aasmcpu.pas 131 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. symtype,
  28. aasmbase,aasmtai,aasmdata,aasmsym,
  29. ogbase;
  30. const
  31. { "mov reg,reg" source operand number }
  32. O_MOV_SOURCE = 0;
  33. { "mov reg,reg" destination operand number }
  34. O_MOV_DEST = 1;
  35. { Operand types }
  36. OT_NONE = $00000000;
  37. { Bits 0..7: sizes }
  38. OT_BITS8 = $00000001;
  39. OT_BITS16 = $00000002;
  40. OT_BITS32 = $00000004;
  41. OT_BITS64 = $00000008; { x86_64 and FPU }
  42. OT_BITS128 = $10000000; { 16 byte SSE }
  43. OT_BITS256 = $20000000; { 32 byte AVX }
  44. OT_BITS80 = $00000010; { FPU only }
  45. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  46. OT_NEAR = $00000040;
  47. OT_SHORT = $00000080;
  48. { TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
  49. but this requires adjusting the opcode table }
  50. OT_SIZE_MASK = $3000001F; { all the size attributes }
  51. OT_NON_SIZE = longint(not OT_SIZE_MASK);
  52. { Bits 8..11: modifiers }
  53. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  54. OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
  55. OT_COLON = $00000400; { operand is followed by a colon }
  56. OT_MODIFIER_MASK = $00000F00;
  57. { Bits 12..15: type of operand }
  58. OT_REGISTER = $00001000;
  59. OT_IMMEDIATE = $00002000;
  60. OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
  61. OT_REGMEM = $00008000; { for r/m, ie EA, operands }
  62. OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
  63. OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
  64. { Bits 20..22, 24..26: register classes
  65. otf_* consts are not used alone, only to build other constants. }
  66. otf_reg_cdt = $00100000;
  67. otf_reg_gpr = $00200000;
  68. otf_reg_sreg = $00400000;
  69. otf_reg_fpu = $01000000;
  70. otf_reg_mmx = $02000000;
  71. otf_reg_xmm = $04000000;
  72. otf_reg_ymm = $08000000;
  73. { Bits 16..19: subclasses, meaning depends on classes field }
  74. otf_sub0 = $00010000;
  75. otf_sub1 = $00020000;
  76. otf_sub2 = $00040000;
  77. otf_sub3 = $00080000;
  78. OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
  79. OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_fpu or otf_reg_mmx or otf_reg_xmm or otf_reg_ymm;
  80. { register class 0: CRx, DRx and TRx }
  81. {$ifdef x86_64}
  82. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
  83. {$else x86_64}
  84. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
  85. {$endif x86_64}
  86. OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
  87. OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
  88. OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
  89. OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
  90. { register class 1: general-purpose registers }
  91. OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
  92. OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
  93. OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
  94. OT_REG16 = OT_REG_GPR or OT_BITS16;
  95. OT_REG32 = OT_REG_GPR or OT_BITS32;
  96. OT_REG64 = OT_REG_GPR or OT_BITS64;
  97. { GPR subclass 0: accumulator: AL, AX, EAX or RAX }
  98. OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
  99. OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
  100. OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
  101. OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
  102. {$ifdef x86_64}
  103. OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
  104. {$endif x86_64}
  105. { GPR subclass 1: counter: CL, CX, ECX or RCX }
  106. OT_REG_COUNT = OT_REG_GPR or otf_sub1;
  107. OT_REG_CL = OT_REG_COUNT or OT_BITS8;
  108. OT_REG_CX = OT_REG_COUNT or OT_BITS16;
  109. OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
  110. {$ifdef x86_64}
  111. OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
  112. {$endif x86_64}
  113. { GPR subclass 2: data register: DL, DX, EDX or RDX }
  114. OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
  115. OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
  116. { register class 2: Segment registers }
  117. OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
  118. OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
  119. OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
  120. OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
  121. { register class 3: FPU registers }
  122. OT_FPUREG = OT_REGISTER or otf_reg_fpu;
  123. OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
  124. { register class 4: MMX (both reg and r/m) }
  125. OT_MMXREG = OT_REGNORM or otf_reg_mmx;
  126. OT_MMXRM = OT_REGMEM or otf_reg_mmx;
  127. { register class 5: XMM (both reg and r/m) }
  128. OT_XMMREG = OT_REGNORM or otf_reg_xmm;
  129. OT_XMMRM = OT_REGMEM or otf_reg_xmm;
  130. OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
  131. OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
  132. { register class 5: XMM (both reg and r/m) }
  133. OT_YMMREG = OT_REGNORM or otf_reg_ymm;
  134. OT_YMMRM = OT_REGMEM or otf_reg_ymm;
  135. OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
  136. OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
  137. { Vector-Memory operands }
  138. OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64;
  139. { Memory operands }
  140. OT_MEM8 = OT_MEMORY or OT_BITS8;
  141. OT_MEM16 = OT_MEMORY or OT_BITS16;
  142. OT_MEM32 = OT_MEMORY or OT_BITS32;
  143. OT_MEM64 = OT_MEMORY or OT_BITS64;
  144. OT_MEM128 = OT_MEMORY or OT_BITS128;
  145. OT_MEM256 = OT_MEMORY or OT_BITS256;
  146. OT_MEM80 = OT_MEMORY or OT_BITS80;
  147. OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
  148. { simple [address] offset }
  149. { Matches any type of r/m operand }
  150. OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM;
  151. { Immediate operands }
  152. OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
  153. OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
  154. OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
  155. OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
  156. OT_ONENESS = otf_sub0; { special type of immediate operand }
  157. OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
  158. { Size of the instruction table converted by nasmconv.pas }
  159. {$if defined(x86_64)}
  160. instabentries = {$i x8664nop.inc}
  161. {$elseif defined(i386)}
  162. instabentries = {$i i386nop.inc}
  163. {$elseif defined(i8086)}
  164. instabentries = {$i i8086nop.inc}
  165. {$endif}
  166. maxinfolen = 8;
  167. MaxInsChanges = 3; { Max things a instruction can change }
  168. type
  169. { What an instruction can change. Needed for optimizer and spilling code.
  170. Note: The order of this enumeration is should not be changed! }
  171. TInsChange = (Ch_None,
  172. {Read from a register}
  173. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  174. {write from a register}
  175. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  176. {read and write from/to a register}
  177. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  178. {modify the contents of a register with the purpose of using
  179. this changed content afterwards (add/sub/..., but e.g. not rep
  180. or movsd)}
  181. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  182. Ch_CDirFlag {clear direction flag}, Ch_SDirFlag {set dir flag},
  183. Ch_RFlags, Ch_WFlags, Ch_RWFlags, Ch_FPU,
  184. Ch_Rop1, Ch_Wop1, Ch_RWop1,Ch_Mop1,
  185. Ch_Rop2, Ch_Wop2, Ch_RWop2,Ch_Mop2,
  186. Ch_Rop3, Ch_WOp3, Ch_RWOp3,Ch_Mop3,
  187. Ch_WMemEDI,
  188. Ch_All,
  189. { x86_64 registers }
  190. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  191. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  192. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  193. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
  194. );
  195. TInsProp = packed record
  196. Ch : Array[1..MaxInsChanges] of TInsChange;
  197. end;
  198. TMemRefSizeInfo = (msiUnkown, msiUnsupported, msiNoSize,
  199. msiMultiple, msiMultiple8, msiMultiple16, msiMultiple32,
  200. msiMultiple64, msiMultiple128, msiMultiple256,
  201. msiMemRegSize, msiMemRegx16y32, msiMemRegx32y64, msiMemRegx64y128, msiMemRegx64y256,
  202. msiMem8, msiMem16, msiMem32, msiMem64, msiMem128, msiMem256,
  203. msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  204. msiVMemMultiple, msiVMemRegSize);
  205. TConstSizeInfo = (csiUnkown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
  206. TInsTabMemRefSizeInfoRec = record
  207. MemRefSize : TMemRefSizeInfo;
  208. ExistsSSEAVX: boolean;
  209. ConstSize : TConstSizeInfo;
  210. end;
  211. const
  212. MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultiple8,
  213. msiMultiple16, msiMultiple32,
  214. msiMultiple64, msiMultiple128,
  215. msiMultiple256, msiVMemMultiple];
  216. MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  217. msiVMemMultiple, msiVMemRegSize];
  218. InsProp : array[tasmop] of TInsProp =
  219. {$if defined(x86_64)}
  220. {$i x8664pro.inc}
  221. {$elseif defined(i386)}
  222. {$i i386prop.inc}
  223. {$elseif defined(i8086)}
  224. {$i i8086prop.inc}
  225. {$endif}
  226. type
  227. TOperandOrder = (op_intel,op_att);
  228. tinsentry=packed record
  229. opcode : tasmop;
  230. ops : byte;
  231. optypes : array[0..max_operands-1] of longint;
  232. code : array[0..maxinfolen] of char;
  233. flags : int64;
  234. end;
  235. pinsentry=^tinsentry;
  236. { alignment for operator }
  237. tai_align = class(tai_align_abstract)
  238. reg : tregister;
  239. constructor create(b:byte);override;
  240. constructor create_op(b: byte; _op: byte);override;
  241. function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
  242. end;
  243. taicpu = class(tai_cpu_abstract_sym)
  244. opsize : topsize;
  245. constructor op_none(op : tasmop);
  246. constructor op_none(op : tasmop;_size : topsize);
  247. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  248. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  249. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  250. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  251. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  252. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  253. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  254. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  255. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  256. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  257. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  258. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  259. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  260. constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  261. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  262. { this is for Jmp instructions }
  263. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  264. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  265. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  266. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  267. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  268. procedure changeopsize(siz:topsize);
  269. function GetString:string;
  270. { This is a workaround for the GAS non commutative fpu instruction braindamage.
  271. Early versions of the UnixWare assembler had a bug where some fpu instructions
  272. were reversed and GAS still keeps this "feature" for compatibility.
  273. for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
  274. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
  275. http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
  276. Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
  277. when generating output for other assemblers, the opcodes must be fixed before writing them.
  278. This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
  279. because in case of smartlinking assembler is generated twice so at the second run wrong
  280. assembler is generated.
  281. }
  282. function FixNonCommutativeOpcodes: tasmop;
  283. private
  284. FOperandOrder : TOperandOrder;
  285. procedure init(_size : topsize); { this need to be called by all constructor }
  286. public
  287. { the next will reset all instructions that can change in pass 2 }
  288. procedure ResetPass1;override;
  289. procedure ResetPass2;override;
  290. function CheckIfValid:boolean;
  291. function Pass1(objdata:TObjData):longint;override;
  292. procedure Pass2(objdata:TObjData);override;
  293. procedure SetOperandOrder(order:TOperandOrder);
  294. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  295. { register spilling code }
  296. function spilling_get_operation_type(opnr: longint): topertype;override;
  297. private
  298. { next fields are filled in pass1, so pass2 is faster }
  299. insentry : PInsEntry;
  300. insoffset : longint;
  301. LastInsOffset : longint; { need to be public to be reset }
  302. inssize : shortint;
  303. {$ifdef x86_64}
  304. rex : byte;
  305. {$endif x86_64}
  306. function InsEnd:longint;
  307. procedure create_ot(objdata:TObjData);
  308. function Matches(p:PInsEntry):boolean;
  309. function calcsize(p:PInsEntry):shortint;
  310. procedure gencode(objdata:TObjData);
  311. function NeedAddrPrefix(opidx:byte):boolean;
  312. procedure Swapoperands;
  313. function FindInsentry(objdata:TObjData):boolean;
  314. end;
  315. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  316. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  317. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  318. procedure InitAsm;
  319. procedure DoneAsm;
  320. implementation
  321. uses
  322. cutils,
  323. globals,
  324. systems,
  325. procinfo,
  326. itcpugas,
  327. symsym,
  328. cpuinfo;
  329. {*****************************************************************************
  330. Instruction table
  331. *****************************************************************************}
  332. const
  333. {Instruction flags }
  334. IF_NONE = $00000000;
  335. IF_SM = $00000001; { size match first two operands }
  336. IF_SM2 = $00000002;
  337. IF_SB = $00000004; { unsized operands can't be non-byte }
  338. IF_SW = $00000008; { unsized operands can't be non-word }
  339. IF_SD = $00000010; { unsized operands can't be nondword }
  340. IF_SMASK = $0000001f;
  341. IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
  342. IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
  343. IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
  344. IF_ARMASK = $00000060; { mask for unsized argument spec }
  345. IF_ARSHIFT = 5; { LSB of IF_ARMASK }
  346. IF_PRIV = $00000100; { it's a privileged instruction }
  347. IF_SMM = $00000200; { it's only valid in SMM }
  348. IF_PROT = $00000400; { it's protected mode only }
  349. IF_NOX86_64 = $00000800; { removed instruction in x86_64 }
  350. IF_UNDOC = $00001000; { it's an undocumented instruction }
  351. IF_FPU = $00002000; { it's an FPU instruction }
  352. IF_MMX = $00004000; { it's an MMX instruction }
  353. { it's a 3DNow! instruction }
  354. IF_3DNOW = $00008000;
  355. { it's a SSE (KNI, MMX2) instruction }
  356. IF_SSE = $00010000;
  357. { SSE2 instructions }
  358. IF_SSE2 = $00020000;
  359. { SSE3 instructions }
  360. IF_SSE3 = $00040000;
  361. { SSE64 instructions }
  362. IF_SSE64 = $00080000;
  363. { the mask for processor types }
  364. {IF_PMASK = longint($FF000000);}
  365. { the mask for disassembly "prefer" }
  366. {IF_PFMASK = longint($F001FF00);}
  367. { SVM instructions }
  368. IF_SVM = $00100000;
  369. { SSE4 instructions }
  370. IF_SSE4 = $00200000;
  371. { TODO: These flags were added to make x86ins.dat more readable.
  372. Values must be reassigned to make any other use of them. }
  373. IF_SSSE3 = $00200000;
  374. IF_SSE41 = $00200000;
  375. IF_SSE42 = $00200000;
  376. IF_AVX = $00200000;
  377. IF_AVX2 = $00200000;
  378. IF_BMI1 = $00200000;
  379. IF_BMI2 = $00200000;
  380. IF_16BITONLY = $00200000;
  381. IF_FMA = $00200000;
  382. IF_FMA4 = $00200000;
  383. IF_PLEVEL = $0F000000; { mask for processor level }
  384. IF_8086 = $00000000; { 8086 instruction }
  385. IF_186 = $01000000; { 186+ instruction }
  386. IF_286 = $02000000; { 286+ instruction }
  387. IF_386 = $03000000; { 386+ instruction }
  388. IF_486 = $04000000; { 486+ instruction }
  389. IF_PENT = $05000000; { Pentium instruction }
  390. IF_P6 = $06000000; { P6 instruction }
  391. IF_KATMAI = $07000000; { Katmai instructions }
  392. IF_WILLAMETTE = $08000000; { Willamette instructions }
  393. IF_PRESCOTT = $09000000; { Prescott instructions }
  394. IF_X86_64 = $0a000000;
  395. IF_CYRIX = $0b000000; { Cyrix-specific instruction }
  396. IF_AMD = $0c000000; { AMD-specific instruction }
  397. IF_CENTAUR = $0d000000; { centaur-specific instruction }
  398. IF_SANDYBRIDGE = $0e000000; { Sandybridge-specific instruction }
  399. IF_NEC = $0f000000; { NEC V20/V30 instruction }
  400. { added flags }
  401. IF_PRE = $40000000; { it's a prefix instruction }
  402. IF_PASS2 = $80000000; { if the instruction can change in a second pass }
  403. type
  404. TInsTabCache=array[TasmOp] of longint;
  405. PInsTabCache=^TInsTabCache;
  406. TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
  407. PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
  408. const
  409. {$if defined(x86_64)}
  410. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  411. {$elseif defined(i386)}
  412. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  413. {$elseif defined(i8086)}
  414. InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
  415. {$endif}
  416. var
  417. InsTabCache : PInsTabCache;
  418. InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
  419. const
  420. {$if defined(x86_64)}
  421. { Intel style operands ! }
  422. opsize_2_type:array[0..2,topsize] of longint=(
  423. (OT_NONE,
  424. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  425. OT_BITS16,OT_BITS32,OT_BITS64,
  426. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  427. OT_BITS64,
  428. OT_NEAR,OT_FAR,OT_SHORT,
  429. OT_NONE,
  430. OT_BITS128,
  431. OT_BITS256
  432. ),
  433. (OT_NONE,
  434. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  435. OT_BITS16,OT_BITS32,OT_BITS64,
  436. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  437. OT_BITS64,
  438. OT_NEAR,OT_FAR,OT_SHORT,
  439. OT_NONE,
  440. OT_BITS128,
  441. OT_BITS256
  442. ),
  443. (OT_NONE,
  444. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  445. OT_BITS16,OT_BITS32,OT_BITS64,
  446. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  447. OT_BITS64,
  448. OT_NEAR,OT_FAR,OT_SHORT,
  449. OT_NONE,
  450. OT_BITS128,
  451. OT_BITS256
  452. )
  453. );
  454. reg_ot_table : array[tregisterindex] of longint = (
  455. {$i r8664ot.inc}
  456. );
  457. {$elseif defined(i386)}
  458. { Intel style operands ! }
  459. opsize_2_type:array[0..2,topsize] of longint=(
  460. (OT_NONE,
  461. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  462. OT_BITS16,OT_BITS32,OT_BITS64,
  463. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  464. OT_BITS64,
  465. OT_NEAR,OT_FAR,OT_SHORT,
  466. OT_NONE,
  467. OT_BITS128,
  468. OT_BITS256
  469. ),
  470. (OT_NONE,
  471. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  472. OT_BITS16,OT_BITS32,OT_BITS64,
  473. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  474. OT_BITS64,
  475. OT_NEAR,OT_FAR,OT_SHORT,
  476. OT_NONE,
  477. OT_BITS128,
  478. OT_BITS256
  479. ),
  480. (OT_NONE,
  481. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  482. OT_BITS16,OT_BITS32,OT_BITS64,
  483. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  484. OT_BITS64,
  485. OT_NEAR,OT_FAR,OT_SHORT,
  486. OT_NONE,
  487. OT_BITS128,
  488. OT_BITS256
  489. )
  490. );
  491. reg_ot_table : array[tregisterindex] of longint = (
  492. {$i r386ot.inc}
  493. );
  494. {$elseif defined(i8086)}
  495. { Intel style operands ! }
  496. opsize_2_type:array[0..2,topsize] of longint=(
  497. (OT_NONE,
  498. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  499. OT_BITS16,OT_BITS32,OT_BITS64,
  500. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  501. OT_BITS64,
  502. OT_NEAR,OT_FAR,OT_SHORT,
  503. OT_NONE,
  504. OT_BITS128,
  505. OT_BITS256
  506. ),
  507. (OT_NONE,
  508. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  509. OT_BITS16,OT_BITS32,OT_BITS64,
  510. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  511. OT_BITS64,
  512. OT_NEAR,OT_FAR,OT_SHORT,
  513. OT_NONE,
  514. OT_BITS128,
  515. OT_BITS256
  516. ),
  517. (OT_NONE,
  518. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  519. OT_BITS16,OT_BITS32,OT_BITS64,
  520. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  521. OT_BITS64,
  522. OT_NEAR,OT_FAR,OT_SHORT,
  523. OT_NONE,
  524. OT_BITS128,
  525. OT_BITS256
  526. )
  527. );
  528. reg_ot_table : array[tregisterindex] of longint = (
  529. {$i r8086ot.inc}
  530. );
  531. {$endif}
  532. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  533. begin
  534. result := InsTabMemRefSizeInfoCache^[aAsmop];
  535. end;
  536. { Operation type for spilling code }
  537. type
  538. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  539. var
  540. operation_type_table : ^toperation_type_table;
  541. {****************************************************************************
  542. TAI_ALIGN
  543. ****************************************************************************}
  544. constructor tai_align.create(b: byte);
  545. begin
  546. inherited create(b);
  547. reg:=NR_ECX;
  548. end;
  549. constructor tai_align.create_op(b: byte; _op: byte);
  550. begin
  551. inherited create_op(b,_op);
  552. reg:=NR_NO;
  553. end;
  554. function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
  555. const
  556. { Updated according to
  557. Software Optimization Guide for AMD Family 15h Processors, Verison 3.08, January 2014
  558. and
  559. Intel 64 and IA-32 Architectures Software Developer’s Manual
  560. Volume 2B: Instruction Set Reference, N-Z, January 2015
  561. }
  562. alignarray_cmovcpus:array[0..10] of string[11]=(
  563. #$66#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  564. #$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  565. #$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  566. #$0F#$1F#$84#$00#$00#$00#$00#$00,
  567. #$0F#$1F#$80#$00#$00#$00#$00,
  568. #$66#$0F#$1F#$44#$00#$00,
  569. #$0F#$1F#$44#$00#$00,
  570. #$0F#$1F#$40#$00,
  571. #$0F#$1F#$00,
  572. #$66#$90,
  573. #$90);
  574. alignarray:array[0..5] of string[8]=(
  575. #$8D#$B4#$26#$00#$00#$00#$00,
  576. #$8D#$B6#$00#$00#$00#$00,
  577. #$8D#$74#$26#$00,
  578. #$8D#$76#$00,
  579. #$89#$F6,
  580. #$90);
  581. var
  582. bufptr : pchar;
  583. j : longint;
  584. localsize: byte;
  585. begin
  586. inherited calculatefillbuf(buf,executable);
  587. if not(use_op) and executable then
  588. begin
  589. bufptr:=pchar(@buf);
  590. { fillsize may still be used afterwards, so don't modify }
  591. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  592. localsize:=fillsize;
  593. while (localsize>0) do
  594. begin
  595. {$ifndef i8086}
  596. if CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype] then
  597. begin
  598. for j:=low(alignarray_cmovcpus) to high(alignarray_cmovcpus) do
  599. if (localsize>=length(alignarray_cmovcpus[j])) then
  600. break;
  601. move(alignarray_cmovcpus[j][1],bufptr^,length(alignarray_cmovcpus[j]));
  602. inc(bufptr,length(alignarray_cmovcpus[j]));
  603. dec(localsize,length(alignarray_cmovcpus[j]));
  604. end
  605. else
  606. {$endif not i8086}
  607. begin
  608. for j:=low(alignarray) to high(alignarray) do
  609. if (localsize>=length(alignarray[j])) then
  610. break;
  611. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  612. inc(bufptr,length(alignarray[j]));
  613. dec(localsize,length(alignarray[j]));
  614. end
  615. end;
  616. end;
  617. calculatefillbuf:=pchar(@buf);
  618. end;
  619. {*****************************************************************************
  620. Taicpu Constructors
  621. *****************************************************************************}
  622. procedure taicpu.changeopsize(siz:topsize);
  623. begin
  624. opsize:=siz;
  625. end;
  626. procedure taicpu.init(_size : topsize);
  627. begin
  628. { default order is att }
  629. FOperandOrder:=op_att;
  630. segprefix:=NR_NO;
  631. opsize:=_size;
  632. insentry:=nil;
  633. LastInsOffset:=-1;
  634. InsOffset:=0;
  635. InsSize:=0;
  636. end;
  637. constructor taicpu.op_none(op : tasmop);
  638. begin
  639. inherited create(op);
  640. init(S_NO);
  641. end;
  642. constructor taicpu.op_none(op : tasmop;_size : topsize);
  643. begin
  644. inherited create(op);
  645. init(_size);
  646. end;
  647. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  648. begin
  649. inherited create(op);
  650. init(_size);
  651. ops:=1;
  652. loadreg(0,_op1);
  653. end;
  654. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  655. begin
  656. inherited create(op);
  657. init(_size);
  658. ops:=1;
  659. loadconst(0,_op1);
  660. end;
  661. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  662. begin
  663. inherited create(op);
  664. init(_size);
  665. ops:=1;
  666. loadref(0,_op1);
  667. end;
  668. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  669. begin
  670. inherited create(op);
  671. init(_size);
  672. ops:=2;
  673. loadreg(0,_op1);
  674. loadreg(1,_op2);
  675. end;
  676. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  677. begin
  678. inherited create(op);
  679. init(_size);
  680. ops:=2;
  681. loadreg(0,_op1);
  682. loadconst(1,_op2);
  683. end;
  684. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  685. begin
  686. inherited create(op);
  687. init(_size);
  688. ops:=2;
  689. loadreg(0,_op1);
  690. loadref(1,_op2);
  691. end;
  692. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  693. begin
  694. inherited create(op);
  695. init(_size);
  696. ops:=2;
  697. loadconst(0,_op1);
  698. loadreg(1,_op2);
  699. end;
  700. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  701. begin
  702. inherited create(op);
  703. init(_size);
  704. ops:=2;
  705. loadconst(0,_op1);
  706. loadconst(1,_op2);
  707. end;
  708. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  709. begin
  710. inherited create(op);
  711. init(_size);
  712. ops:=2;
  713. loadconst(0,_op1);
  714. loadref(1,_op2);
  715. end;
  716. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  717. begin
  718. inherited create(op);
  719. init(_size);
  720. ops:=2;
  721. loadref(0,_op1);
  722. loadreg(1,_op2);
  723. end;
  724. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  725. begin
  726. inherited create(op);
  727. init(_size);
  728. ops:=3;
  729. loadreg(0,_op1);
  730. loadreg(1,_op2);
  731. loadreg(2,_op3);
  732. end;
  733. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  734. begin
  735. inherited create(op);
  736. init(_size);
  737. ops:=3;
  738. loadconst(0,_op1);
  739. loadreg(1,_op2);
  740. loadreg(2,_op3);
  741. end;
  742. constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  743. begin
  744. inherited create(op);
  745. init(_size);
  746. ops:=3;
  747. loadref(0,_op1);
  748. loadreg(1,_op2);
  749. loadreg(2,_op3);
  750. end;
  751. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  752. begin
  753. inherited create(op);
  754. init(_size);
  755. ops:=3;
  756. loadconst(0,_op1);
  757. loadref(1,_op2);
  758. loadreg(2,_op3);
  759. end;
  760. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  761. begin
  762. inherited create(op);
  763. init(_size);
  764. ops:=3;
  765. loadconst(0,_op1);
  766. loadreg(1,_op2);
  767. loadref(2,_op3);
  768. end;
  769. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  770. begin
  771. inherited create(op);
  772. init(_size);
  773. condition:=cond;
  774. ops:=1;
  775. loadsymbol(0,_op1,0);
  776. end;
  777. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  778. begin
  779. inherited create(op);
  780. init(_size);
  781. ops:=1;
  782. loadsymbol(0,_op1,0);
  783. end;
  784. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  785. begin
  786. inherited create(op);
  787. init(_size);
  788. ops:=1;
  789. loadsymbol(0,_op1,_op1ofs);
  790. end;
  791. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  792. begin
  793. inherited create(op);
  794. init(_size);
  795. ops:=2;
  796. loadsymbol(0,_op1,_op1ofs);
  797. loadreg(1,_op2);
  798. end;
  799. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  800. begin
  801. inherited create(op);
  802. init(_size);
  803. ops:=2;
  804. loadsymbol(0,_op1,_op1ofs);
  805. loadref(1,_op2);
  806. end;
  807. function taicpu.GetString:string;
  808. var
  809. i : longint;
  810. s : string;
  811. addsize : boolean;
  812. begin
  813. s:='['+std_op2str[opcode];
  814. for i:=0 to ops-1 do
  815. begin
  816. with oper[i]^ do
  817. begin
  818. if i=0 then
  819. s:=s+' '
  820. else
  821. s:=s+',';
  822. { type }
  823. addsize:=false;
  824. if (ot and OT_XMMREG)=OT_XMMREG then
  825. s:=s+'xmmreg'
  826. else
  827. if (ot and OT_YMMREG)=OT_YMMREG then
  828. s:=s+'ymmreg'
  829. else
  830. if (ot and OT_MMXREG)=OT_MMXREG then
  831. s:=s+'mmxreg'
  832. else
  833. if (ot and OT_FPUREG)=OT_FPUREG then
  834. s:=s+'fpureg'
  835. else
  836. if (ot and OT_REGISTER)=OT_REGISTER then
  837. begin
  838. s:=s+'reg';
  839. addsize:=true;
  840. end
  841. else
  842. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  843. begin
  844. s:=s+'imm';
  845. addsize:=true;
  846. end
  847. else
  848. if (ot and OT_MEMORY)=OT_MEMORY then
  849. begin
  850. s:=s+'mem';
  851. addsize:=true;
  852. end
  853. else
  854. s:=s+'???';
  855. { size }
  856. if addsize then
  857. begin
  858. if (ot and OT_BITS8)<>0 then
  859. s:=s+'8'
  860. else
  861. if (ot and OT_BITS16)<>0 then
  862. s:=s+'16'
  863. else
  864. if (ot and OT_BITS32)<>0 then
  865. s:=s+'32'
  866. else
  867. if (ot and OT_BITS64)<>0 then
  868. s:=s+'64'
  869. else
  870. if (ot and OT_BITS128)<>0 then
  871. s:=s+'128'
  872. else
  873. if (ot and OT_BITS256)<>0 then
  874. s:=s+'256'
  875. else
  876. s:=s+'??';
  877. { signed }
  878. if (ot and OT_SIGNED)<>0 then
  879. s:=s+'s';
  880. end;
  881. end;
  882. end;
  883. GetString:=s+']';
  884. end;
  885. procedure taicpu.Swapoperands;
  886. var
  887. p : POper;
  888. begin
  889. { Fix the operands which are in AT&T style and we need them in Intel style }
  890. case ops of
  891. 0,1:
  892. ;
  893. 2 : begin
  894. { 0,1 -> 1,0 }
  895. p:=oper[0];
  896. oper[0]:=oper[1];
  897. oper[1]:=p;
  898. end;
  899. 3 : begin
  900. { 0,1,2 -> 2,1,0 }
  901. p:=oper[0];
  902. oper[0]:=oper[2];
  903. oper[2]:=p;
  904. end;
  905. 4 : begin
  906. { 0,1,2,3 -> 3,2,1,0 }
  907. p:=oper[0];
  908. oper[0]:=oper[3];
  909. oper[3]:=p;
  910. p:=oper[1];
  911. oper[1]:=oper[2];
  912. oper[2]:=p;
  913. end;
  914. else
  915. internalerror(201108141);
  916. end;
  917. end;
  918. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  919. begin
  920. if FOperandOrder<>order then
  921. begin
  922. Swapoperands;
  923. FOperandOrder:=order;
  924. end;
  925. end;
  926. function taicpu.FixNonCommutativeOpcodes: tasmop;
  927. begin
  928. result:=opcode;
  929. { we need ATT order }
  930. SetOperandOrder(op_att);
  931. if (
  932. (ops=2) and
  933. (oper[0]^.typ=top_reg) and
  934. (oper[1]^.typ=top_reg) and
  935. { if the first is ST and the second is also a register
  936. it is necessarily ST1 .. ST7 }
  937. ((oper[0]^.reg=NR_ST) or
  938. (oper[0]^.reg=NR_ST0))
  939. ) or
  940. { ((ops=1) and
  941. (oper[0]^.typ=top_reg) and
  942. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  943. (ops=0) then
  944. begin
  945. if opcode=A_FSUBR then
  946. result:=A_FSUB
  947. else if opcode=A_FSUB then
  948. result:=A_FSUBR
  949. else if opcode=A_FDIVR then
  950. result:=A_FDIV
  951. else if opcode=A_FDIV then
  952. result:=A_FDIVR
  953. else if opcode=A_FSUBRP then
  954. result:=A_FSUBP
  955. else if opcode=A_FSUBP then
  956. result:=A_FSUBRP
  957. else if opcode=A_FDIVRP then
  958. result:=A_FDIVP
  959. else if opcode=A_FDIVP then
  960. result:=A_FDIVRP;
  961. end;
  962. if (
  963. (ops=1) and
  964. (oper[0]^.typ=top_reg) and
  965. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  966. (oper[0]^.reg<>NR_ST)
  967. ) then
  968. begin
  969. if opcode=A_FSUBRP then
  970. result:=A_FSUBP
  971. else if opcode=A_FSUBP then
  972. result:=A_FSUBRP
  973. else if opcode=A_FDIVRP then
  974. result:=A_FDIVP
  975. else if opcode=A_FDIVP then
  976. result:=A_FDIVRP;
  977. end;
  978. end;
  979. {*****************************************************************************
  980. Assembler
  981. *****************************************************************************}
  982. type
  983. ea = packed record
  984. sib_present : boolean;
  985. bytes : byte;
  986. size : byte;
  987. modrm : byte;
  988. sib : byte;
  989. {$ifdef x86_64}
  990. rex : byte;
  991. {$endif x86_64}
  992. end;
  993. procedure taicpu.create_ot(objdata:TObjData);
  994. {
  995. this function will also fix some other fields which only needs to be once
  996. }
  997. var
  998. i,l,relsize : longint;
  999. currsym : TObjSymbol;
  1000. begin
  1001. if ops=0 then
  1002. exit;
  1003. { update oper[].ot field }
  1004. for i:=0 to ops-1 do
  1005. with oper[i]^ do
  1006. begin
  1007. case typ of
  1008. top_reg :
  1009. begin
  1010. ot:=reg_ot_table[findreg_by_number(reg)];
  1011. end;
  1012. top_ref :
  1013. begin
  1014. if (ref^.refaddr=addr_no)
  1015. {$ifdef i386}
  1016. or (
  1017. (ref^.refaddr in [addr_pic]) and
  1018. { allow any base for assembler blocks }
  1019. ((assigned(current_procinfo) and
  1020. (pi_has_assembler_block in current_procinfo.flags) and
  1021. (ref^.base<>NR_NO)) or (ref^.base=NR_EBX))
  1022. )
  1023. {$endif i386}
  1024. {$ifdef x86_64}
  1025. or (
  1026. (ref^.refaddr in [addr_pic,addr_pic_no_got]) and
  1027. (ref^.base<>NR_NO)
  1028. )
  1029. {$endif x86_64}
  1030. then
  1031. begin
  1032. { create ot field }
  1033. if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
  1034. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1035. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1036. ) then
  1037. // AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
  1038. ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
  1039. (reg_ot_table[findreg_by_number(ref^.index)])
  1040. else if (ref^.base = NR_NO) and
  1041. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1042. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1043. ) then
  1044. // AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
  1045. ot := (OT_REG_GPR) or
  1046. (reg_ot_table[findreg_by_number(ref^.index)])
  1047. else if (ot and OT_SIZE_MASK)=0 then
  1048. ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
  1049. else
  1050. ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
  1051. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  1052. ot:=ot or OT_MEM_OFFS;
  1053. { fix scalefactor }
  1054. if (ref^.index=NR_NO) then
  1055. ref^.scalefactor:=0
  1056. else
  1057. if (ref^.scalefactor=0) then
  1058. ref^.scalefactor:=1;
  1059. end
  1060. else
  1061. begin
  1062. { Jumps use a relative offset which can be 8bit,
  1063. for other opcodes we always need to generate the full
  1064. 32bit address }
  1065. if assigned(objdata) and
  1066. is_jmp then
  1067. begin
  1068. currsym:=objdata.symbolref(ref^.symbol);
  1069. l:=ref^.offset;
  1070. {$push}
  1071. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  1072. if assigned(currsym) then
  1073. inc(l,currsym.address);
  1074. {$pop}
  1075. { when it is a forward jump we need to compensate the
  1076. offset of the instruction since the previous time,
  1077. because the symbol address is then still using the
  1078. 'old-style' addressing.
  1079. For backwards jumps this is not required because the
  1080. address of the symbol is already adjusted to the
  1081. new offset }
  1082. if (l>InsOffset) and (LastInsOffset<>-1) then
  1083. inc(l,InsOffset-LastInsOffset);
  1084. { instruction size will then always become 2 (PFV) }
  1085. relsize:=(InsOffset+2)-l;
  1086. if (relsize>=-128) and (relsize<=127) and
  1087. (
  1088. not assigned(currsym) or
  1089. (currsym.objsection=objdata.currobjsec)
  1090. ) then
  1091. ot:=OT_IMM8 or OT_SHORT
  1092. else
  1093. ot:=OT_IMM32 or OT_NEAR;
  1094. end
  1095. else
  1096. ot:=OT_IMM32 or OT_NEAR;
  1097. end;
  1098. end;
  1099. top_local :
  1100. begin
  1101. if (ot and OT_SIZE_MASK)=0 then
  1102. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  1103. else
  1104. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  1105. end;
  1106. top_const :
  1107. begin
  1108. // if opcode is a SSE or AVX-instruction then we need a
  1109. // special handling (opsize can different from const-size)
  1110. // (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
  1111. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
  1112. (not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnkown])) then
  1113. begin
  1114. case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
  1115. csiNoSize: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE;
  1116. csiMem8: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS8;
  1117. csiMem16: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS16;
  1118. csiMem32: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS32;
  1119. csiMem64: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS64;
  1120. end;
  1121. end
  1122. else
  1123. begin
  1124. { allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
  1125. { further, allow AAD and AAM with imm. operand }
  1126. if (opsize=S_NO) and not((i in [1,2,3])
  1127. {$ifndef x86_64}
  1128. or ((i=0) and (opcode in [A_AAD,A_AAM]))
  1129. {$endif x86_64}
  1130. ) then
  1131. message(asmr_e_invalid_opcode_and_operand);
  1132. if (opsize<>S_W) and (aint(val)>=-128) and (val<=127) then
  1133. ot:=OT_IMM8 or OT_SIGNED
  1134. else
  1135. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  1136. if (val=1) and (i=1) then
  1137. ot := ot or OT_ONENESS;
  1138. end;
  1139. end;
  1140. top_none :
  1141. begin
  1142. { generated when there was an error in the
  1143. assembler reader. It never happends when generating
  1144. assembler }
  1145. end;
  1146. else
  1147. internalerror(200402266);
  1148. end;
  1149. end;
  1150. end;
  1151. function taicpu.InsEnd:longint;
  1152. begin
  1153. InsEnd:=InsOffset+InsSize;
  1154. end;
  1155. function taicpu.Matches(p:PInsEntry):boolean;
  1156. { * IF_SM stands for Size Match: any operand whose size is not
  1157. * explicitly specified by the template is `really' intended to be
  1158. * the same size as the first size-specified operand.
  1159. * Non-specification is tolerated in the input instruction, but
  1160. * _wrong_ specification is not.
  1161. *
  1162. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  1163. * three-operand instructions such as SHLD: it implies that the
  1164. * first two operands must match in size, but that the third is
  1165. * required to be _unspecified_.
  1166. *
  1167. * IF_SB invokes Size Byte: operands with unspecified size in the
  1168. * template are really bytes, and so no non-byte specification in
  1169. * the input instruction will be tolerated. IF_SW similarly invokes
  1170. * Size Word, and IF_SD invokes Size Doubleword.
  1171. *
  1172. * (The default state if neither IF_SM nor IF_SM2 is specified is
  1173. * that any operand with unspecified size in the template is
  1174. * required to have unspecified size in the instruction too...)
  1175. }
  1176. var
  1177. insot,
  1178. currot,
  1179. i,j,asize,oprs : longint;
  1180. insflags:cardinal;
  1181. siz : array[0..max_operands-1] of longint;
  1182. begin
  1183. result:=false;
  1184. { Check the opcode and operands }
  1185. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  1186. exit;
  1187. for i:=0 to p^.ops-1 do
  1188. begin
  1189. insot:=p^.optypes[i];
  1190. currot:=oper[i]^.ot;
  1191. { Check the operand flags }
  1192. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1193. exit;
  1194. { Check if the passed operand size matches with one of
  1195. the supported operand sizes }
  1196. if ((insot and OT_SIZE_MASK)<>0) and
  1197. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1198. exit;
  1199. end;
  1200. { Check operand sizes }
  1201. insflags:=p^.flags;
  1202. if insflags and IF_SMASK<>0 then
  1203. begin
  1204. { as default an untyped size can get all the sizes, this is different
  1205. from nasm, but else we need to do a lot checking which opcodes want
  1206. size or not with the automatic size generation }
  1207. asize:=-1;
  1208. if (insflags and IF_SB)<>0 then
  1209. asize:=OT_BITS8
  1210. else if (insflags and IF_SW)<>0 then
  1211. asize:=OT_BITS16
  1212. else if (insflags and IF_SD)<>0 then
  1213. asize:=OT_BITS32;
  1214. if (insflags and IF_ARMASK)<>0 then
  1215. begin
  1216. siz[0]:=-1;
  1217. siz[1]:=-1;
  1218. siz[2]:=-1;
  1219. siz[((insflags and IF_ARMASK) shr IF_ARSHIFT)-1]:=asize;
  1220. end
  1221. else
  1222. begin
  1223. siz[0]:=asize;
  1224. siz[1]:=asize;
  1225. siz[2]:=asize;
  1226. end;
  1227. if (insflags and (IF_SM or IF_SM2))<>0 then
  1228. begin
  1229. if (insflags and IF_SM2)<>0 then
  1230. oprs:=2
  1231. else
  1232. oprs:=p^.ops;
  1233. for i:=0 to oprs-1 do
  1234. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  1235. begin
  1236. for j:=0 to oprs-1 do
  1237. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  1238. break;
  1239. end;
  1240. end
  1241. else
  1242. oprs:=2;
  1243. { Check operand sizes }
  1244. for i:=0 to p^.ops-1 do
  1245. begin
  1246. insot:=p^.optypes[i];
  1247. currot:=oper[i]^.ot;
  1248. if ((insot and OT_SIZE_MASK)=0) and
  1249. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  1250. { Immediates can always include smaller size }
  1251. ((currot and OT_IMMEDIATE)=0) and
  1252. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1253. exit;
  1254. end;
  1255. end;
  1256. if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
  1257. (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1258. begin
  1259. for i:=0 to p^.ops-1 do
  1260. begin
  1261. insot:=p^.optypes[i];
  1262. if ((insot and OT_XMMRM) = OT_XMMRM) OR
  1263. ((insot and OT_YMMRM) = OT_YMMRM) then
  1264. begin
  1265. if (insot and OT_SIZE_MASK) = 0 then
  1266. begin
  1267. case insot and (OT_XMMRM or OT_YMMRM) of
  1268. OT_XMMRM: insot := insot or OT_BITS128;
  1269. OT_YMMRM: insot := insot or OT_BITS256;
  1270. end;
  1271. end;
  1272. end;
  1273. currot:=oper[i]^.ot;
  1274. { Check the operand flags }
  1275. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1276. exit;
  1277. { Check if the passed operand size matches with one of
  1278. the supported operand sizes }
  1279. if ((insot and OT_SIZE_MASK)<>0) and
  1280. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1281. exit;
  1282. end;
  1283. end;
  1284. result:=true;
  1285. end;
  1286. procedure taicpu.ResetPass1;
  1287. begin
  1288. { we need to reset everything here, because the choosen insentry
  1289. can be invalid for a new situation where the previously optimized
  1290. insentry is not correct }
  1291. InsEntry:=nil;
  1292. InsSize:=0;
  1293. LastInsOffset:=-1;
  1294. end;
  1295. procedure taicpu.ResetPass2;
  1296. begin
  1297. { we are here in a second pass, check if the instruction can be optimized }
  1298. if assigned(InsEntry) and
  1299. ((InsEntry^.flags and IF_PASS2)<>0) then
  1300. begin
  1301. InsEntry:=nil;
  1302. InsSize:=0;
  1303. end;
  1304. LastInsOffset:=-1;
  1305. end;
  1306. function taicpu.CheckIfValid:boolean;
  1307. begin
  1308. result:=FindInsEntry(nil);
  1309. end;
  1310. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1311. var
  1312. i : longint;
  1313. begin
  1314. result:=false;
  1315. { Things which may only be done once, not when a second pass is done to
  1316. optimize }
  1317. if (Insentry=nil) or ((InsEntry^.flags and IF_PASS2)<>0) then
  1318. begin
  1319. current_filepos:=fileinfo;
  1320. { We need intel style operands }
  1321. SetOperandOrder(op_intel);
  1322. { create the .ot fields }
  1323. create_ot(objdata);
  1324. { set the file postion }
  1325. end
  1326. else
  1327. begin
  1328. { we've already an insentry so it's valid }
  1329. result:=true;
  1330. exit;
  1331. end;
  1332. { Lookup opcode in the table }
  1333. InsSize:=-1;
  1334. i:=instabcache^[opcode];
  1335. if i=-1 then
  1336. begin
  1337. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1338. exit;
  1339. end;
  1340. insentry:=@instab[i];
  1341. while (insentry^.opcode=opcode) do
  1342. begin
  1343. if matches(insentry) then
  1344. begin
  1345. result:=true;
  1346. exit;
  1347. end;
  1348. inc(insentry);
  1349. end;
  1350. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1351. { No instruction found, set insentry to nil and inssize to -1 }
  1352. insentry:=nil;
  1353. inssize:=-1;
  1354. end;
  1355. function taicpu.Pass1(objdata:TObjData):longint;
  1356. begin
  1357. Pass1:=0;
  1358. { Save the old offset and set the new offset }
  1359. InsOffset:=ObjData.CurrObjSec.Size;
  1360. { Error? }
  1361. if (Insentry=nil) and (InsSize=-1) then
  1362. exit;
  1363. { set the file postion }
  1364. current_filepos:=fileinfo;
  1365. { Get InsEntry }
  1366. if FindInsEntry(ObjData) then
  1367. begin
  1368. { Calculate instruction size }
  1369. InsSize:=calcsize(insentry);
  1370. if segprefix<>NR_NO then
  1371. inc(InsSize);
  1372. { Fix opsize if size if forced }
  1373. if (insentry^.flags and (IF_SB or IF_SW or IF_SD))<>0 then
  1374. begin
  1375. if (insentry^.flags and IF_ARMASK)=0 then
  1376. begin
  1377. if (insentry^.flags and IF_SB)<>0 then
  1378. begin
  1379. if opsize=S_NO then
  1380. opsize:=S_B;
  1381. end
  1382. else if (insentry^.flags and IF_SW)<>0 then
  1383. begin
  1384. if opsize=S_NO then
  1385. opsize:=S_W;
  1386. end
  1387. else if (insentry^.flags and IF_SD)<>0 then
  1388. begin
  1389. if opsize=S_NO then
  1390. opsize:=S_L;
  1391. end;
  1392. end;
  1393. end;
  1394. LastInsOffset:=InsOffset;
  1395. Pass1:=InsSize;
  1396. exit;
  1397. end;
  1398. LastInsOffset:=-1;
  1399. end;
  1400. const
  1401. segprefixes: array[NR_ES..NR_GS] of Byte=(
  1402. // es cs ss ds fs gs
  1403. $26, $2E, $36, $3E, $64, $65
  1404. );
  1405. procedure taicpu.Pass2(objdata:TObjData);
  1406. begin
  1407. { error in pass1 ? }
  1408. if insentry=nil then
  1409. exit;
  1410. current_filepos:=fileinfo;
  1411. { Segment override }
  1412. if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
  1413. begin
  1414. objdata.writebytes(segprefixes[segprefix],1);
  1415. { fix the offset for GenNode }
  1416. inc(InsOffset);
  1417. end
  1418. else if segprefix<>NR_NO then
  1419. InternalError(201001071);
  1420. { Generate the instruction }
  1421. GenCode(objdata);
  1422. end;
  1423. function taicpu.needaddrprefix(opidx:byte):boolean;
  1424. begin
  1425. result:=(oper[opidx]^.typ=top_ref) and
  1426. (oper[opidx]^.ref^.refaddr=addr_no) and
  1427. {$ifdef x86_64}
  1428. (oper[opidx]^.ref^.base<>NR_RIP) and
  1429. {$endif x86_64}
  1430. (
  1431. (
  1432. (oper[opidx]^.ref^.index<>NR_NO) and
  1433. (getsubreg(oper[opidx]^.ref^.index)<>R_SUBADDR)
  1434. ) or
  1435. (
  1436. (oper[opidx]^.ref^.base<>NR_NO) and
  1437. (getsubreg(oper[opidx]^.ref^.base)<>R_SUBADDR)
  1438. )
  1439. );
  1440. end;
  1441. procedure badreg(r:Tregister);
  1442. begin
  1443. Message1(asmw_e_invalid_register,generic_regname(r));
  1444. end;
  1445. function regval(r:Tregister):byte;
  1446. const
  1447. intsupreg2opcode: array[0..7] of byte=
  1448. // ax cx dx bx si di bp sp -- in x86reg.dat
  1449. // ax cx dx bx sp bp si di -- needed order
  1450. (0, 1, 2, 3, 6, 7, 5, 4);
  1451. maxsupreg: array[tregistertype] of tsuperregister=
  1452. {$ifdef x86_64}
  1453. (0, 16, 9, 8, 16, 32, 0, 0);
  1454. {$else x86_64}
  1455. (0, 8, 9, 8, 8, 32, 0, 0);
  1456. {$endif x86_64}
  1457. var
  1458. rs: tsuperregister;
  1459. rt: tregistertype;
  1460. begin
  1461. rs:=getsupreg(r);
  1462. rt:=getregtype(r);
  1463. if (rs>=maxsupreg[rt]) then
  1464. badreg(r);
  1465. result:=rs and 7;
  1466. if (rt=R_INTREGISTER) then
  1467. begin
  1468. if (rs<8) then
  1469. result:=intsupreg2opcode[rs];
  1470. if getsubreg(r)=R_SUBH then
  1471. inc(result,4);
  1472. end;
  1473. end;
  1474. {$if defined(x86_64)}
  1475. function rexbits(r: tregister): byte;
  1476. begin
  1477. result:=0;
  1478. case getregtype(r) of
  1479. R_INTREGISTER:
  1480. if (getsupreg(r)>=RS_R8) then
  1481. { Either B,X or R bits can be set, depending on register role in instruction.
  1482. Set all three bits here, caller will discard unnecessary ones. }
  1483. result:=result or $47
  1484. else if (getsubreg(r)=R_SUBL) and
  1485. (getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1486. result:=result or $40
  1487. else if (getsubreg(r)=R_SUBH) then
  1488. { Not an actual REX bit, used to detect incompatible usage of
  1489. AH/BH/CH/DH }
  1490. result:=result or $80;
  1491. R_MMREGISTER:
  1492. if getsupreg(r)>=RS_XMM8 then
  1493. result:=result or $47;
  1494. end;
  1495. end;
  1496. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1497. var
  1498. sym : tasmsymbol;
  1499. md,s,rv : byte;
  1500. base,index,scalefactor,
  1501. o : longint;
  1502. ir,br : Tregister;
  1503. isub,bsub : tsubregister;
  1504. begin
  1505. process_ea:=false;
  1506. fillchar(output,sizeof(output),0);
  1507. {Register ?}
  1508. if (input.typ=top_reg) then
  1509. begin
  1510. rv:=regval(input.reg);
  1511. output.modrm:=$c0 or (rfield shl 3) or rv;
  1512. output.size:=1;
  1513. output.rex:=output.rex or (rexbits(input.reg) and $F1);
  1514. process_ea:=true;
  1515. exit;
  1516. end;
  1517. {No register, so memory reference.}
  1518. if input.typ<>top_ref then
  1519. internalerror(200409263);
  1520. ir:=input.ref^.index;
  1521. br:=input.ref^.base;
  1522. isub:=getsubreg(ir);
  1523. bsub:=getsubreg(br);
  1524. s:=input.ref^.scalefactor;
  1525. o:=input.ref^.offset;
  1526. sym:=input.ref^.symbol;
  1527. //if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  1528. // ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1529. if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
  1530. ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
  1531. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1532. internalerror(200301081);
  1533. { it's direct address }
  1534. if (br=NR_NO) and (ir=NR_NO) then
  1535. begin
  1536. output.sib_present:=true;
  1537. output.bytes:=4;
  1538. output.modrm:=4 or (rfield shl 3);
  1539. output.sib:=$25;
  1540. end
  1541. else if (br=NR_RIP) and (ir=NR_NO) then
  1542. begin
  1543. { rip based }
  1544. output.sib_present:=false;
  1545. output.bytes:=4;
  1546. output.modrm:=5 or (rfield shl 3);
  1547. end
  1548. else
  1549. { it's an indirection }
  1550. begin
  1551. { 16 bit? }
  1552. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1553. (br<>NR_NO) and (bsub=R_SUBADDR)
  1554. ) then
  1555. begin
  1556. // vector memory (AVX2) =>> ignore
  1557. end
  1558. else if ((ir<>NR_NO) and (isub<>R_SUBADDR) and (isub<>R_SUBD)) or
  1559. ((br<>NR_NO) and (bsub<>R_SUBADDR) and (bsub<>R_SUBD)) then
  1560. begin
  1561. message(asmw_e_16bit_32bit_not_supported);
  1562. end;
  1563. { wrong, for various reasons }
  1564. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1565. exit;
  1566. output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
  1567. process_ea:=true;
  1568. { base }
  1569. case br of
  1570. NR_R8D,
  1571. NR_EAX,
  1572. NR_R8,
  1573. NR_RAX : base:=0;
  1574. NR_R9D,
  1575. NR_ECX,
  1576. NR_R9,
  1577. NR_RCX : base:=1;
  1578. NR_R10D,
  1579. NR_EDX,
  1580. NR_R10,
  1581. NR_RDX : base:=2;
  1582. NR_R11D,
  1583. NR_EBX,
  1584. NR_R11,
  1585. NR_RBX : base:=3;
  1586. NR_R12D,
  1587. NR_ESP,
  1588. NR_R12,
  1589. NR_RSP : base:=4;
  1590. NR_R13D,
  1591. NR_EBP,
  1592. NR_R13,
  1593. NR_NO,
  1594. NR_RBP : base:=5;
  1595. NR_R14D,
  1596. NR_ESI,
  1597. NR_R14,
  1598. NR_RSI : base:=6;
  1599. NR_R15D,
  1600. NR_EDI,
  1601. NR_R15,
  1602. NR_RDI : base:=7;
  1603. else
  1604. exit;
  1605. end;
  1606. { index }
  1607. case ir of
  1608. NR_R8D,
  1609. NR_EAX,
  1610. NR_R8,
  1611. NR_RAX,
  1612. NR_XMM0,
  1613. NR_XMM8,
  1614. NR_YMM0,
  1615. NR_YMM8 : index:=0;
  1616. NR_R9D,
  1617. NR_ECX,
  1618. NR_R9,
  1619. NR_RCX,
  1620. NR_XMM1,
  1621. NR_XMM9,
  1622. NR_YMM1,
  1623. NR_YMM9 : index:=1;
  1624. NR_R10D,
  1625. NR_EDX,
  1626. NR_R10,
  1627. NR_RDX,
  1628. NR_XMM2,
  1629. NR_XMM10,
  1630. NR_YMM2,
  1631. NR_YMM10 : index:=2;
  1632. NR_R11D,
  1633. NR_EBX,
  1634. NR_R11,
  1635. NR_RBX,
  1636. NR_XMM3,
  1637. NR_XMM11,
  1638. NR_YMM3,
  1639. NR_YMM11 : index:=3;
  1640. NR_R12D,
  1641. NR_ESP,
  1642. NR_R12,
  1643. NR_NO,
  1644. NR_XMM4,
  1645. NR_XMM12,
  1646. NR_YMM4,
  1647. NR_YMM12 : index:=4;
  1648. NR_R13D,
  1649. NR_EBP,
  1650. NR_R13,
  1651. NR_RBP,
  1652. NR_XMM5,
  1653. NR_XMM13,
  1654. NR_YMM5,
  1655. NR_YMM13: index:=5;
  1656. NR_R14D,
  1657. NR_ESI,
  1658. NR_R14,
  1659. NR_RSI,
  1660. NR_XMM6,
  1661. NR_XMM14,
  1662. NR_YMM6,
  1663. NR_YMM14: index:=6;
  1664. NR_R15D,
  1665. NR_EDI,
  1666. NR_R15,
  1667. NR_RDI,
  1668. NR_XMM7,
  1669. NR_XMM15,
  1670. NR_YMM7,
  1671. NR_YMM15: index:=7;
  1672. else
  1673. exit;
  1674. end;
  1675. case s of
  1676. 0,
  1677. 1 : scalefactor:=0;
  1678. 2 : scalefactor:=1;
  1679. 4 : scalefactor:=2;
  1680. 8 : scalefactor:=3;
  1681. else
  1682. exit;
  1683. end;
  1684. { If rbp or r13 is used we must always include an offset }
  1685. if (br=NR_NO) or
  1686. ((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
  1687. md:=0
  1688. else
  1689. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1690. md:=1
  1691. else
  1692. md:=2;
  1693. if (br=NR_NO) or (md=2) then
  1694. output.bytes:=4
  1695. else
  1696. output.bytes:=md;
  1697. { SIB needed ? }
  1698. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
  1699. begin
  1700. output.sib_present:=false;
  1701. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  1702. end
  1703. else
  1704. begin
  1705. output.sib_present:=true;
  1706. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  1707. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1708. end;
  1709. end;
  1710. output.size:=1+ord(output.sib_present)+output.bytes;
  1711. process_ea:=true;
  1712. end;
  1713. {$elseif defined(i386)}
  1714. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1715. var
  1716. sym : tasmsymbol;
  1717. md,s,rv : byte;
  1718. base,index,scalefactor,
  1719. o : longint;
  1720. ir,br : Tregister;
  1721. isub,bsub : tsubregister;
  1722. begin
  1723. process_ea:=false;
  1724. fillchar(output,sizeof(output),0);
  1725. {Register ?}
  1726. if (input.typ=top_reg) then
  1727. begin
  1728. rv:=regval(input.reg);
  1729. output.modrm:=$c0 or (rfield shl 3) or rv;
  1730. output.size:=1;
  1731. process_ea:=true;
  1732. exit;
  1733. end;
  1734. {No register, so memory reference.}
  1735. if (input.typ<>top_ref) then
  1736. internalerror(200409262);
  1737. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) and (input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) or // vector memory (AVX2)
  1738. ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER) and (getregtype(input.ref^.index)<>R_MMREGISTER)) or
  1739. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1740. internalerror(200301081);
  1741. ir:=input.ref^.index;
  1742. br:=input.ref^.base;
  1743. isub:=getsubreg(ir);
  1744. bsub:=getsubreg(br);
  1745. s:=input.ref^.scalefactor;
  1746. o:=input.ref^.offset;
  1747. sym:=input.ref^.symbol;
  1748. { it's direct address }
  1749. if (br=NR_NO) and (ir=NR_NO) then
  1750. begin
  1751. { it's a pure offset }
  1752. output.sib_present:=false;
  1753. output.bytes:=4;
  1754. output.modrm:=5 or (rfield shl 3);
  1755. end
  1756. else
  1757. { it's an indirection }
  1758. begin
  1759. { 16 bit address? }
  1760. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1761. (br<>NR_NO) and (bsub=R_SUBADDR)
  1762. ) then
  1763. begin
  1764. // vector memory (AVX2) =>> ignore
  1765. end
  1766. else if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1767. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1768. message(asmw_e_16bit_not_supported);
  1769. {$ifdef OPTEA}
  1770. { make single reg base }
  1771. if (br=NR_NO) and (s=1) then
  1772. begin
  1773. br:=ir;
  1774. ir:=NR_NO;
  1775. end;
  1776. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  1777. if (br=NR_NO) and
  1778. (((s=2) and (ir<>NR_ESP)) or
  1779. (s=3) or (s=5) or (s=9)) then
  1780. begin
  1781. br:=ir;
  1782. dec(s);
  1783. end;
  1784. { swap ESP into base if scalefactor is 1 }
  1785. if (s=1) and (ir=NR_ESP) then
  1786. begin
  1787. ir:=br;
  1788. br:=NR_ESP;
  1789. end;
  1790. {$endif OPTEA}
  1791. { wrong, for various reasons }
  1792. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1793. exit;
  1794. { base }
  1795. case br of
  1796. NR_EAX : base:=0;
  1797. NR_ECX : base:=1;
  1798. NR_EDX : base:=2;
  1799. NR_EBX : base:=3;
  1800. NR_ESP : base:=4;
  1801. NR_NO,
  1802. NR_EBP : base:=5;
  1803. NR_ESI : base:=6;
  1804. NR_EDI : base:=7;
  1805. else
  1806. exit;
  1807. end;
  1808. { index }
  1809. case ir of
  1810. NR_EAX,
  1811. NR_XMM0,
  1812. NR_YMM0: index:=0;
  1813. NR_ECX,
  1814. NR_XMM1,
  1815. NR_YMM1: index:=1;
  1816. NR_EDX,
  1817. NR_XMM2,
  1818. NR_YMM2: index:=2;
  1819. NR_EBX,
  1820. NR_XMM3,
  1821. NR_YMM3: index:=3;
  1822. NR_NO,
  1823. NR_XMM4,
  1824. NR_YMM4: index:=4;
  1825. NR_EBP,
  1826. NR_XMM5,
  1827. NR_YMM5: index:=5;
  1828. NR_ESI,
  1829. NR_XMM6,
  1830. NR_YMM6: index:=6;
  1831. NR_EDI,
  1832. NR_XMM7,
  1833. NR_YMM7: index:=7;
  1834. else
  1835. exit;
  1836. end;
  1837. case s of
  1838. 0,
  1839. 1 : scalefactor:=0;
  1840. 2 : scalefactor:=1;
  1841. 4 : scalefactor:=2;
  1842. 8 : scalefactor:=3;
  1843. else
  1844. exit;
  1845. end;
  1846. if (br=NR_NO) or
  1847. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  1848. md:=0
  1849. else
  1850. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1851. md:=1
  1852. else
  1853. md:=2;
  1854. if (br=NR_NO) or (md=2) then
  1855. output.bytes:=4
  1856. else
  1857. output.bytes:=md;
  1858. { SIB needed ? }
  1859. if (ir=NR_NO) and (br<>NR_ESP) then
  1860. begin
  1861. output.sib_present:=false;
  1862. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  1863. end
  1864. else
  1865. begin
  1866. output.sib_present:=true;
  1867. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
  1868. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1869. end;
  1870. end;
  1871. if output.sib_present then
  1872. output.size:=2+output.bytes
  1873. else
  1874. output.size:=1+output.bytes;
  1875. process_ea:=true;
  1876. end;
  1877. {$elseif defined(i8086)}
  1878. procedure maybe_swap_index_base(var br,ir:Tregister);
  1879. var
  1880. tmpreg: Tregister;
  1881. begin
  1882. if ((br=NR_NO) or (br=NR_SI) or (br=NR_DI)) and
  1883. ((ir=NR_NO) or (ir=NR_BP) or (ir=NR_BX)) then
  1884. begin
  1885. tmpreg:=br;
  1886. br:=ir;
  1887. ir:=tmpreg;
  1888. end;
  1889. end;
  1890. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1891. var
  1892. sym : tasmsymbol;
  1893. md,s,rv : byte;
  1894. base,
  1895. o : longint;
  1896. ir,br : Tregister;
  1897. isub,bsub : tsubregister;
  1898. begin
  1899. process_ea:=false;
  1900. fillchar(output,sizeof(output),0);
  1901. {Register ?}
  1902. if (input.typ=top_reg) then
  1903. begin
  1904. rv:=regval(input.reg);
  1905. output.modrm:=$c0 or (rfield shl 3) or rv;
  1906. output.size:=1;
  1907. process_ea:=true;
  1908. exit;
  1909. end;
  1910. {No register, so memory reference.}
  1911. if (input.typ<>top_ref) then
  1912. internalerror(200409262);
  1913. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  1914. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1915. internalerror(200301081);
  1916. ir:=input.ref^.index;
  1917. br:=input.ref^.base;
  1918. isub:=getsubreg(ir);
  1919. bsub:=getsubreg(br);
  1920. s:=input.ref^.scalefactor;
  1921. o:=input.ref^.offset;
  1922. sym:=input.ref^.symbol;
  1923. { it's a direct address }
  1924. if (br=NR_NO) and (ir=NR_NO) then
  1925. begin
  1926. { it's a pure offset }
  1927. output.bytes:=2;
  1928. output.modrm:=6 or (rfield shl 3);
  1929. end
  1930. else
  1931. { it's an indirection }
  1932. begin
  1933. { 32 bit address? }
  1934. if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1935. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1936. message(asmw_e_32bit_not_supported);
  1937. { scalefactor can only be 1 in 16-bit addresses }
  1938. if (s<>1) and (ir<>NR_NO) then
  1939. exit;
  1940. maybe_swap_index_base(br,ir);
  1941. if (br=NR_BX) and (ir=NR_SI) then
  1942. base:=0
  1943. else if (br=NR_BX) and (ir=NR_DI) then
  1944. base:=1
  1945. else if (br=NR_BP) and (ir=NR_SI) then
  1946. base:=2
  1947. else if (br=NR_BP) and (ir=NR_DI) then
  1948. base:=3
  1949. else if (br=NR_NO) and (ir=NR_SI) then
  1950. base:=4
  1951. else if (br=NR_NO) and (ir=NR_DI) then
  1952. base:=5
  1953. else if (br=NR_BP) and (ir=NR_NO) then
  1954. base:=6
  1955. else if (br=NR_BX) and (ir=NR_NO) then
  1956. base:=7
  1957. else
  1958. exit;
  1959. if (base<>6) and (o=0) and (sym=nil) then
  1960. md:=0
  1961. else if ((o>=-128) and (o<=127) and (sym=nil)) then
  1962. md:=1
  1963. else
  1964. md:=2;
  1965. output.bytes:=md;
  1966. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  1967. end;
  1968. output.size:=1+output.bytes;
  1969. output.sib_present:=false;
  1970. process_ea:=true;
  1971. end;
  1972. {$endif}
  1973. function taicpu.calcsize(p:PInsEntry):shortint;
  1974. var
  1975. codes : pchar;
  1976. c : byte;
  1977. len : shortint;
  1978. ea_data : ea;
  1979. exists_vex: boolean;
  1980. exists_vex_extension: boolean;
  1981. exists_prefix_66: boolean;
  1982. exists_prefix_F2: boolean;
  1983. exists_prefix_F3: boolean;
  1984. {$ifdef x86_64}
  1985. omit_rexw : boolean;
  1986. {$endif x86_64}
  1987. begin
  1988. len:=0;
  1989. codes:=@p^.code[0];
  1990. exists_vex := false;
  1991. exists_vex_extension := false;
  1992. exists_prefix_66 := false;
  1993. exists_prefix_F2 := false;
  1994. exists_prefix_F3 := false;
  1995. {$ifdef x86_64}
  1996. rex:=0;
  1997. omit_rexw:=false;
  1998. {$endif x86_64}
  1999. repeat
  2000. c:=ord(codes^);
  2001. inc(codes);
  2002. case c of
  2003. 0 :
  2004. break;
  2005. 1,2,3 :
  2006. begin
  2007. inc(codes,c);
  2008. inc(len,c);
  2009. end;
  2010. 8,9,10 :
  2011. begin
  2012. {$ifdef x86_64}
  2013. rex:=rex or (rexbits(oper[c-8]^.reg) and $F1);
  2014. {$endif x86_64}
  2015. inc(codes);
  2016. inc(len);
  2017. end;
  2018. 11 :
  2019. begin
  2020. inc(codes);
  2021. inc(len);
  2022. end;
  2023. 4,5,6,7 :
  2024. begin
  2025. if opsize={$ifdef i8086}S_L{$else}S_W{$endif} then
  2026. inc(len,2)
  2027. else
  2028. inc(len);
  2029. end;
  2030. 12,13,14,
  2031. 16,17,18,
  2032. 20,21,22,23,
  2033. 40,41,42 :
  2034. inc(len);
  2035. 24,25,26,
  2036. 31,
  2037. 48,49,50 :
  2038. inc(len,2);
  2039. 28,29,30:
  2040. begin
  2041. if opsize=S_Q then
  2042. inc(len,8)
  2043. else
  2044. inc(len,4);
  2045. end;
  2046. 36,37,38:
  2047. inc(len,sizeof(pint));
  2048. 44,45,46:
  2049. inc(len,8);
  2050. 32,33,34,
  2051. 52,53,54,
  2052. 56,57,58,
  2053. 172,173,174 :
  2054. inc(len,4);
  2055. 60,61,62,63: ; // ignore vex-coded operand-idx
  2056. 208,209,210 :
  2057. begin
  2058. case (oper[c-208]^.ot and OT_SIZE_MASK) of
  2059. OT_BITS16:
  2060. inc(len);
  2061. {$ifdef x86_64}
  2062. OT_BITS64:
  2063. begin
  2064. rex:=rex or $48;
  2065. end;
  2066. {$endif x86_64}
  2067. end;
  2068. end;
  2069. 200 :
  2070. {$if defined(x86_64)}
  2071. { every insentry with code 0310 must be marked with NOX86_64 }
  2072. InternalError(2011051301);
  2073. {$elseif defined(i386)}
  2074. inc(len);
  2075. {$elseif defined(i8086)}
  2076. {nothing};
  2077. {$endif}
  2078. 201 :
  2079. {$if defined(x86_64) or defined(i8086)}
  2080. inc(len)
  2081. {$endif x86_64 or i8086}
  2082. ;
  2083. 212 :
  2084. inc(len);
  2085. 214 :
  2086. begin
  2087. {$ifdef x86_64}
  2088. rex:=rex or $48;
  2089. {$endif x86_64}
  2090. end;
  2091. 202,
  2092. 211,
  2093. 213,
  2094. 215,
  2095. 217,218: ;
  2096. 219:
  2097. begin
  2098. inc(len);
  2099. exists_prefix_F2 := true;
  2100. end;
  2101. 220:
  2102. begin
  2103. inc(len);
  2104. exists_prefix_F3 := true;
  2105. end;
  2106. 241:
  2107. begin
  2108. inc(len);
  2109. exists_prefix_66 := true;
  2110. end;
  2111. 221:
  2112. {$ifdef x86_64}
  2113. omit_rexw:=true
  2114. {$endif x86_64}
  2115. ;
  2116. 64..151 :
  2117. begin
  2118. {$ifdef x86_64}
  2119. if (c<127) then
  2120. begin
  2121. if (oper[c and 7]^.typ=top_reg) then
  2122. begin
  2123. rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
  2124. end;
  2125. end;
  2126. {$endif x86_64}
  2127. if not process_ea(oper[(c shr 3) and 7]^, ea_data, 0) then
  2128. Message(asmw_e_invalid_effective_address)
  2129. else
  2130. inc(len,ea_data.size);
  2131. {$ifdef x86_64}
  2132. rex:=rex or ea_data.rex;
  2133. {$endif x86_64}
  2134. end;
  2135. 242: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
  2136. // =>> DEFAULT = 2 Bytes
  2137. begin
  2138. if not(exists_vex) then
  2139. begin
  2140. inc(len, 2);
  2141. exists_vex := true;
  2142. end;
  2143. end;
  2144. 243: // REX.W = 1
  2145. // =>> VEX prefix length = 3
  2146. begin
  2147. if not(exists_vex_extension) then
  2148. begin
  2149. inc(len);
  2150. exists_vex_extension := true;
  2151. end;
  2152. end;
  2153. 244: ; // VEX length bit
  2154. 246, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
  2155. 247: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
  2156. 248: // VEX-Extension prefix $0F
  2157. // ignore for calculating length
  2158. ;
  2159. 249, // VEX-Extension prefix $0F38
  2160. 250: // VEX-Extension prefix $0F3A
  2161. begin
  2162. if not(exists_vex_extension) then
  2163. begin
  2164. inc(len);
  2165. exists_vex_extension := true;
  2166. end;
  2167. end;
  2168. 192,193,194:
  2169. begin
  2170. {$if defined(x86_64) or defined(i8086)}
  2171. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2172. inc(len);
  2173. {$endif x86_64 or i8086}
  2174. end;
  2175. else
  2176. InternalError(200603141);
  2177. end;
  2178. until false;
  2179. {$ifdef x86_64}
  2180. if ((rex and $80)<>0) and ((rex and $4F)<>0) then
  2181. Message(asmw_e_bad_reg_with_rex);
  2182. rex:=rex and $4F; { reset extra bits in upper nibble }
  2183. if omit_rexw then
  2184. begin
  2185. if rex=$48 then { remove rex entirely? }
  2186. rex:=0
  2187. else
  2188. rex:=rex and $F7;
  2189. end;
  2190. if not(exists_vex) then
  2191. begin
  2192. if rex<>0 then
  2193. Inc(len);
  2194. end;
  2195. {$endif}
  2196. if exists_vex then
  2197. begin
  2198. if exists_prefix_66 then dec(len);
  2199. if exists_prefix_F2 then dec(len);
  2200. if exists_prefix_F3 then dec(len);
  2201. {$ifdef x86_64}
  2202. if not(exists_vex_extension) then
  2203. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  2204. {$endif x86_64}
  2205. end;
  2206. calcsize:=len;
  2207. end;
  2208. procedure taicpu.GenCode(objdata:TObjData);
  2209. {
  2210. * the actual codes (C syntax, i.e. octal):
  2211. * \0 - terminates the code. (Unless it's a literal of course.)
  2212. * \1, \2, \3 - that many literal bytes follow in the code stream
  2213. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  2214. * (POP is never used for CS) depending on operand 0
  2215. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  2216. * on operand 0
  2217. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  2218. * to the register value of operand 0, 1 or 2
  2219. * \13 - a literal byte follows in the code stream, to be added
  2220. * to the condition code value of the instruction.
  2221. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  2222. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  2223. * \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
  2224. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  2225. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  2226. * assembly mode or the address-size override on the operand
  2227. * \37 - a word constant, from the _segment_ part of operand 0
  2228. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  2229. * \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
  2230. on the address size of instruction
  2231. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  2232. * \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
  2233. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  2234. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  2235. * assembly mode or the address-size override on the operand
  2236. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  2237. * \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
  2238. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  2239. * field the register value of operand b.
  2240. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  2241. * field equal to digit b.
  2242. * \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
  2243. * \300,\301,\302 - might be an 0x67, depending on the address size of
  2244. * the memory reference in operand x.
  2245. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  2246. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  2247. * \312 - (disassembler only) invalid with non-default address size.
  2248. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  2249. * size of operand x.
  2250. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  2251. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  2252. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  2253. * \327 - indicates that this instruction is only valid when the
  2254. * operand size is the default (instruction to disassembler,
  2255. * generates no code in the assembler)
  2256. * \331 - instruction not valid with REP prefix. Hint for
  2257. * disassembler only; for SSE instructions.
  2258. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  2259. * \333 - 0xF3 prefix for SSE instructions
  2260. * \334 - 0xF2 prefix for SSE instructions
  2261. * \335 - Indicates 64-bit operand size with REX.W not necessary
  2262. * \361 - 0x66 prefix for SSE instructions
  2263. * \362 - VEX prefix for AVX instructions
  2264. * \363 - VEX W1
  2265. * \364 - VEX Vector length 256
  2266. * \366 - operand 2 (ymmreg) encoded in bit 4-7 of the immediate byte
  2267. * \367 - operand 3 (ymmreg) encoded in bit 4-7 of the immediate byte
  2268. * \370 - VEX 0F-FLAG
  2269. * \371 - VEX 0F38-FLAG
  2270. * \372 - VEX 0F3A-FLAG
  2271. }
  2272. var
  2273. currval : aint;
  2274. currsym : tobjsymbol;
  2275. currrelreloc,
  2276. currabsreloc,
  2277. currabsreloc32 : TObjRelocationType;
  2278. {$ifdef x86_64}
  2279. rexwritten : boolean;
  2280. {$endif x86_64}
  2281. procedure getvalsym(opidx:longint);
  2282. begin
  2283. case oper[opidx]^.typ of
  2284. top_ref :
  2285. begin
  2286. currval:=oper[opidx]^.ref^.offset;
  2287. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  2288. {$ifdef i386}
  2289. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2290. (tf_pic_uses_got in target_info.flags) then
  2291. begin
  2292. currrelreloc:=RELOC_PLT32;
  2293. currabsreloc:=RELOC_GOT32;
  2294. currabsreloc32:=RELOC_GOT32;
  2295. end
  2296. else
  2297. {$endif i386}
  2298. {$ifdef x86_64}
  2299. if oper[opidx]^.ref^.refaddr=addr_pic then
  2300. begin
  2301. currrelreloc:=RELOC_PLT32;
  2302. currabsreloc:=RELOC_GOTPCREL;
  2303. currabsreloc32:=RELOC_GOTPCREL;
  2304. end
  2305. else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
  2306. begin
  2307. currrelreloc:=RELOC_RELATIVE;
  2308. currabsreloc:=RELOC_RELATIVE;
  2309. currabsreloc32:=RELOC_RELATIVE;
  2310. end
  2311. else
  2312. {$endif x86_64}
  2313. begin
  2314. currrelreloc:=RELOC_RELATIVE;
  2315. currabsreloc:=RELOC_ABSOLUTE;
  2316. currabsreloc32:=RELOC_ABSOLUTE32;
  2317. end;
  2318. end;
  2319. top_const :
  2320. begin
  2321. currval:=aint(oper[opidx]^.val);
  2322. currsym:=nil;
  2323. currabsreloc:=RELOC_ABSOLUTE;
  2324. currabsreloc32:=RELOC_ABSOLUTE32;
  2325. end;
  2326. else
  2327. Message(asmw_e_immediate_or_reference_expected);
  2328. end;
  2329. end;
  2330. {$ifdef x86_64}
  2331. procedure maybewriterex;
  2332. begin
  2333. if (rex<>0) and not(rexwritten) then
  2334. begin
  2335. rexwritten:=true;
  2336. objdata.writebytes(rex,1);
  2337. end;
  2338. end;
  2339. {$endif x86_64}
  2340. procedure objdata_writereloc(Data:aint;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
  2341. begin
  2342. {$ifdef i386}
  2343. { Special case of '_GLOBAL_OFFSET_TABLE_'
  2344. which needs a special relocation type R_386_GOTPC }
  2345. if assigned (p) and
  2346. (p.name='_GLOBAL_OFFSET_TABLE_') and
  2347. (tf_pic_uses_got in target_info.flags) then
  2348. begin
  2349. { nothing else than a 4 byte relocation should occur
  2350. for GOT }
  2351. if len<>4 then
  2352. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  2353. Reloctype:=RELOC_GOTPC;
  2354. { We need to add the offset of the relocation
  2355. of _GLOBAL_OFFSET_TABLE symbol within
  2356. the current instruction }
  2357. inc(data,objdata.currobjsec.size-insoffset);
  2358. end;
  2359. {$endif i386}
  2360. objdata.writereloc(data,len,p,Reloctype);
  2361. end;
  2362. const
  2363. CondVal:array[TAsmCond] of byte=($0,
  2364. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  2365. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  2366. $0, $A, $A, $B, $8, $4);
  2367. var
  2368. c : byte;
  2369. pb : pbyte;
  2370. codes : pchar;
  2371. bytes : array[0..3] of byte;
  2372. rfield,
  2373. data,s,opidx : longint;
  2374. ea_data : ea;
  2375. relsym : TObjSymbol;
  2376. needed_VEX_Extension: boolean;
  2377. needed_VEX: boolean;
  2378. opmode: integer;
  2379. VEXvvvv: byte;
  2380. VEXmmmmm: byte;
  2381. begin
  2382. { safety check }
  2383. if objdata.currobjsec.size<>longword(insoffset) then
  2384. internalerror(200130121);
  2385. { those variables are initialized inside local procedures, the dfa cannot handle this yet }
  2386. currsym:=nil;
  2387. currabsreloc:=RELOC_NONE;
  2388. currabsreloc32:=RELOC_NONE;
  2389. currrelreloc:=RELOC_NONE;
  2390. currval:=0;
  2391. { load data to write }
  2392. codes:=insentry^.code;
  2393. {$ifdef x86_64}
  2394. rexwritten:=false;
  2395. {$endif x86_64}
  2396. { Force word push/pop for registers }
  2397. if (opsize={$ifdef i8086}S_L{$else}S_W{$endif}) and ((codes[0]=#4) or (codes[0]=#6) or
  2398. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  2399. begin
  2400. bytes[0]:=$66;
  2401. objdata.writebytes(bytes,1);
  2402. end;
  2403. // needed VEX Prefix (for AVX etc.)
  2404. needed_VEX := false;
  2405. needed_VEX_Extension := false;
  2406. opmode := -1;
  2407. VEXvvvv := 0;
  2408. VEXmmmmm := 0;
  2409. repeat
  2410. c:=ord(codes^);
  2411. inc(codes);
  2412. case c of
  2413. 0: break;
  2414. 1,
  2415. 2,
  2416. 3: inc(codes,c);
  2417. 60: opmode := 0;
  2418. 61: opmode := 1;
  2419. 62: opmode := 2;
  2420. 219: VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
  2421. 220: VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
  2422. 241: VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
  2423. 242: needed_VEX := true;
  2424. 243: begin
  2425. needed_VEX_Extension := true;
  2426. VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
  2427. end;
  2428. 244: VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
  2429. 248: VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
  2430. 249: begin
  2431. needed_VEX_Extension := true;
  2432. VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
  2433. end;
  2434. 250: begin
  2435. needed_VEX_Extension := true;
  2436. VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
  2437. end;
  2438. end;
  2439. until false;
  2440. if needed_VEX then
  2441. begin
  2442. if (opmode > ops) or
  2443. (opmode < -1) then
  2444. begin
  2445. Internalerror(777100);
  2446. end
  2447. else if opmode = -1 then
  2448. begin
  2449. VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
  2450. end
  2451. else if oper[opmode]^.typ = top_reg then
  2452. begin
  2453. VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
  2454. {$ifdef x86_64}
  2455. if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
  2456. {$else}
  2457. VEXvvvv := VEXvvvv or (1 shl 6);
  2458. {$endif x86_64}
  2459. end
  2460. else Internalerror(777101);
  2461. if not(needed_VEX_Extension) then
  2462. begin
  2463. {$ifdef x86_64}
  2464. if rex and $0B <> 0 then needed_VEX_Extension := true;
  2465. {$endif x86_64}
  2466. end;
  2467. if needed_VEX_Extension then
  2468. begin
  2469. // VEX-Prefix-Length = 3 Bytes
  2470. bytes[0]:=$C4;
  2471. objdata.writebytes(bytes,1);
  2472. {$ifdef x86_64}
  2473. VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
  2474. {$else}
  2475. VEXmmmmm := VEXmmmmm or (7 shl 5); //
  2476. {$endif x86_64}
  2477. bytes[0] := VEXmmmmm;
  2478. objdata.writebytes(bytes,1);
  2479. {$ifdef x86_64}
  2480. VEXvvvv := VEXvvvv OR ((rex and $08) shl 7); // set REX.w
  2481. {$endif x86_64}
  2482. bytes[0] := VEXvvvv;
  2483. objdata.writebytes(bytes,1);
  2484. end
  2485. else
  2486. begin
  2487. // VEX-Prefix-Length = 2 Bytes
  2488. bytes[0]:=$C5;
  2489. objdata.writebytes(bytes,1);
  2490. {$ifdef x86_64}
  2491. if rex and $04 = 0 then
  2492. {$endif x86_64}
  2493. begin
  2494. VEXvvvv := VEXvvvv or (1 shl 7);
  2495. end;
  2496. bytes[0] := VEXvvvv;
  2497. objdata.writebytes(bytes,1);
  2498. end;
  2499. end
  2500. else
  2501. begin
  2502. needed_VEX_Extension := false;
  2503. opmode := -1;
  2504. end;
  2505. { load data to write }
  2506. codes:=insentry^.code;
  2507. repeat
  2508. c:=ord(codes^);
  2509. inc(codes);
  2510. case c of
  2511. 0 :
  2512. break;
  2513. 1,2,3 :
  2514. begin
  2515. {$ifdef x86_64}
  2516. if not(needed_VEX) then // TG
  2517. maybewriterex;
  2518. {$endif x86_64}
  2519. objdata.writebytes(codes^,c);
  2520. inc(codes,c);
  2521. end;
  2522. 4,6 :
  2523. begin
  2524. case oper[0]^.reg of
  2525. NR_CS:
  2526. bytes[0]:=$e;
  2527. NR_NO,
  2528. NR_DS:
  2529. bytes[0]:=$1e;
  2530. NR_ES:
  2531. bytes[0]:=$6;
  2532. NR_SS:
  2533. bytes[0]:=$16;
  2534. else
  2535. internalerror(777004);
  2536. end;
  2537. if c=4 then
  2538. inc(bytes[0]);
  2539. objdata.writebytes(bytes,1);
  2540. end;
  2541. 5,7 :
  2542. begin
  2543. case oper[0]^.reg of
  2544. NR_FS:
  2545. bytes[0]:=$a0;
  2546. NR_GS:
  2547. bytes[0]:=$a8;
  2548. else
  2549. internalerror(777005);
  2550. end;
  2551. if c=5 then
  2552. inc(bytes[0]);
  2553. objdata.writebytes(bytes,1);
  2554. end;
  2555. 8,9,10 :
  2556. begin
  2557. {$ifdef x86_64}
  2558. if not(needed_VEX) then // TG
  2559. maybewriterex;
  2560. {$endif x86_64}
  2561. bytes[0]:=ord(codes^)+regval(oper[c-8]^.reg);
  2562. inc(codes);
  2563. objdata.writebytes(bytes,1);
  2564. end;
  2565. 11 :
  2566. begin
  2567. bytes[0]:=ord(codes^)+condval[condition];
  2568. inc(codes);
  2569. objdata.writebytes(bytes,1);
  2570. end;
  2571. 12,13,14 :
  2572. begin
  2573. getvalsym(c-12);
  2574. if (currval<-128) or (currval>127) then
  2575. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  2576. if assigned(currsym) then
  2577. objdata_writereloc(currval,1,currsym,currabsreloc)
  2578. else
  2579. objdata.writebytes(currval,1);
  2580. end;
  2581. 16,17,18 :
  2582. begin
  2583. getvalsym(c-16);
  2584. if (currval<-256) or (currval>255) then
  2585. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  2586. if assigned(currsym) then
  2587. objdata_writereloc(currval,1,currsym,currabsreloc)
  2588. else
  2589. objdata.writebytes(currval,1);
  2590. end;
  2591. 20,21,22,23 :
  2592. begin
  2593. getvalsym(c-20);
  2594. if (currval<0) or (currval>255) then
  2595. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  2596. if assigned(currsym) then
  2597. objdata_writereloc(currval,1,currsym,currabsreloc)
  2598. else
  2599. objdata.writebytes(currval,1);
  2600. end;
  2601. 24,25,26 : // 030..032
  2602. begin
  2603. getvalsym(c-24);
  2604. {$ifndef i8086}
  2605. { currval is an aint so this cannot happen on i8086 and causes only a warning }
  2606. if (currval<-65536) or (currval>65535) then
  2607. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  2608. {$endif i8086}
  2609. if assigned(currsym) then
  2610. objdata_writereloc(currval,2,currsym,currabsreloc)
  2611. else
  2612. objdata.writebytes(currval,2);
  2613. end;
  2614. 28,29,30 : // 034..036
  2615. { !!! These are intended (and used in opcode table) to select depending
  2616. on address size, *not* operand size. Works by coincidence only. }
  2617. begin
  2618. getvalsym(c-28);
  2619. if opsize=S_Q then
  2620. begin
  2621. if assigned(currsym) then
  2622. objdata_writereloc(currval,8,currsym,currabsreloc)
  2623. else
  2624. objdata.writebytes(currval,8);
  2625. end
  2626. else
  2627. begin
  2628. if assigned(currsym) then
  2629. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2630. else
  2631. objdata.writebytes(currval,4);
  2632. end
  2633. end;
  2634. 32,33,34 : // 040..042
  2635. begin
  2636. getvalsym(c-32);
  2637. if assigned(currsym) then
  2638. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2639. else
  2640. objdata.writebytes(currval,4);
  2641. end;
  2642. 36,37,38 : // 044..046 - select between word/dword/qword depending on
  2643. begin // address size (we support only default address sizes).
  2644. getvalsym(c-36);
  2645. {$if defined(x86_64)}
  2646. if assigned(currsym) then
  2647. objdata_writereloc(currval,8,currsym,currabsreloc)
  2648. else
  2649. objdata.writebytes(currval,8);
  2650. {$elseif defined(i386)}
  2651. if assigned(currsym) then
  2652. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2653. else
  2654. objdata.writebytes(currval,4);
  2655. {$elseif defined(i8086)}
  2656. if assigned(currsym) then
  2657. objdata_writereloc(currval,2,currsym,currabsreloc)
  2658. else
  2659. objdata.writebytes(currval,2);
  2660. {$endif}
  2661. end;
  2662. 40,41,42 : // 050..052 - byte relative operand
  2663. begin
  2664. getvalsym(c-40);
  2665. data:=currval-insend;
  2666. {$push}
  2667. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  2668. if assigned(currsym) then
  2669. inc(data,currsym.address);
  2670. {$pop}
  2671. if (data>127) or (data<-128) then
  2672. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  2673. objdata.writebytes(data,1);
  2674. end;
  2675. 44,45,46: // 054..056 - qword immediate operand
  2676. begin
  2677. getvalsym(c-44);
  2678. if assigned(currsym) then
  2679. objdata_writereloc(currval,8,currsym,currabsreloc)
  2680. else
  2681. objdata.writebytes(currval,8);
  2682. end;
  2683. 52,53,54 : // 064..066 - select between 16/32 address mode, but we support only 32
  2684. begin
  2685. getvalsym(c-52);
  2686. if assigned(currsym) then
  2687. objdata_writereloc(currval,4,currsym,currrelreloc)
  2688. else
  2689. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2690. end;
  2691. 56,57,58 : // 070..072 - long relative operand
  2692. begin
  2693. getvalsym(c-56);
  2694. if assigned(currsym) then
  2695. objdata_writereloc(currval,4,currsym,currrelreloc)
  2696. else
  2697. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2698. end;
  2699. 60,61,62 : ; // 074..076 - vex-coded vector operand
  2700. // ignore
  2701. 172,173,174 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
  2702. begin
  2703. getvalsym(c-172);
  2704. {$ifdef x86_64}
  2705. { for i386 as aint type is longint the
  2706. following test is useless }
  2707. if (currval<low(longint)) or (currval>high(longint)) then
  2708. Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
  2709. {$endif x86_64}
  2710. if assigned(currsym) then
  2711. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2712. else
  2713. objdata.writebytes(currval,4);
  2714. end;
  2715. 192,193,194:
  2716. begin
  2717. {$if defined(x86_64) or defined(i8086)}
  2718. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2719. begin
  2720. bytes[0]:=$67;
  2721. objdata.writebytes(bytes,1);
  2722. end;
  2723. {$endif x86_64 or i8086}
  2724. end;
  2725. 200 : { fixed 16-bit addr }
  2726. {$if defined(x86_64)}
  2727. { every insentry having code 0310 must be marked with NOX86_64 }
  2728. InternalError(2011051302);
  2729. {$elseif defined(i386)}
  2730. begin
  2731. bytes[0]:=$67;
  2732. objdata.writebytes(bytes,1);
  2733. end;
  2734. {$elseif defined(i8086)}
  2735. {nothing};
  2736. {$endif}
  2737. 201 : { fixed 32-bit addr }
  2738. {$if defined(x86_64) or defined(i8086)}
  2739. begin
  2740. bytes[0]:=$67;
  2741. objdata.writebytes(bytes,1);
  2742. end
  2743. {$endif x86_64 or i8086}
  2744. ;
  2745. 208,209,210 :
  2746. begin
  2747. case oper[c-208]^.ot and OT_SIZE_MASK of
  2748. OT_BITS16 :
  2749. begin
  2750. bytes[0]:=$66;
  2751. objdata.writebytes(bytes,1);
  2752. end;
  2753. {$ifndef x86_64}
  2754. OT_BITS64 :
  2755. Message(asmw_e_64bit_not_supported);
  2756. {$endif x86_64}
  2757. end;
  2758. end;
  2759. 211,
  2760. 213 : {no action needed};
  2761. 212,
  2762. 241:
  2763. begin
  2764. if not(needed_VEX) then
  2765. begin
  2766. bytes[0]:=$66;
  2767. objdata.writebytes(bytes,1);
  2768. end;
  2769. end;
  2770. 214 :
  2771. begin
  2772. {$ifndef x86_64}
  2773. Message(asmw_e_64bit_not_supported);
  2774. {$endif x86_64}
  2775. end;
  2776. 219 :
  2777. begin
  2778. if not(needed_VEX) then
  2779. begin
  2780. bytes[0]:=$f3;
  2781. objdata.writebytes(bytes,1);
  2782. end;
  2783. end;
  2784. 220 :
  2785. begin
  2786. if not(needed_VEX) then
  2787. begin
  2788. bytes[0]:=$f2;
  2789. objdata.writebytes(bytes,1);
  2790. end;
  2791. end;
  2792. 221:
  2793. ;
  2794. 202,
  2795. 215,
  2796. 217,218 :
  2797. begin
  2798. { these are dissambler hints or 32 bit prefixes which
  2799. are not needed }
  2800. end;
  2801. 242..244: ; // VEX flags =>> nothing todo
  2802. 246: begin
  2803. if needed_VEX then
  2804. begin
  2805. if ops = 4 then
  2806. begin
  2807. if (oper[2]^.typ=top_reg) then
  2808. begin
  2809. if (oper[2]^.ot and otf_reg_xmm <> 0) or
  2810. (oper[2]^.ot and otf_reg_ymm <> 0) then
  2811. begin
  2812. bytes[0] := ((getsupreg(oper[2]^.reg) and 15) shl 4);
  2813. objdata.writebytes(bytes,1);
  2814. end
  2815. else Internalerror(2014032001);
  2816. end
  2817. else Internalerror(2014032002);
  2818. end
  2819. else Internalerror(2014032003);
  2820. end
  2821. else Internalerror(2014032004);
  2822. end;
  2823. 247: begin
  2824. if needed_VEX then
  2825. begin
  2826. if ops = 4 then
  2827. begin
  2828. if (oper[3]^.typ=top_reg) then
  2829. begin
  2830. if (oper[3]^.ot and otf_reg_xmm <> 0) or
  2831. (oper[3]^.ot and otf_reg_ymm <> 0) then
  2832. begin
  2833. bytes[0] := ((getsupreg(oper[3]^.reg) and 15) shl 4);
  2834. objdata.writebytes(bytes,1);
  2835. end
  2836. else Internalerror(2014032005);
  2837. end
  2838. else Internalerror(2014032006);
  2839. end
  2840. else Internalerror(2014032007);
  2841. end
  2842. else Internalerror(2014032008);
  2843. end;
  2844. 248..250: ; // VEX flags =>> nothing todo
  2845. 31,
  2846. 48,49,50 :
  2847. begin
  2848. InternalError(777006);
  2849. end
  2850. else
  2851. begin
  2852. { rex should be written at this point }
  2853. {$ifdef x86_64}
  2854. if not(needed_VEX) then // TG
  2855. if (rex<>0) and not(rexwritten) then
  2856. internalerror(200603191);
  2857. {$endif x86_64}
  2858. if (c>=64) and (c<=151) then // 0100..0227
  2859. begin
  2860. if (c<127) then // 0177
  2861. begin
  2862. if (oper[c and 7]^.typ=top_reg) then
  2863. rfield:=regval(oper[c and 7]^.reg)
  2864. else
  2865. rfield:=regval(oper[c and 7]^.ref^.base);
  2866. end
  2867. else
  2868. rfield:=c and 7;
  2869. opidx:=(c shr 3) and 7;
  2870. if not process_ea(oper[opidx]^,ea_data,rfield) then
  2871. Message(asmw_e_invalid_effective_address);
  2872. pb:=@bytes[0];
  2873. pb^:=ea_data.modrm;
  2874. inc(pb);
  2875. if ea_data.sib_present then
  2876. begin
  2877. pb^:=ea_data.sib;
  2878. inc(pb);
  2879. end;
  2880. s:=pb-@bytes[0];
  2881. objdata.writebytes(bytes,s);
  2882. case ea_data.bytes of
  2883. 0 : ;
  2884. 1 :
  2885. begin
  2886. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  2887. begin
  2888. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  2889. {$ifdef i386}
  2890. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2891. (tf_pic_uses_got in target_info.flags) then
  2892. currabsreloc:=RELOC_GOT32
  2893. else
  2894. {$endif i386}
  2895. {$ifdef x86_64}
  2896. if oper[opidx]^.ref^.refaddr=addr_pic then
  2897. currabsreloc:=RELOC_GOTPCREL
  2898. else
  2899. {$endif x86_64}
  2900. currabsreloc:=RELOC_ABSOLUTE;
  2901. objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  2902. end
  2903. else
  2904. begin
  2905. bytes[0]:=oper[opidx]^.ref^.offset;
  2906. objdata.writebytes(bytes,1);
  2907. end;
  2908. inc(s);
  2909. end;
  2910. 2,4 :
  2911. begin
  2912. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  2913. currval:=oper[opidx]^.ref^.offset;
  2914. {$ifdef x86_64}
  2915. if oper[opidx]^.ref^.refaddr=addr_pic then
  2916. currabsreloc:=RELOC_GOTPCREL
  2917. else
  2918. if oper[opidx]^.ref^.base=NR_RIP then
  2919. begin
  2920. currabsreloc:=RELOC_RELATIVE;
  2921. { Adjust reloc value by number of bytes following the displacement,
  2922. but not if displacement is specified by literal constant }
  2923. if Assigned(currsym) then
  2924. Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
  2925. end
  2926. else
  2927. {$endif x86_64}
  2928. {$ifdef i386}
  2929. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2930. (tf_pic_uses_got in target_info.flags) then
  2931. currabsreloc:=RELOC_GOT32
  2932. else
  2933. {$endif i386}
  2934. currabsreloc:=RELOC_ABSOLUTE32;
  2935. if (currabsreloc=RELOC_ABSOLUTE32) and
  2936. (Assigned(oper[opidx]^.ref^.relsymbol)) then
  2937. begin
  2938. relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
  2939. if relsym.objsection=objdata.CurrObjSec then
  2940. begin
  2941. currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
  2942. currabsreloc:=RELOC_RELATIVE;
  2943. end
  2944. else
  2945. begin
  2946. currabsreloc:=RELOC_PIC_PAIR;
  2947. currval:=relsym.offset;
  2948. end;
  2949. end;
  2950. objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
  2951. inc(s,ea_data.bytes);
  2952. end;
  2953. end;
  2954. end
  2955. else
  2956. InternalError(777007);
  2957. end;
  2958. end;
  2959. until false;
  2960. end;
  2961. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  2962. begin
  2963. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  2964. (regtype = R_INTREGISTER) and
  2965. (ops=2) and
  2966. (oper[0]^.typ=top_reg) and
  2967. (oper[1]^.typ=top_reg) and
  2968. (oper[0]^.reg=oper[1]^.reg)
  2969. ) or
  2970. (((opcode=A_MOVSS) or (opcode=A_MOVSD) or (opcode=A_MOVQ) or
  2971. (opcode=A_MOVAPS) or (OPCODE=A_MOVAPD) or
  2972. (opcode=A_VMOVSS) or (opcode=A_VMOVSD) or (opcode=A_VMOVQ) or
  2973. (opcode=A_VMOVAPS) or (OPCODE=A_VMOVAPD)) and
  2974. (regtype = R_MMREGISTER) and
  2975. (ops=2) and
  2976. (oper[0]^.typ=top_reg) and
  2977. (oper[1]^.typ=top_reg) and
  2978. (oper[0]^.reg=oper[1]^.reg)
  2979. );
  2980. end;
  2981. procedure build_spilling_operation_type_table;
  2982. var
  2983. opcode : tasmop;
  2984. i : integer;
  2985. begin
  2986. new(operation_type_table);
  2987. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  2988. for opcode:=low(tasmop) to high(tasmop) do
  2989. begin
  2990. for i:=1 to MaxInsChanges do
  2991. begin
  2992. case InsProp[opcode].Ch[i] of
  2993. Ch_Rop1 :
  2994. operation_type_table^[opcode,0]:=operand_read;
  2995. Ch_Wop1 :
  2996. operation_type_table^[opcode,0]:=operand_write;
  2997. Ch_RWop1,
  2998. Ch_Mop1 :
  2999. operation_type_table^[opcode,0]:=operand_readwrite;
  3000. Ch_Rop2 :
  3001. operation_type_table^[opcode,1]:=operand_read;
  3002. Ch_Wop2 :
  3003. operation_type_table^[opcode,1]:=operand_write;
  3004. Ch_RWop2,
  3005. Ch_Mop2 :
  3006. operation_type_table^[opcode,1]:=operand_readwrite;
  3007. Ch_Rop3 :
  3008. operation_type_table^[opcode,2]:=operand_read;
  3009. Ch_Wop3 :
  3010. operation_type_table^[opcode,2]:=operand_write;
  3011. Ch_RWop3,
  3012. Ch_Mop3 :
  3013. operation_type_table^[opcode,2]:=operand_readwrite;
  3014. end;
  3015. end;
  3016. end;
  3017. end;
  3018. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  3019. begin
  3020. { the information in the instruction table is made for the string copy
  3021. operation MOVSD so hack here (FK)
  3022. VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
  3023. so fix it here (FK)
  3024. }
  3025. if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
  3026. begin
  3027. case opnr of
  3028. 0:
  3029. result:=operand_read;
  3030. 1:
  3031. result:=operand_write;
  3032. else
  3033. internalerror(200506055);
  3034. end
  3035. end
  3036. { IMUL has 1, 2 and 3-operand forms }
  3037. else if opcode=A_IMUL then
  3038. begin
  3039. case ops of
  3040. 1:
  3041. if opnr=0 then
  3042. result:=operand_read
  3043. else
  3044. internalerror(2014011802);
  3045. 2:
  3046. begin
  3047. case opnr of
  3048. 0:
  3049. result:=operand_read;
  3050. 1:
  3051. result:=operand_readwrite;
  3052. else
  3053. internalerror(2014011803);
  3054. end;
  3055. end;
  3056. 3:
  3057. begin
  3058. case opnr of
  3059. 0,1:
  3060. result:=operand_read;
  3061. 2:
  3062. result:=operand_write;
  3063. else
  3064. internalerror(2014011804);
  3065. end;
  3066. end;
  3067. else
  3068. internalerror(2014011805);
  3069. end;
  3070. end
  3071. else
  3072. result:=operation_type_table^[opcode,opnr];
  3073. end;
  3074. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  3075. var
  3076. tmpref: treference;
  3077. begin
  3078. tmpref:=ref;
  3079. {$ifdef i8086}
  3080. if tmpref.segment=NR_SS then
  3081. tmpref.segment:=NR_NO;
  3082. {$endif i8086}
  3083. case getregtype(r) of
  3084. R_INTREGISTER :
  3085. begin
  3086. if getsubreg(r)=R_SUBH then
  3087. inc(tmpref.offset);
  3088. { we don't need special code here for 32 bit loads on x86_64, since
  3089. those will automatically zero-extend the upper 32 bits. }
  3090. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
  3091. end;
  3092. R_MMREGISTER :
  3093. if current_settings.fputype in fpu_avx_instructionsets then
  3094. case getsubreg(r) of
  3095. R_SUBMMD:
  3096. result:=taicpu.op_ref_reg(A_VMOVSD,reg2opsize(r),tmpref,r);
  3097. R_SUBMMS:
  3098. result:=taicpu.op_ref_reg(A_VMOVSS,reg2opsize(r),tmpref,r);
  3099. R_SUBQ,
  3100. R_SUBMMWHOLE:
  3101. result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
  3102. else
  3103. internalerror(200506043);
  3104. end
  3105. else
  3106. case getsubreg(r) of
  3107. R_SUBMMD:
  3108. result:=taicpu.op_ref_reg(A_MOVSD,reg2opsize(r),tmpref,r);
  3109. R_SUBMMS:
  3110. result:=taicpu.op_ref_reg(A_MOVSS,reg2opsize(r),tmpref,r);
  3111. R_SUBQ,
  3112. R_SUBMMWHOLE:
  3113. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
  3114. else
  3115. internalerror(200506043);
  3116. end;
  3117. else
  3118. internalerror(200401041);
  3119. end;
  3120. end;
  3121. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  3122. var
  3123. size: topsize;
  3124. tmpref: treference;
  3125. begin
  3126. tmpref:=ref;
  3127. {$ifdef i8086}
  3128. if tmpref.segment=NR_SS then
  3129. tmpref.segment:=NR_NO;
  3130. {$endif i8086}
  3131. case getregtype(r) of
  3132. R_INTREGISTER :
  3133. begin
  3134. if getsubreg(r)=R_SUBH then
  3135. inc(tmpref.offset);
  3136. size:=reg2opsize(r);
  3137. {$ifdef x86_64}
  3138. { even if it's a 32 bit reg, we still have to spill 64 bits
  3139. because we often perform 64 bit operations on them }
  3140. if (size=S_L) then
  3141. begin
  3142. size:=S_Q;
  3143. r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
  3144. end;
  3145. {$endif x86_64}
  3146. result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
  3147. end;
  3148. R_MMREGISTER :
  3149. if current_settings.fputype in fpu_avx_instructionsets then
  3150. case getsubreg(r) of
  3151. R_SUBMMD:
  3152. result:=taicpu.op_reg_ref(A_VMOVSD,reg2opsize(r),r,tmpref);
  3153. R_SUBMMS:
  3154. result:=taicpu.op_reg_ref(A_VMOVSS,reg2opsize(r),r,tmpref);
  3155. R_SUBQ,
  3156. R_SUBMMWHOLE:
  3157. result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
  3158. else
  3159. internalerror(200506042);
  3160. end
  3161. else
  3162. case getsubreg(r) of
  3163. R_SUBMMD:
  3164. result:=taicpu.op_reg_ref(A_MOVSD,reg2opsize(r),r,tmpref);
  3165. R_SUBMMS:
  3166. result:=taicpu.op_reg_ref(A_MOVSS,reg2opsize(r),r,tmpref);
  3167. R_SUBQ,
  3168. R_SUBMMWHOLE:
  3169. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
  3170. else
  3171. internalerror(200506042);
  3172. end;
  3173. else
  3174. internalerror(200401041);
  3175. end;
  3176. end;
  3177. {*****************************************************************************
  3178. Instruction table
  3179. *****************************************************************************}
  3180. procedure BuildInsTabCache;
  3181. var
  3182. i : longint;
  3183. begin
  3184. new(instabcache);
  3185. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  3186. i:=0;
  3187. while (i<InsTabEntries) do
  3188. begin
  3189. if InsTabCache^[InsTab[i].OPcode]=-1 then
  3190. InsTabCache^[InsTab[i].OPcode]:=i;
  3191. inc(i);
  3192. end;
  3193. end;
  3194. procedure BuildInsTabMemRefSizeInfoCache;
  3195. var
  3196. AsmOp: TasmOp;
  3197. i,j: longint;
  3198. insentry : PInsEntry;
  3199. MRefInfo: TMemRefSizeInfo;
  3200. SConstInfo: TConstSizeInfo;
  3201. actRegSize: int64;
  3202. actMemSize: int64;
  3203. actConstSize: int64;
  3204. actRegCount: integer;
  3205. actMemCount: integer;
  3206. actConstCount: integer;
  3207. actRegTypes : int64;
  3208. actRegMemTypes: int64;
  3209. NewRegSize: int64;
  3210. actVMemCount : integer;
  3211. actVMemTypes : int64;
  3212. RegMMXSizeMask: int64;
  3213. RegXMMSizeMask: int64;
  3214. RegYMMSizeMask: int64;
  3215. bitcount: integer;
  3216. function bitcnt(aValue: int64): integer;
  3217. var
  3218. i: integer;
  3219. begin
  3220. result := 0;
  3221. for i := 0 to 63 do
  3222. begin
  3223. if (aValue mod 2) = 1 then
  3224. begin
  3225. inc(result);
  3226. end;
  3227. aValue := aValue shr 1;
  3228. end;
  3229. end;
  3230. begin
  3231. new(InsTabMemRefSizeInfoCache);
  3232. FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
  3233. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3234. begin
  3235. i := InsTabCache^[AsmOp];
  3236. if i >= 0 then
  3237. begin
  3238. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3239. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3240. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
  3241. insentry:=@instab[i];
  3242. RegMMXSizeMask := 0;
  3243. RegXMMSizeMask := 0;
  3244. RegYMMSizeMask := 0;
  3245. while (insentry^.opcode=AsmOp) do
  3246. begin
  3247. MRefInfo := msiUnkown;
  3248. actRegSize := 0;
  3249. actRegCount := 0;
  3250. actRegTypes := 0;
  3251. NewRegSize := 0;
  3252. actMemSize := 0;
  3253. actMemCount := 0;
  3254. actRegMemTypes := 0;
  3255. actVMemCount := 0;
  3256. actVMemTypes := 0;
  3257. actConstSize := 0;
  3258. actConstCount := 0;
  3259. for j := 0 to insentry^.ops -1 do
  3260. begin
  3261. if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
  3262. ((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
  3263. ((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
  3264. ((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) then
  3265. begin
  3266. inc(actVMemCount);
  3267. case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64) of
  3268. OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
  3269. OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
  3270. OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
  3271. OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
  3272. else InternalError(777206);
  3273. end;
  3274. end
  3275. else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
  3276. begin
  3277. inc(actRegCount);
  3278. NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
  3279. if NewRegSize = 0 then
  3280. begin
  3281. case insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG) of
  3282. OT_MMXREG: begin
  3283. NewRegSize := OT_BITS64;
  3284. end;
  3285. OT_XMMREG: begin
  3286. NewRegSize := OT_BITS128;
  3287. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3288. end;
  3289. OT_YMMREG: begin
  3290. NewRegSize := OT_BITS256;
  3291. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3292. end;
  3293. else NewRegSize := not(0);
  3294. end;
  3295. end;
  3296. actRegSize := actRegSize or NewRegSize;
  3297. actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG));
  3298. end
  3299. else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
  3300. begin
  3301. inc(actMemCount);
  3302. actMemSize:=actMemSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3303. if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
  3304. begin
  3305. actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
  3306. end;
  3307. end
  3308. else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
  3309. begin
  3310. inc(actConstCount);
  3311. actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3312. end
  3313. end;
  3314. if actConstCount > 0 then
  3315. begin
  3316. case actConstSize of
  3317. 0: SConstInfo := csiNoSize;
  3318. OT_BITS8: SConstInfo := csiMem8;
  3319. OT_BITS16: SConstInfo := csiMem16;
  3320. OT_BITS32: SConstInfo := csiMem32;
  3321. OT_BITS64: SConstInfo := csiMem64;
  3322. else SConstInfo := csiMultiple;
  3323. end;
  3324. if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnkown then
  3325. begin
  3326. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
  3327. end
  3328. else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
  3329. begin
  3330. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
  3331. end;
  3332. end;
  3333. if actVMemCount > 0 then
  3334. begin
  3335. if actVMemCount = 1 then
  3336. begin
  3337. if actVMemTypes > 0 then
  3338. begin
  3339. case actVMemTypes of
  3340. OT_XMEM32: MRefInfo := msiXMem32;
  3341. OT_XMEM64: MRefInfo := msiXMem64;
  3342. OT_YMEM32: MRefInfo := msiYMem32;
  3343. OT_YMEM64: MRefInfo := msiYMem64;
  3344. else InternalError(777208);
  3345. end;
  3346. case actRegTypes of
  3347. OT_XMMREG: case MRefInfo of
  3348. msiXMem32,
  3349. msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
  3350. msiYMem32,
  3351. msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
  3352. else InternalError(777210);
  3353. end;
  3354. OT_YMMREG: case MRefInfo of
  3355. msiXMem32,
  3356. msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
  3357. msiYMem32,
  3358. msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
  3359. else InternalError(777211);
  3360. end;
  3361. //else InternalError(777209);
  3362. end;
  3363. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3364. begin
  3365. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3366. end
  3367. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3368. begin
  3369. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64] then
  3370. begin
  3371. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
  3372. end
  3373. else InternalError(777212);
  3374. end;
  3375. end;
  3376. end
  3377. else InternalError(777207);
  3378. end
  3379. else
  3380. case actMemCount of
  3381. 0: ; // nothing todo
  3382. 1: begin
  3383. MRefInfo := msiUnkown;
  3384. case actRegMemTypes and (OT_MMXRM OR OT_XMMRM OR OT_YMMRM) of
  3385. OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
  3386. OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
  3387. OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
  3388. end;
  3389. case actMemSize of
  3390. 0: MRefInfo := msiNoSize;
  3391. OT_BITS8: MRefInfo := msiMem8;
  3392. OT_BITS16: MRefInfo := msiMem16;
  3393. OT_BITS32: MRefInfo := msiMem32;
  3394. OT_BITS64: MRefInfo := msiMem64;
  3395. OT_BITS128: MRefInfo := msiMem128;
  3396. OT_BITS256: MRefInfo := msiMem256;
  3397. OT_BITS80,
  3398. OT_FAR,
  3399. OT_NEAR,
  3400. OT_SHORT: ; // ignore
  3401. else
  3402. begin
  3403. bitcount := bitcnt(actMemSize);
  3404. if bitcount > 1 then MRefInfo := msiMultiple
  3405. else InternalError(777203);
  3406. end;
  3407. end;
  3408. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3409. begin
  3410. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3411. end
  3412. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3413. begin
  3414. with InsTabMemRefSizeInfoCache^[AsmOp] do
  3415. begin
  3416. if ((MemRefSize = msiMem8) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultiple8
  3417. else if ((MemRefSize = msiMem16) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultiple16
  3418. else if ((MemRefSize = msiMem32) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultiple32
  3419. else if ((MemRefSize = msiMem64) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultiple64
  3420. else if ((MemRefSize = msiMem128) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultiple128
  3421. else if ((MemRefSize = msiMem256) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultiple256
  3422. else MemRefSize := msiMultiple;
  3423. end;
  3424. end;
  3425. if actRegCount > 0 then
  3426. begin
  3427. case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG) of
  3428. OT_MMXREG: RegMMXSizeMask := RegMMXSizeMask or actMemSize;
  3429. OT_XMMREG: RegXMMSizeMask := RegXMMSizeMask or actMemSize;
  3430. OT_YMMREG: RegYMMSizeMask := RegYMMSizeMask or actMemSize;
  3431. else begin
  3432. RegMMXSizeMask := not(0);
  3433. RegXMMSizeMask := not(0);
  3434. RegYMMSizeMask := not(0);
  3435. end;
  3436. end;
  3437. end;
  3438. end;
  3439. else InternalError(777202);
  3440. end;
  3441. inc(insentry);
  3442. end;
  3443. if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
  3444. (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
  3445. begin
  3446. case RegXMMSizeMask of
  3447. OT_BITS16: case RegYMMSizeMask of
  3448. OT_BITS32: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
  3449. end;
  3450. OT_BITS32: case RegYMMSizeMask of
  3451. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
  3452. end;
  3453. OT_BITS64: case RegYMMSizeMask of
  3454. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3455. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
  3456. end;
  3457. OT_BITS128: begin
  3458. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
  3459. begin
  3460. // vector-memory-operand AVX2 (e.g. VGATHER..)
  3461. case RegYMMSizeMask of
  3462. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
  3463. end;
  3464. end
  3465. else if RegMMXSizeMask = 0 then
  3466. begin
  3467. case RegYMMSizeMask of
  3468. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3469. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3470. end;
  3471. end
  3472. else if RegYMMSizeMask = 0 then
  3473. begin
  3474. case RegMMXSizeMask of
  3475. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3476. end;
  3477. end
  3478. else InternalError(777205);
  3479. end;
  3480. end;
  3481. end;
  3482. end;
  3483. end;
  3484. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3485. begin
  3486. // only supported intructiones with SSE- or AVX-operands
  3487. if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
  3488. begin
  3489. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3490. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3491. end;
  3492. end;
  3493. end;
  3494. procedure InitAsm;
  3495. begin
  3496. build_spilling_operation_type_table;
  3497. if not assigned(instabcache) then
  3498. BuildInsTabCache;
  3499. if not assigned(InsTabMemRefSizeInfoCache) then
  3500. BuildInsTabMemRefSizeInfoCache;
  3501. end;
  3502. procedure DoneAsm;
  3503. begin
  3504. if assigned(operation_type_table) then
  3505. begin
  3506. dispose(operation_type_table);
  3507. operation_type_table:=nil;
  3508. end;
  3509. if assigned(instabcache) then
  3510. begin
  3511. dispose(instabcache);
  3512. instabcache:=nil;
  3513. end;
  3514. if assigned(InsTabMemRefSizeInfoCache) then
  3515. begin
  3516. dispose(InsTabMemRefSizeInfoCache);
  3517. InsTabMemRefSizeInfoCache:=nil;
  3518. end;
  3519. end;
  3520. begin
  3521. cai_align:=tai_align;
  3522. cai_cpu:=taicpu;
  3523. end.