1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393 |
- {
- $Id$
- This file is part of the Free Pascal run time library.
- Copyright (c) 1999-2000 by Florian Klaempfl
- member of the Free Pascal development team
- See the file COPYING.FPC, included in this distribution,
- for details about the copyright.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- **********************************************************************}
- {
- This unit is an equivalent to the Delphi math unit
- (with some improvements)
- What's to do:
- o a lot of function :), search for !!!!
- o some statistical functions
- o all financial functions
- o optimizations
- }
- unit math;
- interface
- {$MODE objfpc}
- {$ifdef VER1_0}
- { we don't assume cross compiling from 1.0.x-m68k ... }
- {$define FPC_HAS_TYPE_EXTENDED}
- {$endif VER1_0}
- uses
- sysutils;
- { Ranges of the IEEE floating point types, including denormals }
- {$ifdef FPC_HAS_TYPE_SINGLE}
- const
- MinSingle = 1.5e-45;
- MaxSingle = 3.4e+38;
- {$endif FPC_HAS_TYPE_SINGLE}
- {$ifdef FPC_HAS_TYPE_DOUBLE}
- const
- MinDouble = 5.0e-324;
- MaxDouble = 1.7e+308;
- {$endif FPC_HAS_TYPE_DOUBLE}
- {$ifdef FPC_HAS_TYPE_EXTENDED}
- const
- MinExtended = 3.4e-4932;
- MaxExtended = 1.1e+4932;
- {$endif FPC_HAS_TYPE_EXTENDED}
- {$ifdef FPC_HAS_TYPE_COMP}
- const
- MinComp = -9.223372036854775807e+18;
- MaxComp = 9.223372036854775807e+18;
- {$endif FPC_HAS_TYPE_COMP}
- { the original delphi functions use extended as argument, }
- { but I would prefer double, because 8 bytes is a very }
- { natural size for the processor }
- { WARNING : changing float type will }
- { break all assembler code PM }
- {$ifdef FPC_HAS_TYPE_FLOAT128}
- type
- float = float128;
- const
- MinFloat = MinFloat128;
- MaxFloat = MaxFloat128;
- {$else FPC_HAS_TYPE_FLOAT128}
- {$ifdef FPC_HAS_TYPE_EXTENDED}
- type
- float = extended;
- const
- MinFloat = MinExtended;
- MaxFloat = MaxExtended;
- {$else FPC_HAS_TYPE_EXTENDED}
- {$ifdef FPC_HAS_TYPE_DOUBLE}
- type
- float = double;
- const
- MinFloat = MinDouble;
- MaxFloat = MaxDouble;
- {$else FPC_HAS_TYPE_DOUBLE}
- {$ifdef FPC_HAS_TYPE_SINGLE}
- type
- float = single;
- const
- MinFloat = MinSingle;
- MaxFloat = MaxSingle;
- {$else FPC_HAS_TYPE_SINGLE}
- {$fatal At least one floating point type must be supported}
- {$endif FPC_HAS_TYPE_SINGLE}
- {$endif FPC_HAS_TYPE_DOUBLE}
- {$endif FPC_HAS_TYPE_EXTENDED}
- {$endif FPC_HAS_TYPE_FLOAT128}
- type
- PFloat = ^Float;
- PInteger = ^Integer;
- tpaymenttime = (ptendofperiod,ptstartofperiod);
- einvalidargument = class(ematherror);
- TValueRelationship = -1..1;
- const
- EqualsValue = 0;
- LessThanValue = Low(TValueRelationship);
- GreaterThanValue = High(TValueRelationship);
- {$ifndef ver1_0}
- {$ifopt R+}
- {$define RangeCheckWasOn}
- {$R-}
- {$endif opt R+}
- {$ifopt Q+}
- {$define OverflowCheckWasOn}
- {$Q-}
- {$endif opt Q+}
- NaN = 0.0/0.0;
- Infinity = 1.0/0.0;
- {$ifdef RangeCheckWasOn}
- {$R+}
- {$undef RangeCheckWasOn}
- {$endif}
- {$ifdef OverflowCheckWasOn}
- {$Q+}
- {$undef OverflowCheckWasOn}
- {$endif}
- {$endif ver1_0}
- { Min/max determination }
- function MinIntValue(const Data: array of Integer): Integer;
- function MaxIntValue(const Data: array of Integer): Integer;
- { Extra, not present in Delphi, but used frequently }
- function Min(a, b: Integer): Integer;
- function Max(a, b: Integer): Integer;
- function Min(a, b: Cardinal): Cardinal;
- function Max(a, b: Cardinal): Cardinal;
- function Min(a, b: Int64): Int64;
- function Max(a, b: Int64): Int64;
- {$ifdef FPC_HAS_TYPE_SINGLE}
- function Min(a, b: Single): Single;
- function Max(a, b: Single): Single;
- {$endif FPC_HAS_TYPE_SINGLE}
- {$ifdef FPC_HAS_TYPE_DOUBLE}
- function Min(a, b: Double): Double;
- function Max(a, b: Double): Double;
- {$endif FPC_HAS_TYPE_DOUBLE}
- {$ifdef FPC_HAS_TYPE_EXTENDED}
- function Min(a, b: Extended): Extended;
- function Max(a, b: Extended): Extended;
- {$endif FPC_HAS_TYPE_EXTENDED}
- function InRange(const AValue, AMin, AMax: Integer): Boolean;
- function InRange(const AValue, AMin, AMax: Int64): Boolean;
- {$ifdef FPC_HAS_TYPE_DOUBLE}
- function InRange(const AValue, AMin, AMax: Double): Boolean;
- {$endif FPC_HAS_TYPE_DOUBLE}
- function EnsureRange(const AValue, AMin, AMax: Integer): Integer;
- function EnsureRange(const AValue, AMin, AMax: Int64): Int64;
- {$ifdef FPC_HAS_TYPE_DOUBLE}
- function EnsureRange(const AValue, AMin, AMax: Double): Double;
- {$endif FPC_HAS_TYPE_DOUBLE}
- procedure DivMod(Dividend: Integer; Divisor: Word; var Result, Remainder: Word);
-
- // Sign functions
- Type
- TValueSign = -1..1;
- const
- NegativeValue = Low(TValueSign);
- ZeroValue = 0;
- PositiveValue = High(TValueSign);
- function Sign(const AValue: Integer): TValueSign;
- function Sign(const AValue: Int64): TValueSign;
- function Sign(const AValue: Double): TValueSign;
- function IsZero(const A: Single; Epsilon: Single): Boolean;
- function IsZero(const A: Single): Boolean;
- {$ifdef FPC_HAS_TYPE_DOUBLE}
- function IsZero(const A: Double; Epsilon: Double): Boolean;
- function IsZero(const A: Double): Boolean;
- {$endif FPC_HAS_TYPE_DOUBLE}
- {$ifdef FPC_HAS_TYPE_EXTENDED}
- function IsZero(const A: Extended; Epsilon: Extended): Boolean;
- function IsZero(const A: Extended): Boolean;
- {$endif FPC_HAS_TYPE_EXTENDED}
- function IsNan(const d : Double): Boolean;
- function IsInfinite(const d : Double): Boolean;
- {$ifdef FPC_HAS_TYPE_EXTENDED}
- function SameValue(const A, B: Extended): Boolean;
- {$endif}
- {$ifdef FPC_HAS_TYPE_DOUBLE}
- function SameValue(const A, B: Double): Boolean;
- {$endif}
- function SameValue(const A, B: Single): Boolean;
- {$ifdef FPC_HAS_TYPE_EXTENDED}
- function SameValue(const A, B: Extended; Epsilon: Extended): Boolean;
- {$endif}
- {$ifdef FPC_HAS_TYPE_DOUBLE}
- function SameValue(const A, B: Double; Epsilon: Double): Boolean;
- {$endif}
- function SameValue(const A, B: Single; Epsilon: Single): Boolean;
- { angle conversion }
- function degtorad(deg : float) : float;
- function radtodeg(rad : float) : float;
- function gradtorad(grad : float) : float;
- function radtograd(rad : float) : float;
- function degtograd(deg : float) : float;
- function gradtodeg(grad : float) : float;
- { one cycle are 2*Pi rad }
- function cycletorad(cycle : float) : float;
- function radtocycle(rad : float) : float;
- { trigoniometric functions }
- function tan(x : float) : float;
- function cotan(x : float) : float;
- procedure sincos(theta : float;var sinus,cosinus : float);
- { inverse functions }
- function arccos(x : float) : float;
- function arcsin(x : float) : float;
- { calculates arctan(y/x) and returns an angle in the correct quadrant }
- function arctan2(y,x : float) : float;
- { hyperbolic functions }
- function cosh(x : float) : float;
- function sinh(x : float) : float;
- function tanh(x : float) : float;
- { area functions }
- { delphi names: }
- function arccosh(x : float) : float;
- function arcsinh(x : float) : float;
- function arctanh(x : float) : float;
- { IMHO the function should be called as follows (FK) }
- function arcosh(x : float) : float;
- function arsinh(x : float) : float;
- function artanh(x : float) : float;
- { triangle functions }
- { returns the length of the hypotenuse of a right triangle }
- { if x and y are the other sides }
- function hypot(x,y : float) : float;
- { logarithm functions }
- function log10(x : float) : float;
- function log2(x : float) : float;
- function logn(n,x : float) : float;
- { returns natural logarithm of x+1 }
- function lnxp1(x : float) : float;
- { exponential functions }
- function power(base,exponent : float) : float;
- { base^exponent }
- function intpower(base : float;const exponent : Integer) : float;
- { number converting }
- { rounds x towards positive infinity }
- function ceil(x : float) : Integer;
- { rounds x towards negative infinity }
- function floor(x : float) : Integer;
- { misc. functions }
- { splits x into mantissa and exponent (to base 2) }
- procedure Frexp(X: float; var Mantissa: float; var Exponent: integer);
- { returns x*(2^p) }
- function ldexp(x : float; const p : Integer) : float;
- { statistical functions }
- function mean(const data : array of float) : float;
- function sum(const data : array of float) : float;
- function mean(const data : PFloat; Const N : longint) : float;
- function sum(const data : PFloat; Const N : Longint) : float;
- function sumofsquares(const data : array of float) : float;
- function sumofsquares(const data : PFloat; Const N : Integer) : float;
- { calculates the sum and the sum of squares of data }
- procedure sumsandsquares(const data : array of float;
- var sum,sumofsquares : float);
- procedure sumsandsquares(const data : PFloat; Const N : Integer;
- var sum,sumofsquares : float);
- function minvalue(const data : array of float) : float;
- function minvalue(const data : array of integer) : Integer;
- function minvalue(const data : PFloat; Const N : Integer) : float;
- function MinValue(const Data : PInteger; Const N : Integer): Integer;
- function maxvalue(const data : array of float) : float;
- function maxvalue(const data : array of integer) : Integer;
- function maxvalue(const data : PFloat; Const N : Integer) : float;
- function maxvalue(const data : PInteger; Const N : Integer) : Integer;
- { calculates the standard deviation }
- function stddev(const data : array of float) : float;
- function stddev(const data : PFloat; Const N : Integer) : float;
- { calculates the mean and stddev }
- procedure meanandstddev(const data : array of float;
- var mean,stddev : float);
- procedure meanandstddev(const data : PFloat;
- Const N : Longint;var mean,stddev : float);
- function variance(const data : array of float) : float;
- function totalvariance(const data : array of float) : float;
- function variance(const data : PFloat; Const N : Integer) : float;
- function totalvariance(const data : PFloat; Const N : Integer) : float;
- { returns random values with gaussian distribution }
- function randg(mean,stddev : float) : float;
- { I don't know what the following functions do: }
- function popnstddev(const data : array of float) : float;
- function popnstddev(const data : PFloat; Const N : Integer) : float;
- function popnvariance(const data : PFloat; Const N : Integer) : float;
- function popnvariance(const data : array of float) : float;
- procedure momentskewkurtosis(const data : array of float;
- var m1,m2,m3,m4,skew,kurtosis : float);
- procedure momentskewkurtosis(const data : PFloat; Const N : Integer;
- var m1,m2,m3,m4,skew,kurtosis : float);
- { geometrical function }
- { returns the euclidean L2 norm }
- function norm(const data : array of float) : float;
- function norm(const data : PFloat; Const N : Integer) : float;
- { include cpu specific stuff }
- {$i mathuh.inc}
- implementation
- { include cpu specific stuff }
- {$i mathu.inc}
- ResourceString
- SMathError = 'Math Error : %s';
- SInvalidArgument = 'Invalid argument';
- Procedure DoMathError(Const S : String);
- begin
- Raise EMathError.CreateFmt(SMathError,[S]);
- end;
- Procedure InvalidArgument;
- begin
- Raise EInvalidArgument.Create(SInvalidArgument);
- end;
- function Sign(const AValue: Integer): TValueSign;
- begin
- If Avalue<0 then
- Result:=NegativeValue
- else If Avalue>0 then
- Result:=PositiveValue
- else
- Result:=ZeroValue;
- end;
- function Sign(const AValue: Int64): TValueSign;
- begin
- If Avalue<0 then
- Result:=NegativeValue
- else If Avalue>0 then
- Result:=PositiveValue
- else
- Result:=ZeroValue;
- end;
- function Sign(const AValue: Double): TValueSign;
- begin
- If Avalue<0.0 then
- Result:=NegativeValue
- else If Avalue>0.0 then
- Result:=PositiveValue
- else
- Result:=ZeroValue;
- end;
- function degtorad(deg : float) : float;
- begin
- degtorad:=deg*(pi/180.0);
- end;
- function radtodeg(rad : float) : float;
- begin
- radtodeg:=rad*(180.0/pi);
- end;
- function gradtorad(grad : float) : float;
- begin
- gradtorad:=grad*(pi/200.0);
- end;
- function radtograd(rad : float) : float;
- begin
- radtograd:=rad*(200.0/pi);
- end;
- function degtograd(deg : float) : float;
- begin
- degtograd:=deg*(200.0/180.0);
- end;
- function gradtodeg(grad : float) : float;
- begin
- gradtodeg:=grad*(180.0/200.0);
- end;
- function cycletorad(cycle : float) : float;
- begin
- cycletorad:=(2*pi)*cycle;
- end;
- function radtocycle(rad : float) : float;
- begin
- { avoid division }
- radtocycle:=rad*(1/(2*pi));
- end;
- function tan(x : float) : float;
- begin
- Tan:=Sin(x)/Cos(x)
- end;
- function cotan(x : float) : float;
- begin
- cotan:=Cos(X)/Sin(X);
- end;
- procedure sincos(theta : float;var sinus,cosinus : float);
- begin
- sinus:=sin(theta);
- cosinus:=cos(theta);
- end;
- { ArcSin and ArcCos from Arjan van Dijk ([email protected]) }
- function arcsin(x : float) : float;
- begin
- if abs(x) > 1 then InvalidArgument
- else if abs(x) < 0.5 then
- arcsin := arctan(x/sqrt(1-sqr(x)))
- else
- arcsin := sign(x) * (pi*0.5 - arctan(sqrt(1 / sqr(x) - 1)));
- end;
- function Arccos(x : Float) : Float;
- begin
- arccos := pi*0.5 - arcsin(x);
- end;
- {$ifndef FPC_MATH_HAS_ARCTAN2}
- function arctan2(y,x : float) : float;
- begin
- if (x=0) then
- begin
- if y=0 then
- arctan2:=0.0
- else if y>0 then
- arctan2:=pi/2
- else if y<0 then
- arctan2:=-pi/2;
- end
- else
- ArcTan2:=ArcTan(y/x);
- end;
- {$endif FPC_MATH_HAS_ARCTAN2}
- function cosh(x : float) : float;
- var
- temp : float;
- begin
- temp:=exp(x);
- cosh:=0.5*(temp+1.0/temp);
- end;
- function sinh(x : float) : float;
- var
- temp : float;
- begin
- temp:=exp(x);
- sinh:=0.5*(temp-1.0/temp);
- end;
- Const MaxTanh = 5678.22249441322; // Ln(MaxExtended)/2
- function tanh(x : float) : float;
- var Temp : float;
- begin
- if x>MaxTanh then exit(1.0)
- else if x<-MaxTanh then exit (-1.0);
- temp:=exp(-2*x);
- tanh:=(1-temp)/(1+temp)
- end;
- function arccosh(x : float) : float;
- begin
- arccosh:=arcosh(x);
- end;
- function arcsinh(x : float) : float;
- begin
- arcsinh:=arsinh(x);
- end;
- function arctanh(x : float) : float;
- begin
- if x>1 then InvalidArgument;
- arctanh:=artanh(x);
- end;
- function arcosh(x : float) : float;
- begin
- if x<1 then InvalidArgument;
- arcosh:=Ln(x+Sqrt(x*x-1));
- end;
- function arsinh(x : float) : float;
- begin
- arsinh:=Ln(x+Sqrt(1+x*x));
- end;
- function artanh(x : float) : float;
- begin
- If abs(x)>1 then InvalidArgument;
- artanh:=(Ln((1+x)/(1-x)))*0.5;
- end;
- function hypot(x,y : float) : float;
- begin
- hypot:=Sqrt(x*x+y*y)
- end;
- function log10(x : float) : float;
- begin
- log10:=ln(x)/ln(10);
- end;
- function log2(x : float) : float;
- begin
- log2:=ln(x)/ln(2)
- end;
- function logn(n,x : float) : float;
- begin
- if n<0 then InvalidArgument;
- logn:=ln(x)/ln(n);
- end;
- function lnxp1(x : float) : float;
- begin
- if x<-1 then
- InvalidArgument;
- lnxp1:=ln(1+x);
- end;
- function power(base,exponent : float) : float;
- begin
- If Exponent=0.0 then
- Result:=1.0
- else
- If base>0.0 then
- Power:=exp(exponent * ln (base))
- else if base=0.0 then
- Result:=0.0
- else
- InvalidArgument
- end;
- function intpower(base : float;const exponent : Integer) : float;
- var
- i : longint;
- begin
- i:=abs(exponent);
- intpower:=1.0;
- while i>0 do
- begin
- while (i and 1)=0 do
- begin
- i:=i shr 1;
- base:=sqr(base);
- end;
- i:=i-1;
- intpower:=intpower*base;
- end;
- if exponent<0 then
- intpower:=1.0/intpower;
- end;
- function ceil(x : float) : integer;
- begin
- Ceil:=Trunc(x);
- If Frac(x)>0 then
- Ceil:=Ceil+1;
- end;
- function floor(x : float) : integer;
- begin
- Floor:=Trunc(x);
- If Frac(x)<0 then
- Floor := Floor-1;
- end;
- procedure Frexp(X: float; var Mantissa: float; var Exponent: integer);
- begin
- Exponent :=0;
- if (abs(x)<0.5) then
- While (abs(x)<0.5) do
- begin
- x := x*2;
- Dec(Exponent);
- end
- else
- While (abs(x)>1) do
- begin
- x := x/2;
- Inc(Exponent);
- end;
- mantissa := x;
- end;
- function ldexp(x : float;const p : Integer) : float;
- begin
- ldexp:=x*intpower(2.0,p);
- end;
- function mean(const data : array of float) : float;
- begin
- Result:=Mean(@data[0],High(Data)+1);
- end;
- function mean(const data : PFloat; Const N : longint) : float;
- begin
- mean:=sum(Data,N);
- mean:=mean/N;
- end;
- function sum(const data : array of float) : float;
- begin
- Result:=Sum(@Data[0],High(Data)+1);
- end;
- function sum(const data : PFloat;Const N : longint) : float;
- var
- i : longint;
- begin
- sum:=0.0;
- for i:=0 to N-1 do
- sum:=sum+data[i];
- end;
- function sumofsquares(const data : array of float) : float;
- begin
- Result:=sumofsquares(@data[0],High(Data)+1);
- end;
- function sumofsquares(const data : PFloat; Const N : Integer) : float;
- var
- i : longint;
- begin
- sumofsquares:=0.0;
- for i:=0 to N-1 do
- sumofsquares:=sumofsquares+sqr(data[i]);
- end;
- procedure sumsandsquares(const data : array of float;
- var sum,sumofsquares : float);
- begin
- sumsandsquares (@Data[0],High(Data)+1,Sum,sumofsquares);
- end;
- procedure sumsandsquares(const data : PFloat; Const N : Integer;
- var sum,sumofsquares : float);
- var
- i : Integer;
- temp : float;
- begin
- sumofsquares:=0.0;
- sum:=0.0;
- for i:=0 to N-1 do
- begin
- temp:=data[i];
- sumofsquares:=sumofsquares+sqr(temp);
- sum:=sum+temp;
- end;
- end;
- function stddev(const data : array of float) : float;
- begin
- Result:=Stddev(@Data[0],High(Data)+1)
- end;
- function stddev(const data : PFloat; Const N : Integer) : float;
- begin
- StdDev:=Sqrt(Variance(Data,N));
- end;
- procedure meanandstddev(const data : array of float;
- var mean,stddev : float);
- begin
- Meanandstddev(@Data[0],High(Data)+1,Mean,stddev);
- end;
- procedure meanandstddev(const data : PFloat;
- Const N : Longint;var mean,stddev : float);
- Var I : longint;
- begin
- Mean:=0;
- StdDev:=0;
- For I:=0 to N-1 do
- begin
- Mean:=Mean+Data[i];
- StdDev:=StdDev+Sqr(Data[i]);
- end;
- Mean:=Mean/N;
- StdDev:=(StdDev-N*Sqr(Mean));
- If N>1 then
- StdDev:=Sqrt(Stddev/(N-1))
- else
- StdDev:=0;
- end;
- function variance(const data : array of float) : float;
- begin
- Variance:=Variance(@Data[0],High(Data)+1);
- end;
- function variance(const data : PFloat; Const N : Integer) : float;
- begin
- If N=1 then
- Result:=0
- else
- Result:=TotalVariance(Data,N)/(N-1);
- end;
- function totalvariance(const data : array of float) : float;
- begin
- Result:=TotalVariance(@Data[0],High(Data)+1);
- end;
- function totalvariance(const data : Pfloat;Const N : Integer) : float;
- var S,SS : Float;
- begin
- If N=1 then
- Result:=0
- else
- begin
- SumsAndSquares(Data,N,S,SS);
- Result := SS-Sqr(S)/N;
- end;
- end;
- function randg(mean,stddev : float) : float;
- Var U1,S2 : Float;
- begin
- repeat
- u1:= 2*random-1;
- S2:=Sqr(U1)+sqr(2*random-1);
- until s2<1;
- randg:=Sqrt(-2*ln(S2)/S2)*u1*stddev+Mean;
- end;
- function popnstddev(const data : array of float) : float;
- begin
- PopnStdDev:=Sqrt(PopnVariance(@Data[0],High(Data)+1));
- end;
- function popnstddev(const data : PFloat; Const N : Integer) : float;
- begin
- PopnStdDev:=Sqrt(PopnVariance(Data,N));
- end;
- function popnvariance(const data : array of float) : float;
- begin
- popnvariance:=popnvariance(@data[0],high(Data)+1);
- end;
- function popnvariance(const data : PFloat; Const N : Integer) : float;
- begin
- PopnVariance:=TotalVariance(Data,N)/N;
- end;
- procedure momentskewkurtosis(const data : array of float;
- var m1,m2,m3,m4,skew,kurtosis : float);
- begin
- momentskewkurtosis(@Data[0],High(Data)+1,m1,m2,m3,m4,skew,kurtosis);
- end;
- procedure momentskewkurtosis(const data : PFloat; Const N : Integer;
- var m1,m2,m3,m4,skew,kurtosis : float);
- Var S,SS,SC,SQ,invN,Acc,M1S,S2N,S3N,temp : Float;
- I : Longint;
- begin
- invN:=1.0/N;
- s:=0;
- ss:=0;
- sq:=0;
- sc:=0;
- for i:=0 to N-1 do
- begin
- temp:=Data[i]; { faster }
- S:=S+temp;
- acc:=temp*temp;
- ss:=ss+acc;
- Acc:=acc*temp;
- Sc:=sc+acc;
- acc:=acc*temp;
- sq:=sq+acc;
- end;
- M1:=s*invN;
- M1S:=M1*M1;
- S2N:=SS*invN;
- S3N:=SC*invN;
- M2:=S2N-M1S;
- M3:=S3N-(M1*3*S2N) + 2*M1S*M1;
- M4:=SQ*invN - (M1 * 4 * S3N) + (M1S*6*S2N-3*Sqr(M1S));
- Skew:=M3*power(M2,-3/2);
- Kurtosis:=M4 / Sqr(M2);
- end;
- function norm(const data : array of float) : float;
- begin
- norm:=Norm(@data[0],High(Data)+1);
- end;
- function norm(const data : PFloat; Const N : Integer) : float;
- begin
- norm:=sqrt(sumofsquares(data,N));
- end;
- function MinIntValue(const Data: array of Integer): Integer;
- var
- I: Integer;
- begin
- Result := Data[Low(Data)];
- For I := Succ(Low(Data)) To High(Data) Do
- If Data[I] < Result Then Result := Data[I];
- end;
- function MinValue(const Data: array of Integer): Integer;
- begin
- Result:=MinValue(Pinteger(@Data[0]),High(Data)+1)
- end;
- function MinValue(const Data: PInteger; Const N : Integer): Integer;
- var
- I: Integer;
- begin
- Result := Data[0];
- For I := 1 To N-1 do
- If Data[I] < Result Then Result := Data[I];
- end;
- function minvalue(const data : array of float) : float;
- begin
- Result:=minvalue(PFloat(@data[0]),High(Data)+1);
- end;
- function minvalue(const data : PFloat; Const N : Integer) : float;
- var
- i : longint;
- begin
- { get an initial value }
- minvalue:=data[0];
- for i:=1 to N-1 do
- if data[i]<minvalue then
- minvalue:=data[i];
- end;
- function MaxIntValue(const Data: array of Integer): Integer;
- var
- I: Integer;
- begin
- Result := Data[Low(Data)];
- For I := Succ(Low(Data)) To High(Data) Do
- If Data[I] > Result Then Result := Data[I];
- end;
- function maxvalue(const data : array of float) : float;
- begin
- Result:=maxvalue(PFloat(@data[0]),High(Data)+1);
- end;
- function maxvalue(const data : PFloat; Const N : Integer) : float;
- var
- i : longint;
- begin
- { get an initial value }
- maxvalue:=data[0];
- for i:=1 to N-1 do
- if data[i]>maxvalue then
- maxvalue:=data[i];
- end;
- function MaxValue(const Data: array of Integer): Integer;
- begin
- Result:=MaxValue(PInteger(@Data[0]),High(Data)+1)
- end;
- function maxvalue(const data : PInteger; Const N : Integer) : Integer;
- var
- i : longint;
- begin
- { get an initial value }
- maxvalue:=data[0];
- for i:=1 to N-1 do
- if data[i]>maxvalue then
- maxvalue:=data[i];
- end;
- function Min(a, b: Integer): Integer;
- begin
- if a < b then
- Result := a
- else
- Result := b;
- end;
- function Max(a, b: Integer): Integer;
- begin
- if a > b then
- Result := a
- else
- Result := b;
- end;
- function Min(a, b: Cardinal): Cardinal;
- begin
- if a < b then
- Result := a
- else
- Result := b;
- end;
- function Max(a, b: Cardinal): Cardinal;
- begin
- if a > b then
- Result := a
- else
- Result := b;
- end;
- function Min(a, b: Int64): Int64;
- begin
- if a < b then
- Result := a
- else
- Result := b;
- end;
- function Max(a, b: Int64): Int64;
- begin
- if a > b then
- Result := a
- else
- Result := b;
- end;
- {$ifdef FPC_HAS_TYPE_SINGLE}
- function Min(a, b: Single): Single;
- begin
- if a < b then
- Result := a
- else
- Result := b;
- end;
- function Max(a, b: Single): Single;
- begin
- if a > b then
- Result := a
- else
- Result := b;
- end;
- {$endif FPC_HAS_TYPE_SINGLE}
- {$ifdef FPC_HAS_TYPE_DOUBLE}
- function Min(a, b: Double): Double;
- begin
- if a < b then
- Result := a
- else
- Result := b;
- end;
- function Max(a, b: Double): Double;
- begin
- if a > b then
- Result := a
- else
- Result := b;
- end;
- {$endif FPC_HAS_TYPE_DOUBLE}
- {$ifdef FPC_HAS_TYPE_EXTENDED}
- function Min(a, b: Extended): Extended;
- begin
- if a < b then
- Result := a
- else
- Result := b;
- end;
- function Max(a, b: Extended): Extended;
- begin
- if a > b then
- Result := a
- else
- Result := b;
- end;
- {$endif FPC_HAS_TYPE_EXTENDED}
- function InRange(const AValue, AMin, AMax: Integer): Boolean;
- begin
- Result:=(AValue>=AMin) and (AValue<=AMax);
- end;
- function InRange(const AValue, AMin, AMax: Int64): Boolean;
- begin
- Result:=(AValue>=AMin) and (AValue<=AMax);
- end;
- {$ifdef FPC_HAS_TYPE_DOUBLE}
- function InRange(const AValue, AMin, AMax: Double): Boolean;
- begin
- Result:=(AValue>=AMin) and (AValue<=AMax);
- end;
- {$endif FPC_HAS_TYPE_DOUBLE}
- function EnsureRange(const AValue, AMin, AMax: Integer): Integer;
- begin
- Result:=AValue;
- If Result<AMin then
- Result:=AMin
- else if Result>AMax then
- Result:=AMax;
- end;
- function EnsureRange(const AValue, AMin, AMax: Int64): Int64;
- begin
- Result:=AValue;
- If Result<AMin then
- Result:=AMin
- else if Result>AMax then
- Result:=AMax;
- end;
- {$ifdef FPC_HAS_TYPE_DOUBLE}
- function EnsureRange(const AValue, AMin, AMax: Double): Double;
- begin
- Result:=AValue;
- If Result<AMin then
- Result:=AMin
- else if Result>AMax then
- Result:=AMax;
- end;
- {$endif FPC_HAS_TYPE_DOUBLE}
- Const
- EZeroResolution = 1E-16;
- DZeroResolution = 1E-12;
- SZeroResolution = 1E-4;
- function IsZero(const A: Single; Epsilon: Single): Boolean;
- begin
- if (Epsilon=0) then
- Epsilon:=SZeroResolution;
- Result:=Abs(A)<=Epsilon;
- end;
- function IsZero(const A: Single): Boolean;
- begin
- Result:=IsZero(A,single(SZeroResolution));
- end;
- {$ifdef FPC_HAS_TYPE_DOUBLE}
- function IsZero(const A: Double; Epsilon: Double): Boolean;
- begin
- if (Epsilon=0) then
- Epsilon:=DZeroResolution;
- Result:=Abs(A)<=Epsilon;
- end;
- function IsZero(const A: Double): Boolean;
- begin
- Result:=IsZero(A,DZeroResolution);
- end;
- {$endif FPC_HAS_TYPE_DOUBLE}
- {$ifdef FPC_HAS_TYPE_EXTENDED}
- function IsZero(const A: Extended; Epsilon: Extended): Boolean;
- begin
- if (Epsilon=0) then
- Epsilon:=EZeroResolution;
- Result:=Abs(A)<=Epsilon;
- end;
- function IsZero(const A: Extended): Boolean;
- begin
- Result:=IsZero(A,EZeroResolution);
- end;
- {$endif FPC_HAS_TYPE_EXTENDED}
- type
- TSplitDouble = packed record
- cards: Array[0..1] of cardinal;
- end;
- function IsNan(const d : Double): Boolean;
- var
- fraczero, expMaximal: boolean;
- begin
- {$if defined(FPC_BIG_ENDIAN) or (defined(CPUARM) and defined(FPUFPA))}
- expMaximal := ((TSplitDouble(d).cards[0] shr 20) and $7ff) = 2047;
- fraczero:= (TSplitDouble(d).cards[0] and $fffff = 0) and
- (TSplitDouble(d).cards[1] = 0);
- {$else FPC_BIG_ENDIAN}
- expMaximal := ((TSplitDouble(d).cards[1] shr 20) and $7ff) = 2047;
- fraczero := (TSplitDouble(d).cards[1] and $fffff = 0) and
- (TSplitDouble(d).cards[0] = 0);
- {$endif FPC_BIG_ENDIAN}
- Result:=expMaximal and not(fraczero);
- end;
- function IsInfinite(const d : Double): Boolean;
- var
- fraczero, expMaximal: boolean;
- begin
- {$if defined(FPC_BIG_ENDIAN) or (defined(CPUARM) and defined(FPUFPA))}
- expMaximal := ((TSplitDouble(d).cards[0] shr 20) and $7ff) = 2047;
- fraczero:= (TSplitDouble(d).cards[0] and $fffff = 0) and
- (TSplitDouble(d).cards[1] = 0);
- {$else FPC_BIG_ENDIAN}
- expMaximal := ((TSplitDouble(d).cards[1] shr 20) and $7ff) = 2047;
- fraczero := (TSplitDouble(d).cards[1] and $fffff = 0) and
- (TSplitDouble(d).cards[0] = 0);
- {$endif FPC_BIG_ENDIAN}
- Result:=expMaximal and fraczero;
- end;
- {$ifdef FPC_HAS_TYPE_EXTENDED}
- function SameValue(const A, B: Extended; Epsilon: Extended): Boolean;
- begin
- if (Epsilon=0) then
- Epsilon:=Max(Min(Abs(A),Abs(B))*EZeroResolution,EZeroResolution);
- if (A>B) then
- Result:=((A-B)<=Epsilon)
- else
- Result:=((B-A)<=Epsilon);
- end;
- function SameValue(const A, B: Extended): Boolean;
- begin
- Result:=SameValue(A,B,0);
- end;
- {$endif FPC_HAS_TYPE_EXTENDED}
- {$ifdef FPC_HAS_TYPE_DOUBLE}
- function SameValue(const A, B: Double): Boolean;
- begin
- Result:=SameValue(A,B,0);
- end;
- function SameValue(const A, B: Double; Epsilon: Double): Boolean;
- begin
- if (Epsilon=0) then
- Epsilon:=Max(Min(Abs(A),Abs(B))*DZeroResolution,DZeroResolution);
- if (A>B) then
- Result:=((A-B)<=Epsilon)
- else
- Result:=((B-A)<=Epsilon);
- end;
- {$endif FPC_HAS_TYPE_DOUBLE}
- function SameValue(const A, B: Single): Boolean;
- begin
- Result:=SameValue(A,B,0);
- end;
- function SameValue(const A, B: Single; Epsilon: Single): Boolean;
- begin
- if (Epsilon=0) then
- Epsilon:=Max(Min(Abs(A),Abs(B))*SZeroResolution,SZeroResolution);
- if (A>B) then
- Result:=((A-B)<=Epsilon)
- else
- Result:=((B-A)<=Epsilon);
- end;
- // Some CPUs probably allow a faster way of doing this in a single operation...
- // There weshould define CPUDIVMOD in the header mathuh.inc and implement it using asm.
- {$ifndef CPUDIVMOD}
- procedure DivMod(Dividend: Integer; Divisor: Word; var Result, Remainder: Word);
- begin
- Result:=Dividend Div Divisor;
- Remainder:=Dividend Mod Divisor;
- end;
- {$endif}
- end.
- {
- $Log$
- Revision 1.23 2004-07-25 16:46:08 michael
- + Implemented DivMod
- Revision 1.22 2004/05/29 12:28:59 florian
- * fixed IsNan and IsInf for big endian systems
- Revision 1.21 2004/04/08 16:37:08 peter
- * disable range,overflow check when generating Nan/Inf
- Revision 1.20 2004/02/20 20:10:44 florian
- + added Inf/Nan stuff
- Revision 1.19 2004/02/09 18:53:09 florian
- * compilation on ppc fixed
- Revision 1.18 2004/02/09 17:21:04 marco
- * 1.0 compilation fixes
- Revision 1.17 2004/02/09 09:11:46 michael
- + Implemented SameValue
- Revision 1.16 2004/02/09 08:55:45 michael
- + Missing functions IsZero,InRange,EnsureRange implemented
- Revision 1.15 2003/11/09 21:52:54 michael
- + Added missing sign functions
- Revision 1.14 2003/10/29 19:10:07 jonas
- * fixed arctan2
- Revision 1.13 2003/10/26 15:58:05 florian
- * fixed arctan2 to handle x=0 correctly as well
- Revision 1.12 2003/09/01 20:46:59 peter
- * small fixes for sparc
- Revision 1.11 2003/04/24 09:38:12 florian
- * min/max must check the compiler capabilities
- Revision 1.10 2003/04/24 09:21:59 florian
- + moved cpu dependend code to mathuh.inc and mathu.inc
- Revision 1.9 2003/01/03 20:34:02 peter
- * i386 fpu controlword functions added
- Revision 1.8 2002/09/07 21:06:12 carl
- * cleanup of parameters
- - remove assembler code
- Revision 1.7 2002/09/07 16:01:22 peter
- * old logs removed and tabs fixed
- }
|