cpubase.pas 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the i8086, i386 and x86-64 architecture
  4. * This code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. {# Base unit for processor information. This unit contains
  21. enumerations of registers, opcodes, sizes, and other
  22. such things which are processor specific.
  23. }
  24. unit cpubase;
  25. {$i fpcdefs.inc}
  26. interface
  27. uses
  28. globals,
  29. cgbase
  30. ;
  31. {*****************************************************************************
  32. Assembler Opcodes
  33. *****************************************************************************}
  34. type
  35. {$if defined(x86_64)}
  36. TAsmOp={$i x8664op.inc}
  37. {$elseif defined(i386)}
  38. TAsmOp={$i i386op.inc}
  39. {$elseif defined(i8086)}
  40. TAsmOp={$i i8086op.inc}
  41. {$endif}
  42. { This should define the array of instructions as string }
  43. op2strtable=array[tasmop] of string[16];
  44. {$ifdef i8086}
  45. ImmInt = SmallInt;
  46. {$else i8086}
  47. ImmInt = Longint;
  48. {$endif i8086}
  49. const
  50. { First value of opcode enumeration }
  51. firstop = low(tasmop);
  52. { Last value of opcode enumeration }
  53. lastop = high(tasmop);
  54. {*****************************************************************************
  55. Registers
  56. *****************************************************************************}
  57. const
  58. { Integer Super registers }
  59. RS_NO = $ffffffff;
  60. RS_RAX = $00; {EAX}
  61. RS_RCX = $01; {ECX}
  62. RS_RDX = $02; {EDX}
  63. RS_RBX = $03; {EBX}
  64. RS_RSI = $04; {ESI}
  65. RS_RDI = $05; {EDI}
  66. RS_RBP = $06; {EBP}
  67. RS_RSP = $07; {ESP}
  68. RS_R8 = $08; {R8}
  69. RS_R9 = $09; {R9}
  70. RS_R10 = $0a; {R10}
  71. RS_R11 = $0b; {R11}
  72. RS_R12 = $0c; {R12}
  73. RS_R13 = $0d; {R13}
  74. RS_R14 = $0e; {R14}
  75. RS_R15 = $0f; {R15}
  76. { create aliases to allow code sharing between x86-64 and i386 }
  77. RS_EAX = RS_RAX;
  78. RS_EBX = RS_RBX;
  79. RS_ECX = RS_RCX;
  80. RS_EDX = RS_RDX;
  81. RS_ESI = RS_RSI;
  82. RS_EDI = RS_RDI;
  83. RS_EBP = RS_RBP;
  84. RS_ESP = RS_RSP;
  85. { create aliases to allow code sharing between i386 and i8086 }
  86. RS_AX = RS_RAX;
  87. RS_BX = RS_RBX;
  88. RS_CX = RS_RCX;
  89. RS_DX = RS_RDX;
  90. RS_SI = RS_RSI;
  91. RS_DI = RS_RDI;
  92. RS_BP = RS_RBP;
  93. RS_SP = RS_RSP;
  94. { Number of first imaginary register }
  95. first_int_imreg = $10;
  96. { Float Super registers }
  97. RS_ST0 = $00;
  98. RS_ST1 = $01;
  99. RS_ST2 = $02;
  100. RS_ST3 = $03;
  101. RS_ST4 = $04;
  102. RS_ST5 = $05;
  103. RS_ST6 = $06;
  104. RS_ST7 = $07;
  105. RS_ST = $08;
  106. { Number of first imaginary register }
  107. first_fpu_imreg = $09;
  108. { MM Super registers }
  109. RS_XMM0 = $00;
  110. RS_XMM1 = $01;
  111. RS_XMM2 = $02;
  112. RS_XMM3 = $03;
  113. RS_XMM4 = $04;
  114. RS_XMM5 = $05;
  115. RS_XMM6 = $06;
  116. RS_XMM7 = $07;
  117. RS_XMM8 = $08;
  118. RS_XMM9 = $09;
  119. RS_XMM10 = $0a;
  120. RS_XMM11 = $0b;
  121. RS_XMM12 = $0c;
  122. RS_XMM13 = $0d;
  123. RS_XMM14 = $0e;
  124. RS_XMM15 = $0f;
  125. RS_XMM16 = $10;
  126. RS_XMM17 = $11;
  127. RS_XMM18 = $12;
  128. RS_XMM19 = $13;
  129. RS_XMM20 = $14;
  130. RS_XMM21 = $15;
  131. RS_XMM22 = $16;
  132. RS_XMM23 = $17;
  133. RS_XMM24 = $18;
  134. RS_XMM25 = $19;
  135. RS_XMM26 = $1a;
  136. RS_XMM27 = $1b;
  137. RS_XMM28 = $1c;
  138. RS_XMM29 = $1d;
  139. RS_XMM30 = $1e;
  140. RS_XMM31 = $1f;
  141. {$if defined(x86_64)}
  142. RS_RFLAGS = $06;
  143. {$elseif defined(i386)}
  144. RS_EFLAGS = $06;
  145. {$elseif defined(i8086)}
  146. RS_FLAGS = $06;
  147. {$endif}
  148. { Number of first imaginary register }
  149. {$ifdef x86_64}
  150. first_mm_imreg = $20;
  151. {$else x86_64}
  152. first_mm_imreg = $08;
  153. {$endif x86_64}
  154. { The subregister that specifies the entire register and an address }
  155. {$if defined(x86_64)}
  156. { Hammer }
  157. R_SUBWHOLE = R_SUBQ;
  158. R_SUBADDR = R_SUBQ;
  159. {$elseif defined(i386)}
  160. { i386 }
  161. R_SUBWHOLE = R_SUBD;
  162. R_SUBADDR = R_SUBD;
  163. {$elseif defined(i8086)}
  164. { i8086 }
  165. R_SUBWHOLE = R_SUBW;
  166. R_SUBADDR = R_SUBW;
  167. {$endif}
  168. { Available Registers }
  169. {$if defined(x86_64)}
  170. {$i r8664con.inc}
  171. {$elseif defined(i386)}
  172. {$i r386con.inc}
  173. {$elseif defined(i8086)}
  174. {$i r8086con.inc}
  175. {$endif}
  176. type
  177. { Number of registers used for indexing in tables }
  178. {$if defined(x86_64)}
  179. tregisterindex=0..{$i r8664nor.inc}-1;
  180. {$elseif defined(i386)}
  181. tregisterindex=0..{$i r386nor.inc}-1;
  182. {$elseif defined(i8086)}
  183. tregisterindex=0..{$i r8086nor.inc}-1;
  184. {$endif}
  185. const
  186. regnumber_table : array[tregisterindex] of tregister = (
  187. {$if defined(x86_64)}
  188. {$i r8664num.inc}
  189. {$elseif defined(i386)}
  190. {$i r386num.inc}
  191. {$elseif defined(i8086)}
  192. {$i r8086num.inc}
  193. {$endif}
  194. );
  195. regstabs_table : array[tregisterindex] of shortint = (
  196. {$if defined(x86_64)}
  197. {$i r8664stab.inc}
  198. {$elseif defined(i386)}
  199. {$i r386stab.inc}
  200. {$elseif defined(i8086)}
  201. {$i r8086stab.inc}
  202. {$endif}
  203. );
  204. regdwarf_table : array[tregisterindex] of shortint = (
  205. {$if defined(x86_64)}
  206. {$i r8664dwrf.inc}
  207. {$elseif defined(i386)}
  208. {$i r386dwrf.inc}
  209. {$elseif defined(i8086)}
  210. {$i r8086dwrf.inc}
  211. {$endif}
  212. );
  213. {$if defined(x86_64)}
  214. RS_DEFAULTFLAGS = RS_RFLAGS;
  215. NR_DEFAULTFLAGS = NR_RFLAGS;
  216. {$elseif defined(i386)}
  217. RS_DEFAULTFLAGS = RS_EFLAGS;
  218. NR_DEFAULTFLAGS = NR_EFLAGS;
  219. {$elseif defined(i8086)}
  220. RS_DEFAULTFLAGS = RS_FLAGS;
  221. NR_DEFAULTFLAGS = NR_FLAGS;
  222. {$endif}
  223. {*****************************************************************************
  224. Conditions
  225. *****************************************************************************}
  226. type
  227. TAsmCond=(C_None,
  228. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  229. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  230. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  231. );
  232. const
  233. cond2str:array[TAsmCond] of string[3]=('',
  234. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  235. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  236. 'ns','nz','o','p','pe','po','s','z'
  237. );
  238. {*****************************************************************************
  239. Flags
  240. *****************************************************************************}
  241. type
  242. TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
  243. F_A,F_AE,F_B,F_BE,
  244. F_S,F_NS,F_O,F_NO,
  245. { For IEEE-compliant floating-point compares,
  246. same as normal counterparts but additionally check PF }
  247. F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
  248. const
  249. FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
  250. FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
  251. F_E,F_NE,F_A,F_AE,F_B,F_BE
  252. );
  253. {*****************************************************************************
  254. Constants
  255. *****************************************************************************}
  256. const
  257. { declare aliases }
  258. LOC_SSEREGISTER = LOC_MMREGISTER;
  259. LOC_CSSEREGISTER = LOC_CMMREGISTER;
  260. max_operands = 4;
  261. maxfpuregs = 8;
  262. {*****************************************************************************
  263. CPU Dependent Constants
  264. *****************************************************************************}
  265. {$i cpubase.inc}
  266. const
  267. {$ifdef x86_64}
  268. topsize2memsize: array[topsize] of integer =
  269. (0, 8,16,32,64,8,8,16,8,16,32,
  270. 16,32,64,
  271. 16,32,64,0,0,
  272. 64,
  273. 0,0,0,
  274. 80,
  275. 128,
  276. 256,
  277. 512
  278. );
  279. {$else}
  280. topsize2memsize: array[topsize] of integer =
  281. (0, 8,16,32,64,8,8,16,
  282. 16,32,64,
  283. 16,32,64,0,0,
  284. 64,
  285. 0,0,0,
  286. 80,
  287. 128,
  288. 256,
  289. 512
  290. );
  291. {$endif}
  292. {*****************************************************************************
  293. Helpers
  294. *****************************************************************************}
  295. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  296. function reg2opsize(r:Tregister):topsize;
  297. function reg_cgsize(const reg: tregister): tcgsize;
  298. function is_calljmp(o:tasmop):boolean;
  299. procedure inverse_flags(var f: TResFlags);
  300. function flags_to_cond(const f: TResFlags) : TAsmCond;
  301. function is_segment_reg(r:tregister):boolean;
  302. function findreg_by_number(r:Tregister):tregisterindex;
  303. function std_regnum_search(const s:string):Tregister;
  304. function std_regname(r:Tregister):string;
  305. function dwarf_reg(r:tregister):shortint;
  306. function dwarf_reg_no_error(r:tregister):shortint;
  307. function eh_return_data_regno(nr: longint): longint;
  308. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  309. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  310. { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
  311. function condition_in(const Subset, c: TAsmCond): Boolean;
  312. { checks whether two segment registers are normally equal in the current memory model }
  313. function segment_regs_equal(r1,r2:tregister):boolean;
  314. { checks whether the specified op is an x86 string instruction (e.g. cmpsb, movsd, scasw, etc.) }
  315. function is_x86_string_op(op: TAsmOp): boolean;
  316. { checks whether the specified op is an x86 parameterless string instruction
  317. (e.g. returns true for movsb, cmpsw, etc, but returns false for movs, cmps, etc.) }
  318. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  319. { checks whether the specified op is an x86 parameterized string instruction
  320. (e.g. returns true for movs, cmps, etc, but returns false for movsb, cmpsb, etc.) }
  321. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  322. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  323. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  324. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  325. { returns the 0-based operand number (intel syntax) of the ds:[si] param of
  326. a x86 string instruction }
  327. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  328. { returns the 0-based operand number (intel syntax) of the es:[di] param of
  329. a x86 string instruction }
  330. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  331. {$ifdef i8086}
  332. { return whether we need to add an extra FWAIT instruction before the given
  333. instruction, when we're targeting the i8087. This includes almost all x87
  334. instructions, but certain ones, which always have or have not a built in
  335. FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
  336. function requires_fwait_on_8087(op: TAsmOp): boolean;
  337. {$endif i8086}
  338. function UseAVX: boolean;
  339. function UseAVX512: boolean;
  340. implementation
  341. uses
  342. globtype,
  343. rgbase,verbose,
  344. cpuinfo;
  345. const
  346. {$if defined(x86_64)}
  347. std_regname_table : TRegNameTable = (
  348. {$i r8664std.inc}
  349. );
  350. regnumber_index : array[tregisterindex] of tregisterindex = (
  351. {$i r8664rni.inc}
  352. );
  353. std_regname_index : array[tregisterindex] of tregisterindex = (
  354. {$i r8664sri.inc}
  355. );
  356. {$elseif defined(i386)}
  357. std_regname_table : TRegNameTable = (
  358. {$i r386std.inc}
  359. );
  360. regnumber_index : array[tregisterindex] of tregisterindex = (
  361. {$i r386rni.inc}
  362. );
  363. std_regname_index : array[tregisterindex] of tregisterindex = (
  364. {$i r386sri.inc}
  365. );
  366. {$elseif defined(i8086)}
  367. std_regname_table : TRegNameTable = (
  368. {$i r8086std.inc}
  369. );
  370. regnumber_index : array[tregisterindex] of tregisterindex = (
  371. {$i r8086rni.inc}
  372. );
  373. std_regname_index : array[tregisterindex] of tregisterindex = (
  374. {$i r8086sri.inc}
  375. );
  376. {$endif}
  377. {*****************************************************************************
  378. Helpers
  379. *****************************************************************************}
  380. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  381. begin
  382. case s of
  383. OS_8,OS_S8:
  384. cgsize2subreg:=R_SUBL;
  385. OS_16,OS_S16:
  386. cgsize2subreg:=R_SUBW;
  387. OS_32,OS_S32:
  388. cgsize2subreg:=R_SUBD;
  389. OS_64,OS_S64:
  390. cgsize2subreg:=R_SUBQ;
  391. OS_M64:
  392. cgsize2subreg:=R_SUBNONE;
  393. OS_F32,OS_F64,OS_C64:
  394. case regtype of
  395. R_FPUREGISTER:
  396. cgsize2subreg:=R_SUBWHOLE;
  397. R_MMREGISTER:
  398. case s of
  399. OS_F32:
  400. cgsize2subreg:=R_SUBMMS;
  401. OS_F64:
  402. cgsize2subreg:=R_SUBMMD;
  403. else
  404. internalerror(2009071901);
  405. end;
  406. else
  407. internalerror(2009071902);
  408. end;
  409. OS_M128:
  410. cgsize2subreg:=R_SUBMMX;
  411. OS_M256:
  412. cgsize2subreg:=R_SUBMMY;
  413. OS_M512:
  414. cgsize2subreg:=R_SUBMMZ;
  415. OS_S128,
  416. OS_128,
  417. OS_NO:
  418. { error message should have been thrown already before, so avoid only
  419. an internal error }
  420. cgsize2subreg:=R_SUBNONE;
  421. else
  422. internalerror(200301231);
  423. end;
  424. end;
  425. function reg_cgsize(const reg: tregister): tcgsize;
  426. const subreg2cgsize:array[Tsubregister] of Tcgsize =
  427. (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256,OS_M512,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO);
  428. begin
  429. case getregtype(reg) of
  430. R_INTREGISTER :
  431. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  432. R_FPUREGISTER :
  433. reg_cgsize:=OS_F80;
  434. R_MMXREGISTER:
  435. reg_cgsize:=OS_M64;
  436. R_MMREGISTER:
  437. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  438. R_SPECIALREGISTER :
  439. case reg of
  440. NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
  441. reg_cgsize:=OS_16;
  442. {$ifdef x86_64}
  443. NR_DR0..NR_TR7:
  444. reg_cgsize:=OS_64;
  445. {$endif x86_64}
  446. else
  447. reg_cgsize:=OS_32
  448. end;
  449. R_ADDRESSREGISTER:
  450. case reg of
  451. NR_K0..NR_K7: reg_cgsize:=OS_NO;
  452. else internalerror(2003031801);
  453. end;
  454. else
  455. internalerror(2003031802);
  456. end;
  457. end;
  458. function reg2opsize(r:Tregister):topsize;
  459. const
  460. subreg2opsize : array[tsubregister] of topsize =
  461. (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  462. begin
  463. reg2opsize:=S_L;
  464. case getregtype(r) of
  465. R_INTREGISTER :
  466. reg2opsize:=subreg2opsize[getsubreg(r)];
  467. R_FPUREGISTER :
  468. reg2opsize:=S_FL;
  469. R_MMXREGISTER,
  470. R_MMREGISTER :
  471. reg2opsize:=S_MD;
  472. R_SPECIALREGISTER :
  473. begin
  474. case r of
  475. NR_CS,NR_DS,NR_ES,
  476. NR_SS,NR_FS,NR_GS :
  477. reg2opsize:=S_W;
  478. else
  479. ;
  480. end;
  481. end;
  482. else
  483. internalerror(200303181);
  484. end;
  485. end;
  486. function is_calljmp(o:tasmop):boolean;
  487. begin
  488. case o of
  489. A_CALL,
  490. {$if defined(i386) or defined(i8086)}
  491. A_JCXZ,
  492. {$endif defined(i386) or defined(i8086)}
  493. A_JECXZ,
  494. {$ifdef x86_64}
  495. A_JRCXZ,
  496. {$endif x86_64}
  497. A_JMP,
  498. A_LOOP,
  499. A_LOOPE,
  500. A_LOOPNE,
  501. A_LOOPNZ,
  502. A_LOOPZ,
  503. A_LCALL,
  504. A_LJMP,
  505. A_Jcc :
  506. is_calljmp:=true;
  507. else
  508. is_calljmp:=false;
  509. end;
  510. end;
  511. procedure inverse_flags(var f: TResFlags);
  512. const
  513. inv_flags: array[TResFlags] of TResFlags =
  514. (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
  515. F_BE,F_B,F_AE,F_A,
  516. F_NS,F_S,F_NO,F_O,
  517. F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
  518. begin
  519. f:=inv_flags[f];
  520. end;
  521. function flags_to_cond(const f: TResFlags) : TAsmCond;
  522. const
  523. flags_2_cond : array[TResFlags] of TAsmCond =
  524. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
  525. C_None,C_None,C_None,C_None,C_None,C_None);
  526. begin
  527. result := flags_2_cond[f];
  528. if (result=C_None) then
  529. InternalError(2014041302);
  530. end;
  531. function is_segment_reg(r:tregister):boolean;
  532. begin
  533. case r of
  534. NR_CS,NR_DS,NR_ES,
  535. NR_SS,NR_FS,NR_GS :
  536. result:=true;
  537. else
  538. result:=false;
  539. end;
  540. end;
  541. function findreg_by_number(r:Tregister):tregisterindex;
  542. var
  543. hr : tregister;
  544. begin
  545. { for the name the sub reg doesn't matter }
  546. hr:=r;
  547. if (getregtype(hr)=R_MMREGISTER) and
  548. (getsubreg(hr)<>R_SUBMMY) and
  549. (getsubreg(hr)<>R_SUBMMZ) then
  550. setsubreg(hr,R_SUBMMX);
  551. //// TG TODO check
  552. //if (getregtype(hr)=R_MMREGISTER) then
  553. // case getsubreg(hr) of
  554. // R_SUBMMX: setsubreg(hr,R_SUBMMX);
  555. // R_SUBMMY: setsubreg(hr,R_SUBMMY);
  556. // R_SUBMMZ: setsubreg(hr,R_SUBMMZ);
  557. // else setsubreg(hr,R_SUBMMX);
  558. // end;
  559. result:=findreg_by_number_table(hr,regnumber_index);
  560. end;
  561. function std_regnum_search(const s:string):Tregister;
  562. begin
  563. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  564. end;
  565. function std_regname(r:Tregister):string;
  566. var
  567. p : tregisterindex;
  568. begin
  569. if (getregtype(r)=R_MMXREGISTER) or
  570. ((getregtype(r)=R_MMREGISTER) and not(getsubreg(r) in [R_SUBMMX,R_SUBMMY])) then
  571. r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
  572. p:=findreg_by_number(r);
  573. if p<>0 then
  574. result:=std_regname_table[p]
  575. else
  576. result:=generic_regname(r);
  577. end;
  578. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  579. const
  580. inverse: array[TAsmCond] of TAsmCond=(C_None,
  581. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  582. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  583. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  584. );
  585. begin
  586. result := inverse[c];
  587. end;
  588. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  589. begin
  590. result := c1 = c2;
  591. end;
  592. { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
  593. function condition_in(const Subset, c: TAsmCond): Boolean;
  594. begin
  595. Result := (c = C_None) or conditions_equal(Subset, c);
  596. if not Result then
  597. case Subset of
  598. C_A, C_NBE:
  599. Result := (c in [C_A, C_AE, C_NB, C_NBE]);
  600. C_AE, C_NB:
  601. Result := (c in [C_AE, C_NB]);
  602. C_B, C_NAE:
  603. Result := (c in [C_B, C_BE, C_C, C_NA, C_NAE]);
  604. C_BE, C_NA:
  605. Result := (c in [C_BE, C_NA]);
  606. C_C:
  607. { C_B / C_NAE: CF = 1
  608. C_BE / C_NA: CF = 1 or ZF = 1 }
  609. Result := (c in [C_B, C_BE, C_NA, C_NAE]);
  610. C_E, C_Z:
  611. Result := (c in [C_AE, C_BE, C_E, C_NA, C_NB, C_NG, C_NL]);
  612. C_G, C_NLE:
  613. Result := (c in [C_G, C_GE, C_NL, C_NLE]);
  614. C_GE, C_NL:
  615. Result := (c in [C_GE, C_NL]);
  616. C_L, C_NGE:
  617. Result := (c in [C_L, C_LE, C_NG, C_NGE]);
  618. C_LE, C_NG:
  619. Result := (c in [C_LE, C_NG]);
  620. C_NC:
  621. { C_A / C_NBE: CF = 0 and ZF = 0; not a subset because ZF has to be zero as well
  622. C_AE / C_NB: CF = 0 }
  623. Result := (c in [C_AE, C_NB]);
  624. C_NE, C_NZ:
  625. Result := (c in [C_NE, C_NZ, C_A, C_B, C_NAE,C_NBE,C_L, C_G, C_NLE,C_NGE]);
  626. C_NP, C_PO:
  627. Result := (c in [C_NP, C_PO]);
  628. C_P, C_PE:
  629. Result := (c in [C_P, C_PE]);
  630. else
  631. Result := False;
  632. end;
  633. end;
  634. function dwarf_reg(r:tregister):shortint;
  635. begin
  636. result:=regdwarf_table[findreg_by_number(r)];
  637. if result=-1 then
  638. internalerror(200603251);
  639. end;
  640. function dwarf_reg_no_error(r:tregister):shortint;
  641. begin
  642. result:=regdwarf_table[findreg_by_number(r)];
  643. end;
  644. function eh_return_data_regno(nr: longint): longint;
  645. begin
  646. case nr of
  647. 0: result:=0;
  648. {$ifdef x86_64}
  649. 1: result:=1;
  650. {$else}
  651. 1: result:=2;
  652. {$endif}
  653. else
  654. result:=-1;
  655. end;
  656. end;
  657. function segment_regs_equal(r1, r2: tregister): boolean;
  658. begin
  659. if not is_segment_reg(r1) or not is_segment_reg(r2) then
  660. internalerror(2013062301);
  661. { every segment register is equal to itself }
  662. if r1=r2 then
  663. exit(true);
  664. {$if defined(i8086)}
  665. case current_settings.x86memorymodel of
  666. mm_tiny:
  667. begin
  668. { CS=DS=SS }
  669. if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
  670. ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
  671. exit(true);
  672. { the remaining are distinct from each other }
  673. exit(false);
  674. end;
  675. mm_small,mm_medium:
  676. begin
  677. { DS=SS }
  678. if ((r1=NR_DS) or (r1=NR_SS)) and
  679. ((r2=NR_DS) or (r2=NR_SS)) then
  680. exit(true);
  681. { the remaining are distinct from each other }
  682. exit(false);
  683. end;
  684. mm_compact,mm_large,mm_huge:
  685. { all segment registers are different in these models }
  686. exit(false);
  687. end;
  688. {$elseif defined(i386) or defined(x86_64)}
  689. { DS=SS=ES }
  690. if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
  691. ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
  692. exit(true);
  693. { the remaining are distinct from each other }
  694. exit(false);
  695. {$endif}
  696. end;
  697. function is_x86_string_op(op: TAsmOp): boolean;
  698. begin
  699. case op of
  700. {$ifdef x86_64}
  701. A_MOVSQ,
  702. A_CMPSQ,
  703. A_SCASQ,
  704. A_LODSQ,
  705. A_STOSQ,
  706. {$endif x86_64}
  707. A_MOVSB,A_MOVSW,A_MOVSD,
  708. A_CMPSB,A_CMPSW,A_CMPSD,
  709. A_SCASB,A_SCASW,A_SCASD,
  710. A_LODSB,A_LODSW,A_LODSD,
  711. A_STOSB,A_STOSW,A_STOSD,
  712. A_INSB, A_INSW, A_INSD,
  713. A_OUTSB,A_OUTSW,A_OUTSD,
  714. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  715. result:=true;
  716. else
  717. result:=false;
  718. end;
  719. end;
  720. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  721. begin
  722. case op of
  723. {$ifdef x86_64}
  724. A_MOVSQ,
  725. A_CMPSQ,
  726. A_SCASQ,
  727. A_LODSQ,
  728. A_STOSQ,
  729. {$endif x86_64}
  730. A_MOVSB,A_MOVSW,A_MOVSD,
  731. A_CMPSB,A_CMPSW,A_CMPSD,
  732. A_SCASB,A_SCASW,A_SCASD,
  733. A_LODSB,A_LODSW,A_LODSD,
  734. A_STOSB,A_STOSW,A_STOSD,
  735. A_INSB, A_INSW, A_INSD,
  736. A_OUTSB,A_OUTSW,A_OUTSD:
  737. result:=true;
  738. else
  739. result:=false;
  740. end;
  741. end;
  742. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  743. begin
  744. case op of
  745. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  746. result:=true;
  747. else
  748. result:=false;
  749. end;
  750. end;
  751. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  752. begin
  753. case op of
  754. A_MOVS,A_CMPS,A_INS,A_OUTS:
  755. result:=2;
  756. A_SCAS,A_LODS,A_STOS:
  757. result:=1;
  758. else
  759. internalerror(2017101203);
  760. end;
  761. end;
  762. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  763. begin
  764. case op of
  765. A_MOVSB,A_MOVSW,A_MOVSD{$ifdef x86_64},A_MOVSQ{$endif}:
  766. result:=A_MOVS;
  767. A_CMPSB,A_CMPSW,A_CMPSD{$ifdef x86_64},A_CMPSQ{$endif}:
  768. result:=A_CMPS;
  769. A_SCASB,A_SCASW,A_SCASD{$ifdef x86_64},A_SCASQ{$endif}:
  770. result:=A_SCAS;
  771. A_LODSB,A_LODSW,A_LODSD{$ifdef x86_64},A_LODSQ{$endif}:
  772. result:=A_LODS;
  773. A_STOSB,A_STOSW,A_STOSD{$ifdef x86_64},A_STOSQ{$endif}:
  774. result:=A_STOS;
  775. A_INSB, A_INSW, A_INSD:
  776. result:=A_INS;
  777. A_OUTSB,A_OUTSW,A_OUTSD:
  778. result:=A_OUTS;
  779. else
  780. internalerror(2017101201);
  781. end;
  782. end;
  783. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  784. begin
  785. case op of
  786. A_MOVSB,A_CMPSB,A_SCASB,A_LODSB,A_STOSB,A_INSB,A_OUTSB:
  787. result:=S_B;
  788. A_MOVSW,A_CMPSW,A_SCASW,A_LODSW,A_STOSW,A_INSW,A_OUTSW:
  789. result:=S_W;
  790. A_MOVSD,A_CMPSD,A_SCASD,A_LODSD,A_STOSD,A_INSD,A_OUTSD:
  791. result:=S_L;
  792. {$ifdef x86_64}
  793. A_MOVSQ,A_CMPSQ,A_SCASQ,A_LODSQ,A_STOSQ:
  794. result:=S_Q;
  795. {$endif x86_64}
  796. else
  797. internalerror(2017101202);
  798. end;
  799. end;
  800. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  801. begin
  802. case op of
  803. A_MOVS,A_OUTS:
  804. result:=1;
  805. A_CMPS,A_LODS:
  806. result:=0;
  807. A_SCAS,A_STOS,A_INS:
  808. result:=-1;
  809. else
  810. internalerror(2017101102);
  811. end;
  812. end;
  813. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  814. begin
  815. case op of
  816. A_MOVS,A_SCAS,A_STOS,A_INS:
  817. result:=0;
  818. A_CMPS:
  819. result:=1;
  820. A_LODS,A_OUTS:
  821. result:=-1;
  822. else
  823. internalerror(2017101204);
  824. end;
  825. end;
  826. {$ifdef i8086}
  827. function requires_fwait_on_8087(op: TAsmOp): boolean;
  828. begin
  829. case op of
  830. A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
  831. A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
  832. A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
  833. A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
  834. A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
  835. A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
  836. A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
  837. A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
  838. A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
  839. result:=true;
  840. else
  841. result:=false;
  842. end;
  843. end;
  844. {$endif i8086}
  845. function UseAVX: boolean;
  846. begin
  847. Result:={$ifdef i8086}false{$else i8086}(FPUX86_HAS_AVXUNIT in fpu_capabilities[current_settings.fputype]){$endif i8086};
  848. end;
  849. function UseAVX512: boolean;
  850. begin
  851. Result:={$ifdef i8086}false{$else i8086}UseAVX and (FPUX86_HAS_AVX512F in fpu_capabilities[current_settings.fputype]){$endif i8086};
  852. end;
  853. end.