cpubase.pas 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the i8086, i386 and x86-64 architecture
  4. * This code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. {# Base unit for processor information. This unit contains
  21. enumerations of registers, opcodes, sizes, and other
  22. such things which are processor specific.
  23. }
  24. unit cpubase;
  25. {$i fpcdefs.inc}
  26. interface
  27. uses
  28. globals,
  29. cgbase
  30. ;
  31. {*****************************************************************************
  32. Assembler Opcodes
  33. *****************************************************************************}
  34. type
  35. {$if defined(x86_64)}
  36. TAsmOp={$i x8664op.inc}
  37. {$elseif defined(i386)}
  38. TAsmOp={$i i386op.inc}
  39. {$elseif defined(i8086)}
  40. TAsmOp={$i i8086op.inc}
  41. {$endif}
  42. { This should define the array of instructions as string }
  43. op2strtable=array[tasmop] of string[16];
  44. {$ifdef i8086}
  45. ImmInt = SmallInt;
  46. {$else i8086}
  47. ImmInt = Longint;
  48. {$endif i8086}
  49. const
  50. { First value of opcode enumeration }
  51. firstop = low(tasmop);
  52. { Last value of opcode enumeration }
  53. lastop = high(tasmop);
  54. {*****************************************************************************
  55. Registers
  56. *****************************************************************************}
  57. const
  58. { Integer Super registers }
  59. RS_NO = $ffffffff;
  60. RS_RAX = $00; {EAX}
  61. RS_RCX = $01; {ECX}
  62. RS_RDX = $02; {EDX}
  63. RS_RBX = $03; {EBX}
  64. RS_RSI = $04; {ESI}
  65. RS_RDI = $05; {EDI}
  66. RS_RBP = $06; {EBP}
  67. RS_RSP = $07; {ESP}
  68. RS_R8 = $08; {R8}
  69. RS_R9 = $09; {R9}
  70. RS_R10 = $0a; {R10}
  71. RS_R11 = $0b; {R11}
  72. RS_R12 = $0c; {R12}
  73. RS_R13 = $0d; {R13}
  74. RS_R14 = $0e; {R14}
  75. RS_R15 = $0f; {R15}
  76. { create aliases to allow code sharing between x86-64 and i386 }
  77. RS_EAX = RS_RAX;
  78. RS_EBX = RS_RBX;
  79. RS_ECX = RS_RCX;
  80. RS_EDX = RS_RDX;
  81. RS_ESI = RS_RSI;
  82. RS_EDI = RS_RDI;
  83. RS_EBP = RS_RBP;
  84. RS_ESP = RS_RSP;
  85. { create aliases to allow code sharing between i386 and i8086 }
  86. RS_AX = RS_RAX;
  87. RS_BX = RS_RBX;
  88. RS_CX = RS_RCX;
  89. RS_DX = RS_RDX;
  90. RS_SI = RS_RSI;
  91. RS_DI = RS_RDI;
  92. RS_BP = RS_RBP;
  93. RS_SP = RS_RSP;
  94. { Number of first imaginary register }
  95. first_int_imreg = $10;
  96. { Float Super registers }
  97. RS_ST0 = $00;
  98. RS_ST1 = $01;
  99. RS_ST2 = $02;
  100. RS_ST3 = $03;
  101. RS_ST4 = $04;
  102. RS_ST5 = $05;
  103. RS_ST6 = $06;
  104. RS_ST7 = $07;
  105. RS_ST = $08;
  106. { Number of first imaginary register }
  107. first_fpu_imreg = $09;
  108. { MM Super registers }
  109. RS_XMM0 = $00;
  110. RS_XMM1 = $01;
  111. RS_XMM2 = $02;
  112. RS_XMM3 = $03;
  113. RS_XMM4 = $04;
  114. RS_XMM5 = $05;
  115. RS_XMM6 = $06;
  116. RS_XMM7 = $07;
  117. RS_XMM8 = $08;
  118. RS_XMM9 = $09;
  119. RS_XMM10 = $0a;
  120. RS_XMM11 = $0b;
  121. RS_XMM12 = $0c;
  122. RS_XMM13 = $0d;
  123. RS_XMM14 = $0e;
  124. RS_XMM15 = $0f;
  125. {$if defined(x86_64)}
  126. RS_RFLAGS = $06;
  127. {$elseif defined(i386)}
  128. RS_EFLAGS = $06;
  129. {$elseif defined(i8086)}
  130. RS_FLAGS = $06;
  131. {$endif}
  132. { Number of first imaginary register }
  133. {$ifdef x86_64}
  134. first_mm_imreg = $10;
  135. {$else x86_64}
  136. first_mm_imreg = $08;
  137. {$endif x86_64}
  138. { The subregister that specifies the entire register and an address }
  139. {$if defined(x86_64)}
  140. { Hammer }
  141. R_SUBWHOLE = R_SUBQ;
  142. R_SUBADDR = R_SUBQ;
  143. {$elseif defined(i386)}
  144. { i386 }
  145. R_SUBWHOLE = R_SUBD;
  146. R_SUBADDR = R_SUBD;
  147. {$elseif defined(i8086)}
  148. { i8086 }
  149. R_SUBWHOLE = R_SUBW;
  150. R_SUBADDR = R_SUBW;
  151. {$endif}
  152. { Available Registers }
  153. {$if defined(x86_64)}
  154. {$i r8664con.inc}
  155. {$elseif defined(i386)}
  156. {$i r386con.inc}
  157. {$elseif defined(i8086)}
  158. {$i r8086con.inc}
  159. {$endif}
  160. type
  161. { Number of registers used for indexing in tables }
  162. {$if defined(x86_64)}
  163. tregisterindex=0..{$i r8664nor.inc}-1;
  164. {$elseif defined(i386)}
  165. tregisterindex=0..{$i r386nor.inc}-1;
  166. {$elseif defined(i8086)}
  167. tregisterindex=0..{$i r8086nor.inc}-1;
  168. {$endif}
  169. const
  170. regnumber_table : array[tregisterindex] of tregister = (
  171. {$if defined(x86_64)}
  172. {$i r8664num.inc}
  173. {$elseif defined(i386)}
  174. {$i r386num.inc}
  175. {$elseif defined(i8086)}
  176. {$i r8086num.inc}
  177. {$endif}
  178. );
  179. regstabs_table : array[tregisterindex] of shortint = (
  180. {$if defined(x86_64)}
  181. {$i r8664stab.inc}
  182. {$elseif defined(i386)}
  183. {$i r386stab.inc}
  184. {$elseif defined(i8086)}
  185. {$i r8086stab.inc}
  186. {$endif}
  187. );
  188. regdwarf_table : array[tregisterindex] of shortint = (
  189. {$if defined(x86_64)}
  190. {$i r8664dwrf.inc}
  191. {$elseif defined(i386)}
  192. {$i r386dwrf.inc}
  193. {$elseif defined(i8086)}
  194. {$i r8086dwrf.inc}
  195. {$endif}
  196. );
  197. {$if defined(x86_64)}
  198. RS_DEFAULTFLAGS = RS_RFLAGS;
  199. NR_DEFAULTFLAGS = NR_RFLAGS;
  200. {$elseif defined(i386)}
  201. RS_DEFAULTFLAGS = RS_EFLAGS;
  202. NR_DEFAULTFLAGS = NR_EFLAGS;
  203. {$elseif defined(i8086)}
  204. RS_DEFAULTFLAGS = RS_FLAGS;
  205. NR_DEFAULTFLAGS = NR_FLAGS;
  206. {$endif}
  207. type
  208. totherregisterset = set of tregisterindex;
  209. {*****************************************************************************
  210. Conditions
  211. *****************************************************************************}
  212. type
  213. TAsmCond=(C_None,
  214. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  215. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  216. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  217. );
  218. const
  219. cond2str:array[TAsmCond] of string[3]=('',
  220. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  221. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  222. 'ns','nz','o','p','pe','po','s','z'
  223. );
  224. {*****************************************************************************
  225. Flags
  226. *****************************************************************************}
  227. type
  228. TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
  229. F_A,F_AE,F_B,F_BE,
  230. F_S,F_NS,F_O,F_NO,
  231. { For IEEE-compliant floating-point compares,
  232. same as normal counterparts but additionally check PF }
  233. F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
  234. const
  235. FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
  236. FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
  237. F_E,F_NE,F_A,F_AE,F_B,F_BE
  238. );
  239. {*****************************************************************************
  240. Constants
  241. *****************************************************************************}
  242. const
  243. { declare aliases }
  244. LOC_SSEREGISTER = LOC_MMREGISTER;
  245. LOC_CSSEREGISTER = LOC_CMMREGISTER;
  246. max_operands = 4;
  247. maxfpuregs = 8;
  248. {*****************************************************************************
  249. CPU Dependent Constants
  250. *****************************************************************************}
  251. {$i cpubase.inc}
  252. {*****************************************************************************
  253. Helpers
  254. *****************************************************************************}
  255. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  256. function reg2opsize(r:Tregister):topsize;
  257. function reg_cgsize(const reg: tregister): tcgsize;
  258. function is_calljmp(o:tasmop):boolean;
  259. procedure inverse_flags(var f: TResFlags);
  260. function flags_to_cond(const f: TResFlags) : TAsmCond;
  261. function is_segment_reg(r:tregister):boolean;
  262. function findreg_by_number(r:Tregister):tregisterindex;
  263. function std_regnum_search(const s:string):Tregister;
  264. function std_regname(r:Tregister):string;
  265. function dwarf_reg(r:tregister):shortint;
  266. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  267. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  268. { checks whether two segment registers are normally equal in the current memory model }
  269. function segment_regs_equal(r1,r2:tregister):boolean;
  270. {$ifdef i8086}
  271. { return whether we need to add an extra FWAIT instruction before the given
  272. instruction, when we're targeting the i8087. This includes almost all x87
  273. instructions, but certain ones, which always have or have not a built in
  274. FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
  275. function requires_fwait_on_8087(op: TAsmOp): boolean;
  276. {$endif i8086}
  277. implementation
  278. uses
  279. globtype,
  280. rgbase,verbose;
  281. const
  282. {$if defined(x86_64)}
  283. std_regname_table : TRegNameTable = (
  284. {$i r8664std.inc}
  285. );
  286. regnumber_index : array[tregisterindex] of tregisterindex = (
  287. {$i r8664rni.inc}
  288. );
  289. std_regname_index : array[tregisterindex] of tregisterindex = (
  290. {$i r8664sri.inc}
  291. );
  292. {$elseif defined(i386)}
  293. std_regname_table : TRegNameTable = (
  294. {$i r386std.inc}
  295. );
  296. regnumber_index : array[tregisterindex] of tregisterindex = (
  297. {$i r386rni.inc}
  298. );
  299. std_regname_index : array[tregisterindex] of tregisterindex = (
  300. {$i r386sri.inc}
  301. );
  302. {$elseif defined(i8086)}
  303. std_regname_table : TRegNameTable = (
  304. {$i r8086std.inc}
  305. );
  306. regnumber_index : array[tregisterindex] of tregisterindex = (
  307. {$i r8086rni.inc}
  308. );
  309. std_regname_index : array[tregisterindex] of tregisterindex = (
  310. {$i r8086sri.inc}
  311. );
  312. {$endif}
  313. {*****************************************************************************
  314. Helpers
  315. *****************************************************************************}
  316. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  317. begin
  318. case s of
  319. OS_8,OS_S8:
  320. cgsize2subreg:=R_SUBL;
  321. OS_16,OS_S16:
  322. cgsize2subreg:=R_SUBW;
  323. OS_32,OS_S32:
  324. cgsize2subreg:=R_SUBD;
  325. OS_64,OS_S64:
  326. cgsize2subreg:=R_SUBQ;
  327. OS_M64:
  328. cgsize2subreg:=R_SUBNONE;
  329. OS_F32,OS_F64,OS_C64:
  330. case regtype of
  331. R_FPUREGISTER:
  332. cgsize2subreg:=R_SUBWHOLE;
  333. R_MMREGISTER:
  334. case s of
  335. OS_F32:
  336. cgsize2subreg:=R_SUBMMS;
  337. OS_F64:
  338. cgsize2subreg:=R_SUBMMD;
  339. else
  340. internalerror(2009071901);
  341. end;
  342. else
  343. internalerror(2009071902);
  344. end;
  345. OS_M128,OS_MS128:
  346. cgsize2subreg:=R_SUBMMX;
  347. OS_M256,OS_MS256:
  348. cgsize2subreg:=R_SUBMMY;
  349. OS_NO:
  350. { error message should have been thrown already before, so avoid only
  351. an internal error }
  352. cgsize2subreg:=R_SUBNONE;
  353. else
  354. internalerror(200301231);
  355. end;
  356. end;
  357. function reg_cgsize(const reg: tregister): tcgsize;
  358. const subreg2cgsize:array[Tsubregister] of Tcgsize =
  359. (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO);
  360. begin
  361. case getregtype(reg) of
  362. R_INTREGISTER :
  363. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  364. R_FPUREGISTER :
  365. reg_cgsize:=OS_F80;
  366. R_MMXREGISTER:
  367. reg_cgsize:=OS_M64;
  368. R_MMREGISTER:
  369. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  370. R_SPECIALREGISTER :
  371. case reg of
  372. NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
  373. reg_cgsize:=OS_16;
  374. {$ifdef x86_64}
  375. NR_DR0..NR_TR7:
  376. reg_cgsize:=OS_64;
  377. {$endif x86_64}
  378. else
  379. reg_cgsize:=OS_32
  380. end
  381. else
  382. internalerror(2003031801);
  383. end;
  384. end;
  385. function reg2opsize(r:Tregister):topsize;
  386. const
  387. subreg2opsize : array[tsubregister] of topsize =
  388. (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  389. begin
  390. reg2opsize:=S_L;
  391. case getregtype(r) of
  392. R_INTREGISTER :
  393. reg2opsize:=subreg2opsize[getsubreg(r)];
  394. R_FPUREGISTER :
  395. reg2opsize:=S_FL;
  396. R_MMXREGISTER,
  397. R_MMREGISTER :
  398. reg2opsize:=S_MD;
  399. R_SPECIALREGISTER :
  400. begin
  401. case r of
  402. NR_CS,NR_DS,NR_ES,
  403. NR_SS,NR_FS,NR_GS :
  404. reg2opsize:=S_W;
  405. end;
  406. end;
  407. else
  408. internalerror(200303181);
  409. end;
  410. end;
  411. function is_calljmp(o:tasmop):boolean;
  412. begin
  413. case o of
  414. A_CALL,
  415. {$if defined(i386) or defined(i8086)}
  416. A_JCXZ,
  417. {$endif defined(i386) or defined(i8086)}
  418. A_JECXZ,
  419. {$ifdef x86_64}
  420. A_JRCXZ,
  421. {$endif x86_64}
  422. A_JMP,
  423. A_LOOP,
  424. A_LOOPE,
  425. A_LOOPNE,
  426. A_LOOPNZ,
  427. A_LOOPZ,
  428. A_LCALL,
  429. A_LJMP,
  430. A_Jcc :
  431. is_calljmp:=true;
  432. else
  433. is_calljmp:=false;
  434. end;
  435. end;
  436. procedure inverse_flags(var f: TResFlags);
  437. const
  438. inv_flags: array[TResFlags] of TResFlags =
  439. (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
  440. F_BE,F_B,F_AE,F_A,
  441. F_NS,F_S,F_NO,F_O,
  442. F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
  443. begin
  444. f:=inv_flags[f];
  445. end;
  446. function flags_to_cond(const f: TResFlags) : TAsmCond;
  447. const
  448. flags_2_cond : array[TResFlags] of TAsmCond =
  449. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
  450. C_None,C_None,C_None,C_None,C_None,C_None);
  451. begin
  452. result := flags_2_cond[f];
  453. if (result=C_None) then
  454. InternalError(2014041301);
  455. end;
  456. function is_segment_reg(r:tregister):boolean;
  457. begin
  458. result:=false;
  459. case r of
  460. NR_CS,NR_DS,NR_ES,
  461. NR_SS,NR_FS,NR_GS :
  462. result:=true;
  463. end;
  464. end;
  465. function findreg_by_number(r:Tregister):tregisterindex;
  466. var
  467. hr : tregister;
  468. begin
  469. { for the name the sub reg doesn't matter }
  470. hr:=r;
  471. if (getregtype(hr)=R_MMREGISTER) and
  472. (getsubreg(hr)<>R_SUBMMY) then
  473. setsubreg(hr,R_SUBMMX);
  474. result:=findreg_by_number_table(hr,regnumber_index);
  475. end;
  476. function std_regnum_search(const s:string):Tregister;
  477. begin
  478. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  479. end;
  480. function std_regname(r:Tregister):string;
  481. var
  482. p : tregisterindex;
  483. begin
  484. if (getregtype(r)=R_MMXREGISTER) or
  485. ((getregtype(r)=R_MMREGISTER) and not(getsubreg(r) in [R_SUBMMX,R_SUBMMY])) then
  486. r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
  487. p:=findreg_by_number(r);
  488. if p<>0 then
  489. result:=std_regname_table[p]
  490. else
  491. result:=generic_regname(r);
  492. end;
  493. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  494. const
  495. inverse: array[TAsmCond] of TAsmCond=(C_None,
  496. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  497. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  498. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  499. );
  500. begin
  501. result := inverse[c];
  502. end;
  503. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  504. begin
  505. result := c1 = c2;
  506. end;
  507. function dwarf_reg(r:tregister):shortint;
  508. begin
  509. result:=regdwarf_table[findreg_by_number(r)];
  510. if result=-1 then
  511. internalerror(200603251);
  512. end;
  513. function segment_regs_equal(r1, r2: tregister): boolean;
  514. begin
  515. if not is_segment_reg(r1) or not is_segment_reg(r2) then
  516. internalerror(2013062301);
  517. { every segment register is equal to itself }
  518. if r1=r2 then
  519. exit(true);
  520. {$if defined(i8086)}
  521. case current_settings.x86memorymodel of
  522. mm_tiny:
  523. begin
  524. { CS=DS=SS }
  525. if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
  526. ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
  527. exit(true);
  528. { the remaining are distinct from each other }
  529. exit(false);
  530. end;
  531. mm_small,mm_medium:
  532. begin
  533. { DS=SS }
  534. if ((r1=NR_DS) or (r1=NR_SS)) and
  535. ((r2=NR_DS) or (r2=NR_SS)) then
  536. exit(true);
  537. { the remaining are distinct from each other }
  538. exit(false);
  539. end;
  540. mm_compact,mm_large,mm_huge:
  541. { all segment registers are different in these models }
  542. exit(false);
  543. else
  544. internalerror(2013062302);
  545. end;
  546. {$elseif defined(i386) or defined(x86_64)}
  547. { DS=SS=ES }
  548. if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
  549. ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
  550. exit(true);
  551. { the remaining are distinct from each other }
  552. exit(false);
  553. {$endif}
  554. end;
  555. {$ifdef i8086}
  556. function requires_fwait_on_8087(op: TAsmOp): boolean;
  557. begin
  558. case op of
  559. A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
  560. A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
  561. A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
  562. A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
  563. A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
  564. A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
  565. A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
  566. A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
  567. A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
  568. result:=true;
  569. else
  570. result:=false;
  571. end;
  572. end;
  573. {$endif i8086}
  574. end.