l,currsym.address);
  1197. {$pop}
  1198. { when it is a forward jump we need to compensate the
  1199. offset of the instruction since the previous time,
  1200. because the symbol address is then still using the
  1201. 'old-style' addressing.
  1202. For backwards jumps this is not required because the
  1203. address of the symbol is already adjusted to the
  1204. new offset }
  1205. if (l>InsOffset) and (LastInsOffset<>-1) then
  1206. inc(l,InsOffset-LastInsOffset);
  1207. { instruction size will then always become 2 (PFV) }
  1208. relsize:=(InsOffset+2)-l;
  1209. if (relsize>=-128) and (relsize<=127) and
  1210. (
  1211. not assigned(currsym) or
  1212. (currsym.objsection=objdata.currobjsec)
  1213. ) then
  1214. ot:=OT_IMM8 or OT_SHORT
  1215. else
  1216. {$ifdef i8086}
  1217. ot:=OT_IMM16 or OT_NEAR;
  1218. {$else i8086}
  1219. ot:=OT_IMM32 or OT_NEAR;
  1220. {$endif i8086}
  1221. end
  1222. else
  1223. {$ifdef i8086}
  1224. if opsize=S_FAR then
  1225. ot:=OT_IMM16 or OT_FAR
  1226. else
  1227. ot:=OT_IMM16 or OT_NEAR;
  1228. {$else i8086}
  1229. ot:=OT_IMM32 or OT_NEAR;
  1230. {$endif i8086}
  1231. end;
  1232. end;
  1233. top_local :
  1234. begin
  1235. if (ot and OT_SIZE_MASK)=0 then
  1236. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  1237. else
  1238. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  1239. end;
  1240. top_const :
  1241. begin
  1242. // if opcode is a SSE or AVX-instruction then we need a
  1243. // special handling (opsize can different from const-size)
  1244. // (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
  1245. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
  1246. (not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnkown])) then
  1247. begin
  1248. case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
  1249. csiNoSize: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE;
  1250. csiMem8: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS8;
  1251. csiMem16: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS16;
  1252. csiMem32: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS32;
  1253. csiMem64: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS64;
  1254. end;
  1255. end
  1256. else
  1257. begin
  1258. { allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
  1259. { further, allow AAD and AAM with imm. operand }
  1260. if (opsize=S_NO) and not((i in [1,2,3])
  1261. {$ifndef x86_64}
  1262. or ((i=0) and (opcode in [A_AAD,A_AAM]))
  1263. {$endif x86_64}
  1264. ) then
  1265. message(asmr_e_invalid_opcode_and_operand);
  1266. if
  1267. {$ifdef i8086}
  1268. (longint(val)>=-128) and (val<=127) then
  1269. {$else i8086}
  1270. (opsize<>S_W) and
  1271. (aint(val)>=-128) and (val<=127) then
  1272. {$endif not i8086}
  1273. ot:=OT_IMM8 or OT_SIGNED
  1274. else
  1275. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  1276. if (val=1) and (i=1) then
  1277. ot := ot or OT_ONENESS;
  1278. end;
  1279. end;
  1280. top_none :
  1281. begin
  1282. { generated when there was an error in the
  1283. assembler reader. It never happends when generating
  1284. assembler }
  1285. end;
  1286. else
  1287. internalerror(200402266);
  1288. end;
  1289. end;
  1290. end;
  1291. function taicpu.InsEnd:longint;
  1292. begin
  1293. InsEnd:=InsOffset+InsSize;
  1294. end;
  1295. function taicpu.Matches(p:PInsEntry):boolean;
  1296. { * IF_SM stands for Size Match: any operand whose size is not
  1297. * explicitly specified by the template is `really' intended to be
  1298. * the same size as the first size-specified operand.
  1299. * Non-specification is tolerated in the input instruction, but
  1300. * _wrong_ specification is not.
  1301. *
  1302. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  1303. * three-operand instructions such as SHLD: it implies that the
  1304. * first two operands must match in size, but that the third is
  1305. * required to be _unspecified_.
  1306. *
  1307. * IF_SB invokes Size Byte: operands with unspecified size in the
  1308. * template are really bytes, and so no non-byte specification in
  1309. * the input instruction will be tolerated. IF_SW similarly invokes
  1310. * Size Word, and IF_SD invokes Size Doubleword.
  1311. *
  1312. * (The default state if neither IF_SM nor IF_SM2 is specified is
  1313. * that any operand with unspecified size in the template is
  1314. * required to have unspecified size in the instruction too...)
  1315. }
  1316. var
  1317. insot,
  1318. currot,
  1319. i,j,asize,oprs : longint;
  1320. insflags:tinsflags;
  1321. siz : array[0..max_operands-1] of longint;
  1322. begin
  1323. result:=false;
  1324. { Check the opcode and operands }
  1325. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  1326. exit;
  1327. {$ifdef i8086}
  1328. { On i8086, we need to skip the i386+ version of Jcc near, if the target
  1329. cpu is earlier than 386. There's another entry, later in the table for
  1330. i8086, which simulates it with i8086 instructions:
  1331. JNcc short +3
  1332. JMP near target }
  1333. if (p^.opcode=A_Jcc) and (current_settings.cputype<cpu_386) and
  1334. (IF_386 in p^.flags) then
  1335. exit;
  1336. {$endif i8086}
  1337. for i:=0 to p^.ops-1 do
  1338. begin
  1339. insot:=p^.optypes[i];
  1340. currot:=oper[i]^.ot;
  1341. { Check the operand flags }
  1342. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1343. exit;
  1344. { Check if the passed operand size matches with one of
  1345. the supported operand sizes }
  1346. if ((insot and OT_SIZE_MASK)<>0) and
  1347. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1348. exit;
  1349. { "far" matches only with "far" }
  1350. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1351. exit;
  1352. end;
  1353. { Check operand sizes }
  1354. insflags:=p^.flags;
  1355. if (insflags*IF_SMASK)<>[] then
  1356. begin
  1357. { as default an untyped size can get all the sizes, this is different
  1358. from nasm, but else we need to do a lot checking which opcodes want
  1359. size or not with the automatic size generation }
  1360. asize:=-1;
  1361. if IF_SB in insflags then
  1362. asize:=OT_BITS8
  1363. else if IF_SW in insflags then
  1364. asize:=OT_BITS16
  1365. else if IF_SD in insflags then
  1366. asize:=OT_BITS32;
  1367. if insflags*IF_ARMASK<>[] then
  1368. begin
  1369. siz[0]:=-1;
  1370. siz[1]:=-1;
  1371. siz[2]:=-1;
  1372. if IF_AR0 in insflags then
  1373. siz[0]:=asize
  1374. else if IF_AR1 in insflags then
  1375. siz[1]:=asize
  1376. else if IF_AR2 in insflags then
  1377. siz[2]:=asize
  1378. else
  1379. internalerror(2017092101);
  1380. end
  1381. else
  1382. begin
  1383. siz[0]:=asize;
  1384. siz[1]:=asize;
  1385. siz[2]:=asize;
  1386. end;
  1387. if insflags*[IF_SM,IF_SM2]<>[] then
  1388. begin
  1389. if IF_SM2 in insflags then
  1390. oprs:=2
  1391. else
  1392. oprs:=p^.ops;
  1393. for i:=0 to oprs-1 do
  1394. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  1395. begin
  1396. for j:=0 to oprs-1 do
  1397. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  1398. break;
  1399. end;
  1400. end
  1401. else
  1402. oprs:=2;
  1403. { Check operand sizes }
  1404. for i:=0 to p^.ops-1 do
  1405. begin
  1406. insot:=p^.optypes[i];
  1407. currot:=oper[i]^.ot;
  1408. if ((insot and OT_SIZE_MASK)=0) and
  1409. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  1410. { Immediates can always include smaller size }
  1411. ((currot and OT_IMMEDIATE)=0) and
  1412. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1413. exit;
  1414. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1415. exit;
  1416. end;
  1417. end;
  1418. if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
  1419. (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1420. begin
  1421. for i:=0 to p^.ops-1 do
  1422. begin
  1423. insot:=p^.optypes[i];
  1424. if ((insot and OT_XMMRM) = OT_XMMRM) OR
  1425. ((insot and OT_YMMRM) = OT_YMMRM) then
  1426. begin
  1427. if (insot and OT_SIZE_MASK) = 0 then
  1428. begin
  1429. case insot and (OT_XMMRM or OT_YMMRM) of
  1430. OT_XMMRM: insot := insot or OT_BITS128;
  1431. OT_YMMRM: insot := insot or OT_BITS256;
  1432. end;
  1433. end;
  1434. end;
  1435. currot:=oper[i]^.ot;
  1436. { Check the operand flags }
  1437. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1438. exit;
  1439. { Check if the passed operand size matches with one of
  1440. the supported operand sizes }
  1441. if ((insot and OT_SIZE_MASK)<>0) and
  1442. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1443. exit;
  1444. end;
  1445. end;
  1446. result:=true;
  1447. end;
  1448. procedure taicpu.ResetPass1;
  1449. begin
  1450. { we need to reset everything here, because the choosen insentry
  1451. can be invalid for a new situation where the previously optimized
  1452. insentry is not correct }
  1453. InsEntry:=nil;
  1454. InsSize:=0;
  1455. LastInsOffset:=-1;
  1456. end;
  1457. procedure taicpu.ResetPass2;
  1458. begin
  1459. { we are here in a second pass, check if the instruction can be optimized }
  1460. if assigned(InsEntry) and
  1461. (IF_PASS2 in InsEntry^.flags) then
  1462. begin
  1463. InsEntry:=nil;
  1464. InsSize:=0;
  1465. end;
  1466. LastInsOffset:=-1;
  1467. end;
  1468. function taicpu.CheckIfValid:boolean;
  1469. begin
  1470. result:=FindInsEntry(nil);
  1471. end;
  1472. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1473. var
  1474. i : longint;
  1475. begin
  1476. result:=false;
  1477. { Things which may only be done once, not when a second pass is done to
  1478. optimize }
  1479. if (Insentry=nil) or (IF_PASS2 in InsEntry^.flags) then
  1480. begin
  1481. current_filepos:=fileinfo;
  1482. { We need intel style operands }
  1483. SetOperandOrder(op_intel);
  1484. { create the .ot fields }
  1485. create_ot(objdata);
  1486. { set the file postion }
  1487. end
  1488. else
  1489. begin
  1490. { we've already an insentry so it's valid }
  1491. result:=true;
  1492. exit;
  1493. end;
  1494. { Lookup opcode in the table }
  1495. InsSize:=-1;
  1496. i:=instabcache^[opcode];
  1497. if i=-1 then
  1498. begin
  1499. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1500. exit;
  1501. end;
  1502. insentry:=@instab[i];
  1503. while (insentry^.opcode=opcode) do
  1504. begin
  1505. if matches(insentry) then
  1506. begin
  1507. result:=true;
  1508. exit;
  1509. end;
  1510. inc(insentry);
  1511. end;
  1512. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1513. { No instruction found, set insentry to nil and inssize to -1 }
  1514. insentry:=nil;
  1515. inssize:=-1;
  1516. end;
  1517. function taicpu.Pass1(objdata:TObjData):longint;
  1518. begin
  1519. Pass1:=0;
  1520. { Save the old offset and set the new offset }
  1521. InsOffset:=ObjData.CurrObjSec.Size;
  1522. { Error? }
  1523. if (Insentry=nil) and (InsSize=-1) then
  1524. exit;
  1525. { set the file postion }
  1526. current_filepos:=fileinfo;
  1527. { Get InsEntry }
  1528. if FindInsEntry(ObjData) then
  1529. begin
  1530. { Calculate instruction size }
  1531. InsSize:=calcsize(insentry);
  1532. if segprefix<>NR_NO then
  1533. inc(InsSize);
  1534. if NeedAddrPrefix then
  1535. inc(InsSize);
  1536. { Fix opsize if size if forced }
  1537. if insentry^.flags*[IF_SB,IF_SW,IF_SD]<>[] then
  1538. begin
  1539. if insentry^.flags*IF_ARMASK=[] then
  1540. begin
  1541. if IF_SB in insentry^.flags then
  1542. begin
  1543. if opsize=S_NO then
  1544. opsize:=S_B;
  1545. end
  1546. else if IF_SW in insentry^.flags then
  1547. begin
  1548. if opsize=S_NO then
  1549. opsize:=S_W;
  1550. end
  1551. else if IF_SD in insentry^.flags then
  1552. begin
  1553. if opsize=S_NO then
  1554. opsize:=S_L;
  1555. end;
  1556. end;
  1557. end;
  1558. LastInsOffset:=InsOffset;
  1559. Pass1:=InsSize;
  1560. exit;
  1561. end;
  1562. LastInsOffset:=-1;
  1563. end;
  1564. const
  1565. segprefixes: array[NR_ES..NR_GS] of Byte=(
  1566. // es cs ss ds fs gs
  1567. $26, $2E, $36, $3E, $64, $65
  1568. );
  1569. procedure taicpu.Pass2(objdata:TObjData);
  1570. begin
  1571. { error in pass1 ? }
  1572. if insentry=nil then
  1573. exit;
  1574. current_filepos:=fileinfo;
  1575. { Segment override }
  1576. if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
  1577. begin
  1578. {$ifdef i8086}
  1579. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) and
  1580. ((segprefix=NR_FS) or (segprefix=NR_GS)) then
  1581. Message(asmw_e_instruction_not_supported_by_cpu);
  1582. {$endif i8086}
  1583. objdata.writebytes(segprefixes[segprefix],1);
  1584. { fix the offset for GenNode }
  1585. inc(InsOffset);
  1586. end
  1587. else if segprefix<>NR_NO then
  1588. InternalError(201001071);
  1589. { Address size prefix? }
  1590. if NeedAddrPrefix then
  1591. begin
  1592. write0x67prefix(objdata);
  1593. { fix the offset for GenNode }
  1594. inc(InsOffset);
  1595. end;
  1596. { Generate the instruction }
  1597. GenCode(objdata);
  1598. end;
  1599. function is_64_bit_ref(const ref:treference):boolean;
  1600. begin
  1601. {$if defined(x86_64)}
  1602. result:=not is_32_bit_ref(ref);
  1603. {$elseif defined(i386) or defined(i8086)}
  1604. result:=false;
  1605. {$endif}
  1606. end;
  1607. function is_32_bit_ref(const ref:treference):boolean;
  1608. begin
  1609. {$if defined(x86_64)}
  1610. result:=(ref.refaddr=addr_no) and
  1611. (ref.base<>NR_RIP) and
  1612. (
  1613. ((ref.index<>NR_NO) and (getsubreg(ref.index)=R_SUBD)) or
  1614. ((ref.base<>NR_NO) and (getsubreg(ref.base)=R_SUBD))
  1615. );
  1616. {$elseif defined(i386) or defined(i8086)}
  1617. result:=not is_16_bit_ref(ref);
  1618. {$endif}
  1619. end;
  1620. function is_16_bit_ref(const ref:treference):boolean;
  1621. var
  1622. ir,br : Tregister;
  1623. isub,bsub : tsubregister;
  1624. begin
  1625. if (ref.index<>NR_NO) and (getregtype(ref.index)=R_MMREGISTER) then
  1626. exit(false);
  1627. ir:=ref.index;
  1628. br:=ref.base;
  1629. isub:=getsubreg(ir);
  1630. bsub:=getsubreg(br);
  1631. { it's a direct address }
  1632. if (br=NR_NO) and (ir=NR_NO) then
  1633. begin
  1634. {$ifdef i8086}
  1635. result:=true;
  1636. {$else i8086}
  1637. result:=false;
  1638. {$endif}
  1639. end
  1640. else
  1641. { it's an indirection }
  1642. begin
  1643. result := ((ir<>NR_NO) and (isub=R_SUBW)) or
  1644. ((br<>NR_NO) and (bsub=R_SUBW));
  1645. end;
  1646. end;
  1647. function get_ref_address_size(const ref:treference):byte;
  1648. begin
  1649. if is_64_bit_ref(ref) then
  1650. result:=64
  1651. else if is_32_bit_ref(ref) then
  1652. result:=32
  1653. else if is_16_bit_ref(ref) then
  1654. result:=16
  1655. else
  1656. internalerror(2017101601);
  1657. end;
  1658. function get_default_segment_of_ref(const ref:treference):tregister;
  1659. begin
  1660. { for 16-bit registers, we allow base and index to be swapped, that's
  1661. why we also we check whether ref.index=NR_BP. For 32-bit registers,
  1662. however, index=NR_EBP is encoded differently than base=NR_EBP and has
  1663. a different default segment. }
  1664. if (ref.base=NR_BP) or (ref.index=NR_BP) or
  1665. (ref.base=NR_EBP) or (ref.base=NR_ESP)
  1666. {$ifdef x86_64}
  1667. or (ref.base=NR_RBP) or (ref.base=NR_RSP)
  1668. {$endif x86_64}
  1669. then
  1670. result:=NR_SS
  1671. else
  1672. result:=NR_DS;
  1673. end;
  1674. procedure optimize_ref(var ref:treference; inlineasm: boolean);
  1675. var
  1676. ss_equals_ds: boolean;
  1677. tmpreg: TRegister;
  1678. begin
  1679. {$ifdef x86_64}
  1680. { x86_64 in long mode ignores all segment base, limit and access rights
  1681. checks for the DS, ES and SS registers, so we can set ss_equals_ds to
  1682. true (and thus, perform stronger optimizations on the reference),
  1683. regardless of whether this is inline asm or not (so, even if the user
  1684. is doing tricks by loading different values into DS and SS, it still
  1685. doesn't matter while the processor is in long mode) }
  1686. ss_equals_ds:=True;
  1687. {$else x86_64}
  1688. { for i8086 and i386 inline asm, we assume SS<>DS, even if we're
  1689. compiling for a memory model, where SS=DS, because the user might be
  1690. doing something tricky with the segment registers (and may have
  1691. temporarily set them differently) }
  1692. if inlineasm then
  1693. ss_equals_ds:=False
  1694. else
  1695. ss_equals_ds:=segment_regs_equal(NR_DS,NR_SS);
  1696. {$endif x86_64}
  1697. { remove redundant segment overrides }
  1698. if (ref.segment<>NR_NO) and
  1699. ((inlineasm and (ref.segment=get_default_segment_of_ref(ref))) or
  1700. ((not inlineasm) and (segment_regs_equal(ref.segment,get_default_segment_of_ref(ref))))) then
  1701. ref.segment:=NR_NO;
  1702. if not is_16_bit_ref(ref) then
  1703. begin
  1704. { Switching index to base position gives shorter assembler instructions.
  1705. Converting index*2 to base+index also gives shorter instructions. }
  1706. if (ref.base=NR_NO) and (ref.index<>NR_NO) and (ref.scalefactor<=2) and
  1707. (ss_equals_ds or (ref.segment<>NR_NO) or (ref.index<>NR_EBP)) then
  1708. begin
  1709. ref.base:=ref.index;
  1710. if ref.scalefactor=2 then
  1711. ref.scalefactor:=1
  1712. else
  1713. begin
  1714. ref.index:=NR_NO;
  1715. ref.scalefactor:=0;
  1716. end;
  1717. end;
  1718. { Switching rBP+reg to reg+rBP sometimes gives shorter instructions (if there's no offset)
  1719. On x86_64 this also works for switching r13+reg to reg+r13. }
  1720. if ((ref.base=NR_EBP) {$ifdef x86_64}or (ref.base=NR_RBP) or (ref.base=NR_R13) or (ref.base=NR_R13D){$endif}) and
  1721. (ref.index<>NR_NO) and
  1722. (ref.index<>NR_EBP) and {$ifdef x86_64}(ref.index<>NR_RBP) and (ref.index<>NR_R13) and (ref.index<>NR_R13D) and{$endif}
  1723. (ref.scalefactor<=1) and (ref.offset=0) and (ref.refaddr=addr_no) and
  1724. (ss_equals_ds or (ref.segment<>NR_NO)) then
  1725. begin
  1726. tmpreg:=ref.base;
  1727. ref.base:=ref.index;
  1728. ref.index:=tmpreg;
  1729. end;
  1730. end;
  1731. { remove redundant segment overrides again }
  1732. if (ref.segment<>NR_NO) and
  1733. ((inlineasm and (ref.segment=get_default_segment_of_ref(ref))) or
  1734. ((not inlineasm) and (segment_regs_equal(ref.segment,get_default_segment_of_ref(ref))))) then
  1735. ref.segment:=NR_NO;
  1736. end;
  1737. function taicpu.needaddrprefix(opidx:byte):boolean;
  1738. begin
  1739. {$if defined(x86_64)}
  1740. result:=(oper[opidx]^.typ=top_ref) and is_32_bit_ref(oper[opidx]^.ref^);
  1741. {$elseif defined(i386)}
  1742. result:=(oper[opidx]^.typ=top_ref) and is_16_bit_ref(oper[opidx]^.ref^);
  1743. {$elseif defined(i8086)}
  1744. result:=(oper[opidx]^.typ=top_ref) and is_32_bit_ref(oper[opidx]^.ref^);
  1745. {$endif}
  1746. end;
  1747. function taicpu.NeedAddrPrefix:boolean;
  1748. var
  1749. i: Integer;
  1750. begin
  1751. for i:=0 to ops-1 do
  1752. if needaddrprefix(i) then
  1753. exit(true);
  1754. result:=false;
  1755. end;
  1756. procedure badreg(r:Tregister);
  1757. begin
  1758. Message1(asmw_e_invalid_register,generic_regname(r));
  1759. end;
  1760. function regval(r:Tregister):byte;
  1761. const
  1762. intsupreg2opcode: array[0..7] of byte=
  1763. // ax cx dx bx si di bp sp -- in x86reg.dat
  1764. // ax cx dx bx sp bp si di -- needed order
  1765. (0, 1, 2, 3, 6, 7, 5, 4);
  1766. maxsupreg: array[tregistertype] of tsuperregister=
  1767. {$ifdef x86_64}
  1768. (0, 16, 9, 8, 16, 32, 0, 0);
  1769. {$else x86_64}
  1770. (0, 8, 9, 8, 8, 32, 0, 0);
  1771. {$endif x86_64}
  1772. var
  1773. rs: tsuperregister;
  1774. rt: tregistertype;
  1775. begin
  1776. rs:=getsupreg(r);
  1777. rt:=getregtype(r);
  1778. if (rs>=maxsupreg[rt]) then
  1779. badreg(r);
  1780. result:=rs and 7;
  1781. if (rt=R_INTREGISTER) then
  1782. begin
  1783. if (rs<8) then
  1784. result:=intsupreg2opcode[rs];
  1785. if getsubreg(r)=R_SUBH then
  1786. inc(result,4);
  1787. end;
  1788. end;
  1789. {$if defined(x86_64)}
  1790. function rexbits(r: tregister): byte;
  1791. begin
  1792. result:=0;
  1793. case getregtype(r) of
  1794. R_INTREGISTER:
  1795. if (getsupreg(r)>=RS_R8) then
  1796. { Either B,X or R bits can be set, depending on register role in instruction.
  1797. Set all three bits here, caller will discard unnecessary ones. }
  1798. result:=result or $47
  1799. else if (getsubreg(r)=R_SUBL) and
  1800. (getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1801. result:=result or $40
  1802. else if (getsubreg(r)=R_SUBH) then
  1803. { Not an actual REX bit, used to detect incompatible usage of
  1804. AH/BH/CH/DH }
  1805. result:=result or $80;
  1806. R_MMREGISTER:
  1807. if getsupreg(r)>=RS_XMM8 then
  1808. result:=result or $47;
  1809. end;
  1810. end;
  1811. function process_ea_ref_64_32(const input:toper;var output:ea;rfield:longint):boolean;
  1812. var
  1813. sym : tasmsymbol;
  1814. md,s : byte;
  1815. base,index,scalefactor,
  1816. o : longint;
  1817. ir,br : Tregister;
  1818. isub,bsub : tsubregister;
  1819. begin
  1820. result:=false;
  1821. ir:=input.ref^.index;
  1822. br:=input.ref^.base;
  1823. isub:=getsubreg(ir);
  1824. bsub:=getsubreg(br);
  1825. s:=input.ref^.scalefactor;
  1826. o:=input.ref^.offset;
  1827. sym:=input.ref^.symbol;
  1828. //if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  1829. // ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1830. if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
  1831. ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
  1832. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1833. internalerror(200301081);
  1834. { it's direct address }
  1835. if (br=NR_NO) and (ir=NR_NO) then
  1836. begin
  1837. output.sib_present:=true;
  1838. output.bytes:=4;
  1839. output.modrm:=4 or (rfield shl 3);
  1840. output.sib:=$25;
  1841. end
  1842. else if (br=NR_RIP) and (ir=NR_NO) then
  1843. begin
  1844. { rip based }
  1845. output.sib_present:=false;
  1846. output.bytes:=4;
  1847. output.modrm:=5 or (rfield shl 3);
  1848. end
  1849. else
  1850. { it's an indirection }
  1851. begin
  1852. { 16 bit? }
  1853. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1854. (br<>NR_NO) and (bsub=R_SUBQ)
  1855. ) then
  1856. begin
  1857. // vector memory (AVX2) =>> ignore
  1858. end
  1859. else if ((ir<>NR_NO) and (isub<>R_SUBQ) and (isub<>R_SUBD)) or
  1860. ((br<>NR_NO) and (bsub<>R_SUBQ) and (bsub<>R_SUBD)) then
  1861. begin
  1862. message(asmw_e_16bit_32bit_not_supported);
  1863. end;
  1864. { wrong, for various reasons }
  1865. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1866. exit;
  1867. output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
  1868. result:=true;
  1869. { base }
  1870. case br of
  1871. NR_R8D,
  1872. NR_EAX,
  1873. NR_R8,
  1874. NR_RAX : base:=0;
  1875. NR_R9D,
  1876. NR_ECX,
  1877. NR_R9,
  1878. NR_RCX : base:=1;
  1879. NR_R10D,
  1880. NR_EDX,
  1881. NR_R10,
  1882. NR_RDX : base:=2;
  1883. NR_R11D,
  1884. NR_EBX,
  1885. NR_R11,
  1886. NR_RBX : base:=3;
  1887. NR_R12D,
  1888. NR_ESP,
  1889. NR_R12,
  1890. NR_RSP : base:=4;
  1891. NR_R13D,
  1892. NR_EBP,
  1893. NR_R13,
  1894. NR_NO,
  1895. NR_RBP : base:=5;
  1896. NR_R14D,
  1897. NR_ESI,
  1898. NR_R14,
  1899. NR_RSI : base:=6;
  1900. NR_R15D,
  1901. NR_EDI,
  1902. NR_R15,
  1903. NR_RDI : base:=7;
  1904. else
  1905. exit;
  1906. end;
  1907. { index }
  1908. case ir of
  1909. NR_R8D,
  1910. NR_EAX,
  1911. NR_R8,
  1912. NR_RAX,
  1913. NR_XMM0,
  1914. NR_XMM8,
  1915. NR_YMM0,
  1916. NR_YMM8 : index:=0;
  1917. NR_R9D,
  1918. NR_ECX,
  1919. NR_R9,
  1920. NR_RCX,
  1921. NR_XMM1,
  1922. NR_XMM9,
  1923. NR_YMM1,
  1924. NR_YMM9 : index:=1;
  1925. NR_R10D,
  1926. NR_EDX,
  1927. NR_R10,
  1928. NR_RDX,
  1929. NR_XMM2,
  1930. NR_XMM10,
  1931. NR_YMM2,
  1932. NR_YMM10 : index:=2;
  1933. NR_R11D,
  1934. NR_EBX,
  1935. NR_R11,
  1936. NR_RBX,
  1937. NR_XMM3,
  1938. NR_XMM11,
  1939. NR_YMM3,
  1940. NR_YMM11 : index:=3;
  1941. NR_R12D,
  1942. NR_ESP,
  1943. NR_R12,
  1944. NR_NO,
  1945. NR_XMM4,
  1946. NR_XMM12,
  1947. NR_YMM4,
  1948. NR_YMM12 : index:=4;
  1949. NR_R13D,
  1950. NR_EBP,
  1951. NR_R13,
  1952. NR_RBP,
  1953. NR_XMM5,
  1954. NR_XMM13,
  1955. NR_YMM5,
  1956. NR_YMM13: index:=5;
  1957. NR_R14D,
  1958. NR_ESI,
  1959. NR_R14,
  1960. NR_RSI,
  1961. NR_XMM6,
  1962. NR_XMM14,
  1963. NR_YMM6,
  1964. NR_YMM14: index:=6;
  1965. NR_R15D,
  1966. NR_EDI,
  1967. NR_R15,
  1968. NR_RDI,
  1969. NR_XMM7,
  1970. NR_XMM15,
  1971. NR_YMM7,
  1972. NR_YMM15: index:=7;
  1973. else
  1974. exit;
  1975. end;
  1976. case s of
  1977. 0,
  1978. 1 : scalefactor:=0;
  1979. 2 : scalefactor:=1;
  1980. 4 : scalefactor:=2;
  1981. 8 : scalefactor:=3;
  1982. else
  1983. exit;
  1984. end;
  1985. { If rbp or r13 is used we must always include an offset }
  1986. if (br=NR_NO) or
  1987. ((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
  1988. md:=0
  1989. else
  1990. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1991. md:=1
  1992. else
  1993. md:=2;
  1994. if (br=NR_NO) or (md=2) then
  1995. output.bytes:=4
  1996. else
  1997. output.bytes:=md;
  1998. { SIB needed ? }
  1999. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
  2000. begin
  2001. output.sib_present:=false;
  2002. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  2003. end
  2004. else
  2005. begin
  2006. output.sib_present:=true;
  2007. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  2008. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  2009. end;
  2010. end;
  2011. output.size:=1+ord(output.sib_present)+output.bytes;
  2012. result:=true;
  2013. end;
  2014. {$elseif defined(i386) or defined(i8086)}
  2015. function process_ea_ref_32(const input:toper;out output:ea;rfield:longint):boolean;
  2016. var
  2017. sym : tasmsymbol;
  2018. md,s : byte;
  2019. base,index,scalefactor,
  2020. o : longint;
  2021. ir,br : Tregister;
  2022. isub,bsub : tsubregister;
  2023. begin
  2024. result:=false;
  2025. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) and (input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) or // vector memory (AVX2)
  2026. ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER) and (getregtype(input.ref^.index)<>R_MMREGISTER)) or
  2027. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  2028. internalerror(200301081);
  2029. ir:=input.ref^.index;
  2030. br:=input.ref^.base;
  2031. isub:=getsubreg(ir);
  2032. bsub:=getsubreg(br);
  2033. s:=input.ref^.scalefactor;
  2034. o:=input.ref^.offset;
  2035. sym:=input.ref^.symbol;
  2036. { it's direct address }
  2037. if (br=NR_NO) and (ir=NR_NO) then
  2038. begin
  2039. { it's a pure offset }
  2040. output.sib_present:=false;
  2041. output.bytes:=4;
  2042. output.modrm:=5 or (rfield shl 3);
  2043. end
  2044. else
  2045. { it's an indirection }
  2046. begin
  2047. { 16 bit address? }
  2048. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  2049. (br<>NR_NO) and (bsub=R_SUBD)
  2050. ) then
  2051. begin
  2052. // vector memory (AVX2) =>> ignore
  2053. end
  2054. else if ((ir<>NR_NO) and (isub<>R_SUBD)) or
  2055. ((br<>NR_NO) and (bsub<>R_SUBD)) then
  2056. message(asmw_e_16bit_not_supported);
  2057. {$ifdef OPTEA}
  2058. { make single reg base }
  2059. if (br=NR_NO) and (s=1) then
  2060. begin
  2061. br:=ir;
  2062. ir:=NR_NO;
  2063. end;
  2064. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  2065. if (br=NR_NO) and
  2066. (((s=2) and (ir<>NR_ESP)) or
  2067. (s=3) or (s=5) or (s=9)) then
  2068. begin
  2069. br:=ir;
  2070. dec(s);
  2071. end;
  2072. { swap ESP into base if scalefactor is 1 }
  2073. if (s=1) and (ir=NR_ESP) then
  2074. begin
  2075. ir:=br;
  2076. br:=NR_ESP;
  2077. end;
  2078. {$endif OPTEA}
  2079. { wrong, for various reasons }
  2080. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  2081. exit;
  2082. { base }
  2083. case br of
  2084. NR_EAX : base:=0;
  2085. NR_ECX : base:=1;
  2086. NR_EDX : base:=2;
  2087. NR_EBX : base:=3;
  2088. NR_ESP : base:=4;
  2089. NR_NO,
  2090. NR_EBP : base:=5;
  2091. NR_ESI : base:=6;
  2092. NR_EDI : base:=7;
  2093. else
  2094. exit;
  2095. end;
  2096. { index }
  2097. case ir of
  2098. NR_EAX,
  2099. NR_XMM0,
  2100. NR_YMM0: index:=0;
  2101. NR_ECX,
  2102. NR_XMM1,
  2103. NR_YMM1: index:=1;
  2104. NR_EDX,
  2105. NR_XMM2,
  2106. NR_YMM2: index:=2;
  2107. NR_EBX,
  2108. NR_XMM3,
  2109. NR_YMM3: index:=3;
  2110. NR_NO,
  2111. NR_XMM4,
  2112. NR_YMM4: index:=4;
  2113. NR_EBP,
  2114. NR_XMM5,
  2115. NR_YMM5: index:=5;
  2116. NR_ESI,
  2117. NR_XMM6,
  2118. NR_YMM6: index:=6;
  2119. NR_EDI,
  2120. NR_XMM7,
  2121. NR_YMM7: index:=7;
  2122. else
  2123. exit;
  2124. end;
  2125. case s of
  2126. 0,
  2127. 1 : scalefactor:=0;
  2128. 2 : scalefactor:=1;
  2129. 4 : scalefactor:=2;
  2130. 8 : scalefactor:=3;
  2131. else
  2132. exit;
  2133. end;
  2134. if (br=NR_NO) or
  2135. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  2136. md:=0
  2137. else
  2138. if ((o>=-128) and (o<=127) and (sym=nil)) then
  2139. md:=1
  2140. else
  2141. md:=2;
  2142. if (br=NR_NO) or (md=2) then
  2143. output.bytes:=4
  2144. else
  2145. output.bytes:=md;
  2146. { SIB needed ? }
  2147. if (ir=NR_NO) and (br<>NR_ESP) then
  2148. begin
  2149. output.sib_present:=false;
  2150. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  2151. end
  2152. else
  2153. begin
  2154. output.sib_present:=true;
  2155. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
  2156. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  2157. end;
  2158. end;
  2159. if output.sib_present then
  2160. output.size:=2+output.bytes
  2161. else
  2162. output.size:=1+output.bytes;
  2163. result:=true;
  2164. end;
  2165. procedure maybe_swap_index_base(var br,ir:Tregister);
  2166. var
  2167. tmpreg: Tregister;
  2168. begin
  2169. if ((br=NR_NO) or (br=NR_SI) or (br=NR_DI)) and
  2170. ((ir=NR_NO) or (ir=NR_BP) or (ir=NR_BX)) then
  2171. begin
  2172. tmpreg:=br;
  2173. br:=ir;
  2174. ir:=tmpreg;
  2175. end;
  2176. end;
  2177. function process_ea_ref_16(const input:toper;out output:ea;rfield:longint):boolean;
  2178. var
  2179. sym : tasmsymbol;
  2180. md,s,rv : byte;
  2181. base,
  2182. o : longint;
  2183. ir,br : Tregister;
  2184. isub,bsub : tsubregister;
  2185. begin
  2186. result:=false;
  2187. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  2188. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  2189. internalerror(200301081);
  2190. ir:=input.ref^.index;
  2191. br:=input.ref^.base;
  2192. isub:=getsubreg(ir);
  2193. bsub:=getsubreg(br);
  2194. s:=input.ref^.scalefactor;
  2195. o:=input.ref^.offset;
  2196. sym:=input.ref^.symbol;
  2197. { it's a direct address }
  2198. if (br=NR_NO) and (ir=NR_NO) then
  2199. begin
  2200. { it's a pure offset }
  2201. output.bytes:=2;
  2202. output.modrm:=6 or (rfield shl 3);
  2203. end
  2204. else
  2205. { it's an indirection }
  2206. begin
  2207. { 32 bit address? }
  2208. if ((ir<>NR_NO) and (isub<>R_SUBW)) or
  2209. ((br<>NR_NO) and (bsub<>R_SUBW)) then
  2210. message(asmw_e_32bit_not_supported);
  2211. { scalefactor can only be 1 in 16-bit addresses }
  2212. if (s<>1) and (ir<>NR_NO) then
  2213. exit;
  2214. maybe_swap_index_base(br,ir);
  2215. if (br=NR_BX) and (ir=NR_SI) then
  2216. base:=0
  2217. else if (br=NR_BX) and (ir=NR_DI) then
  2218. base:=1
  2219. else if (br=NR_BP) and (ir=NR_SI) then
  2220. base:=2
  2221. else if (br=NR_BP) and (ir=NR_DI) then
  2222. base:=3
  2223. else if (br=NR_NO) and (ir=NR_SI) then
  2224. base:=4
  2225. else if (br=NR_NO) and (ir=NR_DI) then
  2226. base:=5
  2227. else if (br=NR_BP) and (ir=NR_NO) then
  2228. base:=6
  2229. else if (br=NR_BX) and (ir=NR_NO) then
  2230. base:=7
  2231. else
  2232. exit;
  2233. if (base<>6) and (o=0) and (sym=nil) then
  2234. md:=0
  2235. else if ((o>=-128) and (o<=127) and (sym=nil)) then
  2236. md:=1
  2237. else
  2238. md:=2;
  2239. output.bytes:=md;
  2240. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  2241. end;
  2242. output.size:=1+output.bytes;
  2243. output.sib_present:=false;
  2244. result:=true;
  2245. end;
  2246. {$endif}
  2247. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  2248. var
  2249. rv : byte;
  2250. begin
  2251. result:=false;
  2252. fillchar(output,sizeof(output),0);
  2253. {Register ?}
  2254. if (input.typ=top_reg) then
  2255. begin
  2256. rv:=regval(input.reg);
  2257. output.modrm:=$c0 or (rfield shl 3) or rv;
  2258. output.size:=1;
  2259. {$ifdef x86_64}
  2260. output.rex:=output.rex or (rexbits(input.reg) and $F1);
  2261. {$endif x86_64}
  2262. result:=true;
  2263. exit;
  2264. end;
  2265. {No register, so memory reference.}
  2266. if input.typ<>top_ref then
  2267. internalerror(200409263);
  2268. {$if defined(x86_64)}
  2269. result:=process_ea_ref_64_32(input,output,rfield);
  2270. {$elseif defined(i386) or defined(i8086)}
  2271. if is_16_bit_ref(input.ref^) then
  2272. result:=process_ea_ref_16(input,output,rfield)
  2273. else
  2274. result:=process_ea_ref_32(input,output,rfield);
  2275. {$endif}
  2276. end;
  2277. function taicpu.calcsize(p:PInsEntry):shortint;
  2278. var
  2279. codes : pchar;
  2280. c : byte;
  2281. len : shortint;
  2282. ea_data : ea;
  2283. exists_vex: boolean;
  2284. exists_vex_extension: boolean;
  2285. exists_prefix_66: boolean;
  2286. exists_prefix_F2: boolean;
  2287. exists_prefix_F3: boolean;
  2288. {$ifdef x86_64}
  2289. omit_rexw : boolean;
  2290. {$endif x86_64}
  2291. begin
  2292. len:=0;
  2293. codes:=@p^.code[0];
  2294. exists_vex := false;
  2295. exists_vex_extension := false;
  2296. exists_prefix_66 := false;
  2297. exists_prefix_F2 := false;
  2298. exists_prefix_F3 := false;
  2299. {$ifdef x86_64}
  2300. rex:=0;
  2301. omit_rexw:=false;
  2302. {$endif x86_64}
  2303. repeat
  2304. c:=ord(codes^);
  2305. inc(codes);
  2306. case c of
  2307. &0 :
  2308. break;
  2309. &1,&2,&3 :
  2310. begin
  2311. inc(codes,c);
  2312. inc(len,c);
  2313. end;
  2314. &10,&11,&12 :
  2315. begin
  2316. {$ifdef x86_64}
  2317. rex:=rex or (rexbits(oper[c-&10]^.reg) and $F1);
  2318. {$endif x86_64}
  2319. inc(codes);
  2320. inc(len);
  2321. end;
  2322. &13,&23 :
  2323. begin
  2324. inc(codes);
  2325. inc(len);
  2326. end;
  2327. &4,&5,&6,&7 :
  2328. begin
  2329. if opsize={$ifdef i8086}S_L{$else}S_W{$endif} then
  2330. inc(len,2)
  2331. else
  2332. inc(len);
  2333. end;
  2334. &14,&15,&16,
  2335. &20,&21,&22,
  2336. &24,&25,&26,&27,
  2337. &50,&51,&52 :
  2338. inc(len);
  2339. &30,&31,&32,
  2340. &37,
  2341. &60,&61,&62 :
  2342. inc(len,2);
  2343. &34,&35,&36:
  2344. begin
  2345. {$ifdef i8086}
  2346. inc(len,2);
  2347. {$else i8086}
  2348. if opsize=S_Q then
  2349. inc(len,8)
  2350. else
  2351. inc(len,4);
  2352. {$endif i8086}
  2353. end;
  2354. &44,&45,&46:
  2355. inc(len,sizeof(pint));
  2356. &54,&55,&56:
  2357. inc(len,8);
  2358. &40,&41,&42,
  2359. &70,&71,&72,
  2360. &254,&255,&256 :
  2361. inc(len,4);
  2362. &64,&65,&66:
  2363. {$ifdef i8086}
  2364. inc(len,2);
  2365. {$else i8086}
  2366. inc(len,4);
  2367. {$endif i8086}
  2368. &74,&75,&76,&77: ; // ignore vex-coded operand-idx
  2369. &320,&321,&322 :
  2370. begin
  2371. case (oper[c-&320]^.ot and OT_SIZE_MASK) of
  2372. {$if defined(i386) or defined(x86_64)}
  2373. OT_BITS16 :
  2374. {$elseif defined(i8086)}
  2375. OT_BITS32 :
  2376. {$endif}
  2377. inc(len);
  2378. {$ifdef x86_64}
  2379. OT_BITS64:
  2380. begin
  2381. rex:=rex or $48;
  2382. end;
  2383. {$endif x86_64}
  2384. end;
  2385. end;
  2386. &310 :
  2387. {$if defined(x86_64)}
  2388. { every insentry with code 0310 must be marked with NOX86_64 }
  2389. InternalError(2011051301);
  2390. {$elseif defined(i386)}
  2391. inc(len);
  2392. {$elseif defined(i8086)}
  2393. {nothing};
  2394. {$endif}
  2395. &311 :
  2396. {$if defined(x86_64) or defined(i8086)}
  2397. inc(len)
  2398. {$endif x86_64 or i8086}
  2399. ;
  2400. &324 :
  2401. {$ifndef i8086}
  2402. inc(len)
  2403. {$endif not i8086}
  2404. ;
  2405. &326 :
  2406. begin
  2407. {$ifdef x86_64}
  2408. rex:=rex or $48;
  2409. {$endif x86_64}
  2410. end;
  2411. &312,
  2412. &323,
  2413. &327,
  2414. &331,&332: ;
  2415. &325:
  2416. {$ifdef i8086}
  2417. inc(len)
  2418. {$endif i8086}
  2419. ;
  2420. &333:
  2421. begin
  2422. inc(len);
  2423. exists_prefix_F2 := true;
  2424. end;
  2425. &334:
  2426. begin
  2427. inc(len);
  2428. exists_prefix_F3 := true;
  2429. end;
  2430. &361:
  2431. begin
  2432. {$ifndef i8086}
  2433. inc(len);
  2434. exists_prefix_66 := true;
  2435. {$endif not i8086}
  2436. end;
  2437. &335:
  2438. {$ifdef x86_64}
  2439. omit_rexw:=true
  2440. {$endif x86_64}
  2441. ;
  2442. &100..&227 :
  2443. begin
  2444. {$ifdef x86_64}
  2445. if (c<&177) then
  2446. begin
  2447. if (oper[c and 7]^.typ=top_reg) then
  2448. begin
  2449. rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
  2450. end;
  2451. end;
  2452. {$endif x86_64}
  2453. if not process_ea(oper[(c shr 3) and 7]^, ea_data, 0) then
  2454. Message(asmw_e_invalid_effective_address)
  2455. else
  2456. inc(len,ea_data.size);
  2457. {$ifdef x86_64}
  2458. rex:=rex or ea_data.rex;
  2459. {$endif x86_64}
  2460. end;
  2461. &362: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
  2462. // =>> DEFAULT = 2 Bytes
  2463. begin
  2464. if not(exists_vex) then
  2465. begin
  2466. inc(len, 2);
  2467. exists_vex := true;
  2468. end;
  2469. end;
  2470. &363: // REX.W = 1
  2471. // =>> VEX prefix length = 3
  2472. begin
  2473. if not(exists_vex_extension) then
  2474. begin
  2475. inc(len);
  2476. exists_vex_extension := true;
  2477. end;
  2478. end;
  2479. &364: ; // VEX length bit
  2480. &366, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
  2481. &367: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
  2482. &370: // VEX-Extension prefix $0F
  2483. // ignore for calculating length
  2484. ;
  2485. &371, // VEX-Extension prefix $0F38
  2486. &372: // VEX-Extension prefix $0F3A
  2487. begin
  2488. if not(exists_vex_extension) then
  2489. begin
  2490. inc(len);
  2491. exists_vex_extension := true;
  2492. end;
  2493. end;
  2494. &300,&301,&302:
  2495. begin
  2496. {$if defined(x86_64) or defined(i8086)}
  2497. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2498. inc(len);
  2499. {$endif x86_64 or i8086}
  2500. end;
  2501. else
  2502. InternalError(200603141);
  2503. end;
  2504. until false;
  2505. {$ifdef x86_64}
  2506. if ((rex and $80)<>0) and ((rex and $4F)<>0) then
  2507. Message(asmw_e_bad_reg_with_rex);
  2508. rex:=rex and $4F; { reset extra bits in upper nibble }
  2509. if omit_rexw then
  2510. begin
  2511. if rex=$48 then { remove rex entirely? }
  2512. rex:=0
  2513. else
  2514. rex:=rex and $F7;
  2515. end;
  2516. if not(exists_vex) then
  2517. begin
  2518. if rex<>0 then
  2519. Inc(len);
  2520. end;
  2521. {$endif}
  2522. if exists_vex then
  2523. begin
  2524. if exists_prefix_66 then dec(len);
  2525. if exists_prefix_F2 then dec(len);
  2526. if exists_prefix_F3 then dec(len);
  2527. {$ifdef x86_64}
  2528. if not(exists_vex_extension) then
  2529. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  2530. {$endif x86_64}
  2531. end;
  2532. calcsize:=len;
  2533. end;
  2534. procedure taicpu.write0x66prefix(objdata:TObjData);
  2535. const
  2536. b66: Byte=$66;
  2537. begin
  2538. {$ifdef i8086}
  2539. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  2540. Message(asmw_e_instruction_not_supported_by_cpu);
  2541. {$endif i8086}
  2542. objdata.writebytes(b66,1);
  2543. end;
  2544. procedure taicpu.write0x67prefix(objdata:TObjData);
  2545. const
  2546. b67: Byte=$67;
  2547. begin
  2548. {$ifdef i8086}
  2549. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  2550. Message(asmw_e_instruction_not_supported_by_cpu);
  2551. {$endif i8086}
  2552. objdata.writebytes(b67,1);
  2553. end;
  2554. procedure taicpu.GenCode(objdata:TObjData);
  2555. {
  2556. * the actual codes (C syntax, i.e. octal):
  2557. * \0 - terminates the code. (Unless it's a literal of course.)
  2558. * \1, \2, \3 - that many literal bytes follow in the code stream
  2559. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  2560. * (POP is never used for CS) depending on operand 0
  2561. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  2562. * on operand 0
  2563. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  2564. * to the register value of operand 0, 1 or 2
  2565. * \13 - a literal byte follows in the code stream, to be added
  2566. * to the condition code value of the instruction.
  2567. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  2568. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  2569. * \23 - a literal byte follows in the code stream, to be added
  2570. * to the inverted condition code value of the instruction
  2571. * (inverted version of \13).
  2572. * \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
  2573. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  2574. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  2575. * assembly mode or the address-size override on the operand
  2576. * \37 - a word constant, from the _segment_ part of operand 0
  2577. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  2578. * \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
  2579. on the address size of instruction
  2580. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  2581. * \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
  2582. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  2583. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  2584. * assembly mode or the address-size override on the operand
  2585. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  2586. * \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
  2587. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  2588. * field the register value of operand b.
  2589. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  2590. * field equal to digit b.
  2591. * \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
  2592. * \300,\301,\302 - might be an 0x67, depending on the address size of
  2593. * the memory reference in operand x.
  2594. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  2595. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  2596. * \312 - (disassembler only) invalid with non-default address size.
  2597. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  2598. * size of operand x.
  2599. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  2600. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  2601. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  2602. * \327 - indicates that this instruction is only valid when the
  2603. * operand size is the default (instruction to disassembler,
  2604. * generates no code in the assembler)
  2605. * \331 - instruction not valid with REP prefix. Hint for
  2606. * disassembler only; for SSE instructions.
  2607. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  2608. * \333 - 0xF3 prefix for SSE instructions
  2609. * \334 - 0xF2 prefix for SSE instructions
  2610. * \335 - Indicates 64-bit operand size with REX.W not necessary
  2611. * \361 - 0x66 prefix for SSE instructions
  2612. * \362 - VEX prefix for AVX instructions
  2613. * \363 - VEX W1
  2614. * \364 - VEX Vector length 256
  2615. * \366 - operand 2 (ymmreg) encoded in bit 4-7 of the immediate byte
  2616. * \367 - operand 3 (ymmreg) encoded in bit 4-7 of the immediate byte
  2617. * \370 - VEX 0F-FLAG
  2618. * \371 - VEX 0F38-FLAG
  2619. * \372 - VEX 0F3A-FLAG
  2620. }
  2621. var
  2622. {$ifdef i8086}
  2623. currval : longint;
  2624. {$else i8086}
  2625. currval : aint;
  2626. {$endif i8086}
  2627. currsym : tobjsymbol;
  2628. currrelreloc,
  2629. currabsreloc,
  2630. currabsreloc32 : TObjRelocationType;
  2631. {$ifdef x86_64}
  2632. rexwritten : boolean;
  2633. {$endif x86_64}
  2634. procedure getvalsym(opidx:longint);
  2635. begin
  2636. case oper[opidx]^.typ of
  2637. top_ref :
  2638. begin
  2639. currval:=oper[opidx]^.ref^.offset;
  2640. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  2641. {$ifdef i8086}
  2642. if oper[opidx]^.ref^.refaddr=addr_seg then
  2643. begin
  2644. currrelreloc:=RELOC_SEGREL;
  2645. currabsreloc:=RELOC_SEG;
  2646. currabsreloc32:=RELOC_SEG;
  2647. end
  2648. else if oper[opidx]^.ref^.refaddr=addr_dgroup then
  2649. begin
  2650. currrelreloc:=RELOC_DGROUPREL;
  2651. currabsreloc:=RELOC_DGROUP;
  2652. currabsreloc32:=RELOC_DGROUP;
  2653. end
  2654. else if oper[opidx]^.ref^.refaddr=addr_fardataseg then
  2655. begin
  2656. currrelreloc:=RELOC_FARDATASEGREL;
  2657. currabsreloc:=RELOC_FARDATASEG;
  2658. currabsreloc32:=RELOC_FARDATASEG;
  2659. end
  2660. else
  2661. {$endif i8086}
  2662. {$ifdef i386}
  2663. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2664. (tf_pic_uses_got in target_info.flags) then
  2665. begin
  2666. currrelreloc:=RELOC_PLT32;
  2667. currabsreloc:=RELOC_GOT32;
  2668. currabsreloc32:=RELOC_GOT32;
  2669. end
  2670. else
  2671. {$endif i386}
  2672. {$ifdef x86_64}
  2673. if oper[opidx]^.ref^.refaddr=addr_pic then
  2674. begin
  2675. currrelreloc:=RELOC_PLT32;
  2676. currabsreloc:=RELOC_GOTPCREL;
  2677. currabsreloc32:=RELOC_GOTPCREL;
  2678. end
  2679. else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
  2680. begin
  2681. currrelreloc:=RELOC_RELATIVE;
  2682. currabsreloc:=RELOC_RELATIVE;
  2683. currabsreloc32:=RELOC_RELATIVE;
  2684. end
  2685. else
  2686. {$endif x86_64}
  2687. begin
  2688. currrelreloc:=RELOC_RELATIVE;
  2689. currabsreloc:=RELOC_ABSOLUTE;
  2690. currabsreloc32:=RELOC_ABSOLUTE32;
  2691. end;
  2692. end;
  2693. top_const :
  2694. begin
  2695. {$ifdef i8086}
  2696. currval:=longint(oper[opidx]^.val);
  2697. {$else i8086}
  2698. currval:=aint(oper[opidx]^.val);
  2699. {$endif i8086}
  2700. currsym:=nil;
  2701. currabsreloc:=RELOC_ABSOLUTE;
  2702. currabsreloc32:=RELOC_ABSOLUTE32;
  2703. end;
  2704. else
  2705. Message(asmw_e_immediate_or_reference_expected);
  2706. end;
  2707. end;
  2708. {$ifdef x86_64}
  2709. procedure maybewriterex;
  2710. begin
  2711. if (rex<>0) and not(rexwritten) then
  2712. begin
  2713. rexwritten:=true;
  2714. objdata.writebytes(rex,1);
  2715. end;
  2716. end;
  2717. {$endif x86_64}
  2718. procedure objdata_writereloc(Data:TRelocDataInt;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
  2719. begin
  2720. {$ifdef i386}
  2721. { Special case of '_GLOBAL_OFFSET_TABLE_'
  2722. which needs a special relocation type R_386_GOTPC }
  2723. if assigned (p) and
  2724. (p.name='_GLOBAL_OFFSET_TABLE_') and
  2725. (tf_pic_uses_got in target_info.flags) then
  2726. begin
  2727. { nothing else than a 4 byte relocation should occur
  2728. for GOT }
  2729. if len<>4 then
  2730. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  2731. Reloctype:=RELOC_GOTPC;
  2732. { We need to add the offset of the relocation
  2733. of _GLOBAL_OFFSET_TABLE symbol within
  2734. the current instruction }
  2735. inc(data,objdata.currobjsec.size-insoffset);
  2736. end;
  2737. {$endif i386}
  2738. objdata.writereloc(data,len,p,Reloctype);
  2739. end;
  2740. const
  2741. CondVal:array[TAsmCond] of byte=($0,
  2742. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  2743. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  2744. $0, $A, $A, $B, $8, $4);
  2745. var
  2746. c : byte;
  2747. pb : pbyte;
  2748. codes : pchar;
  2749. bytes : array[0..3] of byte;
  2750. rfield,
  2751. data,s,opidx : longint;
  2752. ea_data : ea;
  2753. relsym : TObjSymbol;
  2754. needed_VEX_Extension: boolean;
  2755. needed_VEX: boolean;
  2756. opmode: integer;
  2757. VEXvvvv: byte;
  2758. VEXmmmmm: byte;
  2759. begin
  2760. { safety check }
  2761. if objdata.currobjsec.size<>longword(insoffset) then
  2762. internalerror(200130121);
  2763. { those variables are initialized inside local procedures, the dfa cannot handle this yet }
  2764. currsym:=nil;
  2765. currabsreloc:=RELOC_NONE;
  2766. currabsreloc32:=RELOC_NONE;
  2767. currrelreloc:=RELOC_NONE;
  2768. currval:=0;
  2769. { check instruction's processor level }
  2770. { todo: maybe adapt and enable this code for i386 and x86_64 as well }
  2771. {$ifdef i8086}
  2772. if objdata.CPUType<>cpu_none then
  2773. begin
  2774. if IF_8086 in insentry^.flags then
  2775. else if IF_186 in insentry^.flags then
  2776. begin
  2777. if objdata.CPUType<cpu_186 then
  2778. Message(asmw_e_instruction_not_supported_by_cpu);
  2779. end
  2780. else if IF_286 in insentry^.flags then
  2781. begin
  2782. if objdata.CPUType<cpu_286 then
  2783. Message(asmw_e_instruction_not_supported_by_cpu);
  2784. end
  2785. else if IF_386 in insentry^.flags then
  2786. begin
  2787. if objdata.CPUType<cpu_386 then
  2788. Message(asmw_e_instruction_not_supported_by_cpu);
  2789. end
  2790. else if IF_486 in insentry^.flags then
  2791. begin
  2792. if objdata.CPUType<cpu_486 then
  2793. Message(asmw_e_instruction_not_supported_by_cpu);
  2794. end
  2795. else if IF_PENT in insentry^.flags then
  2796. begin
  2797. if objdata.CPUType<cpu_Pentium then
  2798. Message(asmw_e_instruction_not_supported_by_cpu);
  2799. end
  2800. else if IF_P6 in insentry^.flags then
  2801. begin
  2802. if objdata.CPUType<cpu_Pentium2 then
  2803. Message(asmw_e_instruction_not_supported_by_cpu);
  2804. end
  2805. else if IF_KATMAI in insentry^.flags then
  2806. begin
  2807. if objdata.CPUType<cpu_Pentium3 then
  2808. Message(asmw_e_instruction_not_supported_by_cpu);
  2809. end
  2810. else if insentry^.flags*[IF_WILLAMETTE,IF_PRESCOTT]<>[] then
  2811. begin
  2812. if objdata.CPUType<cpu_Pentium4 then
  2813. Message(asmw_e_instruction_not_supported_by_cpu);
  2814. end
  2815. else if IF_NEC in insentry^.flags then
  2816. begin
  2817. { the NEC V20/V30 extensions are incompatible with 386+, due to overlapping opcodes }
  2818. if objdata.CPUType>=cpu_386 then
  2819. Message(asmw_e_instruction_not_supported_by_cpu);
  2820. end
  2821. else if IF_SANDYBRIDGE in insentry^.flags then
  2822. begin
  2823. { todo: handle these properly }
  2824. end;
  2825. end;
  2826. {$endif i8086}
  2827. { load data to write }
  2828. codes:=insentry^.code;
  2829. {$ifdef x86_64}
  2830. rexwritten:=false;
  2831. {$endif x86_64}
  2832. { Force word push/pop for registers }
  2833. if (opsize={$ifdef i8086}S_L{$else}S_W{$endif}) and ((codes[0]=#4) or (codes[0]=#6) or
  2834. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  2835. write0x66prefix(objdata);
  2836. // needed VEX Prefix (for AVX etc.)
  2837. needed_VEX := false;
  2838. needed_VEX_Extension := false;
  2839. opmode := -1;
  2840. VEXvvvv := 0;
  2841. VEXmmmmm := 0;
  2842. repeat
  2843. c:=ord(codes^);
  2844. inc(codes);
  2845. case c of
  2846. &0: break;
  2847. &1,
  2848. &2,
  2849. &3: inc(codes,c);
  2850. &74: opmode := 0;
  2851. &75: opmode := 1;
  2852. &76: opmode := 2;
  2853. &333: VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
  2854. &334: VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
  2855. &361: VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
  2856. &362: needed_VEX := true;
  2857. &363: begin
  2858. needed_VEX_Extension := true;
  2859. VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
  2860. end;
  2861. &364: VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
  2862. &370: VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
  2863. &371: begin
  2864. needed_VEX_Extension := true;
  2865. VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
  2866. end;
  2867. &372: begin
  2868. needed_VEX_Extension := true;
  2869. VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
  2870. end;
  2871. end;
  2872. until false;
  2873. if needed_VEX then
  2874. begin
  2875. if (opmode > ops) or
  2876. (opmode < -1) then
  2877. begin
  2878. Internalerror(777100);
  2879. end
  2880. else if opmode = -1 then
  2881. begin
  2882. VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
  2883. end
  2884. else if oper[opmode]^.typ = top_reg then
  2885. begin
  2886. VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
  2887. {$ifdef x86_64}
  2888. if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
  2889. {$else}
  2890. VEXvvvv := VEXvvvv or (1 shl 6);
  2891. {$endif x86_64}
  2892. end
  2893. else Internalerror(777101);
  2894. if not(needed_VEX_Extension) then
  2895. begin
  2896. {$ifdef x86_64}
  2897. if rex and $0B <> 0 then needed_VEX_Extension := true;
  2898. {$endif x86_64}
  2899. end;
  2900. if needed_VEX_Extension then
  2901. begin
  2902. // VEX-Prefix-Length = 3 Bytes
  2903. {$ifdef x86_64}
  2904. VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
  2905. VEXvvvv := VEXvvvv or ((rex and $08) shl 7); // set REX.w
  2906. {$else}
  2907. VEXmmmmm := VEXmmmmm or (7 shl 5); //
  2908. {$endif x86_64}
  2909. bytes[0]:=$C4;
  2910. bytes[1]:=VEXmmmmm;
  2911. bytes[2]:=VEXvvvv;
  2912. objdata.writebytes(bytes,3);
  2913. end
  2914. else
  2915. begin
  2916. // VEX-Prefix-Length = 2 Bytes
  2917. {$ifdef x86_64}
  2918. if rex and $04 = 0 then
  2919. {$endif x86_64}
  2920. begin
  2921. VEXvvvv := VEXvvvv or (1 shl 7);
  2922. end;
  2923. bytes[0]:=$C5;
  2924. bytes[1]:=VEXvvvv;
  2925. objdata.writebytes(bytes,2);
  2926. end;
  2927. end
  2928. else
  2929. begin
  2930. needed_VEX_Extension := false;
  2931. opmode := -1;
  2932. end;
  2933. { load data to write }
  2934. codes:=insentry^.code;
  2935. repeat
  2936. c:=ord(codes^);
  2937. inc(codes);
  2938. case c of
  2939. &0 :
  2940. break;
  2941. &1,&2,&3 :
  2942. begin
  2943. {$ifdef x86_64}
  2944. if not(needed_VEX) then // TG
  2945. maybewriterex;
  2946. {$endif x86_64}
  2947. objdata.writebytes(codes^,c);
  2948. inc(codes,c);
  2949. end;
  2950. &4,&6 :
  2951. begin
  2952. case oper[0]^.reg of
  2953. NR_CS:
  2954. bytes[0]:=$e;
  2955. NR_NO,
  2956. NR_DS:
  2957. bytes[0]:=$1e;
  2958. NR_ES:
  2959. bytes[0]:=$6;
  2960. NR_SS:
  2961. bytes[0]:=$16;
  2962. else
  2963. internalerror(777004);
  2964. end;
  2965. if c=&4 then
  2966. inc(bytes[0]);
  2967. objdata.writebytes(bytes,1);
  2968. end;
  2969. &5,&7 :
  2970. begin
  2971. case oper[0]^.reg of
  2972. NR_FS:
  2973. bytes[0]:=$a0;
  2974. NR_GS:
  2975. bytes[0]:=$a8;
  2976. else
  2977. internalerror(777005);
  2978. end;
  2979. if c=&5 then
  2980. inc(bytes[0]);
  2981. objdata.writebytes(bytes,1);
  2982. end;
  2983. &10,&11,&12 :
  2984. begin
  2985. {$ifdef x86_64}
  2986. if not(needed_VEX) then // TG
  2987. maybewriterex;
  2988. {$endif x86_64}
  2989. bytes[0]:=ord(codes^)+regval(oper[c-&10]^.reg);
  2990. inc(codes);
  2991. objdata.writebytes(bytes,1);
  2992. end;
  2993. &13 :
  2994. begin
  2995. bytes[0]:=ord(codes^)+condval[condition];
  2996. inc(codes);
  2997. objdata.writebytes(bytes,1);
  2998. end;
  2999. &14,&15,&16 :
  3000. begin
  3001. getvalsym(c-&14);
  3002. if (currval<-128) or (currval>127) then
  3003. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  3004. if assigned(currsym) then
  3005. objdata_writereloc(currval,1,currsym,currabsreloc)
  3006. else
  3007. objdata.writebytes(currval,1);
  3008. end;
  3009. &20,&21,&22 :
  3010. begin
  3011. getvalsym(c-&20);
  3012. if (currval<-256) or (currval>255) then
  3013. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  3014. if assigned(currsym) then
  3015. objdata_writereloc(currval,1,currsym,currabsreloc)
  3016. else
  3017. objdata.writebytes(currval,1);
  3018. end;
  3019. &23 :
  3020. begin
  3021. bytes[0]:=ord(codes^)+condval[inverse_cond(condition)];
  3022. inc(codes);
  3023. objdata.writebytes(bytes,1);
  3024. end;
  3025. &24,&25,&26,&27 :
  3026. begin
  3027. getvalsym(c-&24);
  3028. if IF_IMM3 in insentry^.flags then
  3029. begin
  3030. if (currval<0) or (currval>7) then
  3031. Message2(asmw_e_value_exceeds_bounds,'unsigned triad',tostr(currval));
  3032. end
  3033. else if IF_IMM4 in insentry^.flags then
  3034. begin
  3035. if (currval<0) or (currval>15) then
  3036. Message2(asmw_e_value_exceeds_bounds,'unsigned nibble',tostr(currval));
  3037. end
  3038. else
  3039. if (currval<0) or (currval>255) then
  3040. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  3041. if assigned(currsym) then
  3042. objdata_writereloc(currval,1,currsym,currabsreloc)
  3043. else
  3044. objdata.writebytes(currval,1);
  3045. end;
  3046. &30,&31,&32 : // 030..032
  3047. begin
  3048. getvalsym(c-&30);
  3049. {$ifndef i8086}
  3050. { currval is an aint so this cannot happen on i8086 and causes only a warning }
  3051. if (currval<-65536) or (currval>65535) then
  3052. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  3053. {$endif i8086}
  3054. if assigned(currsym)
  3055. {$ifdef i8086}
  3056. or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
  3057. {$endif i8086}
  3058. then
  3059. objdata_writereloc(currval,2,currsym,currabsreloc)
  3060. else
  3061. objdata.writebytes(currval,2);
  3062. end;
  3063. &34,&35,&36 : // 034..036
  3064. { !!! These are intended (and used in opcode table) to select depending
  3065. on address size, *not* operand size. Works by coincidence only. }
  3066. begin
  3067. getvalsym(c-&34);
  3068. {$ifdef i8086}
  3069. if assigned(currsym) then
  3070. objdata_writereloc(currval,2,currsym,currabsreloc)
  3071. else
  3072. objdata.writebytes(currval,2);
  3073. {$else i8086}
  3074. if opsize=S_Q then
  3075. begin
  3076. if assigned(currsym) then
  3077. objdata_writereloc(currval,8,currsym,currabsreloc)
  3078. else
  3079. objdata.writebytes(currval,8);
  3080. end
  3081. else
  3082. begin
  3083. if assigned(currsym) then
  3084. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3085. else
  3086. objdata.writebytes(currval,4);
  3087. end
  3088. {$endif i8086}
  3089. end;
  3090. &40,&41,&42 : // 040..042
  3091. begin
  3092. getvalsym(c-&40);
  3093. if assigned(currsym)
  3094. {$ifdef i8086}
  3095. or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
  3096. {$endif i8086}
  3097. then
  3098. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3099. else
  3100. objdata.writebytes(currval,4);
  3101. end;
  3102. &44,&45,&46 :// 044..046 - select between word/dword/qword depending on
  3103. begin // address size (we support only default address sizes).
  3104. getvalsym(c-&44);
  3105. {$if defined(x86_64)}
  3106. if assigned(currsym) then
  3107. objdata_writereloc(currval,8,currsym,currabsreloc)
  3108. else
  3109. objdata.writebytes(currval,8);
  3110. {$elseif defined(i386)}
  3111. if assigned(currsym) then
  3112. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3113. else
  3114. objdata.writebytes(currval,4);
  3115. {$elseif defined(i8086)}
  3116. if assigned(currsym) then
  3117. objdata_writereloc(currval,2,currsym,currabsreloc)
  3118. else
  3119. objdata.writebytes(currval,2);
  3120. {$endif}
  3121. end;
  3122. &50,&51,&52 : // 050..052 - byte relative operand
  3123. begin
  3124. getvalsym(c-&50);
  3125. data:=currval-insend;
  3126. {$push}
  3127. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  3128. if assigned(currsym) then
  3129. inc(data,currsym.address);
  3130. {$pop}
  3131. if (data>127) or (data<-128) then
  3132. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  3133. objdata.writebytes(data,1);
  3134. end;
  3135. &54,&55,&56: // 054..056 - qword immediate operand
  3136. begin
  3137. getvalsym(c-&54);
  3138. if assigned(currsym) then
  3139. objdata_writereloc(currval,8,currsym,currabsreloc)
  3140. else
  3141. objdata.writebytes(currval,8);
  3142. end;
  3143. &60,&61,&62 :
  3144. begin
  3145. getvalsym(c-&60);
  3146. {$ifdef i8086}
  3147. if assigned(currsym) then
  3148. objdata_writereloc(currval,2,currsym,currrelreloc)
  3149. else
  3150. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  3151. {$else i8086}
  3152. InternalError(777006);
  3153. {$endif i8086}
  3154. end;
  3155. &64,&65,&66 : // 064..066 - select between 16/32 address mode, but we support only 32 (only 16 on i8086)
  3156. begin
  3157. getvalsym(c-&64);
  3158. {$ifdef i8086}
  3159. if assigned(currsym) then
  3160. objdata_writereloc(currval,2,currsym,currrelreloc)
  3161. else
  3162. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  3163. {$else i8086}
  3164. if assigned(currsym) then
  3165. objdata_writereloc(currval,4,currsym,currrelreloc)
  3166. else
  3167. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  3168. {$endif i8086}
  3169. end;
  3170. &70,&71,&72 : // 070..072 - long relative operand
  3171. begin
  3172. getvalsym(c-&70);
  3173. if assigned(currsym) then
  3174. objdata_writereloc(currval,4,currsym,currrelreloc)
  3175. else
  3176. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  3177. end;
  3178. &74,&75,&76 : ; // 074..076 - vex-coded vector operand
  3179. // ignore
  3180. &254,&255,&256 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
  3181. begin
  3182. getvalsym(c-&254);
  3183. {$ifdef x86_64}
  3184. { for i386 as aint type is longint the
  3185. following test is useless }
  3186. if (currval<low(longint)) or (currval>high(longint)) then
  3187. Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
  3188. {$endif x86_64}
  3189. if assigned(currsym) then
  3190. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3191. else
  3192. objdata.writebytes(currval,4);
  3193. end;
  3194. &300,&301,&302:
  3195. begin
  3196. {$if defined(x86_64) or defined(i8086)}
  3197. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  3198. write0x67prefix(objdata);
  3199. {$endif x86_64 or i8086}
  3200. end;
  3201. &310 : { fixed 16-bit addr }
  3202. {$if defined(x86_64)}
  3203. { every insentry having code 0310 must be marked with NOX86_64 }
  3204. InternalError(2011051302);
  3205. {$elseif defined(i386)}
  3206. write0x67prefix(objdata);
  3207. {$elseif defined(i8086)}
  3208. {nothing};
  3209. {$endif}
  3210. &311 : { fixed 32-bit addr }
  3211. {$if defined(x86_64) or defined(i8086)}
  3212. write0x67prefix(objdata)
  3213. {$endif x86_64 or i8086}
  3214. ;
  3215. &320,&321,&322 :
  3216. begin
  3217. case oper[c-&320]^.ot and OT_SIZE_MASK of
  3218. {$if defined(i386) or defined(x86_64)}
  3219. OT_BITS16 :
  3220. {$elseif defined(i8086)}
  3221. OT_BITS32 :
  3222. {$endif}
  3223. write0x66prefix(objdata);
  3224. {$ifndef x86_64}
  3225. OT_BITS64 :
  3226. Message(asmw_e_64bit_not_supported);
  3227. {$endif x86_64}
  3228. end;
  3229. end;
  3230. &323 : {no action needed};
  3231. &325:
  3232. {$ifdef i8086}
  3233. write0x66prefix(objdata);
  3234. {$else i8086}
  3235. {no action needed};
  3236. {$endif i8086}
  3237. &324,
  3238. &361:
  3239. begin
  3240. {$ifndef i8086}
  3241. if not(needed_VEX) then
  3242. write0x66prefix(objdata);
  3243. {$endif not i8086}
  3244. end;
  3245. &326 :
  3246. begin
  3247. {$ifndef x86_64}
  3248. Message(asmw_e_64bit_not_supported);
  3249. {$endif x86_64}
  3250. end;
  3251. &333 :
  3252. begin
  3253. if not(needed_VEX) then
  3254. begin
  3255. bytes[0]:=$f3;
  3256. objdata.writebytes(bytes,1);
  3257. end;
  3258. end;
  3259. &334 :
  3260. begin
  3261. if not(needed_VEX) then
  3262. begin
  3263. bytes[0]:=$f2;
  3264. objdata.writebytes(bytes,1);
  3265. end;
  3266. end;
  3267. &335:
  3268. ;
  3269. &312,
  3270. &327,
  3271. &331,&332 :
  3272. begin
  3273. { these are dissambler hints or 32 bit prefixes which
  3274. are not needed }
  3275. end;
  3276. &362..&364: ; // VEX flags =>> nothing todo
  3277. &366, &367:
  3278. begin
  3279. opidx:=c-&364; { 0366->operand 2, 0367->operand 3 }
  3280. if needed_VEX and
  3281. (ops=4) and
  3282. (oper[opidx]^.typ=top_reg) and
  3283. (oper[opidx]^.ot and (otf_reg_xmm or otf_reg_ymm)<>0) then
  3284. begin
  3285. bytes[0] := ((getsupreg(oper[opidx]^.reg) and 15) shl 4);
  3286. objdata.writebytes(bytes,1);
  3287. end
  3288. else
  3289. Internalerror(2014032001);
  3290. end;
  3291. &370..&372: ; // VEX flags =>> nothing todo
  3292. &37:
  3293. begin
  3294. {$ifdef i8086}
  3295. if assigned(currsym) then
  3296. objdata_writereloc(0,2,currsym,RELOC_SEG)
  3297. else
  3298. InternalError(2015041503);
  3299. {$else i8086}
  3300. InternalError(777006);
  3301. {$endif i8086}
  3302. end;
  3303. else
  3304. begin
  3305. { rex should be written at this point }
  3306. {$ifdef x86_64}
  3307. if not(needed_VEX) then // TG
  3308. if (rex<>0) and not(rexwritten) then
  3309. internalerror(200603191);
  3310. {$endif x86_64}
  3311. if (c>=&100) and (c<=&227) then // 0100..0227
  3312. begin
  3313. if (c<&177) then // 0177
  3314. begin
  3315. if (oper[c and 7]^.typ=top_reg) then
  3316. rfield:=regval(oper[c and 7]^.reg)
  3317. else
  3318. rfield:=regval(oper[c and 7]^.ref^.base);
  3319. end
  3320. else
  3321. rfield:=c and 7;
  3322. opidx:=(c shr 3) and 7;
  3323. if not process_ea(oper[opidx]^,ea_data,rfield) then
  3324. Message(asmw_e_invalid_effective_address);
  3325. pb:=@bytes[0];
  3326. pb^:=ea_data.modrm;
  3327. inc(pb);
  3328. if ea_data.sib_present then
  3329. begin
  3330. pb^:=ea_data.sib;
  3331. inc(pb);
  3332. end;
  3333. s:=pb-@bytes[0];
  3334. objdata.writebytes(bytes,s);
  3335. case ea_data.bytes of
  3336. 0 : ;
  3337. 1 :
  3338. begin
  3339. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  3340. begin
  3341. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  3342. {$ifdef i386}
  3343. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3344. (tf_pic_uses_got in target_info.flags) then
  3345. currabsreloc:=RELOC_GOT32
  3346. else
  3347. {$endif i386}
  3348. {$ifdef x86_64}
  3349. if oper[opidx]^.ref^.refaddr=addr_pic then
  3350. currabsreloc:=RELOC_GOTPCREL
  3351. else
  3352. {$endif x86_64}
  3353. currabsreloc:=RELOC_ABSOLUTE;
  3354. objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  3355. end
  3356. else
  3357. begin
  3358. bytes[0]:=oper[opidx]^.ref^.offset;
  3359. objdata.writebytes(bytes,1);
  3360. end;
  3361. inc(s);
  3362. end;
  3363. 2,4 :
  3364. begin
  3365. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  3366. currval:=oper[opidx]^.ref^.offset;
  3367. {$ifdef x86_64}
  3368. if oper[opidx]^.ref^.refaddr=addr_pic then
  3369. currabsreloc:=RELOC_GOTPCREL
  3370. else
  3371. if oper[opidx]^.ref^.base=NR_RIP then
  3372. begin
  3373. currabsreloc:=RELOC_RELATIVE;
  3374. { Adjust reloc value by number of bytes following the displacement,
  3375. but not if displacement is specified by literal constant }
  3376. if Assigned(currsym) then
  3377. Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
  3378. end
  3379. else
  3380. {$endif x86_64}
  3381. {$ifdef i386}
  3382. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3383. (tf_pic_uses_got in target_info.flags) then
  3384. currabsreloc:=RELOC_GOT32
  3385. else
  3386. {$endif i386}
  3387. {$ifdef i8086}
  3388. if ea_data.bytes=2 then
  3389. currabsreloc:=RELOC_ABSOLUTE
  3390. else
  3391. {$endif i8086}
  3392. currabsreloc:=RELOC_ABSOLUTE32;
  3393. if (currabsreloc in [RELOC_ABSOLUTE32{$ifdef i8086},RELOC_ABSOLUTE{$endif}]) and
  3394. (Assigned(oper[opidx]^.ref^.relsymbol)) then
  3395. begin
  3396. relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
  3397. if relsym.objsection=objdata.CurrObjSec then
  3398. begin
  3399. currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
  3400. {$ifdef i8086}
  3401. if ea_data.bytes=4 then
  3402. currabsreloc:=RELOC_RELATIVE32
  3403. else
  3404. {$endif i8086}
  3405. currabsreloc:=RELOC_RELATIVE;
  3406. end
  3407. else
  3408. begin
  3409. currabsreloc:=RELOC_PIC_PAIR;
  3410. currval:=relsym.offset;
  3411. end;
  3412. end;
  3413. objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
  3414. inc(s,ea_data.bytes);
  3415. end;
  3416. end;
  3417. end
  3418. else
  3419. InternalError(777007);
  3420. end;
  3421. end;
  3422. until false;
  3423. end;
  3424. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  3425. begin
  3426. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  3427. (regtype = R_INTREGISTER) and
  3428. (ops=2) and
  3429. (oper[0]^.typ=top_reg) and
  3430. (oper[1]^.typ=top_reg) and
  3431. (oper[0]^.reg=oper[1]^.reg)
  3432. ) or
  3433. (((opcode=A_MOVSS) or (opcode=A_MOVSD) or (opcode=A_MOVQ) or
  3434. (opcode=A_MOVAPS) or (opcode=A_MOVAPD) or
  3435. (opcode=A_VMOVSS) or (opcode=A_VMOVSD) or (opcode=A_VMOVQ) or
  3436. (opcode=A_VMOVAPS) or (opcode=A_VMOVAPD)) and
  3437. (regtype = R_MMREGISTER) and
  3438. (ops=2) and
  3439. (oper[0]^.typ=top_reg) and
  3440. (oper[1]^.typ=top_reg) and
  3441. (oper[0]^.reg=oper[1]^.reg)
  3442. );
  3443. end;
  3444. procedure build_spilling_operation_type_table;
  3445. var
  3446. opcode : tasmop;
  3447. i : integer;
  3448. begin
  3449. new(operation_type_table);
  3450. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  3451. for opcode:=low(tasmop) to high(tasmop) do
  3452. with InsProp[opcode] do
  3453. begin
  3454. if Ch_Rop1 in Ch then
  3455. operation_type_table^[opcode,0]:=operand_read;
  3456. if Ch_Wop1 in Ch then
  3457. operation_type_table^[opcode,0]:=operand_write;
  3458. if [Ch_RWop1,Ch_Mop1]*Ch<>[] then
  3459. operation_type_table^[opcode,0]:=operand_readwrite;
  3460. if Ch_Rop2 in Ch then
  3461. operation_type_table^[opcode,1]:=operand_read;
  3462. if Ch_Wop2 in Ch then
  3463. operation_type_table^[opcode,1]:=operand_write;
  3464. if [Ch_RWop2,Ch_Mop2]*Ch<>[] then
  3465. operation_type_table^[opcode,1]:=operand_readwrite;
  3466. if Ch_Rop3 in Ch then
  3467. operation_type_table^[opcode,2]:=operand_read;
  3468. if Ch_Wop3 in Ch then
  3469. operation_type_table^[opcode,2]:=operand_write;
  3470. if [Ch_RWop3,Ch_Mop3]*Ch<>[] then
  3471. operation_type_table^[opcode,2]:=operand_readwrite;
  3472. if Ch_Rop4 in Ch then
  3473. operation_type_table^[opcode,3]:=operand_read;
  3474. if Ch_Wop4 in Ch then
  3475. operation_type_table^[opcode,3]:=operand_write;
  3476. if [Ch_RWop4,Ch_Mop4]*Ch<>[] then
  3477. operation_type_table^[opcode,3]:=operand_readwrite;
  3478. end;
  3479. end;
  3480. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  3481. begin
  3482. { the information in the instruction table is made for the string copy
  3483. operation MOVSD so hack here (FK)
  3484. VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
  3485. so fix it here (FK)
  3486. }
  3487. if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
  3488. begin
  3489. case opnr of
  3490. 0:
  3491. result:=operand_read;
  3492. 1:
  3493. result:=operand_write;
  3494. else
  3495. internalerror(200506055);
  3496. end
  3497. end
  3498. { IMUL has 1, 2 and 3-operand forms }
  3499. else if opcode=A_IMUL then
  3500. begin
  3501. case ops of
  3502. 1:
  3503. if opnr=0 then
  3504. result:=operand_read
  3505. else
  3506. internalerror(2014011802);
  3507. 2:
  3508. begin
  3509. case opnr of
  3510. 0:
  3511. result:=operand_read;
  3512. 1:
  3513. result:=operand_readwrite;
  3514. else
  3515. internalerror(2014011803);
  3516. end;
  3517. end;
  3518. 3:
  3519. begin
  3520. case opnr of
  3521. 0,1:
  3522. result:=operand_read;
  3523. 2:
  3524. result:=operand_write;
  3525. else
  3526. internalerror(2014011804);
  3527. end;
  3528. end;
  3529. else
  3530. internalerror(2014011805);
  3531. end;
  3532. end
  3533. else
  3534. result:=operation_type_table^[opcode,opnr];
  3535. end;
  3536. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  3537. var
  3538. tmpref: treference;
  3539. begin
  3540. tmpref:=ref;
  3541. {$ifdef i8086}
  3542. if tmpref.segment=NR_SS then
  3543. tmpref.segment:=NR_NO;
  3544. {$endif i8086}
  3545. case getregtype(r) of
  3546. R_INTREGISTER :
  3547. begin
  3548. if getsubreg(r)=R_SUBH then
  3549. inc(tmpref.offset);
  3550. { we don't need special code here for 32 bit loads on x86_64, since
  3551. those will automatically zero-extend the upper 32 bits. }
  3552. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
  3553. end;
  3554. R_MMREGISTER :
  3555. if current_settings.fputype in fpu_avx_instructionsets then
  3556. case getsubreg(r) of
  3557. R_SUBMMD:
  3558. result:=taicpu.op_ref_reg(A_VMOVSD,S_NO,tmpref,r);
  3559. R_SUBMMS:
  3560. result:=taicpu.op_ref_reg(A_VMOVSS,S_NO,tmpref,r);
  3561. R_SUBQ,
  3562. R_SUBMMWHOLE:
  3563. result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
  3564. else
  3565. internalerror(200506043);
  3566. end
  3567. else
  3568. case getsubreg(r) of
  3569. R_SUBMMD:
  3570. result:=taicpu.op_ref_reg(A_MOVSD,S_NO,tmpref,r);
  3571. R_SUBMMS:
  3572. result:=taicpu.op_ref_reg(A_MOVSS,S_NO,tmpref,r);
  3573. R_SUBQ,
  3574. R_SUBMMWHOLE:
  3575. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
  3576. else
  3577. internalerror(200506043);
  3578. end;
  3579. else
  3580. internalerror(200401041);
  3581. end;
  3582. end;
  3583. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  3584. var
  3585. size: topsize;
  3586. tmpref: treference;
  3587. begin
  3588. tmpref:=ref;
  3589. {$ifdef i8086}
  3590. if tmpref.segment=NR_SS then
  3591. tmpref.segment:=NR_NO;
  3592. {$endif i8086}
  3593. case getregtype(r) of
  3594. R_INTREGISTER :
  3595. begin
  3596. if getsubreg(r)=R_SUBH then
  3597. inc(tmpref.offset);
  3598. size:=reg2opsize(r);
  3599. {$ifdef x86_64}
  3600. { even if it's a 32 bit reg, we still have to spill 64 bits
  3601. because we often perform 64 bit operations on them }
  3602. if (size=S_L) then
  3603. begin
  3604. size:=S_Q;
  3605. r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
  3606. end;
  3607. {$endif x86_64}
  3608. result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
  3609. end;
  3610. R_MMREGISTER :
  3611. if current_settings.fputype in fpu_avx_instructionsets then
  3612. case getsubreg(r) of
  3613. R_SUBMMD:
  3614. result:=taicpu.op_reg_ref(A_VMOVSD,S_NO,r,tmpref);
  3615. R_SUBMMS:
  3616. result:=taicpu.op_reg_ref(A_VMOVSS,S_NO,r,tmpref);
  3617. R_SUBQ,
  3618. R_SUBMMWHOLE:
  3619. result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
  3620. else
  3621. internalerror(200506042);
  3622. end
  3623. else
  3624. case getsubreg(r) of
  3625. R_SUBMMD:
  3626. result:=taicpu.op_reg_ref(A_MOVSD,S_NO,r,tmpref);
  3627. R_SUBMMS:
  3628. result:=taicpu.op_reg_ref(A_MOVSS,S_NO,r,tmpref);
  3629. R_SUBQ,
  3630. R_SUBMMWHOLE:
  3631. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
  3632. else
  3633. internalerror(200506042);
  3634. end;
  3635. else
  3636. internalerror(200401041);
  3637. end;
  3638. end;
  3639. {$ifdef i8086}
  3640. procedure taicpu.loadsegsymbol(opidx:longint;s:tasmsymbol);
  3641. var
  3642. r: treference;
  3643. begin
  3644. reference_reset_symbol(r,s,0,1,[]);
  3645. r.refaddr:=addr_seg;
  3646. loadref(opidx,r);
  3647. end;
  3648. {$endif i8086}
  3649. {*****************************************************************************
  3650. Instruction table
  3651. *****************************************************************************}
  3652. procedure BuildInsTabCache;
  3653. var
  3654. i : longint;
  3655. begin
  3656. new(instabcache);
  3657. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  3658. i:=0;
  3659. while (i<InsTabEntries) do
  3660. begin
  3661. if InsTabCache^[InsTab[i].OPcode]=-1 then
  3662. InsTabCache^[InsTab[i].OPcode]:=i;
  3663. inc(i);
  3664. end;
  3665. end;
  3666. procedure BuildInsTabMemRefSizeInfoCache;
  3667. var
  3668. AsmOp: TasmOp;
  3669. i,j: longint;
  3670. insentry : PInsEntry;
  3671. MRefInfo: TMemRefSizeInfo;
  3672. SConstInfo: TConstSizeInfo;
  3673. actRegSize: int64;
  3674. actMemSize: int64;
  3675. actConstSize: int64;
  3676. actRegCount: integer;
  3677. actMemCount: integer;
  3678. actConstCount: integer;
  3679. actRegTypes : int64;
  3680. actRegMemTypes: int64;
  3681. NewRegSize: int64;
  3682. actVMemCount : integer;
  3683. actVMemTypes : int64;
  3684. RegMMXSizeMask: int64;
  3685. RegXMMSizeMask: int64;
  3686. RegYMMSizeMask: int64;
  3687. bitcount: integer;
  3688. function bitcnt(aValue: int64): integer;
  3689. var
  3690. i: integer;
  3691. begin
  3692. result := 0;
  3693. for i := 0 to 63 do
  3694. begin
  3695. if (aValue mod 2) = 1 then
  3696. begin
  3697. inc(result);
  3698. end;
  3699. aValue := aValue shr 1;
  3700. end;
  3701. end;
  3702. begin
  3703. new(InsTabMemRefSizeInfoCache);
  3704. FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
  3705. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3706. begin
  3707. i := InsTabCache^[AsmOp];
  3708. if i >= 0 then
  3709. begin
  3710. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3711. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3712. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
  3713. insentry:=@instab[i];
  3714. RegMMXSizeMask := 0;
  3715. RegXMMSizeMask := 0;
  3716. RegYMMSizeMask := 0;
  3717. while (insentry^.opcode=AsmOp) do
  3718. begin
  3719. MRefInfo := msiUnkown;
  3720. actRegSize := 0;
  3721. actRegCount := 0;
  3722. actRegTypes := 0;
  3723. NewRegSize := 0;
  3724. actMemSize := 0;
  3725. actMemCount := 0;
  3726. actRegMemTypes := 0;
  3727. actVMemCount := 0;
  3728. actVMemTypes := 0;
  3729. actConstSize := 0;
  3730. actConstCount := 0;
  3731. for j := 0 to insentry^.ops -1 do
  3732. begin
  3733. if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
  3734. ((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
  3735. ((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
  3736. ((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) then
  3737. begin
  3738. inc(actVMemCount);
  3739. case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64) of
  3740. OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
  3741. OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
  3742. OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
  3743. OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
  3744. else InternalError(777206);
  3745. end;
  3746. end
  3747. else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
  3748. begin
  3749. inc(actRegCount);
  3750. NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
  3751. if NewRegSize = 0 then
  3752. begin
  3753. case insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG) of
  3754. OT_MMXREG: begin
  3755. NewRegSize := OT_BITS64;
  3756. end;
  3757. OT_XMMREG: begin
  3758. NewRegSize := OT_BITS128;
  3759. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3760. end;
  3761. OT_YMMREG: begin
  3762. NewRegSize := OT_BITS256;
  3763. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3764. end;
  3765. else NewRegSize := not(0);
  3766. end;
  3767. end;
  3768. actRegSize := actRegSize or NewRegSize;
  3769. actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG));
  3770. end
  3771. else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
  3772. begin
  3773. inc(actMemCount);
  3774. actMemSize:=actMemSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3775. if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
  3776. begin
  3777. actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
  3778. end;
  3779. end
  3780. else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
  3781. begin
  3782. inc(actConstCount);
  3783. actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3784. end
  3785. end;
  3786. if actConstCount > 0 then
  3787. begin
  3788. case actConstSize of
  3789. 0: SConstInfo := csiNoSize;
  3790. OT_BITS8: SConstInfo := csiMem8;
  3791. OT_BITS16: SConstInfo := csiMem16;
  3792. OT_BITS32: SConstInfo := csiMem32;
  3793. OT_BITS64: SConstInfo := csiMem64;
  3794. else SConstInfo := csiMultiple;
  3795. end;
  3796. if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnkown then
  3797. begin
  3798. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
  3799. end
  3800. else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
  3801. begin
  3802. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
  3803. end;
  3804. end;
  3805. if actVMemCount > 0 then
  3806. begin
  3807. if actVMemCount = 1 then
  3808. begin
  3809. if actVMemTypes > 0 then
  3810. begin
  3811. case actVMemTypes of
  3812. OT_XMEM32: MRefInfo := msiXMem32;
  3813. OT_XMEM64: MRefInfo := msiXMem64;
  3814. OT_YMEM32: MRefInfo := msiYMem32;
  3815. OT_YMEM64: MRefInfo := msiYMem64;
  3816. else InternalError(777208);
  3817. end;
  3818. case actRegTypes of
  3819. OT_XMMREG: case MRefInfo of
  3820. msiXMem32,
  3821. msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
  3822. msiYMem32,
  3823. msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
  3824. else InternalError(777210);
  3825. end;
  3826. OT_YMMREG: case MRefInfo of
  3827. msiXMem32,
  3828. msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
  3829. msiYMem32,
  3830. msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
  3831. else InternalError(777211);
  3832. end;
  3833. //else InternalError(777209);
  3834. end;
  3835. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3836. begin
  3837. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3838. end
  3839. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3840. begin
  3841. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64] then
  3842. begin
  3843. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
  3844. end
  3845. else InternalError(777212);
  3846. end;
  3847. end;
  3848. end
  3849. else InternalError(777207);
  3850. end
  3851. else
  3852. begin
  3853. if (actMemCount=2) and ((AsmOp=A_MOVS) or (AsmOp=A_CMPS)) then
  3854. actMemCount:=1;
  3855. case actMemCount of
  3856. 0: ; // nothing todo
  3857. 1: begin
  3858. MRefInfo := msiUnkown;
  3859. case actRegMemTypes and (OT_MMXRM OR OT_XMMRM OR OT_YMMRM) of
  3860. OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
  3861. OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
  3862. OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
  3863. end;
  3864. case actMemSize of
  3865. 0: MRefInfo := msiNoSize;
  3866. OT_BITS8: MRefInfo := msiMem8;
  3867. OT_BITS16: MRefInfo := msiMem16;
  3868. OT_BITS32: MRefInfo := msiMem32;
  3869. OT_BITS64: MRefInfo := msiMem64;
  3870. OT_BITS128: MRefInfo := msiMem128;
  3871. OT_BITS256: MRefInfo := msiMem256;
  3872. OT_BITS80,
  3873. OT_FAR,
  3874. OT_NEAR,
  3875. OT_SHORT: ; // ignore
  3876. else
  3877. begin
  3878. bitcount := bitcnt(actMemSize);
  3879. if bitcount > 1 then MRefInfo := msiMultiple
  3880. else InternalError(777203);
  3881. end;
  3882. end;
  3883. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3884. begin
  3885. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3886. end
  3887. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3888. begin
  3889. with InsTabMemRefSizeInfoCache^[AsmOp] do
  3890. begin
  3891. if ((MemRefSize = msiMem8) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultiple8
  3892. else if ((MemRefSize = msiMem16) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultiple16
  3893. else if ((MemRefSize = msiMem32) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultiple32
  3894. else if ((MemRefSize = msiMem64) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultiple64
  3895. else if ((MemRefSize = msiMem128) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultiple128
  3896. else if ((MemRefSize = msiMem256) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultiple256
  3897. else MemRefSize := msiMultiple;
  3898. end;
  3899. end;
  3900. if actRegCount > 0 then
  3901. begin
  3902. case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG) of
  3903. OT_MMXREG: RegMMXSizeMask := RegMMXSizeMask or actMemSize;
  3904. OT_XMMREG: RegXMMSizeMask := RegXMMSizeMask or actMemSize;
  3905. OT_YMMREG: RegYMMSizeMask := RegYMMSizeMask or actMemSize;
  3906. else begin
  3907. RegMMXSizeMask := not(0);
  3908. RegXMMSizeMask := not(0);
  3909. RegYMMSizeMask := not(0);
  3910. end;
  3911. end;
  3912. end;
  3913. end;
  3914. else InternalError(777202);
  3915. end;
  3916. end;
  3917. inc(insentry);
  3918. end;
  3919. if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
  3920. (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
  3921. begin
  3922. case RegXMMSizeMask of
  3923. OT_BITS16: case RegYMMSizeMask of
  3924. OT_BITS32: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
  3925. end;
  3926. OT_BITS32: case RegYMMSizeMask of
  3927. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
  3928. end;
  3929. OT_BITS64: case RegYMMSizeMask of
  3930. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3931. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
  3932. end;
  3933. OT_BITS128: begin
  3934. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
  3935. begin
  3936. // vector-memory-operand AVX2 (e.g. VGATHER..)
  3937. case RegYMMSizeMask of
  3938. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
  3939. end;
  3940. end
  3941. else if RegMMXSizeMask = 0 then
  3942. begin
  3943. case RegYMMSizeMask of
  3944. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3945. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3946. end;
  3947. end
  3948. else if RegYMMSizeMask = 0 then
  3949. begin
  3950. case RegMMXSizeMask of
  3951. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3952. end;
  3953. end
  3954. else InternalError(777205);
  3955. end;
  3956. end;
  3957. end;
  3958. end;
  3959. end;
  3960. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3961. begin
  3962. // only supported intructiones with SSE- or AVX-operands
  3963. if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
  3964. begin
  3965. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3966. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3967. end;
  3968. end;
  3969. end;
  3970. procedure InitAsm;
  3971. begin
  3972. build_spilling_operation_type_table;
  3973. if not assigned(instabcache) then
  3974. BuildInsTabCache;
  3975. if not assigned(InsTabMemRefSizeInfoCache) then
  3976. BuildInsTabMemRefSizeInfoCache;
  3977. end;
  3978. procedure DoneAsm;
  3979. begin
  3980. if assigned(operation_type_table) then
  3981. begin
  3982. dispose(operation_type_table);
  3983. operation_type_table:=nil;
  3984. end;
  3985. if assigned(instabcache) then
  3986. begin
  3987. dispose(instabcache);
  3988. instabcache:=nil;
  3989. end;
  3990. if assigned(InsTabMemRefSizeInfoCache) then
  3991. begin
  3992. dispose(InsTabMemRefSizeInfoCache);
  3993. InsTabMemRefSizeInfoCache:=nil;
  3994. end;
  3995. end;
  3996. begin
  3997. cai_align:=tai_align;
  3998. cai_cpu:=taicpu;
  3999. end.