aasmcpu.pas 193 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. aasmbase,aasmtai,aasmsym,
  28. ogbase;
  29. const
  30. { "mov reg,reg" source operand number }
  31. O_MOV_SOURCE = 0;
  32. { "mov reg,reg" destination operand number }
  33. O_MOV_DEST = 1;
  34. { Operand types }
  35. OT_NONE = $00000000;
  36. { Bits 0..7: sizes }
  37. OT_BITS8 = $00000001;
  38. OT_BITS16 = $00000002;
  39. OT_BITS32 = $00000004;
  40. OT_BITS64 = $00000008; { x86_64 and FPU }
  41. //OT_BITS128 = $10000000; { 16 byte SSE }
  42. //OT_BITS256 = $20000000; { 32 byte AVX }
  43. //OT_BITS512 = $40000000; { 64 byte AVX512 }
  44. OT_BITS128 = $20000000; { 16 byte SSE }
  45. OT_BITS256 = $40000000; { 32 byte AVX }
  46. OT_BITS512 = $80000000; { 64 byte AVX512 }
  47. OT_VECTORMASK = $1000000000; { OPTIONAL VECTORMASK AVX512}
  48. OT_VECTORZERO = $2000000000; { OPTIONAL ZERO-FLAG AVX512}
  49. OT_VECTORBCST = $4000000000; { BROADCAST-MEM-FLAG AVX512}
  50. OT_VECTORSAE = $8000000000; { OPTIONAL SAE-FLAG AVX512}
  51. OT_VECTORER = $10000000000; { OPTIONAL ER-FLAG-FLAG AVX512}
  52. OT_VECTOR_EXT = OT_VECTORMASK or OT_VECTORZERO or OT_VECTORBCST or OT_VECTORSAE or OT_VECTORER;
  53. OT_BITSB32 = OT_BITS32 or OT_VECTORBCST;
  54. OT_BITSB64 = OT_BITS64 or OT_VECTORBCST;
  55. OT_BITS80 = $00000010; { FPU only }
  56. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  57. OT_NEAR = $00000040;
  58. OT_SHORT = $00000080;
  59. { TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
  60. but this requires adjusting the opcode table }
  61. //OT_SIZE_MASK = $3000001F; { all the size attributes }
  62. OT_SIZE_MASK = $E000001F; { all the size attributes }
  63. OT_NON_SIZE = longint(not(longint(OT_SIZE_MASK)));
  64. { Bits 8..11: modifiers }
  65. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  66. OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
  67. OT_COLON = $00000400; { operand is followed by a colon }
  68. OT_MODIFIER_MASK = $00000F00;
  69. { Bits 12..15: type of operand }
  70. OT_REGISTER = $00001000;
  71. OT_IMMEDIATE = $00002000;
  72. OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
  73. OT_REGMEM = $00008000; { for r/m, ie EA, operands }
  74. OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
  75. OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
  76. { Bits 20..22, 24..26: register classes
  77. otf_* consts are not used alone, only to build other constants. }
  78. otf_reg_cdt = $00100000;
  79. otf_reg_gpr = $00200000;
  80. otf_reg_sreg = $00400000;
  81. otf_reg_k = $00800000;
  82. otf_reg_fpu = $01000000;
  83. otf_reg_mmx = $02000000;
  84. otf_reg_xmm = $04000000;
  85. otf_reg_ymm = $08000000;
  86. otf_reg_zmm = $10000000;
  87. otf_reg_extra_mask = $0F000000;
  88. { Bits 16..19: subclasses, meaning depends on classes field }
  89. otf_sub0 = $00010000;
  90. otf_sub1 = $00020000;
  91. otf_sub2 = $00040000;
  92. otf_sub3 = $00080000;
  93. OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
  94. //OT_REG_EXTRA_MASK = $0F000000;
  95. OT_REG_EXTRA_MASK = $1F000000;
  96. OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_k or otf_reg_extra_mask;
  97. { register class 0: CRx, DRx and TRx }
  98. {$ifdef x86_64}
  99. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
  100. {$else x86_64}
  101. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
  102. {$endif x86_64}
  103. OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
  104. OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
  105. OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
  106. OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
  107. { register class 1: general-purpose registers }
  108. OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
  109. OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
  110. OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
  111. OT_REG16 = OT_REG_GPR or OT_BITS16;
  112. OT_REG32 = OT_REG_GPR or OT_BITS32;
  113. OT_REG64 = OT_REG_GPR or OT_BITS64;
  114. { GPR subclass 0: accumulator: AL, AX, EAX or RAX }
  115. OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
  116. OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
  117. OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
  118. OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
  119. {$ifdef x86_64}
  120. OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
  121. {$endif x86_64}
  122. { GPR subclass 1: counter: CL, CX, ECX or RCX }
  123. OT_REG_COUNT = OT_REG_GPR or otf_sub1;
  124. OT_REG_CL = OT_REG_COUNT or OT_BITS8;
  125. OT_REG_CX = OT_REG_COUNT or OT_BITS16;
  126. OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
  127. {$ifdef x86_64}
  128. OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
  129. {$endif x86_64}
  130. { GPR subclass 2: data register: DL, DX, EDX or RDX }
  131. OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
  132. OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
  133. { register class 2: Segment registers }
  134. OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
  135. OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
  136. OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
  137. OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
  138. { register class 3: FPU registers }
  139. OT_FPUREG = OT_REGISTER or otf_reg_fpu;
  140. OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
  141. { register class 4: MMX (both reg and r/m) }
  142. OT_MMXREG = OT_REGNORM or otf_reg_mmx;
  143. OT_MMXRM = OT_REGMEM or otf_reg_mmx;
  144. { register class 5: XMM (both reg and r/m) }
  145. OT_XMMREG = OT_REGNORM or otf_reg_xmm;
  146. OT_XMMRM = OT_REGMEM or otf_reg_xmm;
  147. OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
  148. OT_XMEM32_M = OT_XMEM32 or OT_VECTORMASK;
  149. OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
  150. OT_XMEM64_M = OT_XMEM64 or OT_VECTORMASK;
  151. OT_XMMREG_M = OT_XMMREG or OT_VECTORMASK;
  152. OT_XMMREG_MZ = OT_XMMREG or OT_VECTORMASK or OT_VECTORZERO;
  153. OT_XMMRM_MZ = OT_XMMRM or OT_VECTORMASK or OT_VECTORZERO;
  154. OT_XMMREG_SAE = OT_XMMREG or OT_VECTORSAE;
  155. OT_XMMRM_SAE = OT_XMMRM or OT_VECTORSAE;
  156. OT_XMMREG_ER = OT_XMMREG or OT_VECTORER;
  157. OT_XMMRM_ER = OT_XMMRM or OT_VECTORER;
  158. { register class 5: YMM (both reg and r/m) }
  159. OT_YMMREG = OT_REGNORM or otf_reg_ymm;
  160. OT_YMMRM = OT_REGMEM or otf_reg_ymm;
  161. OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
  162. OT_YMEM32_M = OT_YMEM32 or OT_VECTORMASK;
  163. OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
  164. OT_YMEM64_M = OT_YMEM64 or OT_VECTORMASK;
  165. OT_YMMREG_M = OT_YMMREG or OT_VECTORMASK;
  166. OT_YMMREG_MZ = OT_YMMREG or OT_VECTORMASK or OT_VECTORZERO;
  167. OT_YMMRM_MZ = OT_YMMRM or OT_VECTORMASK or OT_VECTORZERO;
  168. OT_YMMREG_SAE = OT_YMMREG or OT_VECTORSAE;
  169. OT_YMMRM_SAE = OT_YMMRM or OT_VECTORSAE;
  170. OT_YMMREG_ER = OT_YMMREG or OT_VECTORER;
  171. OT_YMMRM_ER = OT_YMMRM or OT_VECTORER;
  172. { register class 5: ZMM (both reg and r/m) }
  173. OT_ZMMREG = OT_REGNORM or otf_reg_zmm;
  174. OT_ZMMRM = OT_REGMEM or otf_reg_zmm;
  175. OT_ZMEM32 = OT_REGNORM or otf_reg_zmm or otf_reg_gpr or OT_BITS32;
  176. OT_ZMEM32_M = OT_ZMEM32 or OT_VECTORMASK;
  177. OT_ZMEM64 = OT_REGNORM or otf_reg_zmm or otf_reg_gpr or OT_BITS64;
  178. OT_ZMEM64_M = OT_ZMEM64 or OT_VECTORMASK;
  179. OT_ZMMREG_M = OT_ZMMREG or OT_VECTORMASK;
  180. OT_ZMMREG_MZ = OT_ZMMREG or OT_VECTORMASK or OT_VECTORZERO;
  181. OT_ZMMRM_MZ = OT_ZMMRM or OT_VECTORMASK or OT_VECTORZERO;
  182. OT_ZMMREG_SAE = OT_ZMMREG or OT_VECTORSAE;
  183. OT_ZMMRM_SAE = OT_ZMMRM or OT_VECTORSAE;
  184. OT_ZMMREG_ER = OT_ZMMREG or OT_VECTORER;
  185. OT_ZMMRM_ER = OT_ZMMRM or OT_VECTORER;
  186. OT_KREG = OT_REGNORM or otf_reg_k;
  187. OT_KREG_M = OT_KREG or OT_VECTORMASK;
  188. { Vector-Memory operands }
  189. OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64 or OT_ZMEM32 or OT_ZMEM64;
  190. { Memory operands }
  191. OT_MEM8 = OT_MEMORY or OT_BITS8;
  192. OT_MEM16 = OT_MEMORY or OT_BITS16;
  193. OT_MEM16_M = OT_MEM16 or OT_VECTORMASK;
  194. OT_MEM32 = OT_MEMORY or OT_BITS32;
  195. OT_MEM32_M = OT_MEMORY or OT_BITS32 or OT_VECTORMASK;
  196. OT_BMEM32 = OT_MEMORY or OT_BITS32 or OT_VECTORBCST;
  197. OT_BMEM32_SAE= OT_MEMORY or OT_BITS32 or OT_VECTORBCST or OT_VECTORSAE;
  198. OT_MEM64 = OT_MEMORY or OT_BITS64;
  199. OT_MEM64_M = OT_MEMORY or OT_BITS64 or OT_VECTORMASK;
  200. OT_BMEM64 = OT_MEMORY or OT_BITS64 or OT_VECTORBCST;
  201. OT_BMEM64_SAE= OT_MEMORY or OT_BITS64 or OT_VECTORBCST or OT_VECTORSAE;
  202. OT_MEM128 = OT_MEMORY or OT_BITS128;
  203. OT_MEM128_M = OT_MEMORY or OT_BITS128 or OT_VECTORMASK;
  204. OT_MEM256 = OT_MEMORY or OT_BITS256;
  205. OT_MEM256_M = OT_MEMORY or OT_BITS256 or OT_VECTORMASK;
  206. OT_MEM512 = OT_MEMORY or OT_BITS512;
  207. OT_MEM512_M = OT_MEMORY or OT_BITS512 or OT_VECTORMASK;
  208. OT_MEM80 = OT_MEMORY or OT_BITS80;
  209. OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
  210. { simple [address] offset }
  211. { Matches any type of r/m operand }
  212. OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM or OT_ZMMRM or OT_REG_EXTRA_MASK;
  213. { Immediate operands }
  214. OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
  215. OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
  216. OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
  217. OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
  218. OT_ONENESS = otf_sub0; { special type of immediate operand }
  219. OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
  220. OTVE_VECTOR_SAE = 1 shl 8;
  221. OTVE_VECTOR_ER = 1 shl 9;
  222. OTVE_VECTOR_ZERO = 1 shl 10;
  223. OTVE_VECTOR_WRITEMASK = 1 shl 11;
  224. OTVE_VECTOR_BCST = 1 shl 12;
  225. OTVE_VECTOR_BCST2 = 0;
  226. OTVE_VECTOR_BCST4 = 1 shl 4;
  227. OTVE_VECTOR_BCST8 = 1 shl 5;
  228. OTVE_VECTOR_BCST16 = 3 shl 4;
  229. OTVE_VECTOR_RNSAE = OTVE_VECTOR_ER or 0;
  230. OTVE_VECTOR_RDSAE = OTVE_VECTOR_ER or 1 shl 6;
  231. OTVE_VECTOR_RUSAE = OTVE_VECTOR_ER or 1 shl 7;
  232. OTVE_VECTOR_RZSAE = OTVE_VECTOR_ER or 3 shl 6;
  233. OTVE_VECTOR_BCST_MASK = OTVE_VECTOR_BCST2 or OTVE_VECTOR_BCST4 or OTVE_VECTOR_BCST8 or OTVE_VECTOR_BCST16;
  234. OTVE_VECTOR_ER_MASK = OTVE_VECTOR_RNSAE or OTVE_VECTOR_RDSAE or OTVE_VECTOR_RUSAE or OTVE_VECTOR_RZSAE;
  235. OTVE_VECTOR_MASK = OTVE_VECTOR_SAE or OTVE_VECTOR_ER or OTVE_VECTOR_ZERO or OTVE_VECTOR_WRITEMASK or OTVE_VECTOR_BCST;
  236. { Size of the instruction table converted by nasmconv.pas }
  237. {$if defined(x86_64)}
  238. instabentries = {$i x8664nop.inc}
  239. {$elseif defined(i386)}
  240. instabentries = {$i i386nop.inc}
  241. {$elseif defined(i8086)}
  242. instabentries = {$i i8086nop.inc}
  243. {$endif}
  244. maxinfolen = 10;
  245. type
  246. { What an instruction can change. Needed for optimizer and spilling code.
  247. Note: The order of this enumeration is should not be changed! }
  248. TInsChange = (Ch_None,
  249. {Read from a register}
  250. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  251. {write from a register}
  252. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  253. {read and write from/to a register}
  254. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  255. {modify the contents of a register with the purpose of using
  256. this changed content afterwards (add/sub/..., but e.g. not rep
  257. or movsd)}
  258. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  259. {read individual flag bits from the flags register}
  260. Ch_RCarryFlag,Ch_RParityFlag,Ch_RAuxiliaryFlag,Ch_RZeroFlag,Ch_RSignFlag,Ch_ROverflowFlag,
  261. {write individual flag bits to the flags register}
  262. Ch_WCarryFlag,Ch_WParityFlag,Ch_WAuxiliaryFlag,Ch_WZeroFlag,Ch_WSignFlag,Ch_WOverflowFlag,
  263. {set individual flag bits to 0 in the flags register}
  264. Ch_W0CarryFlag,Ch_W0ParityFlag,Ch_W0AuxiliaryFlag,Ch_W0ZeroFlag,Ch_W0SignFlag,Ch_W0OverflowFlag,
  265. {set individual flag bits to 1 in the flags register}
  266. Ch_W1CarryFlag,Ch_W1ParityFlag,Ch_W1AuxiliaryFlag,Ch_W1ZeroFlag,Ch_W1SignFlag,Ch_W1OverflowFlag,
  267. {write an undefined value to individual flag bits in the flags register}
  268. Ch_WUCarryFlag,Ch_WUParityFlag,Ch_WUAuxiliaryFlag,Ch_WUZeroFlag,Ch_WUSignFlag,Ch_WUOverflowFlag,
  269. {read and write flag bits}
  270. Ch_RWCarryFlag,Ch_RWParityFlag,Ch_RWAuxiliaryFlag,Ch_RWZeroFlag,Ch_RWSignFlag,Ch_RWOverflowFlag,
  271. {more specialized flag bits (not considered part of NR_DEFAULTFLAGS by the compiler)}
  272. Ch_RDirFlag,Ch_W0DirFlag,Ch_W1DirFlag,Ch_W0IntFlag,Ch_W1IntFlag,
  273. {instruction reads flag bits, according to its condition (used by Jcc/SETcc/CMOVcc)}
  274. Ch_RFLAGScc,
  275. {read/write/read+write the entire flags/eflags/rflags register}
  276. Ch_RFlags, Ch_WFlags, Ch_RWFlags,
  277. Ch_FPU,
  278. Ch_Rop1, Ch_Wop1, Ch_RWop1, Ch_Mop1,
  279. Ch_Rop2, Ch_Wop2, Ch_RWop2, Ch_Mop2,
  280. Ch_Rop3, Ch_WOp3, Ch_RWOp3, Ch_Mop3,
  281. Ch_Rop4, Ch_WOp4, Ch_RWOp4, Ch_Mop4,
  282. { instruction doesn't read it's input register, in case both parameters
  283. are the same register (e.g. xor eax,eax; sub eax,eax; sbb eax,eax (reads flags only), etc.) }
  284. Ch_NoReadIfEqualRegs,
  285. Ch_RMemEDI,Ch_WMemEDI,
  286. Ch_All,
  287. { x86_64 registers }
  288. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  289. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  290. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  291. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
  292. );
  293. TInsProp = packed record
  294. Ch : set of TInsChange;
  295. end;
  296. TMemRefSizeInfo = (msiUnknown, msiUnsupported, msiNoSize, msiNoMemRef,
  297. msiMultiple, msiMultipleMinSize8, msiMultipleMinSize16, msiMultipleMinSize32,
  298. msiMultipleMinSize64, msiMultipleMinSize128, msiMultipleminSize256, msiMultipleMinSize512,
  299. msiMemRegSize, msiMemRegx16y32, msiMemRegx16y32z64, msiMemRegx32y64, msiMemRegx32y64z128, msiMemRegx64y128, msiMemRegx64y128z256,
  300. msiMemRegx64y256, msiMemRegx64y256z512,
  301. msiMem8, msiMem16, msiMem32, msiBMem32, msiMem64, msiBMem64, msiMem128, msiMem256, msiMem512,
  302. msiXMem32, msiXMem64, msiYMem32, msiYMem64, msiZMem32, msiZMem64,
  303. msiVMemMultiple, msiVMemRegSize,
  304. msiMemRegConst128,msiMemRegConst256,msiMemRegConst512);
  305. TMemRefSizeInfoBCST = (msbUnknown, msbBCST32, msbBCST64, msbMultiple);
  306. TMemRefSizeInfoBCSTType = (btUnknown, bt1to2, bt1to4, bt1to8, bt1to16);
  307. TEVEXTupleState = (etsUnknown, etsIsTuple, etsNotTuple);
  308. TConstSizeInfo = (csiUnknown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
  309. TInsTabMemRefSizeInfoRec = record
  310. MemRefSize : TMemRefSizeInfo;
  311. MemRefSizeBCST : TMemRefSizeInfoBCST;
  312. BCSTXMMMultiplicator : byte;
  313. ExistsSSEAVX : boolean;
  314. ConstSize : TConstSizeInfo;
  315. BCSTTypes : Set of TMemRefSizeInfoBCSTType;
  316. end;
  317. const
  318. MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultipleMinSize8,
  319. msiMultipleMinSize16, msiMultipleMinSize32,
  320. msiMultipleMinSize64, msiMultipleMinSize128,
  321. msiMultipleMinSize256, msiMultipleMinSize512,
  322. msiVMemMultiple];
  323. MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  324. msiZMem32, msiZMem64,
  325. msiVMemMultiple, msiVMemRegSize];
  326. InsProp : array[tasmop] of TInsProp =
  327. {$if defined(x86_64)}
  328. {$i x8664pro.inc}
  329. {$elseif defined(i386)}
  330. {$i i386prop.inc}
  331. {$elseif defined(i8086)}
  332. {$i i8086prop.inc}
  333. {$endif}
  334. type
  335. TOperandOrder = (op_intel,op_att);
  336. {Instruction flags }
  337. tinsflag = (
  338. { please keep these in order and in sync with IF_SMASK }
  339. IF_SM, { size match first two operands }
  340. IF_SM2,
  341. IF_SB, { unsized operands can't be non-byte }
  342. IF_SW, { unsized operands can't be non-word }
  343. IF_SD, { unsized operands can't be nondword }
  344. { unsized argument spec }
  345. { please keep these in order and in sync with IF_ARMASK }
  346. IF_AR0, { SB, SW, SD applies to argument 0 }
  347. IF_AR1, { SB, SW, SD applies to argument 1 }
  348. IF_AR2, { SB, SW, SD applies to argument 2 }
  349. IF_PRIV, { it's a privileged instruction }
  350. IF_SMM, { it's only valid in SMM }
  351. IF_PROT, { it's protected mode only }
  352. IF_NOX86_64, { removed instruction in x86_64 }
  353. IF_UNDOC, { it's an undocumented instruction }
  354. IF_FPU, { it's an FPU instruction }
  355. IF_MMX, { it's an MMX instruction }
  356. { it's a 3DNow! instruction }
  357. IF_3DNOW,
  358. { it's a SSE (KNI, MMX2) instruction }
  359. IF_SSE,
  360. { SSE2 instructions }
  361. IF_SSE2,
  362. { SSE3 instructions }
  363. IF_SSE3,
  364. { SSE64 instructions }
  365. IF_SSE64,
  366. { SVM instructions }
  367. IF_SVM,
  368. { SSE4 instructions }
  369. IF_SSE4,
  370. IF_SSSE3,
  371. IF_SSE41,
  372. IF_SSE42,
  373. IF_MOVBE,
  374. IF_CLMUL,
  375. IF_AVX,
  376. IF_AVX2,
  377. IF_AVX512,
  378. IF_BMI1,
  379. IF_BMI2,
  380. { Intel ADX (Multi-Precision Add-Carry Instruction Extensions) }
  381. IF_ADX,
  382. IF_16BITONLY,
  383. IF_FMA,
  384. IF_FMA4,
  385. IF_TSX,
  386. IF_RAND,
  387. IF_XSAVE,
  388. IF_PREFETCHWT1,
  389. { mask for processor level }
  390. { please keep these in order and in sync with IF_PLEVEL }
  391. IF_8086, { 8086 instruction }
  392. IF_186, { 186+ instruction }
  393. IF_286, { 286+ instruction }
  394. IF_386, { 386+ instruction }
  395. IF_486, { 486+ instruction }
  396. IF_PENT, { Pentium instruction }
  397. IF_P6, { P6 instruction }
  398. IF_KATMAI, { Katmai instructions }
  399. IF_WILLAMETTE, { Willamette instructions }
  400. IF_PRESCOTT, { Prescott instructions }
  401. IF_X86_64,
  402. IF_SANDYBRIDGE, { Sandybridge-specific instruction }
  403. IF_NEC, { NEC V20/V30 instruction }
  404. { the following are not strictly part of the processor level, because
  405. they are never used standalone, but always in combination with a
  406. separate processor level flag. Therefore, they use bits outside of
  407. IF_PLEVEL, otherwise they would mess up the processor level they're
  408. used in combination with.
  409. The following combinations are currently used:
  410. [IF_AMD, IF_P6],
  411. [IF_CYRIX, IF_486],
  412. [IF_CYRIX, IF_PENT],
  413. [IF_CYRIX, IF_P6] }
  414. IF_CYRIX, { Cyrix, Centaur or VIA-specific instruction }
  415. IF_AMD, { AMD-specific instruction }
  416. { added flags }
  417. IF_PRE, { it's a prefix instruction }
  418. IF_PASS2, { if the instruction can change in a second pass }
  419. IF_IMM4, { immediate operand is a nibble (must be in range [0..15]) }
  420. IF_IMM3, { immediate operand is a triad (must be in range [0..7]) }
  421. { avx512 flags }
  422. IF_BCST2,
  423. IF_BCST4,
  424. IF_BCST8,
  425. IF_BCST16,
  426. IF_T2, { disp8 - tuple - 2 }
  427. IF_T4, { disp8 - tuple - 4 }
  428. IF_T8, { disp8 - tuple - 8 }
  429. IF_T1S, { disp8 - tuple - 1 scalar }
  430. IF_T1F32,
  431. IF_T1F64,
  432. IF_TMDDUP,
  433. IF_TFV, { disp8 - tuple - full vector }
  434. IF_TFVM, { disp8 - tuple - full vector memory }
  435. IF_TQVM,
  436. IF_TMEM128,
  437. IF_THV,
  438. IF_THVM,
  439. IF_TOVM,
  440. { sse/avx scalare memrefsize }
  441. IF_SCL32,
  442. IF_SCL64
  443. );
  444. tinsflags=set of tinsflag;
  445. const
  446. IF_SMASK=[IF_SM,IF_SM2,IF_SB,IF_SW,IF_SD];
  447. IF_ARMASK=[IF_AR0,IF_AR1,IF_AR2]; { mask for unsized argument spec }
  448. IF_PLEVEL=[IF_8086..IF_NEC]; { mask for processor level }
  449. IF_TUPLEMASK=[IF_T2..IF_TOVM]; { mask for AVX512 disp8-tuples }
  450. type
  451. tinsentry=packed record
  452. opcode : tasmop;
  453. ops : byte;
  454. optypes : array[0..max_operands-1] of int64;
  455. code : array[0..maxinfolen] of char;
  456. flags : tinsflags;
  457. end;
  458. pinsentry=^tinsentry;
  459. { alignment for operator }
  460. tai_align = class(tai_align_abstract)
  461. function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
  462. end;
  463. { taicpu }
  464. taicpu = class(tai_cpu_abstract_sym)
  465. opsize : topsize;
  466. constructor op_none(op : tasmop);
  467. constructor op_none(op : tasmop;_size : topsize);
  468. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  469. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  470. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  471. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  472. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  473. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  474. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  475. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  476. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  477. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  478. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  479. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  480. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  481. constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  482. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  483. constructor op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  484. constructor op_const_reg_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2, _op3, _op4 : tregister);
  485. { this is for Jmp instructions }
  486. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  487. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  488. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  489. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  490. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  491. procedure changeopsize(siz:topsize);
  492. function GetString:string;
  493. { This is a workaround for the GAS non commutative fpu instruction braindamage.
  494. Early versions of the UnixWare assembler had a bug where some fpu instructions
  495. were reversed and GAS still keeps this "feature" for compatibility.
  496. for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
  497. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
  498. http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
  499. Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
  500. when generating output for other assemblers, the opcodes must be fixed before writing them.
  501. This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
  502. because in case of smartlinking assembler is generated twice so at the second run wrong
  503. assembler is generated.
  504. }
  505. function FixNonCommutativeOpcodes: tasmop;
  506. private
  507. FOperandOrder : TOperandOrder;
  508. procedure init(_size : topsize); { this need to be called by all constructor }
  509. public
  510. { the next will reset all instructions that can change in pass 2 }
  511. procedure ResetPass1;override;
  512. procedure ResetPass2;override;
  513. function CheckIfValid:boolean;
  514. function Pass1(objdata:TObjData):longint;override;
  515. procedure Pass2(objdata:TObjData);override;
  516. procedure SetOperandOrder(order:TOperandOrder);
  517. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  518. { register spilling code }
  519. function spilling_get_operation_type(opnr: longint): topertype;override;
  520. {$ifdef i8086}
  521. procedure loadsegsymbol(opidx:longint;s:tasmsymbol);
  522. {$endif i8086}
  523. property OperandOrder : TOperandOrder read FOperandOrder;
  524. private
  525. { next fields are filled in pass1, so pass2 is faster }
  526. insentry : PInsEntry;
  527. insoffset : longint;
  528. LastInsOffset : longint; { need to be public to be reset }
  529. inssize : shortint;
  530. EVEXTupleState: TEVEXTupleState; { AVX512 disp8*N }
  531. {$ifdef x86_64}
  532. rex : byte;
  533. {$endif x86_64}
  534. function InsEnd:longint;
  535. procedure create_ot(objdata:TObjData);
  536. function Matches(p:PInsEntry):boolean;
  537. function calcsize(p:PInsEntry):shortint;
  538. procedure gencode(objdata:TObjData);
  539. function NeedAddrPrefix(opidx:byte):boolean;
  540. function NeedAddrPrefix:boolean;
  541. procedure write0x66prefix(objdata:TObjData);
  542. procedure write0x67prefix(objdata:TObjData);
  543. procedure Swapoperands;
  544. function FindInsentry(objdata:TObjData):boolean;
  545. function CheckUseEVEX: boolean;
  546. procedure CheckEVEXTuple(const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
  547. end;
  548. function is_64_bit_ref(const ref:treference):boolean;
  549. function is_32_bit_ref(const ref:treference):boolean;
  550. function is_16_bit_ref(const ref:treference):boolean;
  551. function get_ref_address_size(const ref:treference):byte;
  552. function get_default_segment_of_ref(const ref:treference):tregister;
  553. procedure optimize_ref(var ref:treference; inlineasm: boolean);
  554. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  555. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  556. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  557. function MightHaveExtension(AsmOp : TAsmOp) : Boolean;
  558. procedure InitAsm;
  559. procedure DoneAsm;
  560. {*****************************************************************************
  561. External Symbol Chain
  562. used for agx86nsm and agx86int
  563. *****************************************************************************}
  564. type
  565. PExternChain = ^TExternChain;
  566. TExternChain = Record
  567. psym : pshortstring;
  568. is_defined : boolean;
  569. next : PExternChain;
  570. end;
  571. const
  572. FEC : PExternChain = nil;
  573. procedure AddSymbol(symname : string; defined : boolean);
  574. procedure FreeExternChainList;
  575. implementation
  576. uses
  577. cutils,
  578. globals,
  579. systems,
  580. itcpugas,
  581. cpuinfo;
  582. procedure AddSymbol(symname : string; defined : boolean);
  583. var
  584. EC : PExternChain;
  585. begin
  586. EC:=FEC;
  587. while assigned(EC) do
  588. begin
  589. if EC^.psym^=symname then
  590. begin
  591. if defined then
  592. EC^.is_defined:=true;
  593. exit;
  594. end;
  595. EC:=EC^.next;
  596. end;
  597. New(EC);
  598. EC^.next:=FEC;
  599. FEC:=EC;
  600. FEC^.psym:=stringdup(symname);
  601. FEC^.is_defined := defined;
  602. end;
  603. procedure FreeExternChainList;
  604. var
  605. EC : PExternChain;
  606. begin
  607. EC:=FEC;
  608. while assigned(EC) do
  609. begin
  610. FEC:=EC^.next;
  611. stringdispose(EC^.psym);
  612. Dispose(EC);
  613. EC:=FEC;
  614. end;
  615. end;
  616. {*****************************************************************************
  617. Instruction table
  618. *****************************************************************************}
  619. type
  620. TInsTabCache=array[TasmOp] of longint;
  621. PInsTabCache=^TInsTabCache;
  622. TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
  623. PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
  624. const
  625. {$if defined(x86_64)}
  626. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  627. {$elseif defined(i386)}
  628. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  629. {$elseif defined(i8086)}
  630. InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
  631. {$endif}
  632. var
  633. InsTabCache : PInsTabCache;
  634. InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
  635. const
  636. {$if defined(x86_64)}
  637. { Intel style operands ! }
  638. opsize_2_type:array[0..2,topsize] of int64=(
  639. (OT_NONE,
  640. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  641. OT_BITS16,OT_BITS32,OT_BITS64,
  642. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  643. OT_BITS64,
  644. OT_NEAR,OT_FAR,OT_SHORT,
  645. OT_NONE,
  646. OT_BITS128,
  647. OT_BITS256,
  648. OT_BITS512
  649. ),
  650. (OT_NONE,
  651. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  652. OT_BITS16,OT_BITS32,OT_BITS64,
  653. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  654. OT_BITS64,
  655. OT_NEAR,OT_FAR,OT_SHORT,
  656. OT_NONE,
  657. OT_BITS128,
  658. OT_BITS256,
  659. OT_BITS512
  660. ),
  661. (OT_NONE,
  662. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  663. OT_BITS16,OT_BITS32,OT_BITS64,
  664. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  665. OT_BITS64,
  666. OT_NEAR,OT_FAR,OT_SHORT,
  667. OT_NONE,
  668. OT_BITS128,
  669. OT_BITS256,
  670. OT_BITS512
  671. )
  672. );
  673. reg_ot_table : array[tregisterindex] of longint = (
  674. {$i r8664ot.inc}
  675. );
  676. {$elseif defined(i386)}
  677. { Intel style operands ! }
  678. opsize_2_type:array[0..2,topsize] of int64=(
  679. (OT_NONE,
  680. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  681. OT_BITS16,OT_BITS32,OT_BITS64,
  682. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  683. OT_BITS64,
  684. OT_NEAR,OT_FAR,OT_SHORT,
  685. OT_NONE,
  686. OT_BITS128,
  687. OT_BITS256,
  688. OT_BITS512
  689. ),
  690. (OT_NONE,
  691. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  692. OT_BITS16,OT_BITS32,OT_BITS64,
  693. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  694. OT_BITS64,
  695. OT_NEAR,OT_FAR,OT_SHORT,
  696. OT_NONE,
  697. OT_BITS128,
  698. OT_BITS256,
  699. OT_BITS512
  700. ),
  701. (OT_NONE,
  702. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  703. OT_BITS16,OT_BITS32,OT_BITS64,
  704. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  705. OT_BITS64,
  706. OT_NEAR,OT_FAR,OT_SHORT,
  707. OT_NONE,
  708. OT_BITS128,
  709. OT_BITS256,
  710. OT_BITS512
  711. )
  712. );
  713. reg_ot_table : array[tregisterindex] of longint = (
  714. {$i r386ot.inc}
  715. );
  716. {$elseif defined(i8086)}
  717. { Intel style operands ! }
  718. opsize_2_type:array[0..2,topsize] of int64=(
  719. (OT_NONE,
  720. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  721. OT_BITS16,OT_BITS32,OT_BITS64,
  722. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  723. OT_BITS64,
  724. OT_NEAR,OT_FAR,OT_SHORT,
  725. OT_NONE,
  726. OT_BITS128,
  727. OT_BITS256,
  728. OT_BITS512
  729. ),
  730. (OT_NONE,
  731. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  732. OT_BITS16,OT_BITS32,OT_BITS64,
  733. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  734. OT_BITS64,
  735. OT_NEAR,OT_FAR,OT_SHORT,
  736. OT_NONE,
  737. OT_BITS128,
  738. OT_BITS256,
  739. OT_BITS512
  740. ),
  741. (OT_NONE,
  742. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  743. OT_BITS16,OT_BITS32,OT_BITS64,
  744. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  745. OT_BITS64,
  746. OT_NEAR,OT_FAR,OT_SHORT,
  747. OT_NONE,
  748. OT_BITS128,
  749. OT_BITS256,
  750. OT_BITS512
  751. )
  752. );
  753. reg_ot_table : array[tregisterindex] of longint = (
  754. {$i r8086ot.inc}
  755. );
  756. {$endif}
  757. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  758. begin
  759. result := InsTabMemRefSizeInfoCache^[aAsmop];
  760. end;
  761. function MightHaveExtension(AsmOp : TAsmOp): Boolean;
  762. var
  763. i,j: LongInt;
  764. insentry: pinsentry;
  765. begin
  766. Result:=true;
  767. i:=InsTabCache^[AsmOp];
  768. if i>=0 then
  769. begin
  770. insentry:=@instab[i];
  771. while insentry^.opcode=AsmOp do
  772. begin
  773. for j:=0 to insentry^.ops-1 do
  774. begin
  775. if (insentry^.optypes[j] and OT_VECTOR_EXT)<>0 then
  776. exit;
  777. end;
  778. inc(i);
  779. insentry:=@instab[i];
  780. end;
  781. end;
  782. Result:=false;
  783. end;
  784. { Operation type for spilling code }
  785. type
  786. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  787. var
  788. operation_type_table : ^toperation_type_table;
  789. {****************************************************************************
  790. TAI_ALIGN
  791. ****************************************************************************}
  792. function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
  793. const
  794. { Updated according to
  795. Software Optimization Guide for AMD Family 15h Processors, Verison 3.08, January 2014
  796. and
  797. Intel 64 and IA-32 Architectures Software Developer’s Manual
  798. Volume 2B: Instruction Set Reference, N-Z, January 2015
  799. }
  800. alignarray_cmovcpus:array[0..10] of string[11]=(
  801. #$66#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  802. #$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  803. #$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  804. #$0F#$1F#$84#$00#$00#$00#$00#$00,
  805. #$0F#$1F#$80#$00#$00#$00#$00,
  806. #$66#$0F#$1F#$44#$00#$00,
  807. #$0F#$1F#$44#$00#$00,
  808. #$0F#$1F#$40#$00,
  809. #$0F#$1F#$00,
  810. #$66#$90,
  811. #$90);
  812. {$ifdef i8086}
  813. alignarray:array[0..5] of string[8]=(
  814. #$90#$90#$90#$90#$90#$90#$90,
  815. #$90#$90#$90#$90#$90#$90,
  816. #$90#$90#$90#$90,
  817. #$90#$90#$90,
  818. #$90#$90,
  819. #$90);
  820. {$else i8086}
  821. alignarray:array[0..5] of string[8]=(
  822. #$8D#$B4#$26#$00#$00#$00#$00,
  823. #$8D#$B6#$00#$00#$00#$00,
  824. #$8D#$74#$26#$00,
  825. #$8D#$76#$00,
  826. #$89#$F6,
  827. #$90);
  828. {$endif i8086}
  829. var
  830. bufptr : pchar;
  831. j : longint;
  832. localsize: byte;
  833. begin
  834. inherited calculatefillbuf(buf,executable);
  835. if not(use_op) and executable then
  836. begin
  837. bufptr:=pchar(@buf);
  838. { fillsize may still be used afterwards, so don't modify }
  839. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  840. localsize:=fillsize;
  841. while (localsize>0) do
  842. begin
  843. {$ifndef i8086}
  844. if CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype] then
  845. begin
  846. for j:=low(alignarray_cmovcpus) to high(alignarray_cmovcpus) do
  847. if (localsize>=length(alignarray_cmovcpus[j])) then
  848. break;
  849. move(alignarray_cmovcpus[j][1],bufptr^,length(alignarray_cmovcpus[j]));
  850. inc(bufptr,length(alignarray_cmovcpus[j]));
  851. dec(localsize,length(alignarray_cmovcpus[j]));
  852. end
  853. else
  854. {$endif not i8086}
  855. begin
  856. for j:=low(alignarray) to high(alignarray) do
  857. if (localsize>=length(alignarray[j])) then
  858. break;
  859. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  860. inc(bufptr,length(alignarray[j]));
  861. dec(localsize,length(alignarray[j]));
  862. end
  863. end;
  864. end;
  865. calculatefillbuf:=pchar(@buf);
  866. end;
  867. {*****************************************************************************
  868. Taicpu Constructors
  869. *****************************************************************************}
  870. procedure taicpu.changeopsize(siz:topsize);
  871. begin
  872. opsize:=siz;
  873. end;
  874. procedure taicpu.init(_size : topsize);
  875. begin
  876. { default order is att }
  877. FOperandOrder:=op_att;
  878. segprefix:=NR_NO;
  879. opsize:=_size;
  880. insentry:=nil;
  881. LastInsOffset:=-1;
  882. InsOffset:=0;
  883. InsSize:=0;
  884. EVEXTupleState := etsUnknown;
  885. end;
  886. constructor taicpu.op_none(op : tasmop);
  887. begin
  888. inherited create(op);
  889. init(S_NO);
  890. end;
  891. constructor taicpu.op_none(op : tasmop;_size : topsize);
  892. begin
  893. inherited create(op);
  894. init(_size);
  895. end;
  896. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  897. begin
  898. inherited create(op);
  899. init(_size);
  900. ops:=1;
  901. loadreg(0,_op1);
  902. end;
  903. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  904. begin
  905. inherited create(op);
  906. init(_size);
  907. ops:=1;
  908. loadconst(0,_op1);
  909. end;
  910. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  911. begin
  912. inherited create(op);
  913. init(_size);
  914. ops:=1;
  915. loadref(0,_op1);
  916. end;
  917. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  918. begin
  919. inherited create(op);
  920. init(_size);
  921. ops:=2;
  922. loadreg(0,_op1);
  923. loadreg(1,_op2);
  924. end;
  925. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  926. begin
  927. inherited create(op);
  928. init(_size);
  929. ops:=2;
  930. loadreg(0,_op1);
  931. loadconst(1,_op2);
  932. end;
  933. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  934. begin
  935. inherited create(op);
  936. init(_size);
  937. ops:=2;
  938. loadreg(0,_op1);
  939. loadref(1,_op2);
  940. end;
  941. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  942. begin
  943. inherited create(op);
  944. init(_size);
  945. ops:=2;
  946. loadconst(0,_op1);
  947. loadreg(1,_op2);
  948. end;
  949. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  950. begin
  951. inherited create(op);
  952. init(_size);
  953. ops:=2;
  954. loadconst(0,_op1);
  955. loadconst(1,_op2);
  956. end;
  957. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  958. begin
  959. inherited create(op);
  960. init(_size);
  961. ops:=2;
  962. loadconst(0,_op1);
  963. loadref(1,_op2);
  964. end;
  965. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  966. begin
  967. inherited create(op);
  968. init(_size);
  969. ops:=2;
  970. loadref(0,_op1);
  971. loadreg(1,_op2);
  972. end;
  973. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  974. begin
  975. inherited create(op);
  976. init(_size);
  977. ops:=3;
  978. loadreg(0,_op1);
  979. loadreg(1,_op2);
  980. loadreg(2,_op3);
  981. end;
  982. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  983. begin
  984. inherited create(op);
  985. init(_size);
  986. ops:=3;
  987. loadconst(0,_op1);
  988. loadreg(1,_op2);
  989. loadreg(2,_op3);
  990. end;
  991. constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  992. begin
  993. inherited create(op);
  994. init(_size);
  995. ops:=3;
  996. loadref(0,_op1);
  997. loadreg(1,_op2);
  998. loadreg(2,_op3);
  999. end;
  1000. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  1001. begin
  1002. inherited create(op);
  1003. init(_size);
  1004. ops:=3;
  1005. loadconst(0,_op1);
  1006. loadref(1,_op2);
  1007. loadreg(2,_op3);
  1008. end;
  1009. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  1010. begin
  1011. inherited create(op);
  1012. init(_size);
  1013. ops:=3;
  1014. loadconst(0,_op1);
  1015. loadreg(1,_op2);
  1016. loadref(2,_op3);
  1017. end;
  1018. constructor taicpu.op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  1019. begin
  1020. inherited create(op);
  1021. init(_size);
  1022. ops:=3;
  1023. loadreg(0,_op1);
  1024. loadreg(1,_op2);
  1025. loadref(2,_op3);
  1026. end;
  1027. constructor taicpu.op_const_reg_reg_reg(op : tasmop; _size : topsize; _op1 : aint; _op2, _op3, _op4 : tregister);
  1028. begin
  1029. inherited create(op);
  1030. init(_size);
  1031. ops:=4;
  1032. loadconst(0,_op1);
  1033. loadreg(1,_op2);
  1034. loadreg(2,_op3);
  1035. loadreg(3,_op4);
  1036. end;
  1037. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  1038. begin
  1039. inherited create(op);
  1040. init(_size);
  1041. condition:=cond;
  1042. ops:=1;
  1043. loadsymbol(0,_op1,0);
  1044. end;
  1045. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  1046. begin
  1047. inherited create(op);
  1048. init(_size);
  1049. ops:=1;
  1050. loadsymbol(0,_op1,0);
  1051. end;
  1052. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  1053. begin
  1054. inherited create(op);
  1055. init(_size);
  1056. ops:=1;
  1057. loadsymbol(0,_op1,_op1ofs);
  1058. end;
  1059. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  1060. begin
  1061. inherited create(op);
  1062. init(_size);
  1063. ops:=2;
  1064. loadsymbol(0,_op1,_op1ofs);
  1065. loadreg(1,_op2);
  1066. end;
  1067. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  1068. begin
  1069. inherited create(op);
  1070. init(_size);
  1071. ops:=2;
  1072. loadsymbol(0,_op1,_op1ofs);
  1073. loadref(1,_op2);
  1074. end;
  1075. function taicpu.GetString:string;
  1076. var
  1077. i : longint;
  1078. s : string;
  1079. regnr: string;
  1080. addsize : boolean;
  1081. begin
  1082. s:='['+std_op2str[opcode];
  1083. for i:=0 to ops-1 do
  1084. begin
  1085. with oper[i]^ do
  1086. begin
  1087. if i=0 then
  1088. s:=s+' '
  1089. else
  1090. s:=s+',';
  1091. { type }
  1092. addsize:=false;
  1093. regnr := '';
  1094. if getregtype(reg) = R_MMREGISTER then
  1095. str(getsupreg(reg),regnr);
  1096. if (ot and OT_XMMREG)=OT_XMMREG then
  1097. s:=s+'xmmreg' + regnr
  1098. else
  1099. if (ot and OT_YMMREG)=OT_YMMREG then
  1100. s:=s+'ymmreg' + regnr
  1101. else
  1102. if (ot and OT_ZMMREG)=OT_ZMMREG then
  1103. s:=s+'zmmreg' + regnr
  1104. else
  1105. if (ot and OT_REG_EXTRA_MASK)=OT_MMXREG then
  1106. s:=s+'mmxreg'
  1107. else
  1108. if (ot and OT_REG_EXTRA_MASK)=OT_FPUREG then
  1109. s:=s+'fpureg'
  1110. else
  1111. if (ot and OT_REGISTER)=OT_REGISTER then
  1112. begin
  1113. s:=s+'reg';
  1114. addsize:=true;
  1115. end
  1116. else
  1117. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  1118. begin
  1119. s:=s+'imm';
  1120. addsize:=true;
  1121. end
  1122. else
  1123. if (ot and OT_MEMORY)=OT_MEMORY then
  1124. begin
  1125. s:=s+'mem';
  1126. addsize:=true;
  1127. end
  1128. else
  1129. s:=s+'???';
  1130. { size }
  1131. if addsize then
  1132. begin
  1133. if (ot and OT_BITS8)<>0 then
  1134. s:=s+'8'
  1135. else
  1136. if (ot and OT_BITS16)<>0 then
  1137. s:=s+'16'
  1138. else
  1139. if (ot and OT_BITS32)<>0 then
  1140. s:=s+'32'
  1141. else
  1142. if (ot and OT_BITS64)<>0 then
  1143. s:=s+'64'
  1144. else
  1145. if (ot and OT_BITS128)<>0 then
  1146. s:=s+'128'
  1147. else
  1148. if (ot and OT_BITS256)<>0 then
  1149. s:=s+'256'
  1150. else
  1151. if (ot and OT_BITS512)<>0 then
  1152. s:=s+'512'
  1153. else
  1154. s:=s+'??';
  1155. { signed }
  1156. if (ot and OT_SIGNED)<>0 then
  1157. s:=s+'s';
  1158. end;
  1159. if vopext <> 0 then
  1160. begin
  1161. str(vopext and $07, regnr);
  1162. if vopext and OTVE_VECTOR_WRITEMASK = OTVE_VECTOR_WRITEMASK then
  1163. s := s + ' {k' + regnr + '}';
  1164. if vopext and OTVE_VECTOR_ZERO = OTVE_VECTOR_ZERO then
  1165. s := s + ' {z}';
  1166. if vopext and OTVE_VECTOR_SAE = OTVE_VECTOR_SAE then
  1167. s := s + ' {sae}';
  1168. if vopext and OTVE_VECTOR_BCST = OTVE_VECTOR_BCST then
  1169. case vopext and OTVE_VECTOR_BCST_MASK of
  1170. OTVE_VECTOR_BCST2: s := s + ' {1to2}';
  1171. OTVE_VECTOR_BCST4: s := s + ' {1to4}';
  1172. OTVE_VECTOR_BCST8: s := s + ' {1to8}';
  1173. OTVE_VECTOR_BCST16: s := s + ' {1to16}';
  1174. end;
  1175. if vopext and OTVE_VECTOR_ER = OTVE_VECTOR_ER then
  1176. case vopext and OTVE_VECTOR_ER_MASK of
  1177. OTVE_VECTOR_RNSAE: s := s + ' {rn-sae}';
  1178. OTVE_VECTOR_RDSAE: s := s + ' {rd-sae}';
  1179. OTVE_VECTOR_RUSAE: s := s + ' {ru-sae}';
  1180. OTVE_VECTOR_RZSAE: s := s + ' {rz-sae}';
  1181. end;
  1182. end;
  1183. end;
  1184. end;
  1185. GetString:=s+']';
  1186. end;
  1187. procedure taicpu.Swapoperands;
  1188. var
  1189. p : POper;
  1190. begin
  1191. { Fix the operands which are in AT&T style and we need them in Intel style }
  1192. case ops of
  1193. 0,1:
  1194. ;
  1195. 2 : begin
  1196. { 0,1 -> 1,0 }
  1197. p:=oper[0];
  1198. oper[0]:=oper[1];
  1199. oper[1]:=p;
  1200. end;
  1201. 3 : begin
  1202. { 0,1,2 -> 2,1,0 }
  1203. p:=oper[0];
  1204. oper[0]:=oper[2];
  1205. oper[2]:=p;
  1206. end;
  1207. 4 : begin
  1208. { 0,1,2,3 -> 3,2,1,0 }
  1209. p:=oper[0];
  1210. oper[0]:=oper[3];
  1211. oper[3]:=p;
  1212. p:=oper[1];
  1213. oper[1]:=oper[2];
  1214. oper[2]:=p;
  1215. end;
  1216. else
  1217. internalerror(201108141);
  1218. end;
  1219. end;
  1220. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  1221. begin
  1222. if FOperandOrder<>order then
  1223. begin
  1224. Swapoperands;
  1225. FOperandOrder:=order;
  1226. end;
  1227. end;
  1228. function taicpu.FixNonCommutativeOpcodes: tasmop;
  1229. begin
  1230. result:=opcode;
  1231. { we need ATT order }
  1232. SetOperandOrder(op_att);
  1233. if (
  1234. (ops=2) and
  1235. (oper[0]^.typ=top_reg) and
  1236. (oper[1]^.typ=top_reg) and
  1237. { if the first is ST and the second is also a register
  1238. it is necessarily ST1 .. ST7 }
  1239. ((oper[0]^.reg=NR_ST) or
  1240. (oper[0]^.reg=NR_ST0))
  1241. ) or
  1242. { ((ops=1) and
  1243. (oper[0]^.typ=top_reg) and
  1244. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  1245. (ops=0) then
  1246. begin
  1247. if opcode=A_FSUBR then
  1248. result:=A_FSUB
  1249. else if opcode=A_FSUB then
  1250. result:=A_FSUBR
  1251. else if opcode=A_FDIVR then
  1252. result:=A_FDIV
  1253. else if opcode=A_FDIV then
  1254. result:=A_FDIVR
  1255. else if opcode=A_FSUBRP then
  1256. result:=A_FSUBP
  1257. else if opcode=A_FSUBP then
  1258. result:=A_FSUBRP
  1259. else if opcode=A_FDIVRP then
  1260. result:=A_FDIVP
  1261. else if opcode=A_FDIVP then
  1262. result:=A_FDIVRP;
  1263. end;
  1264. if (
  1265. (ops=1) and
  1266. (oper[0]^.typ=top_reg) and
  1267. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  1268. (oper[0]^.reg<>NR_ST)
  1269. ) then
  1270. begin
  1271. if opcode=A_FSUBRP then
  1272. result:=A_FSUBP
  1273. else if opcode=A_FSUBP then
  1274. result:=A_FSUBRP
  1275. else if opcode=A_FDIVRP then
  1276. result:=A_FDIVP
  1277. else if opcode=A_FDIVP then
  1278. result:=A_FDIVRP;
  1279. end;
  1280. end;
  1281. {*****************************************************************************
  1282. Assembler
  1283. *****************************************************************************}
  1284. type
  1285. ea = packed record
  1286. sib_present : boolean;
  1287. bytes : byte;
  1288. size : byte;
  1289. modrm : byte;
  1290. sib : byte;
  1291. {$ifdef x86_64}
  1292. rex : byte;
  1293. {$endif x86_64}
  1294. end;
  1295. procedure taicpu.create_ot(objdata:TObjData);
  1296. {
  1297. this function will also fix some other fields which only needs to be once
  1298. }
  1299. var
  1300. i,l,relsize : longint;
  1301. currsym : TObjSymbol;
  1302. begin
  1303. if ops=0 then
  1304. exit;
  1305. { update oper[].ot field }
  1306. for i:=0 to ops-1 do
  1307. with oper[i]^ do
  1308. begin
  1309. case typ of
  1310. top_reg :
  1311. begin
  1312. ot:=reg_ot_table[findreg_by_number(reg)];
  1313. end;
  1314. top_ref :
  1315. begin
  1316. if (ref^.refaddr=addr_no)
  1317. {$ifdef i386}
  1318. or (
  1319. (ref^.refaddr in [addr_pic]) and
  1320. (ref^.base<>NR_NO)
  1321. )
  1322. {$endif i386}
  1323. {$ifdef x86_64}
  1324. or (
  1325. (ref^.refaddr in [addr_pic,addr_pic_no_got]) and
  1326. (ref^.base<>NR_NO)
  1327. )
  1328. {$endif x86_64}
  1329. then
  1330. begin
  1331. { create ot field }
  1332. if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
  1333. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1334. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG) or
  1335. (reg_ot_table[findreg_by_number(ref^.index)] = OT_ZMMREG)
  1336. ) then
  1337. // AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
  1338. ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
  1339. (reg_ot_table[findreg_by_number(ref^.index)])
  1340. else if (ref^.base = NR_NO) and
  1341. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1342. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG) or
  1343. (reg_ot_table[findreg_by_number(ref^.index)] = OT_ZMMREG)
  1344. ) then
  1345. // AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
  1346. ot := (OT_REG_GPR) or
  1347. (reg_ot_table[findreg_by_number(ref^.index)])
  1348. else if (ot and OT_SIZE_MASK)=0 then
  1349. ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
  1350. else
  1351. ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
  1352. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  1353. ot:=ot or OT_MEM_OFFS;
  1354. { fix scalefactor }
  1355. if (ref^.index=NR_NO) then
  1356. ref^.scalefactor:=0
  1357. else
  1358. if (ref^.scalefactor=0) then
  1359. ref^.scalefactor:=1;
  1360. end
  1361. else
  1362. begin
  1363. { Jumps use a relative offset which can be 8bit,
  1364. for other opcodes we always need to generate the full
  1365. 32bit address }
  1366. if assigned(objdata) and
  1367. is_jmp then
  1368. begin
  1369. currsym:=objdata.symbolref(ref^.symbol);
  1370. l:=ref^.offset;
  1371. {$push}
  1372. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  1373. if assigned(currsym) then
  1374. inc(l,currsym.address);
  1375. {$pop}
  1376. { when it is a forward jump we need to compensate the
  1377. offset of the instruction since the previous time,
  1378. because the symbol address is then still using the
  1379. 'old-style' addressing.
  1380. For backwards jumps this is not required because the
  1381. address of the symbol is already adjusted to the
  1382. new offset }
  1383. if (l>InsOffset) and (LastInsOffset<>-1) then
  1384. inc(l,InsOffset-LastInsOffset);
  1385. { instruction size will then always become 2 (PFV) }
  1386. relsize:=(InsOffset+2)-l;
  1387. if (relsize>=-128) and (relsize<=127) and
  1388. (
  1389. not assigned(currsym) or
  1390. (currsym.objsection=objdata.currobjsec)
  1391. ) then
  1392. ot:=OT_IMM8 or OT_SHORT
  1393. else
  1394. {$ifdef i8086}
  1395. ot:=OT_IMM16 or OT_NEAR;
  1396. {$else i8086}
  1397. ot:=OT_IMM32 or OT_NEAR;
  1398. {$endif i8086}
  1399. end
  1400. else
  1401. {$ifdef i8086}
  1402. if opsize=S_FAR then
  1403. ot:=OT_IMM16 or OT_FAR
  1404. else
  1405. ot:=OT_IMM16 or OT_NEAR;
  1406. {$else i8086}
  1407. ot:=OT_IMM32 or OT_NEAR;
  1408. {$endif i8086}
  1409. end;
  1410. end;
  1411. top_local :
  1412. begin
  1413. if (ot and OT_SIZE_MASK)=0 then
  1414. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  1415. else
  1416. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  1417. end;
  1418. top_const :
  1419. begin
  1420. // if opcode is a SSE or AVX-instruction then we need a
  1421. // special handling (opsize can different from const-size)
  1422. // (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
  1423. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
  1424. (not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnknown])) then
  1425. begin
  1426. case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
  1427. csiNoSize: ot := ot and OT_NON_SIZE or OT_IMMEDIATE;
  1428. csiMem8: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS8;
  1429. csiMem16: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS16;
  1430. csiMem32: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS32;
  1431. csiMem64: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS64;
  1432. else
  1433. ;
  1434. end;
  1435. end
  1436. else
  1437. begin
  1438. { allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
  1439. { further, allow AAD and AAM with imm. operand }
  1440. if (opsize=S_NO) and not((i in [1,2,3])
  1441. {$ifndef x86_64}
  1442. or ((i=0) and (opcode in [A_AAD,A_AAM]))
  1443. {$endif x86_64}
  1444. ) then
  1445. message(asmr_e_invalid_opcode_and_operand);
  1446. if
  1447. {$ifdef i8086}
  1448. (longint(val)>=-128) and (val<=127) then
  1449. {$else i8086}
  1450. (opsize<>S_W) and
  1451. (aint(val)>=-128) and (val<=127) then
  1452. {$endif not i8086}
  1453. ot:=OT_IMM8 or OT_SIGNED
  1454. else
  1455. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  1456. if (val=1) and (i=1) then
  1457. ot := ot or OT_ONENESS;
  1458. end;
  1459. end;
  1460. top_none :
  1461. begin
  1462. { generated when there was an error in the
  1463. assembler reader. It never happends when generating
  1464. assembler }
  1465. end;
  1466. else
  1467. internalerror(200402266);
  1468. end;
  1469. end;
  1470. end;
  1471. function taicpu.InsEnd:longint;
  1472. begin
  1473. InsEnd:=InsOffset+InsSize;
  1474. end;
  1475. function taicpu.Matches(p:PInsEntry):boolean;
  1476. { * IF_SM stands for Size Match: any operand whose size is not
  1477. * explicitly specified by the template is `really' intended to be
  1478. * the same size as the first size-specified operand.
  1479. * Non-specification is tolerated in the input instruction, but
  1480. * _wrong_ specification is not.
  1481. *
  1482. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  1483. * three-operand instructions such as SHLD: it implies that the
  1484. * first two operands must match in size, but that the third is
  1485. * required to be _unspecified_.
  1486. *
  1487. * IF_SB invokes Size Byte: operands with unspecified size in the
  1488. * template are really bytes, and so no non-byte specification in
  1489. * the input instruction will be tolerated. IF_SW similarly invokes
  1490. * Size Word, and IF_SD invokes Size Doubleword.
  1491. *
  1492. * (The default state if neither IF_SM nor IF_SM2 is specified is
  1493. * that any operand with unspecified size in the template is
  1494. * required to have unspecified size in the instruction too...)
  1495. }
  1496. var
  1497. insot,
  1498. currot: int64;
  1499. i,j,asize,oprs : longint;
  1500. insflags:tinsflags;
  1501. vopext: int64;
  1502. siz : array[0..max_operands-1] of longint;
  1503. begin
  1504. result:=false;
  1505. { Check the opcode and operands }
  1506. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  1507. exit;
  1508. {$ifdef i8086}
  1509. { On i8086, we need to skip the i386+ version of Jcc near, if the target
  1510. cpu is earlier than 386. There's another entry, later in the table for
  1511. i8086, which simulates it with i8086 instructions:
  1512. JNcc short +3
  1513. JMP near target }
  1514. if (p^.opcode=A_Jcc) and (current_settings.cputype<cpu_386) and
  1515. (IF_386 in p^.flags) then
  1516. exit;
  1517. {$endif i8086}
  1518. for i:=0 to p^.ops-1 do
  1519. begin
  1520. insot:=p^.optypes[i];
  1521. currot:=oper[i]^.ot;
  1522. { Check the operand flags }
  1523. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1524. exit;
  1525. // IGNORE VECTOR-MEMORY-SIZE
  1526. if insot and OT_TYPE_MASK = OT_MEMORY then
  1527. insot := insot and not(int64(OT_BITS128 or OT_BITS256 or OT_BITS512));
  1528. { Check if the passed operand size matches with one of
  1529. the supported operand sizes }
  1530. if ((insot and OT_SIZE_MASK)<>0) and
  1531. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1532. exit;
  1533. { "far" matches only with "far" }
  1534. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1535. exit;
  1536. end;
  1537. { Check operand sizes }
  1538. insflags:=p^.flags;
  1539. if (insflags*IF_SMASK)<>[] then
  1540. begin
  1541. { as default an untyped size can get all the sizes, this is different
  1542. from nasm, but else we need to do a lot checking which opcodes want
  1543. size or not with the automatic size generation }
  1544. asize:=-1;
  1545. if IF_SB in insflags then
  1546. asize:=OT_BITS8
  1547. else if IF_SW in insflags then
  1548. asize:=OT_BITS16
  1549. else if IF_SD in insflags then
  1550. asize:=OT_BITS32;
  1551. if insflags*IF_ARMASK<>[] then
  1552. begin
  1553. siz[0]:=-1;
  1554. siz[1]:=-1;
  1555. siz[2]:=-1;
  1556. if IF_AR0 in insflags then
  1557. siz[0]:=asize
  1558. else if IF_AR1 in insflags then
  1559. siz[1]:=asize
  1560. else if IF_AR2 in insflags then
  1561. siz[2]:=asize
  1562. else
  1563. internalerror(2017092101);
  1564. end
  1565. else
  1566. begin
  1567. siz[0]:=asize;
  1568. siz[1]:=asize;
  1569. siz[2]:=asize;
  1570. end;
  1571. if insflags*[IF_SM,IF_SM2]<>[] then
  1572. begin
  1573. if IF_SM2 in insflags then
  1574. oprs:=2
  1575. else
  1576. oprs:=p^.ops;
  1577. for i:=0 to oprs-1 do
  1578. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  1579. begin
  1580. for j:=0 to oprs-1 do
  1581. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  1582. break;
  1583. end;
  1584. end
  1585. else
  1586. oprs:=2;
  1587. { Check operand sizes }
  1588. for i:=0 to p^.ops-1 do
  1589. begin
  1590. insot:=p^.optypes[i];
  1591. currot:=oper[i]^.ot;
  1592. if ((insot and OT_SIZE_MASK)=0) and
  1593. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  1594. { Immediates can always include smaller size }
  1595. ((currot and OT_IMMEDIATE)=0) and
  1596. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1597. exit;
  1598. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1599. exit;
  1600. end;
  1601. end;
  1602. if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
  1603. (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1604. begin
  1605. for i:=0 to p^.ops-1 do
  1606. begin
  1607. insot:=p^.optypes[i];
  1608. if ((insot and (OT_XMMRM or OT_REG_EXTRA_MASK)) = OT_XMMRM) OR
  1609. ((insot and (OT_YMMRM or OT_REG_EXTRA_MASK)) = OT_YMMRM) OR
  1610. ((insot and (OT_ZMMRM or OT_REG_EXTRA_MASK)) = OT_ZMMRM) then
  1611. begin
  1612. if (insot and OT_SIZE_MASK) = 0 then
  1613. begin
  1614. case insot and (OT_XMMRM or OT_YMMRM or OT_ZMMRM or OT_REG_EXTRA_MASK) of
  1615. OT_XMMRM: insot := insot or OT_BITS128;
  1616. OT_YMMRM: insot := insot or OT_BITS256;
  1617. OT_ZMMRM: insot := insot or OT_BITS512;
  1618. else
  1619. ;
  1620. end;
  1621. end;
  1622. end;
  1623. currot:=oper[i]^.ot;
  1624. { Check the operand flags }
  1625. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1626. exit;
  1627. { Check if the passed operand size matches with one of
  1628. the supported operand sizes }
  1629. if ((insot and OT_SIZE_MASK)<>0) and
  1630. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1631. exit;
  1632. end;
  1633. end;
  1634. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1635. begin
  1636. for i:=0 to p^.ops-1 do
  1637. begin
  1638. // check vectoroperand-extention e.g. {k1} {z}
  1639. vopext := 0;
  1640. if (oper[i]^.vopext and OTVE_VECTOR_WRITEMASK) = OTVE_VECTOR_WRITEMASK then
  1641. begin
  1642. vopext := vopext or OT_VECTORMASK;
  1643. if (oper[i]^.vopext and OTVE_VECTOR_ZERO) = OTVE_VECTOR_ZERO then
  1644. vopext := vopext or OT_VECTORZERO;
  1645. end;
  1646. if (oper[i]^.vopext and OTVE_VECTOR_BCST) = OTVE_VECTOR_BCST then
  1647. begin
  1648. vopext := vopext or OT_VECTORBCST;
  1649. if (InsTabMemRefSizeInfoCache^[opcode].BCSTTypes <> []) then
  1650. begin
  1651. // any opcodes needs a special handling
  1652. // default broadcast calculation is
  1653. // bmem32
  1654. // xmmreg: {1to4}
  1655. // ymmreg: {1to8}
  1656. // zmmreg: {1to16}
  1657. // bmem64
  1658. // xmmreg: {1to2}
  1659. // ymmreg: {1to4}
  1660. // zmmreg: {1to8}
  1661. // in any opcodes not exists a mmregister
  1662. // e.g. vfpclasspd k1, [RAX] {1to8}, 0
  1663. // =>> check flags
  1664. case oper[i]^.vopext and (OTVE_VECTOR_BCST2 or OTVE_VECTOR_BCST4 or OTVE_VECTOR_BCST8 or OTVE_VECTOR_BCST16) of
  1665. OTVE_VECTOR_BCST2: if not(IF_BCST2 in p^.flags) then exit;
  1666. OTVE_VECTOR_BCST4: if not(IF_BCST4 in p^.flags) then exit;
  1667. OTVE_VECTOR_BCST8: if not(IF_BCST8 in p^.flags) then exit;
  1668. OTVE_VECTOR_BCST16: if not(IF_BCST16 in p^.flags) then exit;
  1669. else exit;
  1670. end;
  1671. end;
  1672. end;
  1673. if (oper[i]^.vopext and OTVE_VECTOR_ER) = OTVE_VECTOR_ER then
  1674. vopext := vopext or OT_VECTORER;
  1675. if (oper[i]^.vopext and OTVE_VECTOR_SAE) = OTVE_VECTOR_SAE then
  1676. vopext := vopext or OT_VECTORSAE;
  1677. if p^.optypes[i] and vopext <> vopext then
  1678. exit;
  1679. end;
  1680. end;
  1681. result:=true;
  1682. end;
  1683. procedure taicpu.ResetPass1;
  1684. begin
  1685. { we need to reset everything here, because the choosen insentry
  1686. can be invalid for a new situation where the previously optimized
  1687. insentry is not correct }
  1688. InsEntry:=nil;
  1689. InsSize:=0;
  1690. LastInsOffset:=-1;
  1691. end;
  1692. procedure taicpu.ResetPass2;
  1693. begin
  1694. { we are here in a second pass, check if the instruction can be optimized }
  1695. if assigned(InsEntry) and
  1696. (IF_PASS2 in InsEntry^.flags) then
  1697. begin
  1698. InsEntry:=nil;
  1699. InsSize:=0;
  1700. end;
  1701. LastInsOffset:=-1;
  1702. end;
  1703. function taicpu.CheckIfValid:boolean;
  1704. begin
  1705. result:=FindInsEntry(nil);
  1706. end;
  1707. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1708. var
  1709. i : longint;
  1710. begin
  1711. result:=false;
  1712. { Things which may only be done once, not when a second pass is done to
  1713. optimize }
  1714. if (Insentry=nil) or (IF_PASS2 in InsEntry^.flags) then
  1715. begin
  1716. current_filepos:=fileinfo;
  1717. { We need intel style operands }
  1718. SetOperandOrder(op_intel);
  1719. { create the .ot fields }
  1720. create_ot(objdata);
  1721. { set the file postion }
  1722. end
  1723. else
  1724. begin
  1725. { we've already an insentry so it's valid }
  1726. result:=true;
  1727. exit;
  1728. end;
  1729. { Lookup opcode in the table }
  1730. InsSize:=-1;
  1731. i:=instabcache^[opcode];
  1732. if i=-1 then
  1733. begin
  1734. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1735. exit;
  1736. end;
  1737. insentry:=@instab[i];
  1738. while (insentry^.opcode=opcode) do
  1739. begin
  1740. if matches(insentry) then
  1741. begin
  1742. result:=true;
  1743. exit;
  1744. end;
  1745. inc(insentry);
  1746. end;
  1747. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1748. { No instruction found, set insentry to nil and inssize to -1 }
  1749. insentry:=nil;
  1750. inssize:=-1;
  1751. end;
  1752. function taicpu.CheckUseEVEX: boolean;
  1753. var
  1754. i: integer;
  1755. begin
  1756. result := false;
  1757. for i := 0 to ops - 1 do
  1758. begin
  1759. if (oper[i]^.typ=top_reg) and
  1760. (getregtype(oper[i]^.reg) = R_MMREGISTER) then
  1761. if getsupreg(oper[i]^.reg)>=16 then
  1762. result := true;
  1763. if (oper[i]^.vopext and OTVE_VECTOR_MASK) <> 0 then
  1764. result := true;
  1765. end;
  1766. end;
  1767. procedure taicpu.CheckEVEXTuple(const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
  1768. var
  1769. i: integer;
  1770. tuplesize: integer;
  1771. memsize: integer;
  1772. begin
  1773. if EVEXTupleState = etsUnknown then
  1774. begin
  1775. EVEXTupleState := etsNotTuple;
  1776. if aInsEntry^.Flags * IF_TUPLEMASK <> [] then
  1777. begin
  1778. tuplesize := 0;
  1779. if IF_TFV in aInsEntry^.Flags then
  1780. begin
  1781. for i := 0 to aInsEntry^.ops - 1 do
  1782. if (aInsEntry^.optypes[i] and OT_BMEM32 = OT_BMEM32) then
  1783. begin
  1784. tuplesize := 4;
  1785. break;
  1786. end
  1787. else if (aInsEntry^.optypes[i] and OT_BMEM64 = OT_BMEM64) then
  1788. begin
  1789. tuplesize := 8;
  1790. break;
  1791. end
  1792. else if (aInsEntry^.optypes[i] and OT_MEMORY = OT_MEMORY) then
  1793. begin
  1794. if aIsVector512 then tuplesize := 64
  1795. else if aIsVector256 then tuplesize := 32
  1796. else tuplesize := 16;
  1797. break;
  1798. end
  1799. else if (aInsEntry^.optypes[i] and OT_REGNORM = OT_REGMEM) then
  1800. begin
  1801. if aIsVector512 then tuplesize := 64
  1802. else if aIsVector256 then tuplesize := 32
  1803. else tuplesize := 16;
  1804. break;
  1805. end;
  1806. end
  1807. else if IF_THV in aInsEntry^.Flags then
  1808. begin
  1809. for i := 0 to aInsEntry^.ops - 1 do
  1810. if (aInsEntry^.optypes[i] and OT_BMEM32 = OT_BMEM32) then
  1811. begin
  1812. tuplesize := 4;
  1813. break;
  1814. end
  1815. else if (aInsEntry^.optypes[i] and OT_REGNORM = OT_REGMEM) then
  1816. begin
  1817. if aIsVector512 then tuplesize := 32
  1818. else if aIsVector256 then tuplesize := 16
  1819. else tuplesize := 8;
  1820. break;
  1821. end
  1822. end
  1823. else if IF_TFVM in aInsEntry^.Flags then
  1824. begin
  1825. if aIsVector512 then tuplesize := 64
  1826. else if aIsVector256 then tuplesize := 32
  1827. else tuplesize := 16;
  1828. end
  1829. else
  1830. begin
  1831. memsize := 0;
  1832. for i := 0 to aInsEntry^.ops - 1 do
  1833. begin
  1834. if aInsEntry^.optypes[i] and (OT_REGNORM or OT_MEMORY) = OT_REGMEM then
  1835. begin
  1836. case aInsEntry^.optypes[i] and (OT_BITS32 or OT_BITS64) of
  1837. OT_BITS32: begin
  1838. memsize := 32;
  1839. break;
  1840. end;
  1841. OT_BITS64: begin
  1842. memsize := 64;
  1843. break;
  1844. end;
  1845. end;
  1846. end
  1847. else
  1848. case aInsEntry^.optypes[i] and (OT_MEM8 or OT_MEM16 or OT_MEM32 or OT_MEM64) of
  1849. OT_MEM8: begin
  1850. memsize := 8;
  1851. break;
  1852. end;
  1853. OT_MEM16: begin
  1854. memsize := 16;
  1855. break;
  1856. end;
  1857. OT_MEM32: begin
  1858. memsize := 32;
  1859. break;
  1860. end;
  1861. OT_MEM64: //if aIsEVEXW1 then
  1862. begin
  1863. memsize := 64;
  1864. break;
  1865. end;
  1866. end;
  1867. end;
  1868. if IF_T1S in aInsEntry^.Flags then
  1869. begin
  1870. case memsize of
  1871. 8: tuplesize := 1;
  1872. 16: tuplesize := 2;
  1873. else if aIsEVEXW1 then tuplesize := 8
  1874. else tuplesize := 4;
  1875. end;
  1876. end
  1877. else if IF_T1F32 in aInsEntry^.Flags then tuplesize := 4
  1878. else if IF_T1F64 in aInsEntry^.Flags then tuplesize := 8
  1879. else if IF_T2 in aInsEntry^.Flags then
  1880. begin
  1881. case aIsEVEXW1 of
  1882. false: tuplesize := 8;
  1883. else if aIsVector256 or aIsVector512 then tuplesize := 16;
  1884. end;
  1885. end
  1886. else if IF_T4 in aInsEntry^.Flags then
  1887. begin
  1888. case aIsEVEXW1 of
  1889. false: if aIsVector256 or aIsVector512 then tuplesize := 16;
  1890. else if aIsVector512 then tuplesize := 32;
  1891. end;
  1892. end
  1893. else if IF_T8 in aInsEntry^.Flags then
  1894. begin
  1895. case aIsEVEXW1 of
  1896. false: if aIsVector512 then tuplesize := 32;
  1897. else
  1898. Internalerror(2019081003);
  1899. end;
  1900. end
  1901. else if IF_THVM in aInsEntry^.Flags then
  1902. begin
  1903. tuplesize := 8; // default 128bit-vectorlength
  1904. if aIsVector256 then tuplesize := 16
  1905. else if aIsVector512 then tuplesize := 32;
  1906. end
  1907. else if IF_TQVM in aInsEntry^.Flags then
  1908. begin
  1909. tuplesize := 4; // default 128bit-vectorlength
  1910. if aIsVector256 then tuplesize := 8
  1911. else if aIsVector512 then tuplesize := 16;
  1912. end
  1913. else if IF_TOVM in aInsEntry^.Flags then
  1914. begin
  1915. tuplesize := 2; // default 128bit-vectorlength
  1916. if aIsVector256 then tuplesize := 4
  1917. else if aIsVector512 then tuplesize := 8;
  1918. end
  1919. else if IF_TMEM128 in aInsEntry^.Flags then tuplesize := 16
  1920. else if IF_TMDDUP in aInsEntry^.Flags then
  1921. begin
  1922. tuplesize := 8; // default 128bit-vectorlength
  1923. if aIsVector256 then tuplesize := 32
  1924. else if aIsVector512 then tuplesize := 64;
  1925. end;
  1926. end;;
  1927. if tuplesize > 0 then
  1928. begin
  1929. if aInput.typ = top_ref then
  1930. begin
  1931. if (aInput.ref^.offset <> 0) and
  1932. ((aInput.ref^.offset mod tuplesize) = 0) and
  1933. (abs(aInput.ref^.offset) div tuplesize <= 127) then
  1934. begin
  1935. aInput.ref^.offset := aInput.ref^.offset div tuplesize;
  1936. EVEXTupleState := etsIsTuple;
  1937. end;
  1938. end;
  1939. end;
  1940. end;
  1941. end;
  1942. end;
  1943. function taicpu.Pass1(objdata:TObjData):longint;
  1944. begin
  1945. Pass1:=0;
  1946. { Save the old offset and set the new offset }
  1947. InsOffset:=ObjData.CurrObjSec.Size;
  1948. { Error? }
  1949. if (Insentry=nil) and (InsSize=-1) then
  1950. exit;
  1951. { set the file postion }
  1952. current_filepos:=fileinfo;
  1953. { Get InsEntry }
  1954. if FindInsEntry(ObjData) then
  1955. begin
  1956. { Calculate instruction size }
  1957. InsSize:=calcsize(insentry);
  1958. if segprefix<>NR_NO then
  1959. inc(InsSize);
  1960. if NeedAddrPrefix then
  1961. inc(InsSize);
  1962. { Fix opsize if size if forced }
  1963. if insentry^.flags*[IF_SB,IF_SW,IF_SD]<>[] then
  1964. begin
  1965. if insentry^.flags*IF_ARMASK=[] then
  1966. begin
  1967. if IF_SB in insentry^.flags then
  1968. begin
  1969. if opsize=S_NO then
  1970. opsize:=S_B;
  1971. end
  1972. else if IF_SW in insentry^.flags then
  1973. begin
  1974. if opsize=S_NO then
  1975. opsize:=S_W;
  1976. end
  1977. else if IF_SD in insentry^.flags then
  1978. begin
  1979. if opsize=S_NO then
  1980. opsize:=S_L;
  1981. end;
  1982. end;
  1983. end;
  1984. LastInsOffset:=InsOffset;
  1985. Pass1:=InsSize;
  1986. exit;
  1987. end;
  1988. LastInsOffset:=-1;
  1989. end;
  1990. const
  1991. segprefixes: array[NR_ES..NR_GS] of Byte=(
  1992. // es cs ss ds fs gs
  1993. $26, $2E, $36, $3E, $64, $65
  1994. );
  1995. procedure taicpu.Pass2(objdata:TObjData);
  1996. begin
  1997. { error in pass1 ? }
  1998. if insentry=nil then
  1999. exit;
  2000. current_filepos:=fileinfo;
  2001. { Segment override }
  2002. if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
  2003. begin
  2004. {$ifdef i8086}
  2005. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) and
  2006. ((segprefix=NR_FS) or (segprefix=NR_GS)) then
  2007. Message(asmw_e_instruction_not_supported_by_cpu);
  2008. {$endif i8086}
  2009. objdata.writebytes(segprefixes[segprefix],1);
  2010. { fix the offset for GenNode }
  2011. inc(InsOffset);
  2012. end
  2013. else if segprefix<>NR_NO then
  2014. InternalError(201001071);
  2015. { Address size prefix? }
  2016. if NeedAddrPrefix then
  2017. begin
  2018. write0x67prefix(objdata);
  2019. { fix the offset for GenNode }
  2020. inc(InsOffset);
  2021. end;
  2022. { Generate the instruction }
  2023. GenCode(objdata);
  2024. end;
  2025. function is_64_bit_ref(const ref:treference):boolean;
  2026. begin
  2027. {$if defined(x86_64)}
  2028. result:=not is_32_bit_ref(ref);
  2029. {$elseif defined(i386) or defined(i8086)}
  2030. result:=false;
  2031. {$endif}
  2032. end;
  2033. function is_32_bit_ref(const ref:treference):boolean;
  2034. begin
  2035. {$if defined(x86_64)}
  2036. result:=(ref.refaddr=addr_no) and
  2037. (ref.base<>NR_RIP) and
  2038. (
  2039. ((ref.index<>NR_NO) and (getsubreg(ref.index)=R_SUBD)) or
  2040. ((ref.base<>NR_NO) and (getsubreg(ref.base)=R_SUBD))
  2041. );
  2042. {$elseif defined(i386) or defined(i8086)}
  2043. result:=not is_16_bit_ref(ref);
  2044. {$endif}
  2045. end;
  2046. function is_16_bit_ref(const ref:treference):boolean;
  2047. var
  2048. ir,br : Tregister;
  2049. isub,bsub : tsubregister;
  2050. begin
  2051. if (ref.index<>NR_NO) and (getregtype(ref.index)=R_MMREGISTER) then
  2052. exit(false);
  2053. ir:=ref.index;
  2054. br:=ref.base;
  2055. isub:=getsubreg(ir);
  2056. bsub:=getsubreg(br);
  2057. { it's a direct address }
  2058. if (br=NR_NO) and (ir=NR_NO) then
  2059. begin
  2060. {$ifdef i8086}
  2061. result:=true;
  2062. {$else i8086}
  2063. result:=false;
  2064. {$endif}
  2065. end
  2066. else
  2067. { it's an indirection }
  2068. begin
  2069. result := ((ir<>NR_NO) and (isub=R_SUBW)) or
  2070. ((br<>NR_NO) and (bsub=R_SUBW));
  2071. end;
  2072. end;
  2073. function get_ref_address_size(const ref:treference):byte;
  2074. begin
  2075. if is_64_bit_ref(ref) then
  2076. result:=64
  2077. else if is_32_bit_ref(ref) then
  2078. result:=32
  2079. else if is_16_bit_ref(ref) then
  2080. result:=16
  2081. else
  2082. internalerror(2017101601);
  2083. end;
  2084. function get_default_segment_of_ref(const ref:treference):tregister;
  2085. begin
  2086. { for 16-bit registers, we allow base and index to be swapped, that's
  2087. why we also we check whether ref.index=NR_BP. For 32-bit registers,
  2088. however, index=NR_EBP is encoded differently than base=NR_EBP and has
  2089. a different default segment. }
  2090. if (ref.base=NR_BP) or (ref.index=NR_BP) or
  2091. (ref.base=NR_EBP) or (ref.base=NR_ESP)
  2092. {$ifdef x86_64}
  2093. or (ref.base=NR_RBP) or (ref.base=NR_RSP)
  2094. {$endif x86_64}
  2095. then
  2096. result:=NR_SS
  2097. else
  2098. result:=NR_DS;
  2099. end;
  2100. procedure optimize_ref(var ref:treference; inlineasm: boolean);
  2101. var
  2102. ss_equals_ds: boolean;
  2103. tmpreg: TRegister;
  2104. begin
  2105. {$ifdef x86_64}
  2106. { x86_64 in long mode ignores all segment base, limit and access rights
  2107. checks for the DS, ES and SS registers, so we can set ss_equals_ds to
  2108. true (and thus, perform stronger optimizations on the reference),
  2109. regardless of whether this is inline asm or not (so, even if the user
  2110. is doing tricks by loading different values into DS and SS, it still
  2111. doesn't matter while the processor is in long mode) }
  2112. ss_equals_ds:=True;
  2113. {$else x86_64}
  2114. { for i8086 and i386 inline asm, we assume SS<>DS, even if we're
  2115. compiling for a memory model, where SS=DS, because the user might be
  2116. doing something tricky with the segment registers (and may have
  2117. temporarily set them differently) }
  2118. if inlineasm then
  2119. ss_equals_ds:=False
  2120. else
  2121. ss_equals_ds:=segment_regs_equal(NR_DS,NR_SS);
  2122. {$endif x86_64}
  2123. { remove redundant segment overrides }
  2124. if (ref.segment<>NR_NO) and
  2125. ((inlineasm and (ref.segment=get_default_segment_of_ref(ref))) or
  2126. ((not inlineasm) and (segment_regs_equal(ref.segment,get_default_segment_of_ref(ref))))) then
  2127. ref.segment:=NR_NO;
  2128. if not is_16_bit_ref(ref) then
  2129. begin
  2130. { Switching index to base position gives shorter assembler instructions.
  2131. Converting index*2 to base+index also gives shorter instructions. }
  2132. if (ref.base=NR_NO) and (ref.index<>NR_NO) and (ref.scalefactor<=2) and
  2133. (ss_equals_ds or (ref.segment<>NR_NO) or (ref.index<>NR_EBP))
  2134. { do not mess with tls references, they have the (,reg,1) format on purpose
  2135. else the linker cannot resolve/replace them }
  2136. {$ifdef i386} and (ref.refaddr<>addr_tlsgd) {$endif i386} then
  2137. begin
  2138. ref.base:=ref.index;
  2139. if ref.scalefactor=2 then
  2140. ref.scalefactor:=1
  2141. else
  2142. begin
  2143. ref.index:=NR_NO;
  2144. ref.scalefactor:=0;
  2145. end;
  2146. end;
  2147. { Switching rBP+reg to reg+rBP sometimes gives shorter instructions (if there's no offset)
  2148. On x86_64 this also works for switching r13+reg to reg+r13. }
  2149. if ((ref.base=NR_EBP) {$ifdef x86_64}or (ref.base=NR_RBP) or (ref.base=NR_R13) or (ref.base=NR_R13D){$endif}) and
  2150. (ref.index<>NR_NO) and
  2151. (ref.index<>NR_EBP) and {$ifdef x86_64}(ref.index<>NR_RBP) and (ref.index<>NR_R13) and (ref.index<>NR_R13D) and{$endif}
  2152. (ref.scalefactor<=1) and (ref.offset=0) and (ref.refaddr=addr_no) and
  2153. (ss_equals_ds or (ref.segment<>NR_NO)) then
  2154. begin
  2155. tmpreg:=ref.base;
  2156. ref.base:=ref.index;
  2157. ref.index:=tmpreg;
  2158. end;
  2159. end;
  2160. { remove redundant segment overrides again }
  2161. if (ref.segment<>NR_NO) and
  2162. ((inlineasm and (ref.segment=get_default_segment_of_ref(ref))) or
  2163. ((not inlineasm) and (segment_regs_equal(ref.segment,get_default_segment_of_ref(ref))))) then
  2164. ref.segment:=NR_NO;
  2165. end;
  2166. function taicpu.NeedAddrPrefix(opidx: byte): boolean;
  2167. begin
  2168. {$if defined(x86_64)}
  2169. result:=(oper[opidx]^.typ=top_ref) and is_32_bit_ref(oper[opidx]^.ref^);
  2170. {$elseif defined(i386)}
  2171. result:=(oper[opidx]^.typ=top_ref) and is_16_bit_ref(oper[opidx]^.ref^);
  2172. {$elseif defined(i8086)}
  2173. result:=(oper[opidx]^.typ=top_ref) and is_32_bit_ref(oper[opidx]^.ref^);
  2174. {$endif}
  2175. end;
  2176. function taicpu.NeedAddrPrefix:boolean;
  2177. var
  2178. i: Integer;
  2179. begin
  2180. for i:=0 to ops-1 do
  2181. if needaddrprefix(i) then
  2182. exit(true);
  2183. result:=false;
  2184. end;
  2185. procedure badreg(r:Tregister);
  2186. begin
  2187. Message1(asmw_e_invalid_register,generic_regname(r));
  2188. end;
  2189. function regval(r:Tregister):byte;
  2190. const
  2191. intsupreg2opcode: array[0..7] of byte=
  2192. // ax cx dx bx si di bp sp -- in x86reg.dat
  2193. // ax cx dx bx sp bp si di -- needed order
  2194. (0, 1, 2, 3, 6, 7, 5, 4);
  2195. maxsupreg: array[tregistertype] of tsuperregister=
  2196. {$ifdef x86_64}
  2197. (0, 16, 9, 8, 32, 32, 8, 0);
  2198. {$else x86_64}
  2199. (0, 8, 9, 8, 8, 32, 8, 0);
  2200. {$endif x86_64}
  2201. var
  2202. rs: tsuperregister;
  2203. rt: tregistertype;
  2204. begin
  2205. rs:=getsupreg(r);
  2206. rt:=getregtype(r);
  2207. if (rs>=maxsupreg[rt]) then
  2208. badreg(r);
  2209. result:=rs and 7;
  2210. if (rt=R_INTREGISTER) then
  2211. begin
  2212. if (rs<8) then
  2213. result:=intsupreg2opcode[rs];
  2214. if getsubreg(r)=R_SUBH then
  2215. inc(result,4);
  2216. end;
  2217. end;
  2218. {$if defined(x86_64)}
  2219. function rexbits(r: tregister): byte;
  2220. begin
  2221. result:=0;
  2222. case getregtype(r) of
  2223. R_INTREGISTER:
  2224. if (getsupreg(r)>=RS_R8) then
  2225. { Either B,X or R bits can be set, depending on register role in instruction.
  2226. Set all three bits here, caller will discard unnecessary ones. }
  2227. result:=result or $47
  2228. else if (getsubreg(r)=R_SUBL) and
  2229. (getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  2230. result:=result or $40
  2231. else if (getsubreg(r)=R_SUBH) then
  2232. { Not an actual REX bit, used to detect incompatible usage of
  2233. AH/BH/CH/DH }
  2234. result:=result or $80;
  2235. R_MMREGISTER:
  2236. //if getsupreg(r)>=RS_XMM8 then
  2237. // AVX512 = 32 register
  2238. // rexbit = 0 => MMRegister 0..7 or 16..23
  2239. // rexbit = 1 => MMRegister 8..15 or 24..31
  2240. if (getsupreg(r) and $08) = $08 then
  2241. result:=result or $47;
  2242. else
  2243. ;
  2244. end;
  2245. end;
  2246. function process_ea_ref_64_32(const input:toper;var output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2247. var
  2248. sym : tasmsymbol;
  2249. md,s : byte;
  2250. base,index,scalefactor,
  2251. o : longint;
  2252. ir,br : Tregister;
  2253. isub,bsub : tsubregister;
  2254. begin
  2255. result:=false;
  2256. ir:=input.ref^.index;
  2257. br:=input.ref^.base;
  2258. isub:=getsubreg(ir);
  2259. bsub:=getsubreg(br);
  2260. s:=input.ref^.scalefactor;
  2261. o:=input.ref^.offset;
  2262. sym:=input.ref^.symbol;
  2263. //if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  2264. // ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  2265. if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
  2266. ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
  2267. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  2268. internalerror(200301081);
  2269. { it's direct address }
  2270. if (br=NR_NO) and (ir=NR_NO) then
  2271. begin
  2272. output.sib_present:=true;
  2273. output.bytes:=4;
  2274. output.modrm:=4 or (rfield shl 3);
  2275. output.sib:=$25;
  2276. end
  2277. else if (br=NR_RIP) and (ir=NR_NO) then
  2278. begin
  2279. { rip based }
  2280. output.sib_present:=false;
  2281. output.bytes:=4;
  2282. output.modrm:=5 or (rfield shl 3);
  2283. end
  2284. else
  2285. { it's an indirection }
  2286. begin
  2287. { 16 bit? }
  2288. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY,R_SUBMMZ]) and
  2289. (br<>NR_NO) and (bsub=R_SUBQ)
  2290. ) then
  2291. begin
  2292. // vector memory (AVX2) =>> ignore
  2293. end
  2294. else if ((ir<>NR_NO) and (isub<>R_SUBQ) and (isub<>R_SUBD)) or
  2295. ((br<>NR_NO) and (bsub<>R_SUBQ) and (bsub<>R_SUBD)) then
  2296. begin
  2297. message(asmw_e_16bit_32bit_not_supported);
  2298. end;
  2299. { wrong, for various reasons }
  2300. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  2301. exit;
  2302. output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
  2303. result:=true;
  2304. { base }
  2305. case br of
  2306. NR_R8D,
  2307. NR_EAX,
  2308. NR_R8,
  2309. NR_RAX : base:=0;
  2310. NR_R9D,
  2311. NR_ECX,
  2312. NR_R9,
  2313. NR_RCX : base:=1;
  2314. NR_R10D,
  2315. NR_EDX,
  2316. NR_R10,
  2317. NR_RDX : base:=2;
  2318. NR_R11D,
  2319. NR_EBX,
  2320. NR_R11,
  2321. NR_RBX : base:=3;
  2322. NR_R12D,
  2323. NR_ESP,
  2324. NR_R12,
  2325. NR_RSP : base:=4;
  2326. NR_R13D,
  2327. NR_EBP,
  2328. NR_R13,
  2329. NR_NO,
  2330. NR_RBP : base:=5;
  2331. NR_R14D,
  2332. NR_ESI,
  2333. NR_R14,
  2334. NR_RSI : base:=6;
  2335. NR_R15D,
  2336. NR_EDI,
  2337. NR_R15,
  2338. NR_RDI : base:=7;
  2339. else
  2340. exit;
  2341. end;
  2342. { index }
  2343. case ir of
  2344. NR_R8D,
  2345. NR_EAX,
  2346. NR_R8,
  2347. NR_RAX,
  2348. NR_XMM0,
  2349. NR_XMM8,
  2350. NR_XMM16,
  2351. NR_XMM24,
  2352. NR_YMM0,
  2353. NR_YMM8,
  2354. NR_YMM16,
  2355. NR_YMM24,
  2356. NR_ZMM0,
  2357. NR_ZMM8,
  2358. NR_ZMM16,
  2359. NR_ZMM24: index:=0;
  2360. NR_R9D,
  2361. NR_ECX,
  2362. NR_R9,
  2363. NR_RCX,
  2364. NR_XMM1,
  2365. NR_XMM9,
  2366. NR_XMM17,
  2367. NR_XMM25,
  2368. NR_YMM1,
  2369. NR_YMM9,
  2370. NR_YMM17,
  2371. NR_YMM25,
  2372. NR_ZMM1,
  2373. NR_ZMM9,
  2374. NR_ZMM17,
  2375. NR_ZMM25: index:=1;
  2376. NR_R10D,
  2377. NR_EDX,
  2378. NR_R10,
  2379. NR_RDX,
  2380. NR_XMM2,
  2381. NR_XMM10,
  2382. NR_XMM18,
  2383. NR_XMM26,
  2384. NR_YMM2,
  2385. NR_YMM10,
  2386. NR_YMM18,
  2387. NR_YMM26,
  2388. NR_ZMM2,
  2389. NR_ZMM10,
  2390. NR_ZMM18,
  2391. NR_ZMM26: index:=2;
  2392. NR_R11D,
  2393. NR_EBX,
  2394. NR_R11,
  2395. NR_RBX,
  2396. NR_XMM3,
  2397. NR_XMM11,
  2398. NR_XMM19,
  2399. NR_XMM27,
  2400. NR_YMM3,
  2401. NR_YMM11,
  2402. NR_YMM19,
  2403. NR_YMM27,
  2404. NR_ZMM3,
  2405. NR_ZMM11,
  2406. NR_ZMM19,
  2407. NR_ZMM27: index:=3;
  2408. NR_R12D,
  2409. NR_ESP,
  2410. NR_R12,
  2411. NR_NO,
  2412. NR_XMM4,
  2413. NR_XMM12,
  2414. NR_XMM20,
  2415. NR_XMM28,
  2416. NR_YMM4,
  2417. NR_YMM12,
  2418. NR_YMM20,
  2419. NR_YMM28,
  2420. NR_ZMM4,
  2421. NR_ZMM12,
  2422. NR_ZMM20,
  2423. NR_ZMM28: index:=4;
  2424. NR_R13D,
  2425. NR_EBP,
  2426. NR_R13,
  2427. NR_RBP,
  2428. NR_XMM5,
  2429. NR_XMM13,
  2430. NR_XMM21,
  2431. NR_XMM29,
  2432. NR_YMM5,
  2433. NR_YMM13,
  2434. NR_YMM21,
  2435. NR_YMM29,
  2436. NR_ZMM5,
  2437. NR_ZMM13,
  2438. NR_ZMM21,
  2439. NR_ZMM29: index:=5;
  2440. NR_R14D,
  2441. NR_ESI,
  2442. NR_R14,
  2443. NR_RSI,
  2444. NR_XMM6,
  2445. NR_XMM14,
  2446. NR_XMM22,
  2447. NR_XMM30,
  2448. NR_YMM6,
  2449. NR_YMM14,
  2450. NR_YMM22,
  2451. NR_YMM30,
  2452. NR_ZMM6,
  2453. NR_ZMM14,
  2454. NR_ZMM22,
  2455. NR_ZMM30: index:=6;
  2456. NR_R15D,
  2457. NR_EDI,
  2458. NR_R15,
  2459. NR_RDI,
  2460. NR_XMM7,
  2461. NR_XMM15,
  2462. NR_XMM23,
  2463. NR_XMM31,
  2464. NR_YMM7,
  2465. NR_YMM15,
  2466. NR_YMM23,
  2467. NR_YMM31,
  2468. NR_ZMM7,
  2469. NR_ZMM15,
  2470. NR_ZMM23,
  2471. NR_ZMM31: index:=7;
  2472. else
  2473. exit;
  2474. end;
  2475. case s of
  2476. 0,
  2477. 1 : scalefactor:=0;
  2478. 2 : scalefactor:=1;
  2479. 4 : scalefactor:=2;
  2480. 8 : scalefactor:=3;
  2481. else
  2482. exit;
  2483. end;
  2484. { If rbp or r13 is used we must always include an offset }
  2485. if (br=NR_NO) or
  2486. ((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
  2487. md:=0
  2488. else
  2489. if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
  2490. md:=1
  2491. else
  2492. md:=2;
  2493. if (br=NR_NO) or (md=2) then
  2494. output.bytes:=4
  2495. else
  2496. output.bytes:=md;
  2497. { SIB needed ? }
  2498. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
  2499. begin
  2500. output.sib_present:=false;
  2501. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  2502. end
  2503. else
  2504. begin
  2505. output.sib_present:=true;
  2506. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  2507. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  2508. end;
  2509. end;
  2510. output.size:=1+ord(output.sib_present)+output.bytes;
  2511. result:=true;
  2512. end;
  2513. {$elseif defined(i386) or defined(i8086)}
  2514. function process_ea_ref_32(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2515. var
  2516. sym : tasmsymbol;
  2517. md,s : byte;
  2518. base,index,scalefactor,
  2519. o : longint;
  2520. ir,br : Tregister;
  2521. isub,bsub : tsubregister;
  2522. begin
  2523. result:=false;
  2524. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) and (input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) or // vector memory (AVX2)
  2525. ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER) and (getregtype(input.ref^.index)<>R_MMREGISTER)) or
  2526. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  2527. internalerror(200301081);
  2528. ir:=input.ref^.index;
  2529. br:=input.ref^.base;
  2530. isub:=getsubreg(ir);
  2531. bsub:=getsubreg(br);
  2532. s:=input.ref^.scalefactor;
  2533. o:=input.ref^.offset;
  2534. sym:=input.ref^.symbol;
  2535. { it's direct address }
  2536. if (br=NR_NO) and (ir=NR_NO) then
  2537. begin
  2538. { it's a pure offset }
  2539. output.sib_present:=false;
  2540. output.bytes:=4;
  2541. output.modrm:=5 or (rfield shl 3);
  2542. end
  2543. else
  2544. { it's an indirection }
  2545. begin
  2546. { 16 bit address? }
  2547. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY,R_SUBMMZ]) and
  2548. (br<>NR_NO) and (bsub=R_SUBD)
  2549. ) then
  2550. begin
  2551. // vector memory (AVX2) =>> ignore
  2552. end
  2553. else if ((ir<>NR_NO) and (isub<>R_SUBD)) or
  2554. ((br<>NR_NO) and (bsub<>R_SUBD)) then
  2555. message(asmw_e_16bit_not_supported);
  2556. {$ifdef OPTEA}
  2557. { make single reg base }
  2558. if (br=NR_NO) and (s=1) then
  2559. begin
  2560. br:=ir;
  2561. ir:=NR_NO;
  2562. end;
  2563. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  2564. if (br=NR_NO) and
  2565. (((s=2) and (ir<>NR_ESP)) or
  2566. (s=3) or (s=5) or (s=9)) then
  2567. begin
  2568. br:=ir;
  2569. dec(s);
  2570. end;
  2571. { swap ESP into base if scalefactor is 1 }
  2572. if (s=1) and (ir=NR_ESP) then
  2573. begin
  2574. ir:=br;
  2575. br:=NR_ESP;
  2576. end;
  2577. {$endif OPTEA}
  2578. { wrong, for various reasons }
  2579. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  2580. exit;
  2581. { base }
  2582. case br of
  2583. NR_EAX : base:=0;
  2584. NR_ECX : base:=1;
  2585. NR_EDX : base:=2;
  2586. NR_EBX : base:=3;
  2587. NR_ESP : base:=4;
  2588. NR_NO,
  2589. NR_EBP : base:=5;
  2590. NR_ESI : base:=6;
  2591. NR_EDI : base:=7;
  2592. else
  2593. exit;
  2594. end;
  2595. { index }
  2596. case ir of
  2597. NR_EAX,
  2598. NR_XMM0,
  2599. NR_YMM0,
  2600. NR_ZMM0: index:=0;
  2601. NR_ECX,
  2602. NR_XMM1,
  2603. NR_YMM1,
  2604. NR_ZMM1: index:=1;
  2605. NR_EDX,
  2606. NR_XMM2,
  2607. NR_YMM2,
  2608. NR_ZMM2: index:=2;
  2609. NR_EBX,
  2610. NR_XMM3,
  2611. NR_YMM3,
  2612. NR_ZMM3: index:=3;
  2613. NR_NO,
  2614. NR_XMM4,
  2615. NR_YMM4,
  2616. NR_ZMM4: index:=4;
  2617. NR_EBP,
  2618. NR_XMM5,
  2619. NR_YMM5,
  2620. NR_ZMM5: index:=5;
  2621. NR_ESI,
  2622. NR_XMM6,
  2623. NR_YMM6,
  2624. NR_ZMM6: index:=6;
  2625. NR_EDI,
  2626. NR_XMM7,
  2627. NR_YMM7,
  2628. NR_ZMM7: index:=7;
  2629. else
  2630. exit;
  2631. end;
  2632. case s of
  2633. 0,
  2634. 1 : scalefactor:=0;
  2635. 2 : scalefactor:=1;
  2636. 4 : scalefactor:=2;
  2637. 8 : scalefactor:=3;
  2638. else
  2639. exit;
  2640. end;
  2641. if (br=NR_NO) or
  2642. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  2643. md:=0
  2644. else
  2645. if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
  2646. md:=1
  2647. else
  2648. md:=2;
  2649. if (br=NR_NO) or (md=2) then
  2650. output.bytes:=4
  2651. else
  2652. output.bytes:=md;
  2653. { SIB needed ? }
  2654. if (ir=NR_NO) and (br<>NR_ESP) then
  2655. begin
  2656. output.sib_present:=false;
  2657. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  2658. end
  2659. else
  2660. begin
  2661. output.sib_present:=true;
  2662. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
  2663. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  2664. end;
  2665. end;
  2666. if output.sib_present then
  2667. output.size:=2+output.bytes
  2668. else
  2669. output.size:=1+output.bytes;
  2670. result:=true;
  2671. end;
  2672. procedure maybe_swap_index_base(var br,ir:Tregister);
  2673. var
  2674. tmpreg: Tregister;
  2675. begin
  2676. if ((br=NR_NO) or (br=NR_SI) or (br=NR_DI)) and
  2677. ((ir=NR_NO) or (ir=NR_BP) or (ir=NR_BX)) then
  2678. begin
  2679. tmpreg:=br;
  2680. br:=ir;
  2681. ir:=tmpreg;
  2682. end;
  2683. end;
  2684. function process_ea_ref_16(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2685. var
  2686. sym : tasmsymbol;
  2687. md,s : byte;
  2688. base,
  2689. o : longint;
  2690. ir,br : Tregister;
  2691. isub,bsub : tsubregister;
  2692. begin
  2693. result:=false;
  2694. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  2695. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  2696. internalerror(200301081);
  2697. ir:=input.ref^.index;
  2698. br:=input.ref^.base;
  2699. isub:=getsubreg(ir);
  2700. bsub:=getsubreg(br);
  2701. s:=input.ref^.scalefactor;
  2702. o:=input.ref^.offset;
  2703. sym:=input.ref^.symbol;
  2704. { it's a direct address }
  2705. if (br=NR_NO) and (ir=NR_NO) then
  2706. begin
  2707. { it's a pure offset }
  2708. output.bytes:=2;
  2709. output.modrm:=6 or (rfield shl 3);
  2710. end
  2711. else
  2712. { it's an indirection }
  2713. begin
  2714. { 32 bit address? }
  2715. if ((ir<>NR_NO) and (isub<>R_SUBW)) or
  2716. ((br<>NR_NO) and (bsub<>R_SUBW)) then
  2717. message(asmw_e_32bit_not_supported);
  2718. { scalefactor can only be 1 in 16-bit addresses }
  2719. if (s<>1) and (ir<>NR_NO) then
  2720. exit;
  2721. maybe_swap_index_base(br,ir);
  2722. if (br=NR_BX) and (ir=NR_SI) then
  2723. base:=0
  2724. else if (br=NR_BX) and (ir=NR_DI) then
  2725. base:=1
  2726. else if (br=NR_BP) and (ir=NR_SI) then
  2727. base:=2
  2728. else if (br=NR_BP) and (ir=NR_DI) then
  2729. base:=3
  2730. else if (br=NR_NO) and (ir=NR_SI) then
  2731. base:=4
  2732. else if (br=NR_NO) and (ir=NR_DI) then
  2733. base:=5
  2734. else if (br=NR_BP) and (ir=NR_NO) then
  2735. base:=6
  2736. else if (br=NR_BX) and (ir=NR_NO) then
  2737. base:=7
  2738. else
  2739. exit;
  2740. if (base<>6) and (o=0) and (sym=nil) then
  2741. md:=0
  2742. else if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
  2743. md:=1
  2744. else
  2745. md:=2;
  2746. output.bytes:=md;
  2747. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  2748. end;
  2749. output.size:=1+output.bytes;
  2750. output.sib_present:=false;
  2751. result:=true;
  2752. end;
  2753. {$endif}
  2754. function process_ea(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2755. var
  2756. rv : byte;
  2757. begin
  2758. result:=false;
  2759. fillchar(output,sizeof(output),0);
  2760. {Register ?}
  2761. if (input.typ=top_reg) then
  2762. begin
  2763. rv:=regval(input.reg);
  2764. output.modrm:=$c0 or (rfield shl 3) or rv;
  2765. output.size:=1;
  2766. {$ifdef x86_64}
  2767. output.rex:=output.rex or (rexbits(input.reg) and $F1);
  2768. {$endif x86_64}
  2769. result:=true;
  2770. exit;
  2771. end;
  2772. {No register, so memory reference.}
  2773. if input.typ<>top_ref then
  2774. internalerror(200409263);
  2775. {$if defined(x86_64)}
  2776. result:=process_ea_ref_64_32(input,output,rfield, uselargeoffset);
  2777. {$elseif defined(i386) or defined(i8086)}
  2778. if is_16_bit_ref(input.ref^) then
  2779. result:=process_ea_ref_16(input,output,rfield, uselargeoffset)
  2780. else
  2781. result:=process_ea_ref_32(input,output,rfield, uselargeoffset);
  2782. {$endif}
  2783. end;
  2784. function taicpu.calcsize(p:PInsEntry):shortint;
  2785. var
  2786. codes : pchar;
  2787. c : byte;
  2788. len : shortint;
  2789. len_ea_data: shortint;
  2790. len_ea_data_evex: shortint;
  2791. mref_offset: asizeint;
  2792. ea_data : ea;
  2793. exists_evex: boolean;
  2794. exists_vex: boolean;
  2795. exists_vex_extension: boolean;
  2796. exists_prefix_66: boolean;
  2797. exists_prefix_F2: boolean;
  2798. exists_prefix_F3: boolean;
  2799. exists_l256: boolean;
  2800. exists_l512: boolean;
  2801. exists_EVEXW1: boolean;
  2802. pmref_operand: poper;
  2803. {$ifdef x86_64}
  2804. omit_rexw : boolean;
  2805. {$endif x86_64}
  2806. begin
  2807. len:=0;
  2808. len_ea_data := 0;
  2809. len_ea_data_evex:= 0;
  2810. mref_offset := 0;
  2811. pmref_operand := nil;
  2812. codes:=@p^.code[0];
  2813. exists_vex := false;
  2814. exists_vex_extension := false;
  2815. exists_prefix_66 := false;
  2816. exists_prefix_F2 := false;
  2817. exists_prefix_F3 := false;
  2818. exists_evex := false;
  2819. exists_l256 := false;
  2820. exists_l512 := false;
  2821. exists_EVEXW1 := false;
  2822. {$ifdef x86_64}
  2823. rex:=0;
  2824. omit_rexw:=false;
  2825. {$endif x86_64}
  2826. repeat
  2827. c:=ord(codes^);
  2828. inc(codes);
  2829. case c of
  2830. &0 :
  2831. break;
  2832. &1,&2,&3 :
  2833. begin
  2834. inc(codes,c);
  2835. inc(len,c);
  2836. end;
  2837. &10,&11,&12 :
  2838. begin
  2839. {$ifdef x86_64}
  2840. rex:=rex or (rexbits(oper[c-&10]^.reg) and $F1);
  2841. {$endif x86_64}
  2842. inc(codes);
  2843. inc(len);
  2844. end;
  2845. &13,&23 :
  2846. begin
  2847. inc(codes);
  2848. inc(len);
  2849. end;
  2850. &4,&5,&6,&7 :
  2851. begin
  2852. if opsize={$ifdef i8086}S_L{$else}S_W{$endif} then
  2853. inc(len,2)
  2854. else
  2855. inc(len);
  2856. end;
  2857. &14,&15,&16,
  2858. &20,&21,&22,
  2859. &24,&25,&26,&27,
  2860. &50,&51,&52 :
  2861. inc(len);
  2862. &30,&31,&32,
  2863. &37,
  2864. &60,&61,&62 :
  2865. inc(len,2);
  2866. &34,&35,&36:
  2867. begin
  2868. {$ifdef i8086}
  2869. inc(len,2);
  2870. {$else i8086}
  2871. if opsize=S_Q then
  2872. inc(len,8)
  2873. else
  2874. inc(len,4);
  2875. {$endif i8086}
  2876. end;
  2877. &44,&45,&46:
  2878. inc(len,sizeof(pint));
  2879. &54,&55,&56:
  2880. inc(len,8);
  2881. &40,&41,&42,
  2882. &70,&71,&72,
  2883. &254,&255,&256 :
  2884. inc(len,4);
  2885. &64,&65,&66:
  2886. {$ifdef i8086}
  2887. inc(len,2);
  2888. {$else i8086}
  2889. inc(len,4);
  2890. {$endif i8086}
  2891. &74,&75,&76,&77: ; // ignore vex-coded operand-idx
  2892. &320,&321,&322 :
  2893. begin
  2894. case (oper[c-&320]^.ot and OT_SIZE_MASK) of
  2895. {$if defined(i386) or defined(x86_64)}
  2896. OT_BITS16 :
  2897. {$elseif defined(i8086)}
  2898. OT_BITS32 :
  2899. {$endif}
  2900. inc(len);
  2901. {$ifdef x86_64}
  2902. OT_BITS64:
  2903. begin
  2904. rex:=rex or $48;
  2905. end;
  2906. {$endif x86_64}
  2907. end;
  2908. end;
  2909. &310 :
  2910. {$if defined(x86_64)}
  2911. { every insentry with code 0310 must be marked with NOX86_64 }
  2912. InternalError(2011051301);
  2913. {$elseif defined(i386)}
  2914. inc(len);
  2915. {$elseif defined(i8086)}
  2916. {nothing};
  2917. {$endif}
  2918. &311 :
  2919. {$if defined(x86_64) or defined(i8086)}
  2920. inc(len)
  2921. {$endif x86_64 or i8086}
  2922. ;
  2923. &324 :
  2924. {$ifndef i8086}
  2925. inc(len)
  2926. {$endif not i8086}
  2927. ;
  2928. &326 :
  2929. begin
  2930. {$ifdef x86_64}
  2931. rex:=rex or $48;
  2932. {$endif x86_64}
  2933. end;
  2934. &312,
  2935. &323,
  2936. &327,
  2937. &331,&332: ;
  2938. &325:
  2939. {$ifdef i8086}
  2940. inc(len)
  2941. {$endif i8086}
  2942. ;
  2943. &333:
  2944. begin
  2945. inc(len);
  2946. exists_prefix_F2 := true;
  2947. end;
  2948. &334:
  2949. begin
  2950. inc(len);
  2951. exists_prefix_F3 := true;
  2952. end;
  2953. &361:
  2954. begin
  2955. {$ifndef i8086}
  2956. inc(len);
  2957. exists_prefix_66 := true;
  2958. {$endif not i8086}
  2959. end;
  2960. &335:
  2961. {$ifdef x86_64}
  2962. omit_rexw:=true
  2963. {$endif x86_64}
  2964. ;
  2965. &100..&227 :
  2966. begin
  2967. {$ifdef x86_64}
  2968. if (c<&177) then
  2969. begin
  2970. if (oper[c and 7]^.typ=top_reg) then
  2971. begin
  2972. rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
  2973. end;
  2974. end;
  2975. {$endif x86_64}
  2976. if (oper[(c shr 3) and 7]^.typ = top_ref) and
  2977. (oper[(c shr 3) and 7]^.ref^.offset <> 0) then
  2978. begin
  2979. if (exists_vex and exists_evex and CheckUseEVEX) or
  2980. (not(exists_vex) and exists_evex) then
  2981. begin
  2982. CheckEVEXTuple(oper[(c shr 3) and 7]^, p, not(exists_l256 or exists_l512), exists_l256, exists_l512, exists_EVEXW1);
  2983. //const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
  2984. end;
  2985. end;
  2986. if process_ea(oper[(c shr 3) and 7]^, ea_data, 0, EVEXTupleState = etsNotTuple) then
  2987. inc(len,ea_data.size)
  2988. else Message(asmw_e_invalid_effective_address);
  2989. {$ifdef x86_64}
  2990. rex:=rex or ea_data.rex;
  2991. {$endif x86_64}
  2992. end;
  2993. &350:
  2994. begin
  2995. exists_evex := true;
  2996. end;
  2997. &351: exists_l512 := true; // EVEX length bit 512
  2998. &352: exists_EVEXW1 := true; // EVEX W1
  2999. &362: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
  3000. // =>> DEFAULT = 2 Bytes
  3001. begin
  3002. //if not(exists_vex) then
  3003. //begin
  3004. // inc(len, 2);
  3005. //end;
  3006. exists_vex := true;
  3007. end;
  3008. &363: // REX.W = 1
  3009. // =>> VEX prefix length = 3
  3010. begin
  3011. if not(exists_vex_extension) then
  3012. begin
  3013. //inc(len);
  3014. exists_vex_extension := true;
  3015. end;
  3016. end;
  3017. &364: exists_l256 := true; // VEX length bit 256
  3018. &366, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
  3019. &367: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
  3020. &370: // VEX-Extension prefix $0F
  3021. // ignore for calculating length
  3022. ;
  3023. &371, // VEX-Extension prefix $0F38
  3024. &372: // VEX-Extension prefix $0F3A
  3025. begin
  3026. if not(exists_vex_extension) then
  3027. begin
  3028. //inc(len);
  3029. exists_vex_extension := true;
  3030. end;
  3031. end;
  3032. &300,&301,&302:
  3033. begin
  3034. {$if defined(x86_64) or defined(i8086)}
  3035. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  3036. inc(len);
  3037. {$endif x86_64 or i8086}
  3038. end;
  3039. else
  3040. InternalError(200603141);
  3041. end;
  3042. until false;
  3043. {$ifdef x86_64}
  3044. if ((rex and $80)<>0) and ((rex and $4F)<>0) then
  3045. Message(asmw_e_bad_reg_with_rex);
  3046. rex:=rex and $4F; { reset extra bits in upper nibble }
  3047. if omit_rexw then
  3048. begin
  3049. if rex=$48 then { remove rex entirely? }
  3050. rex:=0
  3051. else
  3052. rex:=rex and $F7;
  3053. end;
  3054. if not(exists_vex or exists_evex) then
  3055. begin
  3056. if rex<>0 then
  3057. Inc(len);
  3058. end;
  3059. {$endif}
  3060. if exists_evex and
  3061. exists_vex then
  3062. begin
  3063. if CheckUseEVEX then
  3064. begin
  3065. inc(len, 4);
  3066. end
  3067. else
  3068. begin
  3069. inc(len, 2);
  3070. if exists_vex_extension then inc(len);
  3071. {$ifdef x86_64}
  3072. if not(exists_vex_extension) then
  3073. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  3074. {$endif x86_64}
  3075. end;
  3076. if exists_prefix_66 then dec(len);
  3077. if exists_prefix_F2 then dec(len);
  3078. if exists_prefix_F3 then dec(len);
  3079. end
  3080. else if exists_evex then
  3081. begin
  3082. inc(len, 4);
  3083. if exists_prefix_66 then dec(len);
  3084. if exists_prefix_F2 then dec(len);
  3085. if exists_prefix_F3 then dec(len);
  3086. end
  3087. else
  3088. begin
  3089. if exists_vex then
  3090. begin
  3091. inc(len,2);
  3092. if exists_prefix_66 then dec(len);
  3093. if exists_prefix_F2 then dec(len);
  3094. if exists_prefix_F3 then dec(len);
  3095. if exists_vex_extension then inc(len);
  3096. {$ifdef x86_64}
  3097. if not(exists_vex_extension) then
  3098. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  3099. {$endif x86_64}
  3100. end;
  3101. end;
  3102. calcsize:=len;
  3103. end;
  3104. procedure taicpu.write0x66prefix(objdata:TObjData);
  3105. const
  3106. b66: Byte=$66;
  3107. begin
  3108. {$ifdef i8086}
  3109. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  3110. Message(asmw_e_instruction_not_supported_by_cpu);
  3111. {$endif i8086}
  3112. objdata.writebytes(b66,1);
  3113. end;
  3114. procedure taicpu.write0x67prefix(objdata:TObjData);
  3115. const
  3116. b67: Byte=$67;
  3117. begin
  3118. {$ifdef i8086}
  3119. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  3120. Message(asmw_e_instruction_not_supported_by_cpu);
  3121. {$endif i8086}
  3122. objdata.writebytes(b67,1);
  3123. end;
  3124. procedure taicpu.gencode(objdata: TObjData);
  3125. {
  3126. * the actual codes (C syntax, i.e. octal):
  3127. * \0 - terminates the code. (Unless it's a literal of course.)
  3128. * \1, \2, \3 - that many literal bytes follow in the code stream
  3129. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  3130. * (POP is never used for CS) depending on operand 0
  3131. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  3132. * on operand 0
  3133. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  3134. * to the register value of operand 0, 1 or 2
  3135. * \13 - a literal byte follows in the code stream, to be added
  3136. * to the condition code value of the instruction.
  3137. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  3138. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  3139. * \23 - a literal byte follows in the code stream, to be added
  3140. * to the inverted condition code value of the instruction
  3141. * (inverted version of \13).
  3142. * \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
  3143. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  3144. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  3145. * assembly mode or the address-size override on the operand
  3146. * \37 - a word constant, from the _segment_ part of operand 0
  3147. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  3148. * \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
  3149. on the address size of instruction
  3150. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  3151. * \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
  3152. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  3153. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  3154. * assembly mode or the address-size override on the operand
  3155. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  3156. * \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
  3157. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  3158. * field the register value of operand b.
  3159. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  3160. * field equal to digit b.
  3161. * \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
  3162. * \300,\301,\302 - might be an 0x67, depending on the address size of
  3163. * the memory reference in operand x.
  3164. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  3165. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  3166. * \312 - (disassembler only) invalid with non-default address size.
  3167. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  3168. * size of operand x.
  3169. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  3170. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  3171. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  3172. * \327 - indicates that this instruction is only valid when the
  3173. * operand size is the default (instruction to disassembler,
  3174. * generates no code in the assembler)
  3175. * \331 - instruction not valid with REP prefix. Hint for
  3176. * disassembler only; for SSE instructions.
  3177. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  3178. * \333 - 0xF3 prefix for SSE instructions
  3179. * \334 - 0xF2 prefix for SSE instructions
  3180. * \335 - Indicates 64-bit operand size with REX.W not necessary
  3181. * \350 - EVEX prefix for AVX instructions
  3182. * \351 - EVEX Vector length 512
  3183. * \352 - EVEX W1
  3184. * \361 - 0x66 prefix for SSE instructions
  3185. * \362 - VEX prefix for AVX instructions
  3186. * \363 - VEX W1
  3187. * \364 - VEX Vector length 256
  3188. * \366 - operand 2 (ymmreg,zmmreg) encoded in bit 4-7 of the immediate byte
  3189. * \367 - operand 3 (ymmreg,zmmreg) encoded in bit 4-7 of the immediate byte
  3190. * \370 - VEX 0F-FLAG
  3191. * \371 - VEX 0F38-FLAG
  3192. * \372 - VEX 0F3A-FLAG
  3193. }
  3194. var
  3195. {$ifdef i8086}
  3196. currval : longint;
  3197. {$else i8086}
  3198. currval : aint;
  3199. {$endif i8086}
  3200. currsym : tobjsymbol;
  3201. currrelreloc,
  3202. currabsreloc,
  3203. currabsreloc32 : TObjRelocationType;
  3204. {$ifdef x86_64}
  3205. rexwritten : boolean;
  3206. {$endif x86_64}
  3207. procedure getvalsym(opidx:longint);
  3208. begin
  3209. case oper[opidx]^.typ of
  3210. top_ref :
  3211. begin
  3212. currval:=oper[opidx]^.ref^.offset;
  3213. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  3214. {$ifdef i8086}
  3215. if oper[opidx]^.ref^.refaddr=addr_seg then
  3216. begin
  3217. currrelreloc:=RELOC_SEGREL;
  3218. currabsreloc:=RELOC_SEG;
  3219. currabsreloc32:=RELOC_SEG;
  3220. end
  3221. else if oper[opidx]^.ref^.refaddr=addr_dgroup then
  3222. begin
  3223. currrelreloc:=RELOC_DGROUPREL;
  3224. currabsreloc:=RELOC_DGROUP;
  3225. currabsreloc32:=RELOC_DGROUP;
  3226. end
  3227. else if oper[opidx]^.ref^.refaddr=addr_fardataseg then
  3228. begin
  3229. currrelreloc:=RELOC_FARDATASEGREL;
  3230. currabsreloc:=RELOC_FARDATASEG;
  3231. currabsreloc32:=RELOC_FARDATASEG;
  3232. end
  3233. else
  3234. {$endif i8086}
  3235. {$ifdef i386}
  3236. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3237. (tf_pic_uses_got in target_info.flags) then
  3238. begin
  3239. currrelreloc:=RELOC_PLT32;
  3240. currabsreloc:=RELOC_GOT32;
  3241. currabsreloc32:=RELOC_GOT32;
  3242. end
  3243. else
  3244. {$endif i386}
  3245. {$ifdef x86_64}
  3246. if oper[opidx]^.ref^.refaddr=addr_pic then
  3247. begin
  3248. currrelreloc:=RELOC_PLT32;
  3249. currabsreloc:=RELOC_GOTPCREL;
  3250. currabsreloc32:=RELOC_GOTPCREL;
  3251. end
  3252. else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
  3253. begin
  3254. currrelreloc:=RELOC_RELATIVE;
  3255. currabsreloc:=RELOC_RELATIVE;
  3256. currabsreloc32:=RELOC_RELATIVE;
  3257. end
  3258. else
  3259. {$endif x86_64}
  3260. begin
  3261. currrelreloc:=RELOC_RELATIVE;
  3262. currabsreloc:=RELOC_ABSOLUTE;
  3263. currabsreloc32:=RELOC_ABSOLUTE32;
  3264. end;
  3265. end;
  3266. top_const :
  3267. begin
  3268. {$ifdef i8086}
  3269. currval:=longint(oper[opidx]^.val);
  3270. {$else i8086}
  3271. currval:=aint(oper[opidx]^.val);
  3272. {$endif i8086}
  3273. currsym:=nil;
  3274. currabsreloc:=RELOC_ABSOLUTE;
  3275. currabsreloc32:=RELOC_ABSOLUTE32;
  3276. end;
  3277. else
  3278. Message(asmw_e_immediate_or_reference_expected);
  3279. end;
  3280. end;
  3281. {$ifdef x86_64}
  3282. procedure maybewriterex;
  3283. begin
  3284. if (rex<>0) and not(rexwritten) then
  3285. begin
  3286. rexwritten:=true;
  3287. objdata.writebytes(rex,1);
  3288. end;
  3289. end;
  3290. {$endif x86_64}
  3291. procedure objdata_writereloc(Data:TRelocDataInt;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
  3292. begin
  3293. {$ifdef i386}
  3294. { Special case of '_GLOBAL_OFFSET_TABLE_'
  3295. which needs a special relocation type R_386_GOTPC }
  3296. if assigned (p) and
  3297. (p.name='_GLOBAL_OFFSET_TABLE_') and
  3298. (tf_pic_uses_got in target_info.flags) then
  3299. begin
  3300. { nothing else than a 4 byte relocation should occur
  3301. for GOT }
  3302. if len<>4 then
  3303. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  3304. Reloctype:=RELOC_GOTPC;
  3305. { We need to add the offset of the relocation
  3306. of _GLOBAL_OFFSET_TABLE symbol within
  3307. the current instruction }
  3308. inc(data,objdata.currobjsec.size-insoffset);
  3309. end;
  3310. {$endif i386}
  3311. objdata.writereloc(data,len,p,Reloctype);
  3312. end;
  3313. const
  3314. CondVal:array[TAsmCond] of byte=($0,
  3315. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  3316. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  3317. $0, $A, $A, $B, $8, $4);
  3318. var
  3319. i: integer;
  3320. c : byte;
  3321. pb : pbyte;
  3322. codes : pchar;
  3323. bytes : array[0..3] of byte;
  3324. rfield,
  3325. data,s,opidx : longint;
  3326. ea_data : ea;
  3327. relsym : TObjSymbol;
  3328. needed_VEX_Extension: boolean;
  3329. needed_VEX: boolean;
  3330. needed_EVEX: boolean;
  3331. needed_VSIB: boolean;
  3332. opmode: integer;
  3333. VEXvvvv: byte;
  3334. VEXmmmmm: byte;
  3335. VEXw : byte;
  3336. VEXpp : byte;
  3337. VEXll : byte;
  3338. EVEXvvvv: byte;
  3339. EVEXpp: byte;
  3340. EVEXr: byte;
  3341. EVEXx: byte;
  3342. EVEXv: byte;
  3343. EVEXll: byte;
  3344. EVEXw0: byte;
  3345. EVEXw1: byte;
  3346. EVEXz : byte;
  3347. EVEXaaa : byte;
  3348. EVEXb : byte;
  3349. EVEXmm : byte;
  3350. begin
  3351. { safety check }
  3352. if objdata.currobjsec.size<>longword(insoffset) then
  3353. begin
  3354. internalerror(200130121);
  3355. end;
  3356. { those variables are initialized inside local procedures, the dfa cannot handle this yet }
  3357. currsym:=nil;
  3358. currabsreloc:=RELOC_NONE;
  3359. currabsreloc32:=RELOC_NONE;
  3360. currrelreloc:=RELOC_NONE;
  3361. currval:=0;
  3362. { check instruction's processor level }
  3363. { todo: maybe adapt and enable this code for i386 and x86_64 as well }
  3364. {$ifdef i8086}
  3365. if objdata.CPUType<>cpu_none then
  3366. begin
  3367. if IF_8086 in insentry^.flags then
  3368. else if IF_186 in insentry^.flags then
  3369. begin
  3370. if objdata.CPUType<cpu_186 then
  3371. Message(asmw_e_instruction_not_supported_by_cpu);
  3372. end
  3373. else if IF_286 in insentry^.flags then
  3374. begin
  3375. if objdata.CPUType<cpu_286 then
  3376. Message(asmw_e_instruction_not_supported_by_cpu);
  3377. end
  3378. else if IF_386 in insentry^.flags then
  3379. begin
  3380. if objdata.CPUType<cpu_386 then
  3381. Message(asmw_e_instruction_not_supported_by_cpu);
  3382. end
  3383. else if IF_486 in insentry^.flags then
  3384. begin
  3385. if objdata.CPUType<cpu_486 then
  3386. Message(asmw_e_instruction_not_supported_by_cpu);
  3387. end
  3388. else if IF_PENT in insentry^.flags then
  3389. begin
  3390. if objdata.CPUType<cpu_Pentium then
  3391. Message(asmw_e_instruction_not_supported_by_cpu);
  3392. end
  3393. else if IF_P6 in insentry^.flags then
  3394. begin
  3395. if objdata.CPUType<cpu_Pentium2 then
  3396. Message(asmw_e_instruction_not_supported_by_cpu);
  3397. end
  3398. else if IF_KATMAI in insentry^.flags then
  3399. begin
  3400. if objdata.CPUType<cpu_Pentium3 then
  3401. Message(asmw_e_instruction_not_supported_by_cpu);
  3402. end
  3403. else if insentry^.flags*[IF_WILLAMETTE,IF_PRESCOTT]<>[] then
  3404. begin
  3405. if objdata.CPUType<cpu_Pentium4 then
  3406. Message(asmw_e_instruction_not_supported_by_cpu);
  3407. end
  3408. else if IF_NEC in insentry^.flags then
  3409. begin
  3410. { the NEC V20/V30 extensions are incompatible with 386+, due to overlapping opcodes }
  3411. if objdata.CPUType>=cpu_386 then
  3412. Message(asmw_e_instruction_not_supported_by_cpu);
  3413. end
  3414. else if IF_SANDYBRIDGE in insentry^.flags then
  3415. begin
  3416. { todo: handle these properly }
  3417. end;
  3418. end;
  3419. {$endif i8086}
  3420. { load data to write }
  3421. codes:=insentry^.code;
  3422. {$ifdef x86_64}
  3423. rexwritten:=false;
  3424. {$endif x86_64}
  3425. { Force word push/pop for registers }
  3426. if (opsize={$ifdef i8086}S_L{$else}S_W{$endif}) and ((codes[0]=#4) or (codes[0]=#6) or
  3427. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  3428. write0x66prefix(objdata);
  3429. // needed VEX Prefix (for AVX etc.)
  3430. needed_VEX := false;
  3431. needed_EVEX := false;
  3432. needed_VEX_Extension := false;
  3433. needed_VSIB := false;
  3434. opmode := -1;
  3435. VEXvvvv := 0;
  3436. VEXmmmmm := 0;
  3437. VEXll := 0;
  3438. VEXw := 0;
  3439. VEXpp := 0;
  3440. EVEXpp := 0;
  3441. EVEXvvvv := 0;
  3442. EVEXr := 0;
  3443. EVEXx := 0;
  3444. EVEXv := 0;
  3445. EVEXll := 0;
  3446. EVEXw0 := 0;
  3447. EVEXw1 := 0;
  3448. EVEXz := 0;
  3449. EVEXaaa := 0;
  3450. EVEXb := 0;
  3451. EVEXmm := 0;
  3452. repeat
  3453. c:=ord(codes^);
  3454. inc(codes);
  3455. case c of
  3456. &0: break;
  3457. &1,
  3458. &2,
  3459. &3: inc(codes,c);
  3460. &10,
  3461. &11,
  3462. &12: inc(codes, 1);
  3463. &74: opmode := 0;
  3464. &75: opmode := 1;
  3465. &76: opmode := 2;
  3466. &100..&227: begin
  3467. // AVX 512 - EVEX
  3468. // check operands
  3469. if (c shr 6) = 1 then
  3470. begin
  3471. opidx := c and 7;
  3472. if ops > opidx then
  3473. begin
  3474. if (oper[opidx]^.typ=top_reg) then
  3475. if getsupreg(oper[opidx]^.reg) and $10 = $0 then EVEXr := 1;
  3476. end
  3477. end
  3478. else EVEXr := 1; // modrm:reg not used =>> 1
  3479. opidx := (c shr 3) and 7;
  3480. if ops > opidx then
  3481. case oper[opidx]^.typ of
  3482. top_reg: if getsupreg(oper[opidx]^.reg) and $10 = $0 then EVEXx := 1;
  3483. top_ref: begin
  3484. if getsupreg(oper[opidx]^.ref^.index) and $08 = $0 then EVEXx := 1;
  3485. if getsubreg(oper[opidx]^.ref^.index) in [R_SUBMMX,R_SUBMMY,R_SUBMMZ] then
  3486. begin
  3487. // VSIB memory addresing
  3488. if getsupreg(oper[opidx]^.ref^.index) and $10 = $0 then EVEXv := 1; // VECTOR-Index
  3489. needed_VSIB := true;
  3490. end;
  3491. end;
  3492. else
  3493. Internalerror(2019081004);
  3494. end;
  3495. end;
  3496. &333: begin
  3497. VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
  3498. VEXpp := $02; // set SIMD-prefix $F3
  3499. EVEXpp := $02; // set SIMD-prefix $F3
  3500. end;
  3501. &334: begin
  3502. VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
  3503. VEXpp := $03; // set SIMD-prefix $F2
  3504. EVEXpp := $03; // set SIMD-prefix $F2
  3505. end;
  3506. &350: needed_EVEX := true; // AVX512 instruction or AVX128/256/512-instruction (depended on operands [x,y,z]mm16..)
  3507. &351: EVEXll := $02; // vectorlength = 512 bits AND no scalar
  3508. &352: EVEXw1 := $01;
  3509. &361: begin
  3510. VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
  3511. VEXpp := $01; // set SIMD-prefix $66
  3512. EVEXpp := $01; // set SIMD-prefix $66
  3513. end;
  3514. &362: needed_VEX := true;
  3515. &363: begin
  3516. needed_VEX_Extension := true;
  3517. VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
  3518. VEXw := 1;
  3519. end;
  3520. &364: begin
  3521. VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
  3522. VEXll := $01;
  3523. EVEXll := $01;
  3524. end;
  3525. &366,
  3526. &367: begin
  3527. opidx:=c-&364; { 0366->operand 2, 0367->operand 3 }
  3528. if (ops > opidx) and
  3529. (oper[opidx]^.typ=top_reg) and
  3530. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_xmm) or
  3531. (oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_ymm) or
  3532. (oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_zmm)) then
  3533. if (getsupreg(oper[opidx]^.reg) and $10 = $0) then EVEXx := 1;
  3534. end;
  3535. &370: begin
  3536. VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
  3537. EVEXmm := $01;
  3538. end;
  3539. &371: begin
  3540. needed_VEX_Extension := true;
  3541. VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
  3542. EVEXmm := $02;
  3543. end;
  3544. &372: begin
  3545. needed_VEX_Extension := true;
  3546. VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
  3547. EVEXmm := $03;
  3548. end;
  3549. end;
  3550. until false;
  3551. {$ifndef x86_64}
  3552. EVEXv := 1;
  3553. EVEXx := 1;
  3554. EVEXr := 1;
  3555. {$endif}
  3556. if needed_VEX or needed_EVEX then
  3557. begin
  3558. if (opmode > ops) or
  3559. (opmode < -1) then
  3560. begin
  3561. Internalerror(777100);
  3562. end
  3563. else if opmode = -1 then
  3564. begin
  3565. VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
  3566. EVEXvvvv := $0F;
  3567. {$ifdef x86_64}
  3568. if not(needed_vsib) then EVEXv := 1;
  3569. {$endif x86_64}
  3570. end
  3571. else if oper[opmode]^.typ = top_reg then
  3572. begin
  3573. VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
  3574. EVEXvvvv := not(regval(oper[opmode]^.reg)) and $07;
  3575. {$ifdef x86_64}
  3576. if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
  3577. if rexbits(oper[opmode]^.reg) = 0 then EVEXvvvv := EVEXvvvv or (1 shl 3);
  3578. if getsupreg(oper[opmode]^.reg) and $10 = 0 then EVEXv := 1;
  3579. {$else}
  3580. VEXvvvv := VEXvvvv or (1 shl 6);
  3581. EVEXvvvv := EVEXvvvv or (1 shl 3);
  3582. {$endif x86_64}
  3583. end
  3584. else Internalerror(777101);
  3585. if not(needed_VEX_Extension) then
  3586. begin
  3587. {$ifdef x86_64}
  3588. if rex and $0B <> 0 then needed_VEX_Extension := true;
  3589. {$endif x86_64}
  3590. end;
  3591. //TG
  3592. if needed_EVEX and needed_VEX then
  3593. begin
  3594. needed_EVEX := false;
  3595. if CheckUseEVEX then
  3596. begin
  3597. // EVEX-Flags r,v,x indicate extended-MMregister
  3598. // Flag = 0 =>> [x,y,z]mm16..[x,y,z]mm31
  3599. // Flag = 1 =>> [x,y,z]mm00..[x,y,z]mm15
  3600. needed_EVEX := true;
  3601. needed_VEX := false;
  3602. needed_VEX_Extension := false;
  3603. end;
  3604. end;
  3605. if needed_EVEX then
  3606. begin
  3607. EVEXaaa:= 0;
  3608. EVEXz := 0;
  3609. for i := 0 to ops - 1 do
  3610. if (oper[i]^.vopext and OTVE_VECTOR_MASK) <> 0 then
  3611. begin
  3612. if oper[i]^.vopext and OTVE_VECTOR_WRITEMASK = OTVE_VECTOR_WRITEMASK then
  3613. begin
  3614. EVEXaaa := oper[i]^.vopext and $07;
  3615. if oper[i]^.vopext and OTVE_VECTOR_ZERO = OTVE_VECTOR_ZERO then EVEXz := 1;
  3616. end;
  3617. if oper[i]^.vopext and OTVE_VECTOR_BCST = OTVE_VECTOR_BCST then
  3618. begin
  3619. EVEXb := 1;
  3620. end;
  3621. // flag EVEXb is multiple use (broadcast, sae and er)
  3622. if oper[i]^.vopext and OTVE_VECTOR_SAE = OTVE_VECTOR_SAE then
  3623. begin
  3624. EVEXb := 1;
  3625. end;
  3626. if oper[i]^.vopext and OTVE_VECTOR_ER = OTVE_VECTOR_ER then
  3627. begin
  3628. EVEXb := 1;
  3629. case oper[i]^.vopext and OTVE_VECTOR_ER_MASK of
  3630. OTVE_VECTOR_RNSAE: EVEXll := 0;
  3631. OTVE_VECTOR_RDSAE: EVEXll := 1;
  3632. OTVE_VECTOR_RUSAE: EVEXll := 2;
  3633. OTVE_VECTOR_RZSAE: EVEXll := 3;
  3634. else EVEXll := 0;
  3635. end;
  3636. end;
  3637. end;
  3638. bytes[0] := $62;
  3639. bytes[1] := ((EVEXmm and $03) shl 0) or
  3640. {$ifdef x86_64}
  3641. ((not(rex) and $05) shl 5) or
  3642. {$else}
  3643. (($05) shl 5) or
  3644. {$endif x86_64}
  3645. ((EVEXr and $01) shl 4) or
  3646. ((EVEXx and $01) shl 6);
  3647. bytes[2] := ((EVEXpp and $03) shl 0) or
  3648. ((1 and $01) shl 2) or // fixed in AVX512
  3649. ((EVEXvvvv and $0F) shl 3) or
  3650. ((EVEXw1 and $01) shl 7);
  3651. bytes[3] := ((EVEXaaa and $07) shl 0) or
  3652. ((EVEXv and $01) shl 3) or
  3653. ((EVEXb and $01) shl 4) or
  3654. ((EVEXll and $03) shl 5) or
  3655. ((EVEXz and $01) shl 7);
  3656. objdata.writebytes(bytes,4);
  3657. end
  3658. else if needed_VEX_Extension then
  3659. begin
  3660. // VEX-Prefix-Length = 3 Bytes
  3661. {$ifdef x86_64}
  3662. VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
  3663. VEXvvvv := VEXvvvv or ((rex and $08) shl 7); // set REX.w
  3664. {$else}
  3665. VEXmmmmm := VEXmmmmm or (7 shl 5); //
  3666. {$endif x86_64}
  3667. bytes[0]:=$C4;
  3668. bytes[1]:=VEXmmmmm;
  3669. bytes[2]:=VEXvvvv;
  3670. objdata.writebytes(bytes,3);
  3671. end
  3672. else
  3673. begin
  3674. // VEX-Prefix-Length = 2 Bytes
  3675. {$ifdef x86_64}
  3676. if rex and $04 = 0 then
  3677. {$endif x86_64}
  3678. begin
  3679. VEXvvvv := VEXvvvv or (1 shl 7);
  3680. end;
  3681. bytes[0]:=$C5;
  3682. bytes[1]:=VEXvvvv;
  3683. objdata.writebytes(bytes,2);
  3684. end;
  3685. end
  3686. else
  3687. begin
  3688. needed_VEX_Extension := false;
  3689. opmode := -1;
  3690. end;
  3691. if not(needed_EVEX) then
  3692. begin
  3693. for opidx := 0 to ops - 1 do
  3694. begin
  3695. if ops > opidx then
  3696. if (oper[opidx]^.typ=top_reg) and
  3697. (getregtype(oper[opidx]^.reg) = R_MMREGISTER) then
  3698. if getsupreg(oper[opidx]^.reg) and $10 = $10 then
  3699. begin
  3700. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  3701. break;
  3702. end;
  3703. //badreg(oper[opidx]^.reg);
  3704. end;
  3705. end;
  3706. { load data to write }
  3707. codes:=insentry^.code;
  3708. repeat
  3709. c:=ord(codes^);
  3710. inc(codes);
  3711. case c of
  3712. &0 :
  3713. break;
  3714. &1,&2,&3 :
  3715. begin
  3716. {$ifdef x86_64}
  3717. if not(needed_VEX or needed_EVEX) then // TG
  3718. maybewriterex;
  3719. {$endif x86_64}
  3720. objdata.writebytes(codes^,c);
  3721. inc(codes,c);
  3722. end;
  3723. &4,&6 :
  3724. begin
  3725. case oper[0]^.reg of
  3726. NR_CS:
  3727. bytes[0]:=$e;
  3728. NR_NO,
  3729. NR_DS:
  3730. bytes[0]:=$1e;
  3731. NR_ES:
  3732. bytes[0]:=$6;
  3733. NR_SS:
  3734. bytes[0]:=$16;
  3735. else
  3736. internalerror(777004);
  3737. end;
  3738. if c=&4 then
  3739. inc(bytes[0]);
  3740. objdata.writebytes(bytes,1);
  3741. end;
  3742. &5,&7 :
  3743. begin
  3744. case oper[0]^.reg of
  3745. NR_FS:
  3746. bytes[0]:=$a0;
  3747. NR_GS:
  3748. bytes[0]:=$a8;
  3749. else
  3750. internalerror(777005);
  3751. end;
  3752. if c=&5 then
  3753. inc(bytes[0]);
  3754. objdata.writebytes(bytes,1);
  3755. end;
  3756. &10,&11,&12 :
  3757. begin
  3758. {$ifdef x86_64}
  3759. if not(needed_VEX or needed_EVEX) then // TG
  3760. maybewriterex;
  3761. {$endif x86_64}
  3762. bytes[0]:=ord(codes^)+regval(oper[c-&10]^.reg);
  3763. inc(codes);
  3764. objdata.writebytes(bytes,1);
  3765. end;
  3766. &13 :
  3767. begin
  3768. bytes[0]:=ord(codes^)+condval[condition];
  3769. inc(codes);
  3770. objdata.writebytes(bytes,1);
  3771. end;
  3772. &14,&15,&16 :
  3773. begin
  3774. getvalsym(c-&14);
  3775. if (currval<-128) or (currval>127) then
  3776. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  3777. if assigned(currsym) then
  3778. objdata_writereloc(currval,1,currsym,currabsreloc)
  3779. else
  3780. objdata.writebytes(currval,1);
  3781. end;
  3782. &20,&21,&22 :
  3783. begin
  3784. getvalsym(c-&20);
  3785. if (currval<-256) or (currval>255) then
  3786. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  3787. if assigned(currsym) then
  3788. objdata_writereloc(currval,1,currsym,currabsreloc)
  3789. else
  3790. objdata.writebytes(currval,1);
  3791. end;
  3792. &23 :
  3793. begin
  3794. bytes[0]:=ord(codes^)+condval[inverse_cond(condition)];
  3795. inc(codes);
  3796. objdata.writebytes(bytes,1);
  3797. end;
  3798. &24,&25,&26,&27 :
  3799. begin
  3800. getvalsym(c-&24);
  3801. if IF_IMM3 in insentry^.flags then
  3802. begin
  3803. if (currval<0) or (currval>7) then
  3804. Message2(asmw_e_value_exceeds_bounds,'unsigned triad',tostr(currval));
  3805. end
  3806. else if IF_IMM4 in insentry^.flags then
  3807. begin
  3808. if (currval<0) or (currval>15) then
  3809. Message2(asmw_e_value_exceeds_bounds,'unsigned nibble',tostr(currval));
  3810. end
  3811. else
  3812. if (currval<0) or (currval>255) then
  3813. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  3814. if assigned(currsym) then
  3815. objdata_writereloc(currval,1,currsym,currabsreloc)
  3816. else
  3817. objdata.writebytes(currval,1);
  3818. end;
  3819. &30,&31,&32 : // 030..032
  3820. begin
  3821. getvalsym(c-&30);
  3822. {$ifndef i8086}
  3823. { currval is an aint so this cannot happen on i8086 and causes only a warning }
  3824. if (currval<-65536) or (currval>65535) then
  3825. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  3826. {$endif i8086}
  3827. if assigned(currsym)
  3828. {$ifdef i8086}
  3829. or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
  3830. {$endif i8086}
  3831. then
  3832. objdata_writereloc(currval,2,currsym,currabsreloc)
  3833. else
  3834. objdata.writebytes(currval,2);
  3835. end;
  3836. &34,&35,&36 : // 034..036
  3837. { !!! These are intended (and used in opcode table) to select depending
  3838. on address size, *not* operand size. Works by coincidence only. }
  3839. begin
  3840. getvalsym(c-&34);
  3841. {$ifdef i8086}
  3842. if assigned(currsym) then
  3843. objdata_writereloc(currval,2,currsym,currabsreloc)
  3844. else
  3845. objdata.writebytes(currval,2);
  3846. {$else i8086}
  3847. if opsize=S_Q then
  3848. begin
  3849. if assigned(currsym) then
  3850. objdata_writereloc(currval,8,currsym,currabsreloc)
  3851. else
  3852. objdata.writebytes(currval,8);
  3853. end
  3854. else
  3855. begin
  3856. if assigned(currsym) then
  3857. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3858. else
  3859. objdata.writebytes(currval,4);
  3860. end
  3861. {$endif i8086}
  3862. end;
  3863. &40,&41,&42 : // 040..042
  3864. begin
  3865. getvalsym(c-&40);
  3866. if assigned(currsym)
  3867. {$ifdef i8086}
  3868. or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
  3869. {$endif i8086}
  3870. then
  3871. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3872. else
  3873. objdata.writebytes(currval,4);
  3874. end;
  3875. &44,&45,&46 :// 044..046 - select between word/dword/qword depending on
  3876. begin // address size (we support only default address sizes).
  3877. getvalsym(c-&44);
  3878. {$if defined(x86_64)}
  3879. if assigned(currsym) then
  3880. objdata_writereloc(currval,8,currsym,currabsreloc)
  3881. else
  3882. objdata.writebytes(currval,8);
  3883. {$elseif defined(i386)}
  3884. if assigned(currsym) then
  3885. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3886. else
  3887. objdata.writebytes(currval,4);
  3888. {$elseif defined(i8086)}
  3889. if assigned(currsym) then
  3890. objdata_writereloc(currval,2,currsym,currabsreloc)
  3891. else
  3892. objdata.writebytes(currval,2);
  3893. {$endif}
  3894. end;
  3895. &50,&51,&52 : // 050..052 - byte relative operand
  3896. begin
  3897. getvalsym(c-&50);
  3898. data:=currval-insend;
  3899. {$push}
  3900. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  3901. if assigned(currsym) then
  3902. inc(data,currsym.address);
  3903. {$pop}
  3904. if (data>127) or (data<-128) then
  3905. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  3906. objdata.writebytes(data,1);
  3907. end;
  3908. &54,&55,&56: // 054..056 - qword immediate operand
  3909. begin
  3910. getvalsym(c-&54);
  3911. if assigned(currsym) then
  3912. objdata_writereloc(currval,8,currsym,currabsreloc)
  3913. else
  3914. objdata.writebytes(currval,8);
  3915. end;
  3916. &60,&61,&62 :
  3917. begin
  3918. getvalsym(c-&60);
  3919. {$ifdef i8086}
  3920. if assigned(currsym) then
  3921. objdata_writereloc(currval,2,currsym,currrelreloc)
  3922. else
  3923. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  3924. {$else i8086}
  3925. InternalError(777006);
  3926. {$endif i8086}
  3927. end;
  3928. &64,&65,&66 : // 064..066 - select between 16/32 address mode, but we support only 32 (only 16 on i8086)
  3929. begin
  3930. getvalsym(c-&64);
  3931. {$ifdef i8086}
  3932. if assigned(currsym) then
  3933. objdata_writereloc(currval,2,currsym,currrelreloc)
  3934. else
  3935. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  3936. {$else i8086}
  3937. if assigned(currsym) then
  3938. objdata_writereloc(currval,4,currsym,currrelreloc)
  3939. else
  3940. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  3941. {$endif i8086}
  3942. end;
  3943. &70,&71,&72 : // 070..072 - long relative operand
  3944. begin
  3945. getvalsym(c-&70);
  3946. if assigned(currsym) then
  3947. objdata_writereloc(currval,4,currsym,currrelreloc)
  3948. else
  3949. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  3950. end;
  3951. &74,&75,&76 : ; // 074..076 - vex-coded vector operand
  3952. // ignore
  3953. &254,&255,&256 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
  3954. begin
  3955. getvalsym(c-&254);
  3956. {$ifdef x86_64}
  3957. { for i386 as aint type is longint the
  3958. following test is useless }
  3959. if (currval<low(longint)) or (currval>high(longint)) then
  3960. Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
  3961. {$endif x86_64}
  3962. if assigned(currsym) then
  3963. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3964. else
  3965. objdata.writebytes(currval,4);
  3966. end;
  3967. &300,&301,&302:
  3968. begin
  3969. {$if defined(x86_64) or defined(i8086)}
  3970. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  3971. write0x67prefix(objdata);
  3972. {$endif x86_64 or i8086}
  3973. end;
  3974. &310 : { fixed 16-bit addr }
  3975. {$if defined(x86_64)}
  3976. { every insentry having code 0310 must be marked with NOX86_64 }
  3977. InternalError(2011051302);
  3978. {$elseif defined(i386)}
  3979. write0x67prefix(objdata);
  3980. {$elseif defined(i8086)}
  3981. {nothing};
  3982. {$endif}
  3983. &311 : { fixed 32-bit addr }
  3984. {$if defined(x86_64) or defined(i8086)}
  3985. write0x67prefix(objdata)
  3986. {$endif x86_64 or i8086}
  3987. ;
  3988. &320,&321,&322 :
  3989. begin
  3990. case oper[c-&320]^.ot and OT_SIZE_MASK of
  3991. {$if defined(i386) or defined(x86_64)}
  3992. OT_BITS16 :
  3993. {$elseif defined(i8086)}
  3994. OT_BITS32 :
  3995. {$endif}
  3996. write0x66prefix(objdata);
  3997. {$ifndef x86_64}
  3998. OT_BITS64 :
  3999. Message(asmw_e_64bit_not_supported);
  4000. {$endif x86_64}
  4001. end;
  4002. end;
  4003. &323 : {no action needed};
  4004. &325:
  4005. {$ifdef i8086}
  4006. write0x66prefix(objdata);
  4007. {$else i8086}
  4008. {no action needed};
  4009. {$endif i8086}
  4010. &324,
  4011. &361:
  4012. begin
  4013. {$ifndef i8086}
  4014. if not(needed_VEX or needed_EVEX) then
  4015. write0x66prefix(objdata);
  4016. {$endif not i8086}
  4017. end;
  4018. &326 :
  4019. begin
  4020. {$ifndef x86_64}
  4021. Message(asmw_e_64bit_not_supported);
  4022. {$endif x86_64}
  4023. end;
  4024. &333 :
  4025. begin
  4026. if not(needed_VEX or needed_EVEX) then
  4027. begin
  4028. bytes[0]:=$f3;
  4029. objdata.writebytes(bytes,1);
  4030. end;
  4031. end;
  4032. &334 :
  4033. begin
  4034. if not(needed_VEX or needed_EVEX) then
  4035. begin
  4036. bytes[0]:=$f2;
  4037. objdata.writebytes(bytes,1);
  4038. end;
  4039. end;
  4040. &335:
  4041. ;
  4042. &312,
  4043. &327,
  4044. &331,&332 :
  4045. begin
  4046. { these are dissambler hints or 32 bit prefixes which
  4047. are not needed }
  4048. end;
  4049. &362..&364: ; // VEX flags =>> nothing todo
  4050. &366, &367:
  4051. begin
  4052. opidx:=c-&364; { 0366->operand 2, 0367->operand 3 }
  4053. if (needed_VEX or needed_EVEX) and
  4054. (ops=4) and
  4055. (oper[opidx]^.typ=top_reg) and
  4056. (
  4057. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_xmm) or
  4058. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_ymm) or
  4059. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_zmm)
  4060. ) then
  4061. begin
  4062. bytes[0] := ((getsupreg(oper[opidx]^.reg) and 15) shl 4);
  4063. objdata.writebytes(bytes,1);
  4064. end
  4065. else
  4066. Internalerror(2014032001);
  4067. end;
  4068. &350..&352: ; // EVEX flags =>> nothing todo
  4069. &370..&372: ; // VEX flags =>> nothing todo
  4070. &37:
  4071. begin
  4072. {$ifdef i8086}
  4073. if assigned(currsym) then
  4074. objdata_writereloc(0,2,currsym,RELOC_SEG)
  4075. else
  4076. InternalError(2015041503);
  4077. {$else i8086}
  4078. InternalError(777006);
  4079. {$endif i8086}
  4080. end;
  4081. else
  4082. begin
  4083. { rex should be written at this point }
  4084. {$ifdef x86_64}
  4085. if not(needed_VEX or needed_EVEX) then // TG
  4086. if (rex<>0) and not(rexwritten) then
  4087. internalerror(200603191);
  4088. {$endif x86_64}
  4089. if (c>=&100) and (c<=&227) then // 0100..0227
  4090. begin
  4091. if (c<&177) then // 0177
  4092. begin
  4093. if (oper[c and 7]^.typ=top_reg) then
  4094. rfield:=regval(oper[c and 7]^.reg)
  4095. else
  4096. rfield:=regval(oper[c and 7]^.ref^.base);
  4097. end
  4098. else
  4099. rfield:=c and 7;
  4100. opidx:=(c shr 3) and 7;
  4101. if not process_ea(oper[opidx]^,ea_data,rfield, EVEXTupleState = etsNotTuple) then
  4102. Message(asmw_e_invalid_effective_address);
  4103. pb:=@bytes[0];
  4104. pb^:=ea_data.modrm;
  4105. inc(pb);
  4106. if ea_data.sib_present then
  4107. begin
  4108. pb^:=ea_data.sib;
  4109. inc(pb);
  4110. end;
  4111. s:=pb-@bytes[0];
  4112. objdata.writebytes(bytes,s);
  4113. case ea_data.bytes of
  4114. 0 : ;
  4115. 1 :
  4116. begin
  4117. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  4118. begin
  4119. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  4120. {$ifdef i386}
  4121. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  4122. (tf_pic_uses_got in target_info.flags) then
  4123. currabsreloc:=RELOC_GOT32
  4124. else
  4125. {$endif i386}
  4126. {$ifdef x86_64}
  4127. if oper[opidx]^.ref^.refaddr=addr_pic then
  4128. currabsreloc:=RELOC_GOTPCREL
  4129. else
  4130. {$endif x86_64}
  4131. currabsreloc:=RELOC_ABSOLUTE;
  4132. objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  4133. end
  4134. else
  4135. begin
  4136. bytes[0]:=oper[opidx]^.ref^.offset;
  4137. objdata.writebytes(bytes,1);
  4138. end;
  4139. inc(s);
  4140. end;
  4141. 2,4 :
  4142. begin
  4143. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  4144. currval:=oper[opidx]^.ref^.offset;
  4145. {$ifdef x86_64}
  4146. if oper[opidx]^.ref^.refaddr=addr_pic then
  4147. currabsreloc:=RELOC_GOTPCREL
  4148. else
  4149. if oper[opidx]^.ref^.base=NR_RIP then
  4150. begin
  4151. currabsreloc:=RELOC_RELATIVE;
  4152. { Adjust reloc value by number of bytes following the displacement,
  4153. but not if displacement is specified by literal constant }
  4154. if Assigned(currsym) then
  4155. Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
  4156. end
  4157. else
  4158. {$endif x86_64}
  4159. {$ifdef i386}
  4160. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  4161. (tf_pic_uses_got in target_info.flags) then
  4162. currabsreloc:=RELOC_GOT32
  4163. else
  4164. {$endif i386}
  4165. {$ifdef i8086}
  4166. if ea_data.bytes=2 then
  4167. currabsreloc:=RELOC_ABSOLUTE
  4168. else
  4169. {$endif i8086}
  4170. currabsreloc:=RELOC_ABSOLUTE32;
  4171. if (currabsreloc in [RELOC_ABSOLUTE32{$ifdef i8086},RELOC_ABSOLUTE{$endif}]) and
  4172. (Assigned(oper[opidx]^.ref^.relsymbol)) then
  4173. begin
  4174. relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
  4175. if relsym.objsection=objdata.CurrObjSec then
  4176. begin
  4177. currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
  4178. {$ifdef i8086}
  4179. if ea_data.bytes=4 then
  4180. currabsreloc:=RELOC_RELATIVE32
  4181. else
  4182. {$endif i8086}
  4183. currabsreloc:=RELOC_RELATIVE;
  4184. end
  4185. else
  4186. begin
  4187. currabsreloc:=RELOC_PIC_PAIR;
  4188. currval:=relsym.offset;
  4189. end;
  4190. end;
  4191. objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
  4192. inc(s,ea_data.bytes);
  4193. end;
  4194. end;
  4195. end
  4196. else
  4197. InternalError(777007);
  4198. end;
  4199. end;
  4200. until false;
  4201. end;
  4202. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  4203. begin
  4204. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  4205. (regtype = R_INTREGISTER) and
  4206. (ops=2) and
  4207. (oper[0]^.typ=top_reg) and
  4208. (oper[1]^.typ=top_reg) and
  4209. (oper[0]^.reg=oper[1]^.reg)
  4210. ) or
  4211. ({ checking the opcodes is a long "or" chain, so check first the registers which is more selective }
  4212. ((regtype = R_MMREGISTER) and
  4213. (ops=2) and
  4214. (oper[0]^.typ=top_reg) and
  4215. (oper[1]^.typ=top_reg) and
  4216. (oper[0]^.reg=oper[1]^.reg)) and
  4217. (
  4218. (opcode=A_MOVSS) or (opcode=A_MOVSD) or
  4219. (opcode=A_MOVQ) or (opcode=A_MOVD) or
  4220. (opcode=A_MOVAPS) or (opcode=A_MOVAPD) or
  4221. (opcode=A_MOVUPS) or (opcode=A_MOVUPD) or
  4222. (opcode=A_MOVDQA) or (opcode=A_MOVDQU) or
  4223. (opcode=A_VMOVSS) or (opcode=A_VMOVSD) or
  4224. (opcode=A_VMOVQ) or (opcode=A_VMOVD) or
  4225. (opcode=A_VMOVAPS) or (opcode=A_VMOVAPD) or
  4226. (opcode=A_VMOVUPS) or (opcode=A_VMOVUPD) or
  4227. (opcode=A_VMOVDQA) or (opcode=A_VMOVDQU)
  4228. )
  4229. );
  4230. end;
  4231. procedure build_spilling_operation_type_table;
  4232. var
  4233. opcode : tasmop;
  4234. begin
  4235. new(operation_type_table);
  4236. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  4237. for opcode:=low(tasmop) to high(tasmop) do
  4238. with InsProp[opcode] do
  4239. begin
  4240. if Ch_Rop1 in Ch then
  4241. operation_type_table^[opcode,0]:=operand_read;
  4242. if Ch_Wop1 in Ch then
  4243. operation_type_table^[opcode,0]:=operand_write;
  4244. if [Ch_RWop1,Ch_Mop1]*Ch<>[] then
  4245. operation_type_table^[opcode,0]:=operand_readwrite;
  4246. if Ch_Rop2 in Ch then
  4247. operation_type_table^[opcode,1]:=operand_read;
  4248. if Ch_Wop2 in Ch then
  4249. operation_type_table^[opcode,1]:=operand_write;
  4250. if [Ch_RWop2,Ch_Mop2]*Ch<>[] then
  4251. operation_type_table^[opcode,1]:=operand_readwrite;
  4252. if Ch_Rop3 in Ch then
  4253. operation_type_table^[opcode,2]:=operand_read;
  4254. if Ch_Wop3 in Ch then
  4255. operation_type_table^[opcode,2]:=operand_write;
  4256. if [Ch_RWop3,Ch_Mop3]*Ch<>[] then
  4257. operation_type_table^[opcode,2]:=operand_readwrite;
  4258. if Ch_Rop4 in Ch then
  4259. operation_type_table^[opcode,3]:=operand_read;
  4260. if Ch_Wop4 in Ch then
  4261. operation_type_table^[opcode,3]:=operand_write;
  4262. if [Ch_RWop4,Ch_Mop4]*Ch<>[] then
  4263. operation_type_table^[opcode,3]:=operand_readwrite;
  4264. end;
  4265. end;
  4266. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  4267. begin
  4268. { the information in the instruction table is made for the string copy
  4269. operation MOVSD so hack here (FK)
  4270. VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
  4271. so fix it here (FK)
  4272. }
  4273. if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
  4274. begin
  4275. case opnr of
  4276. 0:
  4277. result:=operand_read;
  4278. 1:
  4279. result:=operand_write;
  4280. else
  4281. internalerror(200506055);
  4282. end
  4283. end
  4284. { IMUL has 1, 2 and 3-operand forms }
  4285. else if opcode=A_IMUL then
  4286. begin
  4287. case ops of
  4288. 1:
  4289. if opnr=0 then
  4290. result:=operand_read
  4291. else
  4292. internalerror(2014011802);
  4293. 2:
  4294. begin
  4295. case opnr of
  4296. 0:
  4297. result:=operand_read;
  4298. 1:
  4299. result:=operand_readwrite;
  4300. else
  4301. internalerror(2014011803);
  4302. end;
  4303. end;
  4304. 3:
  4305. begin
  4306. case opnr of
  4307. 0,1:
  4308. result:=operand_read;
  4309. 2:
  4310. result:=operand_write;
  4311. else
  4312. internalerror(2014011804);
  4313. end;
  4314. end;
  4315. else
  4316. internalerror(2014011805);
  4317. end;
  4318. end
  4319. else
  4320. result:=operation_type_table^[opcode,opnr];
  4321. end;
  4322. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  4323. var
  4324. tmpref: treference;
  4325. begin
  4326. tmpref:=ref;
  4327. {$ifdef i8086}
  4328. if tmpref.segment=NR_SS then
  4329. tmpref.segment:=NR_NO;
  4330. {$endif i8086}
  4331. case getregtype(r) of
  4332. R_INTREGISTER :
  4333. begin
  4334. if getsubreg(r)=R_SUBH then
  4335. inc(tmpref.offset);
  4336. { we don't need special code here for 32 bit loads on x86_64, since
  4337. those will automatically zero-extend the upper 32 bits. }
  4338. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
  4339. end;
  4340. R_MMREGISTER :
  4341. if current_settings.fputype in fpu_avx_instructionsets then
  4342. case getsubreg(r) of
  4343. R_SUBMMD:
  4344. result:=taicpu.op_ref_reg(A_VMOVSD,S_NO,tmpref,r);
  4345. R_SUBMMS:
  4346. result:=taicpu.op_ref_reg(A_VMOVSS,S_NO,tmpref,r);
  4347. R_SUBQ,
  4348. R_SUBMMWHOLE:
  4349. result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
  4350. else
  4351. internalerror(200506043);
  4352. end
  4353. else
  4354. case getsubreg(r) of
  4355. R_SUBMMD:
  4356. result:=taicpu.op_ref_reg(A_MOVSD,S_NO,tmpref,r);
  4357. R_SUBMMS:
  4358. result:=taicpu.op_ref_reg(A_MOVSS,S_NO,tmpref,r);
  4359. R_SUBQ,
  4360. R_SUBMMWHOLE:
  4361. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
  4362. else
  4363. internalerror(200506043);
  4364. end;
  4365. else
  4366. internalerror(200401041);
  4367. end;
  4368. end;
  4369. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  4370. var
  4371. size: topsize;
  4372. tmpref: treference;
  4373. begin
  4374. tmpref:=ref;
  4375. {$ifdef i8086}
  4376. if tmpref.segment=NR_SS then
  4377. tmpref.segment:=NR_NO;
  4378. {$endif i8086}
  4379. case getregtype(r) of
  4380. R_INTREGISTER :
  4381. begin
  4382. if getsubreg(r)=R_SUBH then
  4383. inc(tmpref.offset);
  4384. size:=reg2opsize(r);
  4385. {$ifdef x86_64}
  4386. { even if it's a 32 bit reg, we still have to spill 64 bits
  4387. because we often perform 64 bit operations on them }
  4388. if (size=S_L) then
  4389. begin
  4390. size:=S_Q;
  4391. r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
  4392. end;
  4393. {$endif x86_64}
  4394. result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
  4395. end;
  4396. R_MMREGISTER :
  4397. if current_settings.fputype in fpu_avx_instructionsets then
  4398. case getsubreg(r) of
  4399. R_SUBMMD:
  4400. result:=taicpu.op_reg_ref(A_VMOVSD,S_NO,r,tmpref);
  4401. R_SUBMMS:
  4402. result:=taicpu.op_reg_ref(A_VMOVSS,S_NO,r,tmpref);
  4403. R_SUBQ,
  4404. R_SUBMMWHOLE:
  4405. result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
  4406. else
  4407. internalerror(200506042);
  4408. end
  4409. else
  4410. case getsubreg(r) of
  4411. R_SUBMMD:
  4412. result:=taicpu.op_reg_ref(A_MOVSD,S_NO,r,tmpref);
  4413. R_SUBMMS:
  4414. result:=taicpu.op_reg_ref(A_MOVSS,S_NO,r,tmpref);
  4415. R_SUBQ,
  4416. R_SUBMMWHOLE:
  4417. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
  4418. else
  4419. internalerror(200506042);
  4420. end;
  4421. else
  4422. internalerror(200401041);
  4423. end;
  4424. end;
  4425. {$ifdef i8086}
  4426. procedure taicpu.loadsegsymbol(opidx:longint;s:tasmsymbol);
  4427. var
  4428. r: treference;
  4429. begin
  4430. reference_reset_symbol(r,s,0,1,[]);
  4431. r.refaddr:=addr_seg;
  4432. loadref(opidx,r);
  4433. end;
  4434. {$endif i8086}
  4435. {*****************************************************************************
  4436. Instruction table
  4437. *****************************************************************************}
  4438. procedure BuildInsTabCache;
  4439. var
  4440. i : longint;
  4441. begin
  4442. new(instabcache);
  4443. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  4444. i:=0;
  4445. while (i<InsTabEntries) do
  4446. begin
  4447. if InsTabCache^[InsTab[i].OPcode]=-1 then
  4448. InsTabCache^[InsTab[i].OPcode]:=i;
  4449. inc(i);
  4450. end;
  4451. end;
  4452. procedure BuildInsTabMemRefSizeInfoCache;
  4453. var
  4454. AsmOp: TasmOp;
  4455. i,j: longint;
  4456. insentry : PInsEntry;
  4457. codes : pchar;
  4458. c : byte;
  4459. MRefInfo: TMemRefSizeInfo;
  4460. SConstInfo: TConstSizeInfo;
  4461. actRegSize: int64;
  4462. actMemSize: int64;
  4463. actConstSize: int64;
  4464. actRegCount: integer;
  4465. actMemCount: integer;
  4466. actConstCount: integer;
  4467. actRegTypes : int64;
  4468. actRegMemTypes: int64;
  4469. NewRegSize: int64;
  4470. actVMemCount : integer;
  4471. actVMemTypes : int64;
  4472. RegMMXSizeMask: int64;
  4473. RegXMMSizeMask: int64;
  4474. RegYMMSizeMask: int64;
  4475. RegZMMSizeMask: int64;
  4476. RegMMXConstSizeMask: int64;
  4477. RegXMMConstSizeMask: int64;
  4478. RegYMMConstSizeMask: int64;
  4479. RegZMMConstSizeMask: int64;
  4480. RegBCSTSizeMask: int64;
  4481. RegBCSTXMMSizeMask: int64;
  4482. RegBCSTYMMSizeMask: int64;
  4483. RegBCSTZMMSizeMask: int64;
  4484. ExistsMemRef : boolean;
  4485. bitcount: integer;
  4486. function bitcnt(aValue: int64): integer;
  4487. var
  4488. i: integer;
  4489. begin
  4490. result := 0;
  4491. for i := 0 to 63 do
  4492. begin
  4493. if (aValue mod 2) = 1 then
  4494. begin
  4495. inc(result);
  4496. end;
  4497. aValue := aValue shr 1;
  4498. end;
  4499. end;
  4500. begin
  4501. new(InsTabMemRefSizeInfoCache);
  4502. FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
  4503. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  4504. begin
  4505. i := InsTabCache^[AsmOp];
  4506. if i >= 0 then
  4507. begin
  4508. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnknown;
  4509. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbUnknown;
  4510. InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 0;
  4511. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnknown;
  4512. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
  4513. InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := [];
  4514. insentry:=@instab[i];
  4515. RegMMXSizeMask := 0;
  4516. RegXMMSizeMask := 0;
  4517. RegYMMSizeMask := 0;
  4518. RegZMMSizeMask := 0;
  4519. RegMMXConstSizeMask := 0;
  4520. RegXMMConstSizeMask := 0;
  4521. RegYMMConstSizeMask := 0;
  4522. RegZMMConstSizeMask := 0;
  4523. RegBCSTSizeMask:= 0;
  4524. RegBCSTXMMSizeMask := 0;
  4525. RegBCSTYMMSizeMask := 0;
  4526. RegBCSTZMMSizeMask := 0;
  4527. ExistsMemRef := false;
  4528. while (insentry^.opcode=AsmOp) do
  4529. begin
  4530. MRefInfo := msiUnknown;
  4531. actRegSize := 0;
  4532. actRegCount := 0;
  4533. actRegTypes := 0;
  4534. NewRegSize := 0;
  4535. actMemSize := 0;
  4536. actMemCount := 0;
  4537. actRegMemTypes := 0;
  4538. actVMemCount := 0;
  4539. actVMemTypes := 0;
  4540. actConstSize := 0;
  4541. actConstCount := 0;
  4542. for j := 0 to insentry^.ops -1 do
  4543. begin
  4544. if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
  4545. ((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
  4546. ((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
  4547. ((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) OR
  4548. ((insentry^.optypes[j] and OT_ZMEM32) = OT_ZMEM32) OR
  4549. ((insentry^.optypes[j] and OT_ZMEM64) = OT_ZMEM64) then
  4550. begin
  4551. inc(actVMemCount);
  4552. case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64 OR OT_ZMEM32 OR OT_ZMEM64) of
  4553. OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
  4554. OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
  4555. OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
  4556. OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
  4557. OT_ZMEM32: actVMemTypes := actVMemTypes or OT_ZMEM32;
  4558. OT_ZMEM64: actVMemTypes := actVMemTypes or OT_ZMEM64;
  4559. else InternalError(777206);
  4560. end;
  4561. end
  4562. else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
  4563. begin
  4564. inc(actRegCount);
  4565. NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
  4566. if NewRegSize = 0 then
  4567. begin
  4568. case insentry^.optypes[j] and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_KREG or OT_REG_EXTRA_MASK) of
  4569. OT_MMXREG: begin
  4570. NewRegSize := OT_BITS64;
  4571. end;
  4572. OT_XMMREG: begin
  4573. NewRegSize := OT_BITS128;
  4574. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4575. end;
  4576. OT_YMMREG: begin
  4577. NewRegSize := OT_BITS256;
  4578. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4579. end;
  4580. OT_ZMMREG: begin
  4581. NewRegSize := OT_BITS512;
  4582. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4583. end;
  4584. OT_KREG: begin
  4585. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4586. end;
  4587. else NewRegSize := not(0);
  4588. end;
  4589. end;
  4590. actRegSize := actRegSize or NewRegSize;
  4591. actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_KREG or OT_REG_EXTRA_MASK));
  4592. end
  4593. else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
  4594. begin
  4595. inc(actMemCount);
  4596. if IF_SCL32 in insentry^.Flags then actMemSize := actMemSize or OT_BITS32
  4597. else if IF_SCL64 in insentry^.Flags then actMemSize := actMemSize or OT_BITS64
  4598. else actMemSize:=actMemSize or (insentry^.optypes[j] and (OT_SIZE_MASK OR OT_VECTORBCST));
  4599. if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
  4600. begin
  4601. actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
  4602. end;
  4603. end
  4604. else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
  4605. begin
  4606. inc(actConstCount);
  4607. actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  4608. end
  4609. end;
  4610. if actConstCount > 0 then
  4611. begin
  4612. case actConstSize of
  4613. 0: SConstInfo := csiNoSize;
  4614. OT_BITS8: SConstInfo := csiMem8;
  4615. OT_BITS16: SConstInfo := csiMem16;
  4616. OT_BITS32: SConstInfo := csiMem32;
  4617. OT_BITS64: SConstInfo := csiMem64;
  4618. else SConstInfo := csiMultiple;
  4619. end;
  4620. if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnknown then
  4621. begin
  4622. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
  4623. end
  4624. else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
  4625. begin
  4626. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
  4627. end;
  4628. end;
  4629. if actVMemCount > 0 then
  4630. begin
  4631. if actVMemCount = 1 then
  4632. begin
  4633. if actVMemTypes > 0 then
  4634. begin
  4635. case actVMemTypes of
  4636. OT_XMEM32: MRefInfo := msiXMem32;
  4637. OT_XMEM64: MRefInfo := msiXMem64;
  4638. OT_YMEM32: MRefInfo := msiYMem32;
  4639. OT_YMEM64: MRefInfo := msiYMem64;
  4640. OT_ZMEM32: MRefInfo := msiZMem32;
  4641. OT_ZMEM64: MRefInfo := msiZMem64;
  4642. else InternalError(777208);
  4643. end;
  4644. case actRegTypes of
  4645. OT_XMMREG: case MRefInfo of
  4646. msiXMem32,
  4647. msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
  4648. msiYMem32,
  4649. msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
  4650. msiZMem32,
  4651. msiZMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS512;
  4652. else InternalError(777210);
  4653. end;
  4654. OT_YMMREG: case MRefInfo of
  4655. msiXMem32,
  4656. msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
  4657. msiYMem32,
  4658. msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
  4659. msiZMem32,
  4660. msiZMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS512;
  4661. else InternalError(777211);
  4662. end;
  4663. OT_ZMMREG: case MRefInfo of
  4664. msiXMem32,
  4665. msiXMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS128;
  4666. msiYMem32,
  4667. msiYMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS256;
  4668. msiZMem32,
  4669. msiZMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS512;
  4670. else InternalError(777211);
  4671. end;
  4672. //else InternalError(777209);
  4673. end;
  4674. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnknown then
  4675. begin
  4676. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  4677. end
  4678. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  4679. begin
  4680. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64, msiZMem32, msiZMem64] then
  4681. begin
  4682. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
  4683. end
  4684. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> msiVMemMultiple then InternalError(777212);
  4685. end;
  4686. end;
  4687. end
  4688. else InternalError(777207);
  4689. end
  4690. else
  4691. begin
  4692. if (actMemCount=2) and ((AsmOp=A_MOVS) or (AsmOp=A_CMPS)) then actMemCount:=1;
  4693. ExistsMemRef := ExistsMemRef or (actMemCount > 0);
  4694. case actMemCount of
  4695. 0: ; // nothing todo
  4696. 1: begin
  4697. MRefInfo := msiUnknown;
  4698. if (insentry^.Flags * [IF_SCL32, IF_SCL64] = []) then
  4699. begin
  4700. case actRegMemTypes and (OT_MMXRM or OT_XMMRM or OT_YMMRM or OT_ZMMRM or OT_REG_EXTRA_MASK) of
  4701. OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
  4702. OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
  4703. OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
  4704. OT_ZMMRM: actMemSize := actMemSize or OT_BITS512;
  4705. end;
  4706. end;
  4707. case actMemSize of
  4708. 0: MRefInfo := msiNoSize;
  4709. OT_BITS8: MRefInfo := msiMem8;
  4710. OT_BITS16: MRefInfo := msiMem16;
  4711. OT_BITS32: MRefInfo := msiMem32;
  4712. OT_BITSB32: MRefInfo := msiBMem32;
  4713. OT_BITS64: MRefInfo := msiMem64;
  4714. OT_BITSB64: MRefInfo := msiBMem64;
  4715. OT_BITS128: MRefInfo := msiMem128;
  4716. OT_BITS256: MRefInfo := msiMem256;
  4717. OT_BITS512: MRefInfo := msiMem512;
  4718. OT_BITS80,
  4719. OT_FAR,
  4720. OT_NEAR,
  4721. OT_SHORT: ; // ignore
  4722. else
  4723. begin
  4724. bitcount := bitcnt(actMemSize);
  4725. if bitcount > 1 then MRefInfo := msiMultiple
  4726. else InternalError(777203);
  4727. end;
  4728. end;
  4729. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnknown then
  4730. begin
  4731. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  4732. end
  4733. else
  4734. begin
  4735. // ignore broadcast-memory
  4736. if not(MRefInfo in [msiBMem32, msiBMem64]) then
  4737. begin
  4738. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  4739. begin
  4740. with InsTabMemRefSizeInfoCache^[AsmOp] do
  4741. begin
  4742. if ((MemRefSize in [msiMem8, msiMULTIPLEMinSize8]) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultipleMinSize8
  4743. else if ((MemRefSize in [ msiMem16, msiMULTIPLEMinSize16]) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultipleMinSize16
  4744. else if ((MemRefSize in [ msiMem32, msiMULTIPLEMinSize32]) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultipleMinSize32
  4745. else if ((MemRefSize in [ msiMem64, msiMULTIPLEMinSize64]) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultipleMinSize64
  4746. else if ((MemRefSize in [msiMem128, msiMULTIPLEMinSize128]) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultipleMinSize128
  4747. else if ((MemRefSize in [msiMem256, msiMULTIPLEMinSize256]) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultipleMinSize256
  4748. else if ((MemRefSize in [msiMem512, msiMULTIPLEMinSize512]) OR (MRefInfo = msiMem512)) then MemRefSize := msiMultipleMinSize512
  4749. else MemRefSize := msiMultiple;
  4750. end;
  4751. end;
  4752. end;
  4753. end;
  4754. //if not(MRefInfo in [msiBMem32, msiBMem64]) and (actRegCount > 0) then
  4755. if actRegCount > 0 then
  4756. begin
  4757. if MRefInfo in [msiBMem32, msiBMem64] then
  4758. begin
  4759. if IF_BCST2 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to2];
  4760. if IF_BCST4 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to4];
  4761. if IF_BCST8 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to8];
  4762. if IF_BCST16 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to16];
  4763. //InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes
  4764. // BROADCAST - OPERAND
  4765. RegBCSTSizeMask := RegBCSTSizeMask or actMemSize;
  4766. case actRegTypes and (OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_REG_EXTRA_MASK) of
  4767. OT_XMMREG: RegBCSTXMMSizeMask := RegBCSTXMMSizeMask or actMemSize;
  4768. OT_YMMREG: RegBCSTYMMSizeMask := RegBCSTYMMSizeMask or actMemSize;
  4769. OT_ZMMREG: RegBCSTZMMSizeMask := RegBCSTZMMSizeMask or actMemSize;
  4770. else begin
  4771. RegBCSTXMMSizeMask := not(0);
  4772. RegBCSTYMMSizeMask := not(0);
  4773. RegBCSTZMMSizeMask := not(0);
  4774. end;
  4775. end;
  4776. end
  4777. else
  4778. case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_REG_EXTRA_MASK) of
  4779. OT_MMXREG: if actConstCount > 0 then RegMMXConstSizeMask := RegMMXConstSizeMask or actMemSize
  4780. else RegMMXSizeMask := RegMMXSizeMask or actMemSize;
  4781. OT_XMMREG: if actConstCount > 0 then RegXMMConstSizeMask := RegXMMConstSizeMask or actMemSize
  4782. else RegXMMSizeMask := RegXMMSizeMask or actMemSize;
  4783. OT_YMMREG: if actConstCount > 0 then RegYMMConstSizeMask := RegYMMConstSizeMask or actMemSize
  4784. else RegYMMSizeMask := RegYMMSizeMask or actMemSize;
  4785. OT_ZMMREG: if actConstCount > 0 then RegZMMConstSizeMask := RegZMMConstSizeMask or actMemSize
  4786. else RegZMMSizeMask := RegZMMSizeMask or actMemSize;
  4787. else begin
  4788. RegMMXSizeMask := not(0);
  4789. RegXMMSizeMask := not(0);
  4790. RegYMMSizeMask := not(0);
  4791. RegZMMSizeMask := not(0);
  4792. RegMMXConstSizeMask := not(0);
  4793. RegXMMConstSizeMask := not(0);
  4794. RegYMMConstSizeMask := not(0);
  4795. RegZMMConstSizeMask := not(0);
  4796. end;
  4797. end;
  4798. end
  4799. else
  4800. end
  4801. else InternalError(777202);
  4802. end;
  4803. end;
  4804. inc(insentry);
  4805. end;
  4806. if InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX then
  4807. begin
  4808. case RegBCSTSizeMask of
  4809. 0: ; // ignore;
  4810. OT_BITSB32: begin
  4811. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbBCST32;
  4812. InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 4;
  4813. end;
  4814. OT_BITSB64: begin
  4815. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbBCST64;
  4816. InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 2;
  4817. end;
  4818. else begin
  4819. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbMultiple;
  4820. end;;
  4821. end;
  4822. end;
  4823. if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
  4824. (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
  4825. begin
  4826. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
  4827. begin
  4828. if ((RegXMMSizeMask = OT_BITS128) or (RegXMMSizeMask = 0)) and
  4829. ((RegYMMSizeMask = OT_BITS256) or (RegYMMSizeMask = 0)) and
  4830. ((RegZMMSizeMask = OT_BITS512) or (RegZMMSizeMask = 0)) and
  4831. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) <> 0) then
  4832. begin
  4833. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
  4834. end;
  4835. end
  4836. else if (RegMMXSizeMask or RegMMXConstSizeMask) <> 0 then
  4837. begin
  4838. if ((RegMMXSizeMask or RegMMXConstSizeMask) = OT_BITS64) and
  4839. ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS128) and
  4840. ((RegYMMSizeMask or RegYMMConstSizeMask) = 0) and
  4841. ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  4842. begin
  4843. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  4844. end;
  4845. end
  4846. else if (((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS128) or ((RegXMMSizeMask or RegXMMConstSizeMask) = 0)) and
  4847. (((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) or ((RegYMMSizeMask or RegYMMConstSizeMask) = 0)) and
  4848. (((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS512) or ((RegZMMSizeMask or RegZMMConstSizeMask) = 0)) and
  4849. (((RegXMMSizeMask or RegXMMConstSizeMask or
  4850. RegYMMSizeMask or RegYMMConstSizeMask or
  4851. RegZMMSizeMask or RegZMMConstSizeMask)) <> 0) then
  4852. begin
  4853. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  4854. end
  4855. else if (RegXMMSizeMask or RegXMMConstSizeMask = OT_BITS16) and
  4856. (RegYMMSizeMask or RegYMMConstSizeMask = OT_BITS32) and
  4857. (RegZMMSizeMask or RegZMMConstSizeMask = 0) then
  4858. begin
  4859. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
  4860. end
  4861. else if (RegXMMSizeMask or RegXMMConstSizeMask = OT_BITS16) and
  4862. (RegYMMSizeMask or RegYMMConstSizeMask = OT_BITS32) and
  4863. (RegZMMSizeMask or RegZMMConstSizeMask = OT_BITS64) then
  4864. begin
  4865. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32z64;
  4866. end
  4867. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS32) and
  4868. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS64) then
  4869. begin
  4870. if ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  4871. begin
  4872. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
  4873. end
  4874. else if ((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS128) then
  4875. begin
  4876. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64z128;
  4877. end;
  4878. end
  4879. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  4880. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS128) and
  4881. ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  4882. begin
  4883. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  4884. end
  4885. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  4886. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS128) and
  4887. ((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS256) then
  4888. begin
  4889. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128z256;
  4890. end
  4891. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  4892. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) and
  4893. ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  4894. begin
  4895. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
  4896. end
  4897. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  4898. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) and
  4899. ((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS512) then
  4900. begin
  4901. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256z512;
  4902. end
  4903. else if ((RegXMMConstSizeMask = 0) or (RegXMMConstSizeMask = OT_BITS128)) and
  4904. ((RegYMMConstSizeMask = 0) or (RegYMMConstSizeMask = OT_BITS256)) and
  4905. ((RegZMMConstSizeMask = 0) or (RegZMMConstSizeMask = OT_BITS512)) and
  4906. ((RegXMMConstSizeMask or RegYMMConstSizeMask or RegZMMConstSizeMask) <> 0) and
  4907. (
  4908. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS128) or
  4909. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS256) or
  4910. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS512)
  4911. ) then
  4912. begin
  4913. case RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask of
  4914. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst128;
  4915. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst256;
  4916. OT_BITS512: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst512;
  4917. else InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMultiple;
  4918. end;
  4919. end
  4920. else
  4921. begin
  4922. if not(
  4923. (AsmOp = A_CVTSI2SS) or
  4924. (AsmOp = A_CVTSI2SD) or
  4925. (AsmOp = A_CVTPD2DQ) or
  4926. (AsmOp = A_VCVTPD2DQ) or
  4927. (AsmOp = A_VCVTPD2PS) or
  4928. (AsmOp = A_VCVTSI2SD) or
  4929. (AsmOp = A_VCVTSI2SS) or
  4930. (AsmOp = A_VCVTTPD2DQ) or
  4931. (AsmOp = A_VCVTPD2UDQ) or
  4932. (AsmOp = A_VCVTQQ2PS) or
  4933. (AsmOp = A_VCVTTPD2UDQ) or
  4934. (AsmOp = A_VCVTUQQ2PS) or
  4935. (AsmOp = A_VCVTUSI2SD) or
  4936. (AsmOp = A_VCVTUSI2SS) or
  4937. // TODO check
  4938. (AsmOp = A_VCMPSS)
  4939. ) then
  4940. InternalError(777205);
  4941. end;
  4942. end
  4943. else if (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) and
  4944. (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnknown) and
  4945. (not(ExistsMemRef)) then
  4946. begin
  4947. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiNoMemRef;
  4948. end;
  4949. end;
  4950. end;
  4951. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  4952. begin
  4953. // only supported intructiones with SSE- or AVX-operands
  4954. if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
  4955. begin
  4956. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnknown;
  4957. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnknown;
  4958. end;
  4959. end;
  4960. end;
  4961. procedure InitAsm;
  4962. begin
  4963. build_spilling_operation_type_table;
  4964. if not assigned(instabcache) then
  4965. BuildInsTabCache;
  4966. if not assigned(InsTabMemRefSizeInfoCache) then
  4967. BuildInsTabMemRefSizeInfoCache;
  4968. end;
  4969. procedure DoneAsm;
  4970. begin
  4971. if assigned(operation_type_table) then
  4972. begin
  4973. dispose(operation_type_table);
  4974. operation_type_table:=nil;
  4975. end;
  4976. if assigned(instabcache) then
  4977. begin
  4978. dispose(instabcache);
  4979. instabcache:=nil;
  4980. end;
  4981. if assigned(InsTabMemRefSizeInfoCache) then
  4982. begin
  4983. dispose(InsTabMemRefSizeInfoCache);
  4984. InsTabMemRefSizeInfoCache:=nil;
  4985. end;
  4986. end;
  4987. begin
  4988. cai_align:=tai_align;
  4989. cai_cpu:=taicpu;
  4990. end.