aasmcpu.pas 135 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. symtype,
  28. aasmbase,aasmtai,aasmdata,aasmsym,
  29. ogbase;
  30. const
  31. { "mov reg,reg" source operand number }
  32. O_MOV_SOURCE = 0;
  33. { "mov reg,reg" destination operand number }
  34. O_MOV_DEST = 1;
  35. { Operand types }
  36. OT_NONE = $00000000;
  37. { Bits 0..7: sizes }
  38. OT_BITS8 = $00000001;
  39. OT_BITS16 = $00000002;
  40. OT_BITS32 = $00000004;
  41. OT_BITS64 = $00000008; { x86_64 and FPU }
  42. OT_BITS128 = $10000000; { 16 byte SSE }
  43. OT_BITS256 = $20000000; { 32 byte AVX }
  44. OT_BITS80 = $00000010; { FPU only }
  45. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  46. OT_NEAR = $00000040;
  47. OT_SHORT = $00000080;
  48. { TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
  49. but this requires adjusting the opcode table }
  50. OT_SIZE_MASK = $3000001F; { all the size attributes }
  51. OT_NON_SIZE = longint(not OT_SIZE_MASK);
  52. { Bits 8..11: modifiers }
  53. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  54. OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
  55. OT_COLON = $00000400; { operand is followed by a colon }
  56. OT_MODIFIER_MASK = $00000F00;
  57. { Bits 12..15: type of operand }
  58. OT_REGISTER = $00001000;
  59. OT_IMMEDIATE = $00002000;
  60. OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
  61. OT_REGMEM = $00008000; { for r/m, ie EA, operands }
  62. OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
  63. OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
  64. { Bits 20..22, 24..26: register classes
  65. otf_* consts are not used alone, only to build other constants. }
  66. otf_reg_cdt = $00100000;
  67. otf_reg_gpr = $00200000;
  68. otf_reg_sreg = $00400000;
  69. otf_reg_fpu = $01000000;
  70. otf_reg_mmx = $02000000;
  71. otf_reg_xmm = $04000000;
  72. otf_reg_ymm = $08000000;
  73. { Bits 16..19: subclasses, meaning depends on classes field }
  74. otf_sub0 = $00010000;
  75. otf_sub1 = $00020000;
  76. otf_sub2 = $00040000;
  77. otf_sub3 = $00080000;
  78. OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
  79. OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_fpu or otf_reg_mmx or otf_reg_xmm or otf_reg_ymm;
  80. { register class 0: CRx, DRx and TRx }
  81. {$ifdef x86_64}
  82. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
  83. {$else x86_64}
  84. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
  85. {$endif x86_64}
  86. OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
  87. OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
  88. OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
  89. OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
  90. { register class 1: general-purpose registers }
  91. OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
  92. OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
  93. OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
  94. OT_REG16 = OT_REG_GPR or OT_BITS16;
  95. OT_REG32 = OT_REG_GPR or OT_BITS32;
  96. OT_REG64 = OT_REG_GPR or OT_BITS64;
  97. { GPR subclass 0: accumulator: AL, AX, EAX or RAX }
  98. OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
  99. OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
  100. OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
  101. OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
  102. {$ifdef x86_64}
  103. OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
  104. {$endif x86_64}
  105. { GPR subclass 1: counter: CL, CX, ECX or RCX }
  106. OT_REG_COUNT = OT_REG_GPR or otf_sub1;
  107. OT_REG_CL = OT_REG_COUNT or OT_BITS8;
  108. OT_REG_CX = OT_REG_COUNT or OT_BITS16;
  109. OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
  110. {$ifdef x86_64}
  111. OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
  112. {$endif x86_64}
  113. { GPR subclass 2: data register: DL, DX, EDX or RDX }
  114. OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
  115. OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
  116. { register class 2: Segment registers }
  117. OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
  118. OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
  119. OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
  120. OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
  121. { register class 3: FPU registers }
  122. OT_FPUREG = OT_REGISTER or otf_reg_fpu;
  123. OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
  124. { register class 4: MMX (both reg and r/m) }
  125. OT_MMXREG = OT_REGNORM or otf_reg_mmx;
  126. OT_MMXRM = OT_REGMEM or otf_reg_mmx;
  127. { register class 5: XMM (both reg and r/m) }
  128. OT_XMMREG = OT_REGNORM or otf_reg_xmm;
  129. OT_XMMRM = OT_REGMEM or otf_reg_xmm;
  130. OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
  131. OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
  132. { register class 5: XMM (both reg and r/m) }
  133. OT_YMMREG = OT_REGNORM or otf_reg_ymm;
  134. OT_YMMRM = OT_REGMEM or otf_reg_ymm;
  135. OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
  136. OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
  137. { Vector-Memory operands }
  138. OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64;
  139. { Memory operands }
  140. OT_MEM8 = OT_MEMORY or OT_BITS8;
  141. OT_MEM16 = OT_MEMORY or OT_BITS16;
  142. OT_MEM32 = OT_MEMORY or OT_BITS32;
  143. OT_MEM64 = OT_MEMORY or OT_BITS64;
  144. OT_MEM128 = OT_MEMORY or OT_BITS128;
  145. OT_MEM256 = OT_MEMORY or OT_BITS256;
  146. OT_MEM80 = OT_MEMORY or OT_BITS80;
  147. OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
  148. { simple [address] offset }
  149. { Matches any type of r/m operand }
  150. OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM;
  151. { Immediate operands }
  152. OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
  153. OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
  154. OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
  155. OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
  156. OT_ONENESS = otf_sub0; { special type of immediate operand }
  157. OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
  158. { Size of the instruction table converted by nasmconv.pas }
  159. {$if defined(x86_64)}
  160. instabentries = {$i x8664nop.inc}
  161. {$elseif defined(i386)}
  162. instabentries = {$i i386nop.inc}
  163. {$elseif defined(i8086)}
  164. instabentries = {$i i8086nop.inc}
  165. {$endif}
  166. maxinfolen = 8;
  167. MaxInsChanges = 3; { Max things a instruction can change }
  168. type
  169. { What an instruction can change. Needed for optimizer and spilling code.
  170. Note: The order of this enumeration is should not be changed! }
  171. TInsChange = (Ch_None,
  172. {Read from a register}
  173. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  174. {write from a register}
  175. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  176. {read and write from/to a register}
  177. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  178. {modify the contents of a register with the purpose of using
  179. this changed content afterwards (add/sub/..., but e.g. not rep
  180. or movsd)}
  181. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  182. Ch_CDirFlag {clear direction flag}, Ch_SDirFlag {set dir flag},
  183. Ch_RFlags, Ch_WFlags, Ch_RWFlags, Ch_FPU,
  184. Ch_Rop1, Ch_Wop1, Ch_RWop1,Ch_Mop1,
  185. Ch_Rop2, Ch_Wop2, Ch_RWop2,Ch_Mop2,
  186. Ch_Rop3, Ch_WOp3, Ch_RWOp3,Ch_Mop3,
  187. Ch_WMemEDI,
  188. Ch_All,
  189. { x86_64 registers }
  190. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  191. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  192. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  193. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
  194. );
  195. TInsProp = packed record
  196. Ch : Array[1..MaxInsChanges] of TInsChange;
  197. end;
  198. TMemRefSizeInfo = (msiUnkown, msiUnsupported, msiNoSize,
  199. msiMultiple, msiMultiple8, msiMultiple16, msiMultiple32,
  200. msiMultiple64, msiMultiple128, msiMultiple256,
  201. msiMemRegSize, msiMemRegx16y32, msiMemRegx32y64, msiMemRegx64y128, msiMemRegx64y256,
  202. msiMem8, msiMem16, msiMem32, msiMem64, msiMem128, msiMem256,
  203. msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  204. msiVMemMultiple, msiVMemRegSize);
  205. TConstSizeInfo = (csiUnkown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
  206. TInsTabMemRefSizeInfoRec = record
  207. MemRefSize : TMemRefSizeInfo;
  208. ExistsSSEAVX: boolean;
  209. ConstSize : TConstSizeInfo;
  210. end;
  211. const
  212. MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultiple8,
  213. msiMultiple16, msiMultiple32,
  214. msiMultiple64, msiMultiple128,
  215. msiMultiple256, msiVMemMultiple];
  216. MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  217. msiVMemMultiple, msiVMemRegSize];
  218. InsProp : array[tasmop] of TInsProp =
  219. {$if defined(x86_64)}
  220. {$i x8664pro.inc}
  221. {$elseif defined(i386)}
  222. {$i i386prop.inc}
  223. {$elseif defined(i8086)}
  224. {$i i8086prop.inc}
  225. {$endif}
  226. type
  227. TOperandOrder = (op_intel,op_att);
  228. tinsentry=packed record
  229. opcode : tasmop;
  230. ops : byte;
  231. optypes : array[0..max_operands-1] of longint;
  232. code : array[0..maxinfolen] of char;
  233. flags : int64;
  234. end;
  235. pinsentry=^tinsentry;
  236. { alignment for operator }
  237. tai_align = class(tai_align_abstract)
  238. reg : tregister;
  239. constructor create(b:byte);override;
  240. constructor create_op(b: byte; _op: byte);override;
  241. function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
  242. end;
  243. taicpu = class(tai_cpu_abstract_sym)
  244. opsize : topsize;
  245. constructor op_none(op : tasmop);
  246. constructor op_none(op : tasmop;_size : topsize);
  247. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  248. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  249. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  250. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  251. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  252. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  253. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  254. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  255. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  256. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  257. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  258. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  259. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  260. constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  261. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  262. { this is for Jmp instructions }
  263. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  264. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  265. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  266. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  267. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  268. procedure changeopsize(siz:topsize);
  269. function GetString:string;
  270. { This is a workaround for the GAS non commutative fpu instruction braindamage.
  271. Early versions of the UnixWare assembler had a bug where some fpu instructions
  272. were reversed and GAS still keeps this "feature" for compatibility.
  273. for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
  274. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
  275. http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
  276. Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
  277. when generating output for other assemblers, the opcodes must be fixed before writing them.
  278. This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
  279. because in case of smartlinking assembler is generated twice so at the second run wrong
  280. assembler is generated.
  281. }
  282. function FixNonCommutativeOpcodes: tasmop;
  283. private
  284. FOperandOrder : TOperandOrder;
  285. procedure init(_size : topsize); { this need to be called by all constructor }
  286. public
  287. { the next will reset all instructions that can change in pass 2 }
  288. procedure ResetPass1;override;
  289. procedure ResetPass2;override;
  290. function CheckIfValid:boolean;
  291. function Pass1(objdata:TObjData):longint;override;
  292. procedure Pass2(objdata:TObjData);override;
  293. procedure SetOperandOrder(order:TOperandOrder);
  294. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  295. { register spilling code }
  296. function spilling_get_operation_type(opnr: longint): topertype;override;
  297. {$ifdef i8086}
  298. procedure loadsegsymbol(opidx:longint;s:tasmsymbol);
  299. {$endif i8086}
  300. private
  301. { next fields are filled in pass1, so pass2 is faster }
  302. insentry : PInsEntry;
  303. insoffset : longint;
  304. LastInsOffset : longint; { need to be public to be reset }
  305. inssize : shortint;
  306. {$ifdef x86_64}
  307. rex : byte;
  308. {$endif x86_64}
  309. function InsEnd:longint;
  310. procedure create_ot(objdata:TObjData);
  311. function Matches(p:PInsEntry):boolean;
  312. function calcsize(p:PInsEntry):shortint;
  313. procedure gencode(objdata:TObjData);
  314. function NeedAddrPrefix(opidx:byte):boolean;
  315. procedure Swapoperands;
  316. function FindInsentry(objdata:TObjData):boolean;
  317. end;
  318. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  319. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  320. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  321. procedure InitAsm;
  322. procedure DoneAsm;
  323. implementation
  324. uses
  325. cutils,
  326. globals,
  327. systems,
  328. procinfo,
  329. itcpugas,
  330. symsym,
  331. cpuinfo;
  332. {*****************************************************************************
  333. Instruction table
  334. *****************************************************************************}
  335. const
  336. {Instruction flags }
  337. IF_NONE = $00000000;
  338. IF_SM = $00000001; { size match first two operands }
  339. IF_SM2 = $00000002;
  340. IF_SB = $00000004; { unsized operands can't be non-byte }
  341. IF_SW = $00000008; { unsized operands can't be non-word }
  342. IF_SD = $00000010; { unsized operands can't be nondword }
  343. IF_SMASK = $0000001f;
  344. IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
  345. IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
  346. IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
  347. IF_ARMASK = $00000060; { mask for unsized argument spec }
  348. IF_ARSHIFT = 5; { LSB of IF_ARMASK }
  349. IF_PRIV = $00000100; { it's a privileged instruction }
  350. IF_SMM = $00000200; { it's only valid in SMM }
  351. IF_PROT = $00000400; { it's protected mode only }
  352. IF_NOX86_64 = $00000800; { removed instruction in x86_64 }
  353. IF_UNDOC = $00001000; { it's an undocumented instruction }
  354. IF_FPU = $00002000; { it's an FPU instruction }
  355. IF_MMX = $00004000; { it's an MMX instruction }
  356. { it's a 3DNow! instruction }
  357. IF_3DNOW = $00008000;
  358. { it's a SSE (KNI, MMX2) instruction }
  359. IF_SSE = $00010000;
  360. { SSE2 instructions }
  361. IF_SSE2 = $00020000;
  362. { SSE3 instructions }
  363. IF_SSE3 = $00040000;
  364. { SSE64 instructions }
  365. IF_SSE64 = $00080000;
  366. { the mask for processor types }
  367. {IF_PMASK = longint($FF000000);}
  368. { the mask for disassembly "prefer" }
  369. {IF_PFMASK = longint($F001FF00);}
  370. { SVM instructions }
  371. IF_SVM = $00100000;
  372. { SSE4 instructions }
  373. IF_SSE4 = $00200000;
  374. { TODO: These flags were added to make x86ins.dat more readable.
  375. Values must be reassigned to make any other use of them. }
  376. IF_SSSE3 = $00200000;
  377. IF_SSE41 = $00200000;
  378. IF_SSE42 = $00200000;
  379. IF_AVX = $00200000;
  380. IF_AVX2 = $00200000;
  381. IF_BMI1 = $00200000;
  382. IF_BMI2 = $00200000;
  383. IF_16BITONLY = $00200000;
  384. IF_FMA = $00200000;
  385. IF_FMA4 = $00200000;
  386. IF_PLEVEL = $0F000000; { mask for processor level }
  387. IF_8086 = $00000000; { 8086 instruction }
  388. IF_186 = $01000000; { 186+ instruction }
  389. IF_286 = $02000000; { 286+ instruction }
  390. IF_386 = $03000000; { 386+ instruction }
  391. IF_486 = $04000000; { 486+ instruction }
  392. IF_PENT = $05000000; { Pentium instruction }
  393. IF_P6 = $06000000; { P6 instruction }
  394. IF_KATMAI = $07000000; { Katmai instructions }
  395. IF_WILLAMETTE = $08000000; { Willamette instructions }
  396. IF_PRESCOTT = $09000000; { Prescott instructions }
  397. IF_X86_64 = $0a000000;
  398. IF_CYRIX = $0b000000; { Cyrix-specific instruction }
  399. IF_AMD = $0c000000; { AMD-specific instruction }
  400. IF_CENTAUR = $0d000000; { centaur-specific instruction }
  401. IF_SANDYBRIDGE = $0e000000; { Sandybridge-specific instruction }
  402. IF_NEC = $0f000000; { NEC V20/V30 instruction }
  403. { added flags }
  404. IF_PRE = $40000000; { it's a prefix instruction }
  405. IF_PASS2 = $80000000; { if the instruction can change in a second pass }
  406. type
  407. TInsTabCache=array[TasmOp] of longint;
  408. PInsTabCache=^TInsTabCache;
  409. TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
  410. PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
  411. const
  412. {$if defined(x86_64)}
  413. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  414. {$elseif defined(i386)}
  415. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  416. {$elseif defined(i8086)}
  417. InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
  418. {$endif}
  419. var
  420. InsTabCache : PInsTabCache;
  421. InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
  422. const
  423. {$if defined(x86_64)}
  424. { Intel style operands ! }
  425. opsize_2_type:array[0..2,topsize] of longint=(
  426. (OT_NONE,
  427. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  428. OT_BITS16,OT_BITS32,OT_BITS64,
  429. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  430. OT_BITS64,
  431. OT_NEAR,OT_FAR,OT_SHORT,
  432. OT_NONE,
  433. OT_BITS128,
  434. OT_BITS256
  435. ),
  436. (OT_NONE,
  437. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  438. OT_BITS16,OT_BITS32,OT_BITS64,
  439. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  440. OT_BITS64,
  441. OT_NEAR,OT_FAR,OT_SHORT,
  442. OT_NONE,
  443. OT_BITS128,
  444. OT_BITS256
  445. ),
  446. (OT_NONE,
  447. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  448. OT_BITS16,OT_BITS32,OT_BITS64,
  449. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  450. OT_BITS64,
  451. OT_NEAR,OT_FAR,OT_SHORT,
  452. OT_NONE,
  453. OT_BITS128,
  454. OT_BITS256
  455. )
  456. );
  457. reg_ot_table : array[tregisterindex] of longint = (
  458. {$i r8664ot.inc}
  459. );
  460. {$elseif defined(i386)}
  461. { Intel style operands ! }
  462. opsize_2_type:array[0..2,topsize] of longint=(
  463. (OT_NONE,
  464. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  465. OT_BITS16,OT_BITS32,OT_BITS64,
  466. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  467. OT_BITS64,
  468. OT_NEAR,OT_FAR,OT_SHORT,
  469. OT_NONE,
  470. OT_BITS128,
  471. OT_BITS256
  472. ),
  473. (OT_NONE,
  474. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  475. OT_BITS16,OT_BITS32,OT_BITS64,
  476. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  477. OT_BITS64,
  478. OT_NEAR,OT_FAR,OT_SHORT,
  479. OT_NONE,
  480. OT_BITS128,
  481. OT_BITS256
  482. ),
  483. (OT_NONE,
  484. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  485. OT_BITS16,OT_BITS32,OT_BITS64,
  486. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  487. OT_BITS64,
  488. OT_NEAR,OT_FAR,OT_SHORT,
  489. OT_NONE,
  490. OT_BITS128,
  491. OT_BITS256
  492. )
  493. );
  494. reg_ot_table : array[tregisterindex] of longint = (
  495. {$i r386ot.inc}
  496. );
  497. {$elseif defined(i8086)}
  498. { Intel style operands ! }
  499. opsize_2_type:array[0..2,topsize] of longint=(
  500. (OT_NONE,
  501. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  502. OT_BITS16,OT_BITS32,OT_BITS64,
  503. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  504. OT_BITS64,
  505. OT_NEAR,OT_FAR,OT_SHORT,
  506. OT_NONE,
  507. OT_BITS128,
  508. OT_BITS256
  509. ),
  510. (OT_NONE,
  511. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  512. OT_BITS16,OT_BITS32,OT_BITS64,
  513. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  514. OT_BITS64,
  515. OT_NEAR,OT_FAR,OT_SHORT,
  516. OT_NONE,
  517. OT_BITS128,
  518. OT_BITS256
  519. ),
  520. (OT_NONE,
  521. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  522. OT_BITS16,OT_BITS32,OT_BITS64,
  523. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  524. OT_BITS64,
  525. OT_NEAR,OT_FAR,OT_SHORT,
  526. OT_NONE,
  527. OT_BITS128,
  528. OT_BITS256
  529. )
  530. );
  531. reg_ot_table : array[tregisterindex] of longint = (
  532. {$i r8086ot.inc}
  533. );
  534. {$endif}
  535. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  536. begin
  537. result := InsTabMemRefSizeInfoCache^[aAsmop];
  538. end;
  539. { Operation type for spilling code }
  540. type
  541. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  542. var
  543. operation_type_table : ^toperation_type_table;
  544. {****************************************************************************
  545. TAI_ALIGN
  546. ****************************************************************************}
  547. constructor tai_align.create(b: byte);
  548. begin
  549. inherited create(b);
  550. reg:=NR_ECX;
  551. end;
  552. constructor tai_align.create_op(b: byte; _op: byte);
  553. begin
  554. inherited create_op(b,_op);
  555. reg:=NR_NO;
  556. end;
  557. function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
  558. const
  559. { Updated according to
  560. Software Optimization Guide for AMD Family 15h Processors, Verison 3.08, January 2014
  561. and
  562. Intel 64 and IA-32 Architectures Software Developer’s Manual
  563. Volume 2B: Instruction Set Reference, N-Z, January 2015
  564. }
  565. alignarray_cmovcpus:array[0..10] of string[11]=(
  566. #$66#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  567. #$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  568. #$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  569. #$0F#$1F#$84#$00#$00#$00#$00#$00,
  570. #$0F#$1F#$80#$00#$00#$00#$00,
  571. #$66#$0F#$1F#$44#$00#$00,
  572. #$0F#$1F#$44#$00#$00,
  573. #$0F#$1F#$40#$00,
  574. #$0F#$1F#$00,
  575. #$66#$90,
  576. #$90);
  577. alignarray:array[0..5] of string[8]=(
  578. #$8D#$B4#$26#$00#$00#$00#$00,
  579. #$8D#$B6#$00#$00#$00#$00,
  580. #$8D#$74#$26#$00,
  581. #$8D#$76#$00,
  582. #$89#$F6,
  583. #$90);
  584. var
  585. bufptr : pchar;
  586. j : longint;
  587. localsize: byte;
  588. begin
  589. inherited calculatefillbuf(buf,executable);
  590. if not(use_op) and executable then
  591. begin
  592. bufptr:=pchar(@buf);
  593. { fillsize may still be used afterwards, so don't modify }
  594. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  595. localsize:=fillsize;
  596. while (localsize>0) do
  597. begin
  598. {$ifndef i8086}
  599. if CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype] then
  600. begin
  601. for j:=low(alignarray_cmovcpus) to high(alignarray_cmovcpus) do
  602. if (localsize>=length(alignarray_cmovcpus[j])) then
  603. break;
  604. move(alignarray_cmovcpus[j][1],bufptr^,length(alignarray_cmovcpus[j]));
  605. inc(bufptr,length(alignarray_cmovcpus[j]));
  606. dec(localsize,length(alignarray_cmovcpus[j]));
  607. end
  608. else
  609. {$endif not i8086}
  610. begin
  611. for j:=low(alignarray) to high(alignarray) do
  612. if (localsize>=length(alignarray[j])) then
  613. break;
  614. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  615. inc(bufptr,length(alignarray[j]));
  616. dec(localsize,length(alignarray[j]));
  617. end
  618. end;
  619. end;
  620. calculatefillbuf:=pchar(@buf);
  621. end;
  622. {*****************************************************************************
  623. Taicpu Constructors
  624. *****************************************************************************}
  625. procedure taicpu.changeopsize(siz:topsize);
  626. begin
  627. opsize:=siz;
  628. end;
  629. procedure taicpu.init(_size : topsize);
  630. begin
  631. { default order is att }
  632. FOperandOrder:=op_att;
  633. segprefix:=NR_NO;
  634. opsize:=_size;
  635. insentry:=nil;
  636. LastInsOffset:=-1;
  637. InsOffset:=0;
  638. InsSize:=0;
  639. end;
  640. constructor taicpu.op_none(op : tasmop);
  641. begin
  642. inherited create(op);
  643. init(S_NO);
  644. end;
  645. constructor taicpu.op_none(op : tasmop;_size : topsize);
  646. begin
  647. inherited create(op);
  648. init(_size);
  649. end;
  650. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  651. begin
  652. inherited create(op);
  653. init(_size);
  654. ops:=1;
  655. loadreg(0,_op1);
  656. end;
  657. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  658. begin
  659. inherited create(op);
  660. init(_size);
  661. ops:=1;
  662. loadconst(0,_op1);
  663. end;
  664. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  665. begin
  666. inherited create(op);
  667. init(_size);
  668. ops:=1;
  669. loadref(0,_op1);
  670. end;
  671. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  672. begin
  673. inherited create(op);
  674. init(_size);
  675. ops:=2;
  676. loadreg(0,_op1);
  677. loadreg(1,_op2);
  678. end;
  679. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  680. begin
  681. inherited create(op);
  682. init(_size);
  683. ops:=2;
  684. loadreg(0,_op1);
  685. loadconst(1,_op2);
  686. end;
  687. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  688. begin
  689. inherited create(op);
  690. init(_size);
  691. ops:=2;
  692. loadreg(0,_op1);
  693. loadref(1,_op2);
  694. end;
  695. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  696. begin
  697. inherited create(op);
  698. init(_size);
  699. ops:=2;
  700. loadconst(0,_op1);
  701. loadreg(1,_op2);
  702. end;
  703. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  704. begin
  705. inherited create(op);
  706. init(_size);
  707. ops:=2;
  708. loadconst(0,_op1);
  709. loadconst(1,_op2);
  710. end;
  711. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  712. begin
  713. inherited create(op);
  714. init(_size);
  715. ops:=2;
  716. loadconst(0,_op1);
  717. loadref(1,_op2);
  718. end;
  719. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  720. begin
  721. inherited create(op);
  722. init(_size);
  723. ops:=2;
  724. loadref(0,_op1);
  725. loadreg(1,_op2);
  726. end;
  727. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  728. begin
  729. inherited create(op);
  730. init(_size);
  731. ops:=3;
  732. loadreg(0,_op1);
  733. loadreg(1,_op2);
  734. loadreg(2,_op3);
  735. end;
  736. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  737. begin
  738. inherited create(op);
  739. init(_size);
  740. ops:=3;
  741. loadconst(0,_op1);
  742. loadreg(1,_op2);
  743. loadreg(2,_op3);
  744. end;
  745. constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  746. begin
  747. inherited create(op);
  748. init(_size);
  749. ops:=3;
  750. loadref(0,_op1);
  751. loadreg(1,_op2);
  752. loadreg(2,_op3);
  753. end;
  754. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  755. begin
  756. inherited create(op);
  757. init(_size);
  758. ops:=3;
  759. loadconst(0,_op1);
  760. loadref(1,_op2);
  761. loadreg(2,_op3);
  762. end;
  763. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  764. begin
  765. inherited create(op);
  766. init(_size);
  767. ops:=3;
  768. loadconst(0,_op1);
  769. loadreg(1,_op2);
  770. loadref(2,_op3);
  771. end;
  772. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  773. begin
  774. inherited create(op);
  775. init(_size);
  776. condition:=cond;
  777. ops:=1;
  778. loadsymbol(0,_op1,0);
  779. end;
  780. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  781. begin
  782. inherited create(op);
  783. init(_size);
  784. ops:=1;
  785. loadsymbol(0,_op1,0);
  786. end;
  787. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  788. begin
  789. inherited create(op);
  790. init(_size);
  791. ops:=1;
  792. loadsymbol(0,_op1,_op1ofs);
  793. end;
  794. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  795. begin
  796. inherited create(op);
  797. init(_size);
  798. ops:=2;
  799. loadsymbol(0,_op1,_op1ofs);
  800. loadreg(1,_op2);
  801. end;
  802. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  803. begin
  804. inherited create(op);
  805. init(_size);
  806. ops:=2;
  807. loadsymbol(0,_op1,_op1ofs);
  808. loadref(1,_op2);
  809. end;
  810. function taicpu.GetString:string;
  811. var
  812. i : longint;
  813. s : string;
  814. addsize : boolean;
  815. begin
  816. s:='['+std_op2str[opcode];
  817. for i:=0 to ops-1 do
  818. begin
  819. with oper[i]^ do
  820. begin
  821. if i=0 then
  822. s:=s+' '
  823. else
  824. s:=s+',';
  825. { type }
  826. addsize:=false;
  827. if (ot and OT_XMMREG)=OT_XMMREG then
  828. s:=s+'xmmreg'
  829. else
  830. if (ot and OT_YMMREG)=OT_YMMREG then
  831. s:=s+'ymmreg'
  832. else
  833. if (ot and OT_MMXREG)=OT_MMXREG then
  834. s:=s+'mmxreg'
  835. else
  836. if (ot and OT_FPUREG)=OT_FPUREG then
  837. s:=s+'fpureg'
  838. else
  839. if (ot and OT_REGISTER)=OT_REGISTER then
  840. begin
  841. s:=s+'reg';
  842. addsize:=true;
  843. end
  844. else
  845. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  846. begin
  847. s:=s+'imm';
  848. addsize:=true;
  849. end
  850. else
  851. if (ot and OT_MEMORY)=OT_MEMORY then
  852. begin
  853. s:=s+'mem';
  854. addsize:=true;
  855. end
  856. else
  857. s:=s+'???';
  858. { size }
  859. if addsize then
  860. begin
  861. if (ot and OT_BITS8)<>0 then
  862. s:=s+'8'
  863. else
  864. if (ot and OT_BITS16)<>0 then
  865. s:=s+'16'
  866. else
  867. if (ot and OT_BITS32)<>0 then
  868. s:=s+'32'
  869. else
  870. if (ot and OT_BITS64)<>0 then
  871. s:=s+'64'
  872. else
  873. if (ot and OT_BITS128)<>0 then
  874. s:=s+'128'
  875. else
  876. if (ot and OT_BITS256)<>0 then
  877. s:=s+'256'
  878. else
  879. s:=s+'??';
  880. { signed }
  881. if (ot and OT_SIGNED)<>0 then
  882. s:=s+'s';
  883. end;
  884. end;
  885. end;
  886. GetString:=s+']';
  887. end;
  888. procedure taicpu.Swapoperands;
  889. var
  890. p : POper;
  891. begin
  892. { Fix the operands which are in AT&T style and we need them in Intel style }
  893. case ops of
  894. 0,1:
  895. ;
  896. 2 : begin
  897. { 0,1 -> 1,0 }
  898. p:=oper[0];
  899. oper[0]:=oper[1];
  900. oper[1]:=p;
  901. end;
  902. 3 : begin
  903. { 0,1,2 -> 2,1,0 }
  904. p:=oper[0];
  905. oper[0]:=oper[2];
  906. oper[2]:=p;
  907. end;
  908. 4 : begin
  909. { 0,1,2,3 -> 3,2,1,0 }
  910. p:=oper[0];
  911. oper[0]:=oper[3];
  912. oper[3]:=p;
  913. p:=oper[1];
  914. oper[1]:=oper[2];
  915. oper[2]:=p;
  916. end;
  917. else
  918. internalerror(201108141);
  919. end;
  920. end;
  921. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  922. begin
  923. if FOperandOrder<>order then
  924. begin
  925. Swapoperands;
  926. FOperandOrder:=order;
  927. end;
  928. end;
  929. function taicpu.FixNonCommutativeOpcodes: tasmop;
  930. begin
  931. result:=opcode;
  932. { we need ATT order }
  933. SetOperandOrder(op_att);
  934. if (
  935. (ops=2) and
  936. (oper[0]^.typ=top_reg) and
  937. (oper[1]^.typ=top_reg) and
  938. { if the first is ST and the second is also a register
  939. it is necessarily ST1 .. ST7 }
  940. ((oper[0]^.reg=NR_ST) or
  941. (oper[0]^.reg=NR_ST0))
  942. ) or
  943. { ((ops=1) and
  944. (oper[0]^.typ=top_reg) and
  945. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  946. (ops=0) then
  947. begin
  948. if opcode=A_FSUBR then
  949. result:=A_FSUB
  950. else if opcode=A_FSUB then
  951. result:=A_FSUBR
  952. else if opcode=A_FDIVR then
  953. result:=A_FDIV
  954. else if opcode=A_FDIV then
  955. result:=A_FDIVR
  956. else if opcode=A_FSUBRP then
  957. result:=A_FSUBP
  958. else if opcode=A_FSUBP then
  959. result:=A_FSUBRP
  960. else if opcode=A_FDIVRP then
  961. result:=A_FDIVP
  962. else if opcode=A_FDIVP then
  963. result:=A_FDIVRP;
  964. end;
  965. if (
  966. (ops=1) and
  967. (oper[0]^.typ=top_reg) and
  968. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  969. (oper[0]^.reg<>NR_ST)
  970. ) then
  971. begin
  972. if opcode=A_FSUBRP then
  973. result:=A_FSUBP
  974. else if opcode=A_FSUBP then
  975. result:=A_FSUBRP
  976. else if opcode=A_FDIVRP then
  977. result:=A_FDIVP
  978. else if opcode=A_FDIVP then
  979. result:=A_FDIVRP;
  980. end;
  981. end;
  982. {*****************************************************************************
  983. Assembler
  984. *****************************************************************************}
  985. type
  986. ea = packed record
  987. sib_present : boolean;
  988. bytes : byte;
  989. size : byte;
  990. modrm : byte;
  991. sib : byte;
  992. {$ifdef x86_64}
  993. rex : byte;
  994. {$endif x86_64}
  995. end;
  996. procedure taicpu.create_ot(objdata:TObjData);
  997. {
  998. this function will also fix some other fields which only needs to be once
  999. }
  1000. var
  1001. i,l,relsize : longint;
  1002. currsym : TObjSymbol;
  1003. begin
  1004. if ops=0 then
  1005. exit;
  1006. { update oper[].ot field }
  1007. for i:=0 to ops-1 do
  1008. with oper[i]^ do
  1009. begin
  1010. case typ of
  1011. top_reg :
  1012. begin
  1013. ot:=reg_ot_table[findreg_by_number(reg)];
  1014. end;
  1015. top_ref :
  1016. begin
  1017. if (ref^.refaddr=addr_no)
  1018. {$ifdef i386}
  1019. or (
  1020. (ref^.refaddr in [addr_pic]) and
  1021. { allow any base for assembler blocks }
  1022. ((assigned(current_procinfo) and
  1023. (pi_has_assembler_block in current_procinfo.flags) and
  1024. (ref^.base<>NR_NO)) or (ref^.base=NR_EBX))
  1025. )
  1026. {$endif i386}
  1027. {$ifdef x86_64}
  1028. or (
  1029. (ref^.refaddr in [addr_pic,addr_pic_no_got]) and
  1030. (ref^.base<>NR_NO)
  1031. )
  1032. {$endif x86_64}
  1033. then
  1034. begin
  1035. { create ot field }
  1036. if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
  1037. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1038. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1039. ) then
  1040. // AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
  1041. ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
  1042. (reg_ot_table[findreg_by_number(ref^.index)])
  1043. else if (ref^.base = NR_NO) and
  1044. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1045. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1046. ) then
  1047. // AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
  1048. ot := (OT_REG_GPR) or
  1049. (reg_ot_table[findreg_by_number(ref^.index)])
  1050. else if (ot and OT_SIZE_MASK)=0 then
  1051. ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
  1052. else
  1053. ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
  1054. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  1055. ot:=ot or OT_MEM_OFFS;
  1056. { fix scalefactor }
  1057. if (ref^.index=NR_NO) then
  1058. ref^.scalefactor:=0
  1059. else
  1060. if (ref^.scalefactor=0) then
  1061. ref^.scalefactor:=1;
  1062. end
  1063. else
  1064. begin
  1065. { Jumps use a relative offset which can be 8bit,
  1066. for other opcodes we always need to generate the full
  1067. 32bit address }
  1068. if assigned(objdata) and
  1069. is_jmp then
  1070. begin
  1071. currsym:=objdata.symbolref(ref^.symbol);
  1072. l:=ref^.offset;
  1073. {$push}
  1074. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  1075. if assigned(currsym) then
  1076. inc(l,currsym.address);
  1077. {$pop}
  1078. { when it is a forward jump we need to compensate the
  1079. offset of the instruction since the previous time,
  1080. because the symbol address is then still using the
  1081. 'old-style' addressing.
  1082. For backwards jumps this is not required because the
  1083. address of the symbol is already adjusted to the
  1084. new offset }
  1085. if (l>InsOffset) and (LastInsOffset<>-1) then
  1086. inc(l,InsOffset-LastInsOffset);
  1087. { instruction size will then always become 2 (PFV) }
  1088. relsize:=(InsOffset+2)-l;
  1089. if (relsize>=-128) and (relsize<=127) and
  1090. (
  1091. not assigned(currsym) or
  1092. (currsym.objsection=objdata.currobjsec)
  1093. ) then
  1094. ot:=OT_IMM8 or OT_SHORT
  1095. else
  1096. {$ifdef i8086}
  1097. ot:=OT_IMM16 or OT_NEAR;
  1098. {$else i8086}
  1099. ot:=OT_IMM32 or OT_NEAR;
  1100. {$endif i8086}
  1101. end
  1102. else
  1103. {$ifdef i8086}
  1104. if opsize=S_FAR then
  1105. ot:=OT_IMM16 or OT_FAR
  1106. else
  1107. ot:=OT_IMM16 or OT_NEAR;
  1108. {$else i8086}
  1109. ot:=OT_IMM32 or OT_NEAR;
  1110. {$endif i8086}
  1111. end;
  1112. end;
  1113. top_local :
  1114. begin
  1115. if (ot and OT_SIZE_MASK)=0 then
  1116. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  1117. else
  1118. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  1119. end;
  1120. top_const :
  1121. begin
  1122. // if opcode is a SSE or AVX-instruction then we need a
  1123. // special handling (opsize can different from const-size)
  1124. // (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
  1125. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
  1126. (not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnkown])) then
  1127. begin
  1128. case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
  1129. csiNoSize: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE;
  1130. csiMem8: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS8;
  1131. csiMem16: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS16;
  1132. csiMem32: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS32;
  1133. csiMem64: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS64;
  1134. end;
  1135. end
  1136. else
  1137. begin
  1138. { allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
  1139. { further, allow AAD and AAM with imm. operand }
  1140. if (opsize=S_NO) and not((i in [1,2,3])
  1141. {$ifndef x86_64}
  1142. or ((i=0) and (opcode in [A_AAD,A_AAM]))
  1143. {$endif x86_64}
  1144. ) then
  1145. message(asmr_e_invalid_opcode_and_operand);
  1146. if
  1147. {$ifndef i8086}
  1148. (opsize<>S_W) and
  1149. {$endif not i8086}
  1150. (aint(val)>=-128) and (val<=127) then
  1151. ot:=OT_IMM8 or OT_SIGNED
  1152. else
  1153. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  1154. if (val=1) and (i=1) then
  1155. ot := ot or OT_ONENESS;
  1156. end;
  1157. end;
  1158. top_none :
  1159. begin
  1160. { generated when there was an error in the
  1161. assembler reader. It never happends when generating
  1162. assembler }
  1163. end;
  1164. else
  1165. internalerror(200402266);
  1166. end;
  1167. end;
  1168. end;
  1169. function taicpu.InsEnd:longint;
  1170. begin
  1171. InsEnd:=InsOffset+InsSize;
  1172. end;
  1173. function taicpu.Matches(p:PInsEntry):boolean;
  1174. { * IF_SM stands for Size Match: any operand whose size is not
  1175. * explicitly specified by the template is `really' intended to be
  1176. * the same size as the first size-specified operand.
  1177. * Non-specification is tolerated in the input instruction, but
  1178. * _wrong_ specification is not.
  1179. *
  1180. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  1181. * three-operand instructions such as SHLD: it implies that the
  1182. * first two operands must match in size, but that the third is
  1183. * required to be _unspecified_.
  1184. *
  1185. * IF_SB invokes Size Byte: operands with unspecified size in the
  1186. * template are really bytes, and so no non-byte specification in
  1187. * the input instruction will be tolerated. IF_SW similarly invokes
  1188. * Size Word, and IF_SD invokes Size Doubleword.
  1189. *
  1190. * (The default state if neither IF_SM nor IF_SM2 is specified is
  1191. * that any operand with unspecified size in the template is
  1192. * required to have unspecified size in the instruction too...)
  1193. }
  1194. var
  1195. insot,
  1196. currot,
  1197. i,j,asize,oprs : longint;
  1198. insflags:cardinal;
  1199. siz : array[0..max_operands-1] of longint;
  1200. begin
  1201. result:=false;
  1202. { Check the opcode and operands }
  1203. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  1204. exit;
  1205. {$ifdef i8086}
  1206. { On i8086, we need to skip the i386+ version of Jcc near, if the target
  1207. cpu is earlier than 386. There's another entry, later in the table for
  1208. i8086, which simulates it with i8086 instructions:
  1209. JNcc short +3
  1210. JMP near target }
  1211. if (p^.opcode=A_Jcc) and (current_settings.cputype<cpu_386) and
  1212. ((p^.flags and IF_386)<>0) then
  1213. exit;
  1214. {$endif i8086}
  1215. for i:=0 to p^.ops-1 do
  1216. begin
  1217. insot:=p^.optypes[i];
  1218. currot:=oper[i]^.ot;
  1219. { Check the operand flags }
  1220. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1221. exit;
  1222. { Check if the passed operand size matches with one of
  1223. the supported operand sizes }
  1224. if ((insot and OT_SIZE_MASK)<>0) and
  1225. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1226. exit;
  1227. { "far" matches only with "far" }
  1228. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1229. exit;
  1230. end;
  1231. { Check operand sizes }
  1232. insflags:=p^.flags;
  1233. if insflags and IF_SMASK<>0 then
  1234. begin
  1235. { as default an untyped size can get all the sizes, this is different
  1236. from nasm, but else we need to do a lot checking which opcodes want
  1237. size or not with the automatic size generation }
  1238. asize:=-1;
  1239. if (insflags and IF_SB)<>0 then
  1240. asize:=OT_BITS8
  1241. else if (insflags and IF_SW)<>0 then
  1242. asize:=OT_BITS16
  1243. else if (insflags and IF_SD)<>0 then
  1244. asize:=OT_BITS32;
  1245. if (insflags and IF_ARMASK)<>0 then
  1246. begin
  1247. siz[0]:=-1;
  1248. siz[1]:=-1;
  1249. siz[2]:=-1;
  1250. siz[((insflags and IF_ARMASK) shr IF_ARSHIFT)-1]:=asize;
  1251. end
  1252. else
  1253. begin
  1254. siz[0]:=asize;
  1255. siz[1]:=asize;
  1256. siz[2]:=asize;
  1257. end;
  1258. if (insflags and (IF_SM or IF_SM2))<>0 then
  1259. begin
  1260. if (insflags and IF_SM2)<>0 then
  1261. oprs:=2
  1262. else
  1263. oprs:=p^.ops;
  1264. for i:=0 to oprs-1 do
  1265. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  1266. begin
  1267. for j:=0 to oprs-1 do
  1268. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  1269. break;
  1270. end;
  1271. end
  1272. else
  1273. oprs:=2;
  1274. { Check operand sizes }
  1275. for i:=0 to p^.ops-1 do
  1276. begin
  1277. insot:=p^.optypes[i];
  1278. currot:=oper[i]^.ot;
  1279. if ((insot and OT_SIZE_MASK)=0) and
  1280. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  1281. { Immediates can always include smaller size }
  1282. ((currot and OT_IMMEDIATE)=0) and
  1283. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1284. exit;
  1285. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1286. exit;
  1287. end;
  1288. end;
  1289. if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
  1290. (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1291. begin
  1292. for i:=0 to p^.ops-1 do
  1293. begin
  1294. insot:=p^.optypes[i];
  1295. if ((insot and OT_XMMRM) = OT_XMMRM) OR
  1296. ((insot and OT_YMMRM) = OT_YMMRM) then
  1297. begin
  1298. if (insot and OT_SIZE_MASK) = 0 then
  1299. begin
  1300. case insot and (OT_XMMRM or OT_YMMRM) of
  1301. OT_XMMRM: insot := insot or OT_BITS128;
  1302. OT_YMMRM: insot := insot or OT_BITS256;
  1303. end;
  1304. end;
  1305. end;
  1306. currot:=oper[i]^.ot;
  1307. { Check the operand flags }
  1308. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1309. exit;
  1310. { Check if the passed operand size matches with one of
  1311. the supported operand sizes }
  1312. if ((insot and OT_SIZE_MASK)<>0) and
  1313. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1314. exit;
  1315. end;
  1316. end;
  1317. result:=true;
  1318. end;
  1319. procedure taicpu.ResetPass1;
  1320. begin
  1321. { we need to reset everything here, because the choosen insentry
  1322. can be invalid for a new situation where the previously optimized
  1323. insentry is not correct }
  1324. InsEntry:=nil;
  1325. InsSize:=0;
  1326. LastInsOffset:=-1;
  1327. end;
  1328. procedure taicpu.ResetPass2;
  1329. begin
  1330. { we are here in a second pass, check if the instruction can be optimized }
  1331. if assigned(InsEntry) and
  1332. ((InsEntry^.flags and IF_PASS2)<>0) then
  1333. begin
  1334. InsEntry:=nil;
  1335. InsSize:=0;
  1336. end;
  1337. LastInsOffset:=-1;
  1338. end;
  1339. function taicpu.CheckIfValid:boolean;
  1340. begin
  1341. result:=FindInsEntry(nil);
  1342. end;
  1343. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1344. var
  1345. i : longint;
  1346. begin
  1347. result:=false;
  1348. { Things which may only be done once, not when a second pass is done to
  1349. optimize }
  1350. if (Insentry=nil) or ((InsEntry^.flags and IF_PASS2)<>0) then
  1351. begin
  1352. current_filepos:=fileinfo;
  1353. { We need intel style operands }
  1354. SetOperandOrder(op_intel);
  1355. { create the .ot fields }
  1356. create_ot(objdata);
  1357. { set the file postion }
  1358. end
  1359. else
  1360. begin
  1361. { we've already an insentry so it's valid }
  1362. result:=true;
  1363. exit;
  1364. end;
  1365. { Lookup opcode in the table }
  1366. InsSize:=-1;
  1367. i:=instabcache^[opcode];
  1368. if i=-1 then
  1369. begin
  1370. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1371. exit;
  1372. end;
  1373. insentry:=@instab[i];
  1374. while (insentry^.opcode=opcode) do
  1375. begin
  1376. if matches(insentry) then
  1377. begin
  1378. result:=true;
  1379. exit;
  1380. end;
  1381. inc(insentry);
  1382. end;
  1383. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1384. { No instruction found, set insentry to nil and inssize to -1 }
  1385. insentry:=nil;
  1386. inssize:=-1;
  1387. end;
  1388. function taicpu.Pass1(objdata:TObjData):longint;
  1389. begin
  1390. Pass1:=0;
  1391. { Save the old offset and set the new offset }
  1392. InsOffset:=ObjData.CurrObjSec.Size;
  1393. { Error? }
  1394. if (Insentry=nil) and (InsSize=-1) then
  1395. exit;
  1396. { set the file postion }
  1397. current_filepos:=fileinfo;
  1398. { Get InsEntry }
  1399. if FindInsEntry(ObjData) then
  1400. begin
  1401. { Calculate instruction size }
  1402. InsSize:=calcsize(insentry);
  1403. if segprefix<>NR_NO then
  1404. inc(InsSize);
  1405. { Fix opsize if size if forced }
  1406. if (insentry^.flags and (IF_SB or IF_SW or IF_SD))<>0 then
  1407. begin
  1408. if (insentry^.flags and IF_ARMASK)=0 then
  1409. begin
  1410. if (insentry^.flags and IF_SB)<>0 then
  1411. begin
  1412. if opsize=S_NO then
  1413. opsize:=S_B;
  1414. end
  1415. else if (insentry^.flags and IF_SW)<>0 then
  1416. begin
  1417. if opsize=S_NO then
  1418. opsize:=S_W;
  1419. end
  1420. else if (insentry^.flags and IF_SD)<>0 then
  1421. begin
  1422. if opsize=S_NO then
  1423. opsize:=S_L;
  1424. end;
  1425. end;
  1426. end;
  1427. LastInsOffset:=InsOffset;
  1428. Pass1:=InsSize;
  1429. exit;
  1430. end;
  1431. LastInsOffset:=-1;
  1432. end;
  1433. const
  1434. segprefixes: array[NR_ES..NR_GS] of Byte=(
  1435. // es cs ss ds fs gs
  1436. $26, $2E, $36, $3E, $64, $65
  1437. );
  1438. procedure taicpu.Pass2(objdata:TObjData);
  1439. begin
  1440. { error in pass1 ? }
  1441. if insentry=nil then
  1442. exit;
  1443. current_filepos:=fileinfo;
  1444. { Segment override }
  1445. if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
  1446. begin
  1447. objdata.writebytes(segprefixes[segprefix],1);
  1448. { fix the offset for GenNode }
  1449. inc(InsOffset);
  1450. end
  1451. else if segprefix<>NR_NO then
  1452. InternalError(201001071);
  1453. { Generate the instruction }
  1454. GenCode(objdata);
  1455. end;
  1456. function taicpu.needaddrprefix(opidx:byte):boolean;
  1457. begin
  1458. result:=(oper[opidx]^.typ=top_ref) and
  1459. (oper[opidx]^.ref^.refaddr=addr_no) and
  1460. {$ifdef x86_64}
  1461. (oper[opidx]^.ref^.base<>NR_RIP) and
  1462. {$endif x86_64}
  1463. (
  1464. (
  1465. (oper[opidx]^.ref^.index<>NR_NO) and
  1466. (getsubreg(oper[opidx]^.ref^.index)<>R_SUBADDR)
  1467. ) or
  1468. (
  1469. (oper[opidx]^.ref^.base<>NR_NO) and
  1470. (getsubreg(oper[opidx]^.ref^.base)<>R_SUBADDR)
  1471. )
  1472. );
  1473. end;
  1474. procedure badreg(r:Tregister);
  1475. begin
  1476. Message1(asmw_e_invalid_register,generic_regname(r));
  1477. end;
  1478. function regval(r:Tregister):byte;
  1479. const
  1480. intsupreg2opcode: array[0..7] of byte=
  1481. // ax cx dx bx si di bp sp -- in x86reg.dat
  1482. // ax cx dx bx sp bp si di -- needed order
  1483. (0, 1, 2, 3, 6, 7, 5, 4);
  1484. maxsupreg: array[tregistertype] of tsuperregister=
  1485. {$ifdef x86_64}
  1486. (0, 16, 9, 8, 16, 32, 0, 0);
  1487. {$else x86_64}
  1488. (0, 8, 9, 8, 8, 32, 0, 0);
  1489. {$endif x86_64}
  1490. var
  1491. rs: tsuperregister;
  1492. rt: tregistertype;
  1493. begin
  1494. rs:=getsupreg(r);
  1495. rt:=getregtype(r);
  1496. if (rs>=maxsupreg[rt]) then
  1497. badreg(r);
  1498. result:=rs and 7;
  1499. if (rt=R_INTREGISTER) then
  1500. begin
  1501. if (rs<8) then
  1502. result:=intsupreg2opcode[rs];
  1503. if getsubreg(r)=R_SUBH then
  1504. inc(result,4);
  1505. end;
  1506. end;
  1507. {$if defined(x86_64)}
  1508. function rexbits(r: tregister): byte;
  1509. begin
  1510. result:=0;
  1511. case getregtype(r) of
  1512. R_INTREGISTER:
  1513. if (getsupreg(r)>=RS_R8) then
  1514. { Either B,X or R bits can be set, depending on register role in instruction.
  1515. Set all three bits here, caller will discard unnecessary ones. }
  1516. result:=result or $47
  1517. else if (getsubreg(r)=R_SUBL) and
  1518. (getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1519. result:=result or $40
  1520. else if (getsubreg(r)=R_SUBH) then
  1521. { Not an actual REX bit, used to detect incompatible usage of
  1522. AH/BH/CH/DH }
  1523. result:=result or $80;
  1524. R_MMREGISTER:
  1525. if getsupreg(r)>=RS_XMM8 then
  1526. result:=result or $47;
  1527. end;
  1528. end;
  1529. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1530. var
  1531. sym : tasmsymbol;
  1532. md,s,rv : byte;
  1533. base,index,scalefactor,
  1534. o : longint;
  1535. ir,br : Tregister;
  1536. isub,bsub : tsubregister;
  1537. begin
  1538. process_ea:=false;
  1539. fillchar(output,sizeof(output),0);
  1540. {Register ?}
  1541. if (input.typ=top_reg) then
  1542. begin
  1543. rv:=regval(input.reg);
  1544. output.modrm:=$c0 or (rfield shl 3) or rv;
  1545. output.size:=1;
  1546. output.rex:=output.rex or (rexbits(input.reg) and $F1);
  1547. process_ea:=true;
  1548. exit;
  1549. end;
  1550. {No register, so memory reference.}
  1551. if input.typ<>top_ref then
  1552. internalerror(200409263);
  1553. ir:=input.ref^.index;
  1554. br:=input.ref^.base;
  1555. isub:=getsubreg(ir);
  1556. bsub:=getsubreg(br);
  1557. s:=input.ref^.scalefactor;
  1558. o:=input.ref^.offset;
  1559. sym:=input.ref^.symbol;
  1560. //if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  1561. // ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1562. if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
  1563. ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
  1564. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1565. internalerror(200301081);
  1566. { it's direct address }
  1567. if (br=NR_NO) and (ir=NR_NO) then
  1568. begin
  1569. output.sib_present:=true;
  1570. output.bytes:=4;
  1571. output.modrm:=4 or (rfield shl 3);
  1572. output.sib:=$25;
  1573. end
  1574. else if (br=NR_RIP) and (ir=NR_NO) then
  1575. begin
  1576. { rip based }
  1577. output.sib_present:=false;
  1578. output.bytes:=4;
  1579. output.modrm:=5 or (rfield shl 3);
  1580. end
  1581. else
  1582. { it's an indirection }
  1583. begin
  1584. { 16 bit? }
  1585. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1586. (br<>NR_NO) and (bsub=R_SUBADDR)
  1587. ) then
  1588. begin
  1589. // vector memory (AVX2) =>> ignore
  1590. end
  1591. else if ((ir<>NR_NO) and (isub<>R_SUBADDR) and (isub<>R_SUBD)) or
  1592. ((br<>NR_NO) and (bsub<>R_SUBADDR) and (bsub<>R_SUBD)) then
  1593. begin
  1594. message(asmw_e_16bit_32bit_not_supported);
  1595. end;
  1596. { wrong, for various reasons }
  1597. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1598. exit;
  1599. output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
  1600. process_ea:=true;
  1601. { base }
  1602. case br of
  1603. NR_R8D,
  1604. NR_EAX,
  1605. NR_R8,
  1606. NR_RAX : base:=0;
  1607. NR_R9D,
  1608. NR_ECX,
  1609. NR_R9,
  1610. NR_RCX : base:=1;
  1611. NR_R10D,
  1612. NR_EDX,
  1613. NR_R10,
  1614. NR_RDX : base:=2;
  1615. NR_R11D,
  1616. NR_EBX,
  1617. NR_R11,
  1618. NR_RBX : base:=3;
  1619. NR_R12D,
  1620. NR_ESP,
  1621. NR_R12,
  1622. NR_RSP : base:=4;
  1623. NR_R13D,
  1624. NR_EBP,
  1625. NR_R13,
  1626. NR_NO,
  1627. NR_RBP : base:=5;
  1628. NR_R14D,
  1629. NR_ESI,
  1630. NR_R14,
  1631. NR_RSI : base:=6;
  1632. NR_R15D,
  1633. NR_EDI,
  1634. NR_R15,
  1635. NR_RDI : base:=7;
  1636. else
  1637. exit;
  1638. end;
  1639. { index }
  1640. case ir of
  1641. NR_R8D,
  1642. NR_EAX,
  1643. NR_R8,
  1644. NR_RAX,
  1645. NR_XMM0,
  1646. NR_XMM8,
  1647. NR_YMM0,
  1648. NR_YMM8 : index:=0;
  1649. NR_R9D,
  1650. NR_ECX,
  1651. NR_R9,
  1652. NR_RCX,
  1653. NR_XMM1,
  1654. NR_XMM9,
  1655. NR_YMM1,
  1656. NR_YMM9 : index:=1;
  1657. NR_R10D,
  1658. NR_EDX,
  1659. NR_R10,
  1660. NR_RDX,
  1661. NR_XMM2,
  1662. NR_XMM10,
  1663. NR_YMM2,
  1664. NR_YMM10 : index:=2;
  1665. NR_R11D,
  1666. NR_EBX,
  1667. NR_R11,
  1668. NR_RBX,
  1669. NR_XMM3,
  1670. NR_XMM11,
  1671. NR_YMM3,
  1672. NR_YMM11 : index:=3;
  1673. NR_R12D,
  1674. NR_ESP,
  1675. NR_R12,
  1676. NR_NO,
  1677. NR_XMM4,
  1678. NR_XMM12,
  1679. NR_YMM4,
  1680. NR_YMM12 : index:=4;
  1681. NR_R13D,
  1682. NR_EBP,
  1683. NR_R13,
  1684. NR_RBP,
  1685. NR_XMM5,
  1686. NR_XMM13,
  1687. NR_YMM5,
  1688. NR_YMM13: index:=5;
  1689. NR_R14D,
  1690. NR_ESI,
  1691. NR_R14,
  1692. NR_RSI,
  1693. NR_XMM6,
  1694. NR_XMM14,
  1695. NR_YMM6,
  1696. NR_YMM14: index:=6;
  1697. NR_R15D,
  1698. NR_EDI,
  1699. NR_R15,
  1700. NR_RDI,
  1701. NR_XMM7,
  1702. NR_XMM15,
  1703. NR_YMM7,
  1704. NR_YMM15: index:=7;
  1705. else
  1706. exit;
  1707. end;
  1708. case s of
  1709. 0,
  1710. 1 : scalefactor:=0;
  1711. 2 : scalefactor:=1;
  1712. 4 : scalefactor:=2;
  1713. 8 : scalefactor:=3;
  1714. else
  1715. exit;
  1716. end;
  1717. { If rbp or r13 is used we must always include an offset }
  1718. if (br=NR_NO) or
  1719. ((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
  1720. md:=0
  1721. else
  1722. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1723. md:=1
  1724. else
  1725. md:=2;
  1726. if (br=NR_NO) or (md=2) then
  1727. output.bytes:=4
  1728. else
  1729. output.bytes:=md;
  1730. { SIB needed ? }
  1731. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
  1732. begin
  1733. output.sib_present:=false;
  1734. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  1735. end
  1736. else
  1737. begin
  1738. output.sib_present:=true;
  1739. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  1740. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1741. end;
  1742. end;
  1743. output.size:=1+ord(output.sib_present)+output.bytes;
  1744. process_ea:=true;
  1745. end;
  1746. {$elseif defined(i386)}
  1747. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1748. var
  1749. sym : tasmsymbol;
  1750. md,s,rv : byte;
  1751. base,index,scalefactor,
  1752. o : longint;
  1753. ir,br : Tregister;
  1754. isub,bsub : tsubregister;
  1755. begin
  1756. process_ea:=false;
  1757. fillchar(output,sizeof(output),0);
  1758. {Register ?}
  1759. if (input.typ=top_reg) then
  1760. begin
  1761. rv:=regval(input.reg);
  1762. output.modrm:=$c0 or (rfield shl 3) or rv;
  1763. output.size:=1;
  1764. process_ea:=true;
  1765. exit;
  1766. end;
  1767. {No register, so memory reference.}
  1768. if (input.typ<>top_ref) then
  1769. internalerror(200409262);
  1770. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) and (input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) or // vector memory (AVX2)
  1771. ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER) and (getregtype(input.ref^.index)<>R_MMREGISTER)) or
  1772. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1773. internalerror(200301081);
  1774. ir:=input.ref^.index;
  1775. br:=input.ref^.base;
  1776. isub:=getsubreg(ir);
  1777. bsub:=getsubreg(br);
  1778. s:=input.ref^.scalefactor;
  1779. o:=input.ref^.offset;
  1780. sym:=input.ref^.symbol;
  1781. { it's direct address }
  1782. if (br=NR_NO) and (ir=NR_NO) then
  1783. begin
  1784. { it's a pure offset }
  1785. output.sib_present:=false;
  1786. output.bytes:=4;
  1787. output.modrm:=5 or (rfield shl 3);
  1788. end
  1789. else
  1790. { it's an indirection }
  1791. begin
  1792. { 16 bit address? }
  1793. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1794. (br<>NR_NO) and (bsub=R_SUBADDR)
  1795. ) then
  1796. begin
  1797. // vector memory (AVX2) =>> ignore
  1798. end
  1799. else if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1800. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1801. message(asmw_e_16bit_not_supported);
  1802. {$ifdef OPTEA}
  1803. { make single reg base }
  1804. if (br=NR_NO) and (s=1) then
  1805. begin
  1806. br:=ir;
  1807. ir:=NR_NO;
  1808. end;
  1809. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  1810. if (br=NR_NO) and
  1811. (((s=2) and (ir<>NR_ESP)) or
  1812. (s=3) or (s=5) or (s=9)) then
  1813. begin
  1814. br:=ir;
  1815. dec(s);
  1816. end;
  1817. { swap ESP into base if scalefactor is 1 }
  1818. if (s=1) and (ir=NR_ESP) then
  1819. begin
  1820. ir:=br;
  1821. br:=NR_ESP;
  1822. end;
  1823. {$endif OPTEA}
  1824. { wrong, for various reasons }
  1825. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1826. exit;
  1827. { base }
  1828. case br of
  1829. NR_EAX : base:=0;
  1830. NR_ECX : base:=1;
  1831. NR_EDX : base:=2;
  1832. NR_EBX : base:=3;
  1833. NR_ESP : base:=4;
  1834. NR_NO,
  1835. NR_EBP : base:=5;
  1836. NR_ESI : base:=6;
  1837. NR_EDI : base:=7;
  1838. else
  1839. exit;
  1840. end;
  1841. { index }
  1842. case ir of
  1843. NR_EAX,
  1844. NR_XMM0,
  1845. NR_YMM0: index:=0;
  1846. NR_ECX,
  1847. NR_XMM1,
  1848. NR_YMM1: index:=1;
  1849. NR_EDX,
  1850. NR_XMM2,
  1851. NR_YMM2: index:=2;
  1852. NR_EBX,
  1853. NR_XMM3,
  1854. NR_YMM3: index:=3;
  1855. NR_NO,
  1856. NR_XMM4,
  1857. NR_YMM4: index:=4;
  1858. NR_EBP,
  1859. NR_XMM5,
  1860. NR_YMM5: index:=5;
  1861. NR_ESI,
  1862. NR_XMM6,
  1863. NR_YMM6: index:=6;
  1864. NR_EDI,
  1865. NR_XMM7,
  1866. NR_YMM7: index:=7;
  1867. else
  1868. exit;
  1869. end;
  1870. case s of
  1871. 0,
  1872. 1 : scalefactor:=0;
  1873. 2 : scalefactor:=1;
  1874. 4 : scalefactor:=2;
  1875. 8 : scalefactor:=3;
  1876. else
  1877. exit;
  1878. end;
  1879. if (br=NR_NO) or
  1880. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  1881. md:=0
  1882. else
  1883. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1884. md:=1
  1885. else
  1886. md:=2;
  1887. if (br=NR_NO) or (md=2) then
  1888. output.bytes:=4
  1889. else
  1890. output.bytes:=md;
  1891. { SIB needed ? }
  1892. if (ir=NR_NO) and (br<>NR_ESP) then
  1893. begin
  1894. output.sib_present:=false;
  1895. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  1896. end
  1897. else
  1898. begin
  1899. output.sib_present:=true;
  1900. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
  1901. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1902. end;
  1903. end;
  1904. if output.sib_present then
  1905. output.size:=2+output.bytes
  1906. else
  1907. output.size:=1+output.bytes;
  1908. process_ea:=true;
  1909. end;
  1910. {$elseif defined(i8086)}
  1911. procedure maybe_swap_index_base(var br,ir:Tregister);
  1912. var
  1913. tmpreg: Tregister;
  1914. begin
  1915. if ((br=NR_NO) or (br=NR_SI) or (br=NR_DI)) and
  1916. ((ir=NR_NO) or (ir=NR_BP) or (ir=NR_BX)) then
  1917. begin
  1918. tmpreg:=br;
  1919. br:=ir;
  1920. ir:=tmpreg;
  1921. end;
  1922. end;
  1923. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1924. var
  1925. sym : tasmsymbol;
  1926. md,s,rv : byte;
  1927. base,
  1928. o : longint;
  1929. ir,br : Tregister;
  1930. isub,bsub : tsubregister;
  1931. begin
  1932. process_ea:=false;
  1933. fillchar(output,sizeof(output),0);
  1934. {Register ?}
  1935. if (input.typ=top_reg) then
  1936. begin
  1937. rv:=regval(input.reg);
  1938. output.modrm:=$c0 or (rfield shl 3) or rv;
  1939. output.size:=1;
  1940. process_ea:=true;
  1941. exit;
  1942. end;
  1943. {No register, so memory reference.}
  1944. if (input.typ<>top_ref) then
  1945. internalerror(200409262);
  1946. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  1947. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1948. internalerror(200301081);
  1949. ir:=input.ref^.index;
  1950. br:=input.ref^.base;
  1951. isub:=getsubreg(ir);
  1952. bsub:=getsubreg(br);
  1953. s:=input.ref^.scalefactor;
  1954. o:=input.ref^.offset;
  1955. sym:=input.ref^.symbol;
  1956. { it's a direct address }
  1957. if (br=NR_NO) and (ir=NR_NO) then
  1958. begin
  1959. { it's a pure offset }
  1960. output.bytes:=2;
  1961. output.modrm:=6 or (rfield shl 3);
  1962. end
  1963. else
  1964. { it's an indirection }
  1965. begin
  1966. { 32 bit address? }
  1967. if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1968. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1969. message(asmw_e_32bit_not_supported);
  1970. { scalefactor can only be 1 in 16-bit addresses }
  1971. if (s<>1) and (ir<>NR_NO) then
  1972. exit;
  1973. maybe_swap_index_base(br,ir);
  1974. if (br=NR_BX) and (ir=NR_SI) then
  1975. base:=0
  1976. else if (br=NR_BX) and (ir=NR_DI) then
  1977. base:=1
  1978. else if (br=NR_BP) and (ir=NR_SI) then
  1979. base:=2
  1980. else if (br=NR_BP) and (ir=NR_DI) then
  1981. base:=3
  1982. else if (br=NR_NO) and (ir=NR_SI) then
  1983. base:=4
  1984. else if (br=NR_NO) and (ir=NR_DI) then
  1985. base:=5
  1986. else if (br=NR_BP) and (ir=NR_NO) then
  1987. base:=6
  1988. else if (br=NR_BX) and (ir=NR_NO) then
  1989. base:=7
  1990. else
  1991. exit;
  1992. if (base<>6) and (o=0) and (sym=nil) then
  1993. md:=0
  1994. else if ((o>=-128) and (o<=127) and (sym=nil)) then
  1995. md:=1
  1996. else
  1997. md:=2;
  1998. output.bytes:=md;
  1999. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  2000. end;
  2001. output.size:=1+output.bytes;
  2002. output.sib_present:=false;
  2003. process_ea:=true;
  2004. end;
  2005. {$endif}
  2006. function taicpu.calcsize(p:PInsEntry):shortint;
  2007. var
  2008. codes : pchar;
  2009. c : byte;
  2010. len : shortint;
  2011. ea_data : ea;
  2012. exists_vex: boolean;
  2013. exists_vex_extension: boolean;
  2014. exists_prefix_66: boolean;
  2015. exists_prefix_F2: boolean;
  2016. exists_prefix_F3: boolean;
  2017. {$ifdef x86_64}
  2018. omit_rexw : boolean;
  2019. {$endif x86_64}
  2020. begin
  2021. len:=0;
  2022. codes:=@p^.code[0];
  2023. exists_vex := false;
  2024. exists_vex_extension := false;
  2025. exists_prefix_66 := false;
  2026. exists_prefix_F2 := false;
  2027. exists_prefix_F3 := false;
  2028. {$ifdef x86_64}
  2029. rex:=0;
  2030. omit_rexw:=false;
  2031. {$endif x86_64}
  2032. repeat
  2033. c:=ord(codes^);
  2034. inc(codes);
  2035. case c of
  2036. &0 :
  2037. break;
  2038. &1,&2,&3 :
  2039. begin
  2040. inc(codes,c);
  2041. inc(len,c);
  2042. end;
  2043. &10,&11,&12 :
  2044. begin
  2045. {$ifdef x86_64}
  2046. rex:=rex or (rexbits(oper[c-&10]^.reg) and $F1);
  2047. {$endif x86_64}
  2048. inc(codes);
  2049. inc(len);
  2050. end;
  2051. &13,&23 :
  2052. begin
  2053. inc(codes);
  2054. inc(len);
  2055. end;
  2056. &4,&5,&6,&7 :
  2057. begin
  2058. if opsize={$ifdef i8086}S_L{$else}S_W{$endif} then
  2059. inc(len,2)
  2060. else
  2061. inc(len);
  2062. end;
  2063. &14,&15,&16,
  2064. &20,&21,&22,
  2065. &24,&25,&26,&27,
  2066. &50,&51,&52 :
  2067. inc(len);
  2068. &30,&31,&32,
  2069. &37,
  2070. &60,&61,&62 :
  2071. inc(len,2);
  2072. &34,&35,&36:
  2073. begin
  2074. {$ifdef i8086}
  2075. inc(len,2);
  2076. {$else i8086}
  2077. if opsize=S_Q then
  2078. inc(len,8)
  2079. else
  2080. inc(len,4);
  2081. {$endif i8086}
  2082. end;
  2083. &44,&45,&46:
  2084. inc(len,sizeof(pint));
  2085. &54,&55,&56:
  2086. inc(len,8);
  2087. &40,&41,&42,
  2088. &70,&71,&72,
  2089. &254,&255,&256 :
  2090. inc(len,4);
  2091. &64,&65,&66:
  2092. {$ifdef i8086}
  2093. inc(len,2);
  2094. {$else i8086}
  2095. inc(len,4);
  2096. {$endif i8086}
  2097. &74,&75,&76,&77: ; // ignore vex-coded operand-idx
  2098. &320,&321,&322 :
  2099. begin
  2100. case (oper[c-&320]^.ot and OT_SIZE_MASK) of
  2101. {$if defined(i386) or defined(x86_64)}
  2102. OT_BITS16 :
  2103. {$elseif defined(i8086)}
  2104. OT_BITS32 :
  2105. {$endif}
  2106. inc(len);
  2107. {$ifdef x86_64}
  2108. OT_BITS64:
  2109. begin
  2110. rex:=rex or $48;
  2111. end;
  2112. {$endif x86_64}
  2113. end;
  2114. end;
  2115. &310 :
  2116. {$if defined(x86_64)}
  2117. { every insentry with code 0310 must be marked with NOX86_64 }
  2118. InternalError(2011051301);
  2119. {$elseif defined(i386)}
  2120. inc(len);
  2121. {$elseif defined(i8086)}
  2122. {nothing};
  2123. {$endif}
  2124. &311 :
  2125. {$if defined(x86_64) or defined(i8086)}
  2126. inc(len)
  2127. {$endif x86_64 or i8086}
  2128. ;
  2129. &324 :
  2130. {$ifndef i8086}
  2131. inc(len)
  2132. {$endif not i8086}
  2133. ;
  2134. &326 :
  2135. begin
  2136. {$ifdef x86_64}
  2137. rex:=rex or $48;
  2138. {$endif x86_64}
  2139. end;
  2140. &312,
  2141. &323,
  2142. &325,
  2143. &327,
  2144. &331,&332: ;
  2145. &333:
  2146. begin
  2147. inc(len);
  2148. exists_prefix_F2 := true;
  2149. end;
  2150. &334:
  2151. begin
  2152. inc(len);
  2153. exists_prefix_F3 := true;
  2154. end;
  2155. &361:
  2156. begin
  2157. {$ifndef i8086}
  2158. inc(len);
  2159. exists_prefix_66 := true;
  2160. {$endif not i8086}
  2161. end;
  2162. &335:
  2163. {$ifdef x86_64}
  2164. omit_rexw:=true
  2165. {$endif x86_64}
  2166. ;
  2167. &100..&227 :
  2168. begin
  2169. {$ifdef x86_64}
  2170. if (c<&177) then
  2171. begin
  2172. if (oper[c and 7]^.typ=top_reg) then
  2173. begin
  2174. rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
  2175. end;
  2176. end;
  2177. {$endif x86_64}
  2178. if not process_ea(oper[(c shr 3) and 7]^, ea_data, 0) then
  2179. Message(asmw_e_invalid_effective_address)
  2180. else
  2181. inc(len,ea_data.size);
  2182. {$ifdef x86_64}
  2183. rex:=rex or ea_data.rex;
  2184. {$endif x86_64}
  2185. end;
  2186. &362: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
  2187. // =>> DEFAULT = 2 Bytes
  2188. begin
  2189. if not(exists_vex) then
  2190. begin
  2191. inc(len, 2);
  2192. exists_vex := true;
  2193. end;
  2194. end;
  2195. &363: // REX.W = 1
  2196. // =>> VEX prefix length = 3
  2197. begin
  2198. if not(exists_vex_extension) then
  2199. begin
  2200. inc(len);
  2201. exists_vex_extension := true;
  2202. end;
  2203. end;
  2204. &364: ; // VEX length bit
  2205. &366, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
  2206. &367: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
  2207. &370: // VEX-Extension prefix $0F
  2208. // ignore for calculating length
  2209. ;
  2210. &371, // VEX-Extension prefix $0F38
  2211. &372: // VEX-Extension prefix $0F3A
  2212. begin
  2213. if not(exists_vex_extension) then
  2214. begin
  2215. inc(len);
  2216. exists_vex_extension := true;
  2217. end;
  2218. end;
  2219. &300,&301,&302:
  2220. begin
  2221. {$if defined(x86_64) or defined(i8086)}
  2222. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2223. inc(len);
  2224. {$endif x86_64 or i8086}
  2225. end;
  2226. else
  2227. InternalError(200603141);
  2228. end;
  2229. until false;
  2230. {$ifdef x86_64}
  2231. if ((rex and $80)<>0) and ((rex and $4F)<>0) then
  2232. Message(asmw_e_bad_reg_with_rex);
  2233. rex:=rex and $4F; { reset extra bits in upper nibble }
  2234. if omit_rexw then
  2235. begin
  2236. if rex=$48 then { remove rex entirely? }
  2237. rex:=0
  2238. else
  2239. rex:=rex and $F7;
  2240. end;
  2241. if not(exists_vex) then
  2242. begin
  2243. if rex<>0 then
  2244. Inc(len);
  2245. end;
  2246. {$endif}
  2247. if exists_vex then
  2248. begin
  2249. if exists_prefix_66 then dec(len);
  2250. if exists_prefix_F2 then dec(len);
  2251. if exists_prefix_F3 then dec(len);
  2252. {$ifdef x86_64}
  2253. if not(exists_vex_extension) then
  2254. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  2255. {$endif x86_64}
  2256. end;
  2257. calcsize:=len;
  2258. end;
  2259. procedure taicpu.GenCode(objdata:TObjData);
  2260. {
  2261. * the actual codes (C syntax, i.e. octal):
  2262. * \0 - terminates the code. (Unless it's a literal of course.)
  2263. * \1, \2, \3 - that many literal bytes follow in the code stream
  2264. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  2265. * (POP is never used for CS) depending on operand 0
  2266. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  2267. * on operand 0
  2268. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  2269. * to the register value of operand 0, 1 or 2
  2270. * \13 - a literal byte follows in the code stream, to be added
  2271. * to the condition code value of the instruction.
  2272. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  2273. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  2274. * \23 - a literal byte follows in the code stream, to be added
  2275. * to the inverted condition code value of the instruction
  2276. * (inverted version of \13).
  2277. * \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
  2278. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  2279. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  2280. * assembly mode or the address-size override on the operand
  2281. * \37 - a word constant, from the _segment_ part of operand 0
  2282. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  2283. * \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
  2284. on the address size of instruction
  2285. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  2286. * \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
  2287. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  2288. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  2289. * assembly mode or the address-size override on the operand
  2290. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  2291. * \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
  2292. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  2293. * field the register value of operand b.
  2294. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  2295. * field equal to digit b.
  2296. * \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
  2297. * \300,\301,\302 - might be an 0x67, depending on the address size of
  2298. * the memory reference in operand x.
  2299. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  2300. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  2301. * \312 - (disassembler only) invalid with non-default address size.
  2302. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  2303. * size of operand x.
  2304. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  2305. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  2306. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  2307. * \327 - indicates that this instruction is only valid when the
  2308. * operand size is the default (instruction to disassembler,
  2309. * generates no code in the assembler)
  2310. * \331 - instruction not valid with REP prefix. Hint for
  2311. * disassembler only; for SSE instructions.
  2312. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  2313. * \333 - 0xF3 prefix for SSE instructions
  2314. * \334 - 0xF2 prefix for SSE instructions
  2315. * \335 - Indicates 64-bit operand size with REX.W not necessary
  2316. * \361 - 0x66 prefix for SSE instructions
  2317. * \362 - VEX prefix for AVX instructions
  2318. * \363 - VEX W1
  2319. * \364 - VEX Vector length 256
  2320. * \366 - operand 2 (ymmreg) encoded in bit 4-7 of the immediate byte
  2321. * \367 - operand 3 (ymmreg) encoded in bit 4-7 of the immediate byte
  2322. * \370 - VEX 0F-FLAG
  2323. * \371 - VEX 0F38-FLAG
  2324. * \372 - VEX 0F3A-FLAG
  2325. }
  2326. var
  2327. currval : aint;
  2328. currsym : tobjsymbol;
  2329. currrelreloc,
  2330. currabsreloc,
  2331. currabsreloc32 : TObjRelocationType;
  2332. {$ifdef x86_64}
  2333. rexwritten : boolean;
  2334. {$endif x86_64}
  2335. procedure getvalsym(opidx:longint);
  2336. begin
  2337. case oper[opidx]^.typ of
  2338. top_ref :
  2339. begin
  2340. currval:=oper[opidx]^.ref^.offset;
  2341. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  2342. {$ifdef i8086}
  2343. if oper[opidx]^.ref^.refaddr=addr_seg then
  2344. begin
  2345. currrelreloc:=RELOC_SEGREL;
  2346. currabsreloc:=RELOC_SEG;
  2347. currabsreloc32:=RELOC_SEG;
  2348. end
  2349. else if oper[opidx]^.ref^.refaddr=addr_dgroup then
  2350. begin
  2351. currrelreloc:=RELOC_DGROUPREL;
  2352. currabsreloc:=RELOC_DGROUP;
  2353. currabsreloc32:=RELOC_DGROUP;
  2354. end
  2355. else
  2356. {$endif i8086}
  2357. {$ifdef i386}
  2358. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2359. (tf_pic_uses_got in target_info.flags) then
  2360. begin
  2361. currrelreloc:=RELOC_PLT32;
  2362. currabsreloc:=RELOC_GOT32;
  2363. currabsreloc32:=RELOC_GOT32;
  2364. end
  2365. else
  2366. {$endif i386}
  2367. {$ifdef x86_64}
  2368. if oper[opidx]^.ref^.refaddr=addr_pic then
  2369. begin
  2370. currrelreloc:=RELOC_PLT32;
  2371. currabsreloc:=RELOC_GOTPCREL;
  2372. currabsreloc32:=RELOC_GOTPCREL;
  2373. end
  2374. else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
  2375. begin
  2376. currrelreloc:=RELOC_RELATIVE;
  2377. currabsreloc:=RELOC_RELATIVE;
  2378. currabsreloc32:=RELOC_RELATIVE;
  2379. end
  2380. else
  2381. {$endif x86_64}
  2382. begin
  2383. currrelreloc:=RELOC_RELATIVE;
  2384. currabsreloc:=RELOC_ABSOLUTE;
  2385. currabsreloc32:=RELOC_ABSOLUTE32;
  2386. end;
  2387. end;
  2388. top_const :
  2389. begin
  2390. currval:=aint(oper[opidx]^.val);
  2391. currsym:=nil;
  2392. currabsreloc:=RELOC_ABSOLUTE;
  2393. currabsreloc32:=RELOC_ABSOLUTE32;
  2394. end;
  2395. else
  2396. Message(asmw_e_immediate_or_reference_expected);
  2397. end;
  2398. end;
  2399. {$ifdef x86_64}
  2400. procedure maybewriterex;
  2401. begin
  2402. if (rex<>0) and not(rexwritten) then
  2403. begin
  2404. rexwritten:=true;
  2405. objdata.writebytes(rex,1);
  2406. end;
  2407. end;
  2408. {$endif x86_64}
  2409. procedure objdata_writereloc(Data:aint;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
  2410. begin
  2411. {$ifdef i386}
  2412. { Special case of '_GLOBAL_OFFSET_TABLE_'
  2413. which needs a special relocation type R_386_GOTPC }
  2414. if assigned (p) and
  2415. (p.name='_GLOBAL_OFFSET_TABLE_') and
  2416. (tf_pic_uses_got in target_info.flags) then
  2417. begin
  2418. { nothing else than a 4 byte relocation should occur
  2419. for GOT }
  2420. if len<>4 then
  2421. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  2422. Reloctype:=RELOC_GOTPC;
  2423. { We need to add the offset of the relocation
  2424. of _GLOBAL_OFFSET_TABLE symbol within
  2425. the current instruction }
  2426. inc(data,objdata.currobjsec.size-insoffset);
  2427. end;
  2428. {$endif i386}
  2429. objdata.writereloc(data,len,p,Reloctype);
  2430. end;
  2431. const
  2432. CondVal:array[TAsmCond] of byte=($0,
  2433. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  2434. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  2435. $0, $A, $A, $B, $8, $4);
  2436. var
  2437. c : byte;
  2438. pb : pbyte;
  2439. codes : pchar;
  2440. bytes : array[0..3] of byte;
  2441. rfield,
  2442. data,s,opidx : longint;
  2443. ea_data : ea;
  2444. relsym : TObjSymbol;
  2445. needed_VEX_Extension: boolean;
  2446. needed_VEX: boolean;
  2447. opmode: integer;
  2448. VEXvvvv: byte;
  2449. VEXmmmmm: byte;
  2450. begin
  2451. { safety check }
  2452. if objdata.currobjsec.size<>longword(insoffset) then
  2453. internalerror(200130121);
  2454. { those variables are initialized inside local procedures, the dfa cannot handle this yet }
  2455. currsym:=nil;
  2456. currabsreloc:=RELOC_NONE;
  2457. currabsreloc32:=RELOC_NONE;
  2458. currrelreloc:=RELOC_NONE;
  2459. currval:=0;
  2460. { load data to write }
  2461. codes:=insentry^.code;
  2462. {$ifdef x86_64}
  2463. rexwritten:=false;
  2464. {$endif x86_64}
  2465. { Force word push/pop for registers }
  2466. if (opsize={$ifdef i8086}S_L{$else}S_W{$endif}) and ((codes[0]=#4) or (codes[0]=#6) or
  2467. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  2468. begin
  2469. bytes[0]:=$66;
  2470. objdata.writebytes(bytes,1);
  2471. end;
  2472. // needed VEX Prefix (for AVX etc.)
  2473. needed_VEX := false;
  2474. needed_VEX_Extension := false;
  2475. opmode := -1;
  2476. VEXvvvv := 0;
  2477. VEXmmmmm := 0;
  2478. repeat
  2479. c:=ord(codes^);
  2480. inc(codes);
  2481. case c of
  2482. &0: break;
  2483. &1,
  2484. &2,
  2485. &3: inc(codes,c);
  2486. &74: opmode := 0;
  2487. &75: opmode := 1;
  2488. &76: opmode := 2;
  2489. &333: VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
  2490. &334: VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
  2491. &361: VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
  2492. &362: needed_VEX := true;
  2493. &363: begin
  2494. needed_VEX_Extension := true;
  2495. VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
  2496. end;
  2497. &364: VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
  2498. &370: VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
  2499. &371: begin
  2500. needed_VEX_Extension := true;
  2501. VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
  2502. end;
  2503. &372: begin
  2504. needed_VEX_Extension := true;
  2505. VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
  2506. end;
  2507. end;
  2508. until false;
  2509. if needed_VEX then
  2510. begin
  2511. if (opmode > ops) or
  2512. (opmode < -1) then
  2513. begin
  2514. Internalerror(777100);
  2515. end
  2516. else if opmode = -1 then
  2517. begin
  2518. VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
  2519. end
  2520. else if oper[opmode]^.typ = top_reg then
  2521. begin
  2522. VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
  2523. {$ifdef x86_64}
  2524. if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
  2525. {$else}
  2526. VEXvvvv := VEXvvvv or (1 shl 6);
  2527. {$endif x86_64}
  2528. end
  2529. else Internalerror(777101);
  2530. if not(needed_VEX_Extension) then
  2531. begin
  2532. {$ifdef x86_64}
  2533. if rex and $0B <> 0 then needed_VEX_Extension := true;
  2534. {$endif x86_64}
  2535. end;
  2536. if needed_VEX_Extension then
  2537. begin
  2538. // VEX-Prefix-Length = 3 Bytes
  2539. bytes[0]:=$C4;
  2540. objdata.writebytes(bytes,1);
  2541. {$ifdef x86_64}
  2542. VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
  2543. {$else}
  2544. VEXmmmmm := VEXmmmmm or (7 shl 5); //
  2545. {$endif x86_64}
  2546. bytes[0] := VEXmmmmm;
  2547. objdata.writebytes(bytes,1);
  2548. {$ifdef x86_64}
  2549. VEXvvvv := VEXvvvv OR ((rex and $08) shl 7); // set REX.w
  2550. {$endif x86_64}
  2551. bytes[0] := VEXvvvv;
  2552. objdata.writebytes(bytes,1);
  2553. end
  2554. else
  2555. begin
  2556. // VEX-Prefix-Length = 2 Bytes
  2557. bytes[0]:=$C5;
  2558. objdata.writebytes(bytes,1);
  2559. {$ifdef x86_64}
  2560. if rex and $04 = 0 then
  2561. {$endif x86_64}
  2562. begin
  2563. VEXvvvv := VEXvvvv or (1 shl 7);
  2564. end;
  2565. bytes[0] := VEXvvvv;
  2566. objdata.writebytes(bytes,1);
  2567. end;
  2568. end
  2569. else
  2570. begin
  2571. needed_VEX_Extension := false;
  2572. opmode := -1;
  2573. end;
  2574. { load data to write }
  2575. codes:=insentry^.code;
  2576. repeat
  2577. c:=ord(codes^);
  2578. inc(codes);
  2579. case c of
  2580. &0 :
  2581. break;
  2582. &1,&2,&3 :
  2583. begin
  2584. {$ifdef x86_64}
  2585. if not(needed_VEX) then // TG
  2586. maybewriterex;
  2587. {$endif x86_64}
  2588. objdata.writebytes(codes^,c);
  2589. inc(codes,c);
  2590. end;
  2591. &4,&6 :
  2592. begin
  2593. case oper[0]^.reg of
  2594. NR_CS:
  2595. bytes[0]:=$e;
  2596. NR_NO,
  2597. NR_DS:
  2598. bytes[0]:=$1e;
  2599. NR_ES:
  2600. bytes[0]:=$6;
  2601. NR_SS:
  2602. bytes[0]:=$16;
  2603. else
  2604. internalerror(777004);
  2605. end;
  2606. if c=&4 then
  2607. inc(bytes[0]);
  2608. objdata.writebytes(bytes,1);
  2609. end;
  2610. &5,&7 :
  2611. begin
  2612. case oper[0]^.reg of
  2613. NR_FS:
  2614. bytes[0]:=$a0;
  2615. NR_GS:
  2616. bytes[0]:=$a8;
  2617. else
  2618. internalerror(777005);
  2619. end;
  2620. if c=&5 then
  2621. inc(bytes[0]);
  2622. objdata.writebytes(bytes,1);
  2623. end;
  2624. &10,&11,&12 :
  2625. begin
  2626. {$ifdef x86_64}
  2627. if not(needed_VEX) then // TG
  2628. maybewriterex;
  2629. {$endif x86_64}
  2630. bytes[0]:=ord(codes^)+regval(oper[c-&10]^.reg);
  2631. inc(codes);
  2632. objdata.writebytes(bytes,1);
  2633. end;
  2634. &13 :
  2635. begin
  2636. bytes[0]:=ord(codes^)+condval[condition];
  2637. inc(codes);
  2638. objdata.writebytes(bytes,1);
  2639. end;
  2640. &14,&15,&16 :
  2641. begin
  2642. getvalsym(c-&14);
  2643. if (currval<-128) or (currval>127) then
  2644. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  2645. if assigned(currsym) then
  2646. objdata_writereloc(currval,1,currsym,currabsreloc)
  2647. else
  2648. objdata.writebytes(currval,1);
  2649. end;
  2650. &20,&21,&22 :
  2651. begin
  2652. getvalsym(c-&20);
  2653. if (currval<-256) or (currval>255) then
  2654. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  2655. if assigned(currsym) then
  2656. objdata_writereloc(currval,1,currsym,currabsreloc)
  2657. else
  2658. objdata.writebytes(currval,1);
  2659. end;
  2660. &23 :
  2661. begin
  2662. bytes[0]:=ord(codes^)+condval[inverse_cond(condition)];
  2663. inc(codes);
  2664. objdata.writebytes(bytes,1);
  2665. end;
  2666. &24,&25,&26,&27 :
  2667. begin
  2668. getvalsym(c-&24);
  2669. if (currval<0) or (currval>255) then
  2670. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  2671. if assigned(currsym) then
  2672. objdata_writereloc(currval,1,currsym,currabsreloc)
  2673. else
  2674. objdata.writebytes(currval,1);
  2675. end;
  2676. &30,&31,&32 : // 030..032
  2677. begin
  2678. getvalsym(c-&30);
  2679. {$ifndef i8086}
  2680. { currval is an aint so this cannot happen on i8086 and causes only a warning }
  2681. if (currval<-65536) or (currval>65535) then
  2682. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  2683. {$endif i8086}
  2684. if assigned(currsym)
  2685. {$ifdef i8086}
  2686. or (currabsreloc=RELOC_DGROUP)
  2687. {$endif i8086}
  2688. then
  2689. objdata_writereloc(currval,2,currsym,currabsreloc)
  2690. else
  2691. objdata.writebytes(currval,2);
  2692. end;
  2693. &34,&35,&36 : // 034..036
  2694. { !!! These are intended (and used in opcode table) to select depending
  2695. on address size, *not* operand size. Works by coincidence only. }
  2696. begin
  2697. getvalsym(c-&34);
  2698. {$ifdef i8086}
  2699. if assigned(currsym) then
  2700. objdata_writereloc(currval,2,currsym,currabsreloc)
  2701. else
  2702. objdata.writebytes(currval,2);
  2703. {$else i8086}
  2704. if opsize=S_Q then
  2705. begin
  2706. if assigned(currsym) then
  2707. objdata_writereloc(currval,8,currsym,currabsreloc)
  2708. else
  2709. objdata.writebytes(currval,8);
  2710. end
  2711. else
  2712. begin
  2713. if assigned(currsym) then
  2714. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2715. else
  2716. objdata.writebytes(currval,4);
  2717. end
  2718. {$endif i8086}
  2719. end;
  2720. &40,&41,&42 : // 040..042
  2721. begin
  2722. getvalsym(c-&40);
  2723. if assigned(currsym) then
  2724. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2725. else
  2726. objdata.writebytes(currval,4);
  2727. end;
  2728. &44,&45,&46 :// 044..046 - select between word/dword/qword depending on
  2729. begin // address size (we support only default address sizes).
  2730. getvalsym(c-&44);
  2731. {$if defined(x86_64)}
  2732. if assigned(currsym) then
  2733. objdata_writereloc(currval,8,currsym,currabsreloc)
  2734. else
  2735. objdata.writebytes(currval,8);
  2736. {$elseif defined(i386)}
  2737. if assigned(currsym) then
  2738. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2739. else
  2740. objdata.writebytes(currval,4);
  2741. {$elseif defined(i8086)}
  2742. if assigned(currsym) then
  2743. objdata_writereloc(currval,2,currsym,currabsreloc)
  2744. else
  2745. objdata.writebytes(currval,2);
  2746. {$endif}
  2747. end;
  2748. &50,&51,&52 : // 050..052 - byte relative operand
  2749. begin
  2750. getvalsym(c-&50);
  2751. data:=currval-insend;
  2752. {$push}
  2753. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  2754. if assigned(currsym) then
  2755. inc(data,currsym.address);
  2756. {$pop}
  2757. if (data>127) or (data<-128) then
  2758. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  2759. objdata.writebytes(data,1);
  2760. end;
  2761. &54,&55,&56: // 054..056 - qword immediate operand
  2762. begin
  2763. getvalsym(c-&54);
  2764. if assigned(currsym) then
  2765. objdata_writereloc(currval,8,currsym,currabsreloc)
  2766. else
  2767. objdata.writebytes(currval,8);
  2768. end;
  2769. &60,&61,&62 :
  2770. begin
  2771. getvalsym(c-&60);
  2772. {$ifdef i8086}
  2773. if assigned(currsym) then
  2774. objdata_writereloc(currval,2,currsym,currrelreloc)
  2775. else
  2776. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  2777. {$else i8086}
  2778. InternalError(777006);
  2779. {$endif i8086}
  2780. end;
  2781. &64,&65,&66 : // 064..066 - select between 16/32 address mode, but we support only 32 (only 16 on i8086)
  2782. begin
  2783. getvalsym(c-&64);
  2784. {$ifdef i8086}
  2785. if assigned(currsym) then
  2786. objdata_writereloc(currval,2,currsym,currrelreloc)
  2787. else
  2788. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  2789. {$else i8086}
  2790. if assigned(currsym) then
  2791. objdata_writereloc(currval,4,currsym,currrelreloc)
  2792. else
  2793. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2794. {$endif i8086}
  2795. end;
  2796. &70,&71,&72 : // 070..072 - long relative operand
  2797. begin
  2798. getvalsym(c-&70);
  2799. if assigned(currsym) then
  2800. objdata_writereloc(currval,4,currsym,currrelreloc)
  2801. else
  2802. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2803. end;
  2804. &74,&75,&76 : ; // 074..076 - vex-coded vector operand
  2805. // ignore
  2806. &254,&255,&256 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
  2807. begin
  2808. getvalsym(c-&254);
  2809. {$ifdef x86_64}
  2810. { for i386 as aint type is longint the
  2811. following test is useless }
  2812. if (currval<low(longint)) or (currval>high(longint)) then
  2813. Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
  2814. {$endif x86_64}
  2815. if assigned(currsym) then
  2816. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2817. else
  2818. objdata.writebytes(currval,4);
  2819. end;
  2820. &300,&301,&302:
  2821. begin
  2822. {$if defined(x86_64) or defined(i8086)}
  2823. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2824. begin
  2825. bytes[0]:=$67;
  2826. objdata.writebytes(bytes,1);
  2827. end;
  2828. {$endif x86_64 or i8086}
  2829. end;
  2830. &310 : { fixed 16-bit addr }
  2831. {$if defined(x86_64)}
  2832. { every insentry having code 0310 must be marked with NOX86_64 }
  2833. InternalError(2011051302);
  2834. {$elseif defined(i386)}
  2835. begin
  2836. bytes[0]:=$67;
  2837. objdata.writebytes(bytes,1);
  2838. end;
  2839. {$elseif defined(i8086)}
  2840. {nothing};
  2841. {$endif}
  2842. &311 : { fixed 32-bit addr }
  2843. {$if defined(x86_64) or defined(i8086)}
  2844. begin
  2845. bytes[0]:=$67;
  2846. objdata.writebytes(bytes,1);
  2847. end
  2848. {$endif x86_64 or i8086}
  2849. ;
  2850. &320,&321,&322 :
  2851. begin
  2852. case oper[c-&320]^.ot and OT_SIZE_MASK of
  2853. {$if defined(i386) or defined(x86_64)}
  2854. OT_BITS16 :
  2855. {$elseif defined(i8086)}
  2856. OT_BITS32 :
  2857. {$endif}
  2858. begin
  2859. bytes[0]:=$66;
  2860. objdata.writebytes(bytes,1);
  2861. end;
  2862. {$ifndef x86_64}
  2863. OT_BITS64 :
  2864. Message(asmw_e_64bit_not_supported);
  2865. {$endif x86_64}
  2866. end;
  2867. end;
  2868. &323,
  2869. &325 : {no action needed};
  2870. &324,
  2871. &361:
  2872. begin
  2873. {$ifndef i8086}
  2874. if not(needed_VEX) then
  2875. begin
  2876. bytes[0]:=$66;
  2877. objdata.writebytes(bytes,1);
  2878. end;
  2879. {$endif not i8086}
  2880. end;
  2881. &326 :
  2882. begin
  2883. {$ifndef x86_64}
  2884. Message(asmw_e_64bit_not_supported);
  2885. {$endif x86_64}
  2886. end;
  2887. &333 :
  2888. begin
  2889. if not(needed_VEX) then
  2890. begin
  2891. bytes[0]:=$f3;
  2892. objdata.writebytes(bytes,1);
  2893. end;
  2894. end;
  2895. &334 :
  2896. begin
  2897. if not(needed_VEX) then
  2898. begin
  2899. bytes[0]:=$f2;
  2900. objdata.writebytes(bytes,1);
  2901. end;
  2902. end;
  2903. &335:
  2904. ;
  2905. &312,
  2906. &327,
  2907. &331,&332 :
  2908. begin
  2909. { these are dissambler hints or 32 bit prefixes which
  2910. are not needed }
  2911. end;
  2912. &362..&364: ; // VEX flags =>> nothing todo
  2913. &366: begin
  2914. if needed_VEX then
  2915. begin
  2916. if ops = 4 then
  2917. begin
  2918. if (oper[2]^.typ=top_reg) then
  2919. begin
  2920. if (oper[2]^.ot and otf_reg_xmm <> 0) or
  2921. (oper[2]^.ot and otf_reg_ymm <> 0) then
  2922. begin
  2923. bytes[0] := ((getsupreg(oper[2]^.reg) and 15) shl 4);
  2924. objdata.writebytes(bytes,1);
  2925. end
  2926. else Internalerror(2014032001);
  2927. end
  2928. else Internalerror(2014032002);
  2929. end
  2930. else Internalerror(2014032003);
  2931. end
  2932. else Internalerror(2014032004);
  2933. end;
  2934. &367: begin
  2935. if needed_VEX then
  2936. begin
  2937. if ops = 4 then
  2938. begin
  2939. if (oper[3]^.typ=top_reg) then
  2940. begin
  2941. if (oper[3]^.ot and otf_reg_xmm <> 0) or
  2942. (oper[3]^.ot and otf_reg_ymm <> 0) then
  2943. begin
  2944. bytes[0] := ((getsupreg(oper[3]^.reg) and 15) shl 4);
  2945. objdata.writebytes(bytes,1);
  2946. end
  2947. else Internalerror(2014032005);
  2948. end
  2949. else Internalerror(2014032006);
  2950. end
  2951. else Internalerror(2014032007);
  2952. end
  2953. else Internalerror(2014032008);
  2954. end;
  2955. &370..&372: ; // VEX flags =>> nothing todo
  2956. &37:
  2957. begin
  2958. {$ifdef i8086}
  2959. if assigned(currsym) then
  2960. objdata_writereloc(0,2,currsym,RELOC_SEG)
  2961. else
  2962. InternalError(2015041503);
  2963. {$else i8086}
  2964. InternalError(777006);
  2965. {$endif i8086}
  2966. end;
  2967. else
  2968. begin
  2969. { rex should be written at this point }
  2970. {$ifdef x86_64}
  2971. if not(needed_VEX) then // TG
  2972. if (rex<>0) and not(rexwritten) then
  2973. internalerror(200603191);
  2974. {$endif x86_64}
  2975. if (c>=&100) and (c<=&227) then // 0100..0227
  2976. begin
  2977. if (c<&177) then // 0177
  2978. begin
  2979. if (oper[c and 7]^.typ=top_reg) then
  2980. rfield:=regval(oper[c and 7]^.reg)
  2981. else
  2982. rfield:=regval(oper[c and 7]^.ref^.base);
  2983. end
  2984. else
  2985. rfield:=c and 7;
  2986. opidx:=(c shr 3) and 7;
  2987. if not process_ea(oper[opidx]^,ea_data,rfield) then
  2988. Message(asmw_e_invalid_effective_address);
  2989. pb:=@bytes[0];
  2990. pb^:=ea_data.modrm;
  2991. inc(pb);
  2992. if ea_data.sib_present then
  2993. begin
  2994. pb^:=ea_data.sib;
  2995. inc(pb);
  2996. end;
  2997. s:=pb-@bytes[0];
  2998. objdata.writebytes(bytes,s);
  2999. case ea_data.bytes of
  3000. 0 : ;
  3001. 1 :
  3002. begin
  3003. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  3004. begin
  3005. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  3006. {$ifdef i386}
  3007. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3008. (tf_pic_uses_got in target_info.flags) then
  3009. currabsreloc:=RELOC_GOT32
  3010. else
  3011. {$endif i386}
  3012. {$ifdef x86_64}
  3013. if oper[opidx]^.ref^.refaddr=addr_pic then
  3014. currabsreloc:=RELOC_GOTPCREL
  3015. else
  3016. {$endif x86_64}
  3017. currabsreloc:=RELOC_ABSOLUTE;
  3018. objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  3019. end
  3020. else
  3021. begin
  3022. bytes[0]:=oper[opidx]^.ref^.offset;
  3023. objdata.writebytes(bytes,1);
  3024. end;
  3025. inc(s);
  3026. end;
  3027. 2,4 :
  3028. begin
  3029. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  3030. currval:=oper[opidx]^.ref^.offset;
  3031. {$ifdef x86_64}
  3032. if oper[opidx]^.ref^.refaddr=addr_pic then
  3033. currabsreloc:=RELOC_GOTPCREL
  3034. else
  3035. if oper[opidx]^.ref^.base=NR_RIP then
  3036. begin
  3037. currabsreloc:=RELOC_RELATIVE;
  3038. { Adjust reloc value by number of bytes following the displacement,
  3039. but not if displacement is specified by literal constant }
  3040. if Assigned(currsym) then
  3041. Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
  3042. end
  3043. else
  3044. {$endif x86_64}
  3045. {$ifdef i386}
  3046. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3047. (tf_pic_uses_got in target_info.flags) then
  3048. currabsreloc:=RELOC_GOT32
  3049. else
  3050. {$endif i386}
  3051. currabsreloc:=RELOC_ABSOLUTE32;
  3052. if (currabsreloc=RELOC_ABSOLUTE32) and
  3053. (Assigned(oper[opidx]^.ref^.relsymbol)) then
  3054. begin
  3055. relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
  3056. if relsym.objsection=objdata.CurrObjSec then
  3057. begin
  3058. currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
  3059. currabsreloc:=RELOC_RELATIVE;
  3060. end
  3061. else
  3062. begin
  3063. currabsreloc:=RELOC_PIC_PAIR;
  3064. currval:=relsym.offset;
  3065. end;
  3066. end;
  3067. objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
  3068. inc(s,ea_data.bytes);
  3069. end;
  3070. end;
  3071. end
  3072. else
  3073. InternalError(777007);
  3074. end;
  3075. end;
  3076. until false;
  3077. end;
  3078. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  3079. begin
  3080. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  3081. (regtype = R_INTREGISTER) and
  3082. (ops=2) and
  3083. (oper[0]^.typ=top_reg) and
  3084. (oper[1]^.typ=top_reg) and
  3085. (oper[0]^.reg=oper[1]^.reg)
  3086. ) or
  3087. (((opcode=A_MOVSS) or (opcode=A_MOVSD) or (opcode=A_MOVQ) or
  3088. (opcode=A_MOVAPS) or (OPCODE=A_MOVAPD) or
  3089. (opcode=A_VMOVSS) or (opcode=A_VMOVSD) or (opcode=A_VMOVQ) or
  3090. (opcode=A_VMOVAPS) or (OPCODE=A_VMOVAPD)) and
  3091. (regtype = R_MMREGISTER) and
  3092. (ops=2) and
  3093. (oper[0]^.typ=top_reg) and
  3094. (oper[1]^.typ=top_reg) and
  3095. (oper[0]^.reg=oper[1]^.reg)
  3096. );
  3097. end;
  3098. procedure build_spilling_operation_type_table;
  3099. var
  3100. opcode : tasmop;
  3101. i : integer;
  3102. begin
  3103. new(operation_type_table);
  3104. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  3105. for opcode:=low(tasmop) to high(tasmop) do
  3106. begin
  3107. for i:=1 to MaxInsChanges do
  3108. begin
  3109. case InsProp[opcode].Ch[i] of
  3110. Ch_Rop1 :
  3111. operation_type_table^[opcode,0]:=operand_read;
  3112. Ch_Wop1 :
  3113. operation_type_table^[opcode,0]:=operand_write;
  3114. Ch_RWop1,
  3115. Ch_Mop1 :
  3116. operation_type_table^[opcode,0]:=operand_readwrite;
  3117. Ch_Rop2 :
  3118. operation_type_table^[opcode,1]:=operand_read;
  3119. Ch_Wop2 :
  3120. operation_type_table^[opcode,1]:=operand_write;
  3121. Ch_RWop2,
  3122. Ch_Mop2 :
  3123. operation_type_table^[opcode,1]:=operand_readwrite;
  3124. Ch_Rop3 :
  3125. operation_type_table^[opcode,2]:=operand_read;
  3126. Ch_Wop3 :
  3127. operation_type_table^[opcode,2]:=operand_write;
  3128. Ch_RWop3,
  3129. Ch_Mop3 :
  3130. operation_type_table^[opcode,2]:=operand_readwrite;
  3131. end;
  3132. end;
  3133. end;
  3134. end;
  3135. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  3136. begin
  3137. { the information in the instruction table is made for the string copy
  3138. operation MOVSD so hack here (FK)
  3139. VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
  3140. so fix it here (FK)
  3141. }
  3142. if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
  3143. begin
  3144. case opnr of
  3145. 0:
  3146. result:=operand_read;
  3147. 1:
  3148. result:=operand_write;
  3149. else
  3150. internalerror(200506055);
  3151. end
  3152. end
  3153. { IMUL has 1, 2 and 3-operand forms }
  3154. else if opcode=A_IMUL then
  3155. begin
  3156. case ops of
  3157. 1:
  3158. if opnr=0 then
  3159. result:=operand_read
  3160. else
  3161. internalerror(2014011802);
  3162. 2:
  3163. begin
  3164. case opnr of
  3165. 0:
  3166. result:=operand_read;
  3167. 1:
  3168. result:=operand_readwrite;
  3169. else
  3170. internalerror(2014011803);
  3171. end;
  3172. end;
  3173. 3:
  3174. begin
  3175. case opnr of
  3176. 0,1:
  3177. result:=operand_read;
  3178. 2:
  3179. result:=operand_write;
  3180. else
  3181. internalerror(2014011804);
  3182. end;
  3183. end;
  3184. else
  3185. internalerror(2014011805);
  3186. end;
  3187. end
  3188. else
  3189. result:=operation_type_table^[opcode,opnr];
  3190. end;
  3191. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  3192. var
  3193. tmpref: treference;
  3194. begin
  3195. tmpref:=ref;
  3196. {$ifdef i8086}
  3197. if tmpref.segment=NR_SS then
  3198. tmpref.segment:=NR_NO;
  3199. {$endif i8086}
  3200. case getregtype(r) of
  3201. R_INTREGISTER :
  3202. begin
  3203. if getsubreg(r)=R_SUBH then
  3204. inc(tmpref.offset);
  3205. { we don't need special code here for 32 bit loads on x86_64, since
  3206. those will automatically zero-extend the upper 32 bits. }
  3207. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
  3208. end;
  3209. R_MMREGISTER :
  3210. if current_settings.fputype in fpu_avx_instructionsets then
  3211. case getsubreg(r) of
  3212. R_SUBMMD:
  3213. result:=taicpu.op_ref_reg(A_VMOVSD,reg2opsize(r),tmpref,r);
  3214. R_SUBMMS:
  3215. result:=taicpu.op_ref_reg(A_VMOVSS,reg2opsize(r),tmpref,r);
  3216. R_SUBQ,
  3217. R_SUBMMWHOLE:
  3218. result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
  3219. else
  3220. internalerror(200506043);
  3221. end
  3222. else
  3223. case getsubreg(r) of
  3224. R_SUBMMD:
  3225. result:=taicpu.op_ref_reg(A_MOVSD,reg2opsize(r),tmpref,r);
  3226. R_SUBMMS:
  3227. result:=taicpu.op_ref_reg(A_MOVSS,reg2opsize(r),tmpref,r);
  3228. R_SUBQ,
  3229. R_SUBMMWHOLE:
  3230. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
  3231. else
  3232. internalerror(200506043);
  3233. end;
  3234. else
  3235. internalerror(200401041);
  3236. end;
  3237. end;
  3238. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  3239. var
  3240. size: topsize;
  3241. tmpref: treference;
  3242. begin
  3243. tmpref:=ref;
  3244. {$ifdef i8086}
  3245. if tmpref.segment=NR_SS then
  3246. tmpref.segment:=NR_NO;
  3247. {$endif i8086}
  3248. case getregtype(r) of
  3249. R_INTREGISTER :
  3250. begin
  3251. if getsubreg(r)=R_SUBH then
  3252. inc(tmpref.offset);
  3253. size:=reg2opsize(r);
  3254. {$ifdef x86_64}
  3255. { even if it's a 32 bit reg, we still have to spill 64 bits
  3256. because we often perform 64 bit operations on them }
  3257. if (size=S_L) then
  3258. begin
  3259. size:=S_Q;
  3260. r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
  3261. end;
  3262. {$endif x86_64}
  3263. result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
  3264. end;
  3265. R_MMREGISTER :
  3266. if current_settings.fputype in fpu_avx_instructionsets then
  3267. case getsubreg(r) of
  3268. R_SUBMMD:
  3269. result:=taicpu.op_reg_ref(A_VMOVSD,reg2opsize(r),r,tmpref);
  3270. R_SUBMMS:
  3271. result:=taicpu.op_reg_ref(A_VMOVSS,reg2opsize(r),r,tmpref);
  3272. R_SUBQ,
  3273. R_SUBMMWHOLE:
  3274. result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
  3275. else
  3276. internalerror(200506042);
  3277. end
  3278. else
  3279. case getsubreg(r) of
  3280. R_SUBMMD:
  3281. result:=taicpu.op_reg_ref(A_MOVSD,reg2opsize(r),r,tmpref);
  3282. R_SUBMMS:
  3283. result:=taicpu.op_reg_ref(A_MOVSS,reg2opsize(r),r,tmpref);
  3284. R_SUBQ,
  3285. R_SUBMMWHOLE:
  3286. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
  3287. else
  3288. internalerror(200506042);
  3289. end;
  3290. else
  3291. internalerror(200401041);
  3292. end;
  3293. end;
  3294. {$ifdef i8086}
  3295. procedure taicpu.loadsegsymbol(opidx:longint;s:tasmsymbol);
  3296. var
  3297. r: treference;
  3298. begin
  3299. reference_reset_symbol(r,s,0,1);
  3300. r.refaddr:=addr_seg;
  3301. loadref(opidx,r);
  3302. end;
  3303. {$endif i8086}
  3304. {*****************************************************************************
  3305. Instruction table
  3306. *****************************************************************************}
  3307. procedure BuildInsTabCache;
  3308. var
  3309. i : longint;
  3310. begin
  3311. new(instabcache);
  3312. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  3313. i:=0;
  3314. while (i<InsTabEntries) do
  3315. begin
  3316. if InsTabCache^[InsTab[i].OPcode]=-1 then
  3317. InsTabCache^[InsTab[i].OPcode]:=i;
  3318. inc(i);
  3319. end;
  3320. end;
  3321. procedure BuildInsTabMemRefSizeInfoCache;
  3322. var
  3323. AsmOp: TasmOp;
  3324. i,j: longint;
  3325. insentry : PInsEntry;
  3326. MRefInfo: TMemRefSizeInfo;
  3327. SConstInfo: TConstSizeInfo;
  3328. actRegSize: int64;
  3329. actMemSize: int64;
  3330. actConstSize: int64;
  3331. actRegCount: integer;
  3332. actMemCount: integer;
  3333. actConstCount: integer;
  3334. actRegTypes : int64;
  3335. actRegMemTypes: int64;
  3336. NewRegSize: int64;
  3337. actVMemCount : integer;
  3338. actVMemTypes : int64;
  3339. RegMMXSizeMask: int64;
  3340. RegXMMSizeMask: int64;
  3341. RegYMMSizeMask: int64;
  3342. bitcount: integer;
  3343. function bitcnt(aValue: int64): integer;
  3344. var
  3345. i: integer;
  3346. begin
  3347. result := 0;
  3348. for i := 0 to 63 do
  3349. begin
  3350. if (aValue mod 2) = 1 then
  3351. begin
  3352. inc(result);
  3353. end;
  3354. aValue := aValue shr 1;
  3355. end;
  3356. end;
  3357. begin
  3358. new(InsTabMemRefSizeInfoCache);
  3359. FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
  3360. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3361. begin
  3362. i := InsTabCache^[AsmOp];
  3363. if i >= 0 then
  3364. begin
  3365. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3366. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3367. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
  3368. insentry:=@instab[i];
  3369. RegMMXSizeMask := 0;
  3370. RegXMMSizeMask := 0;
  3371. RegYMMSizeMask := 0;
  3372. while (insentry^.opcode=AsmOp) do
  3373. begin
  3374. MRefInfo := msiUnkown;
  3375. actRegSize := 0;
  3376. actRegCount := 0;
  3377. actRegTypes := 0;
  3378. NewRegSize := 0;
  3379. actMemSize := 0;
  3380. actMemCount := 0;
  3381. actRegMemTypes := 0;
  3382. actVMemCount := 0;
  3383. actVMemTypes := 0;
  3384. actConstSize := 0;
  3385. actConstCount := 0;
  3386. for j := 0 to insentry^.ops -1 do
  3387. begin
  3388. if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
  3389. ((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
  3390. ((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
  3391. ((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) then
  3392. begin
  3393. inc(actVMemCount);
  3394. case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64) of
  3395. OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
  3396. OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
  3397. OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
  3398. OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
  3399. else InternalError(777206);
  3400. end;
  3401. end
  3402. else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
  3403. begin
  3404. inc(actRegCount);
  3405. NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
  3406. if NewRegSize = 0 then
  3407. begin
  3408. case insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG) of
  3409. OT_MMXREG: begin
  3410. NewRegSize := OT_BITS64;
  3411. end;
  3412. OT_XMMREG: begin
  3413. NewRegSize := OT_BITS128;
  3414. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3415. end;
  3416. OT_YMMREG: begin
  3417. NewRegSize := OT_BITS256;
  3418. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3419. end;
  3420. else NewRegSize := not(0);
  3421. end;
  3422. end;
  3423. actRegSize := actRegSize or NewRegSize;
  3424. actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG));
  3425. end
  3426. else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
  3427. begin
  3428. inc(actMemCount);
  3429. actMemSize:=actMemSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3430. if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
  3431. begin
  3432. actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
  3433. end;
  3434. end
  3435. else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
  3436. begin
  3437. inc(actConstCount);
  3438. actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3439. end
  3440. end;
  3441. if actConstCount > 0 then
  3442. begin
  3443. case actConstSize of
  3444. 0: SConstInfo := csiNoSize;
  3445. OT_BITS8: SConstInfo := csiMem8;
  3446. OT_BITS16: SConstInfo := csiMem16;
  3447. OT_BITS32: SConstInfo := csiMem32;
  3448. OT_BITS64: SConstInfo := csiMem64;
  3449. else SConstInfo := csiMultiple;
  3450. end;
  3451. if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnkown then
  3452. begin
  3453. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
  3454. end
  3455. else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
  3456. begin
  3457. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
  3458. end;
  3459. end;
  3460. if actVMemCount > 0 then
  3461. begin
  3462. if actVMemCount = 1 then
  3463. begin
  3464. if actVMemTypes > 0 then
  3465. begin
  3466. case actVMemTypes of
  3467. OT_XMEM32: MRefInfo := msiXMem32;
  3468. OT_XMEM64: MRefInfo := msiXMem64;
  3469. OT_YMEM32: MRefInfo := msiYMem32;
  3470. OT_YMEM64: MRefInfo := msiYMem64;
  3471. else InternalError(777208);
  3472. end;
  3473. case actRegTypes of
  3474. OT_XMMREG: case MRefInfo of
  3475. msiXMem32,
  3476. msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
  3477. msiYMem32,
  3478. msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
  3479. else InternalError(777210);
  3480. end;
  3481. OT_YMMREG: case MRefInfo of
  3482. msiXMem32,
  3483. msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
  3484. msiYMem32,
  3485. msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
  3486. else InternalError(777211);
  3487. end;
  3488. //else InternalError(777209);
  3489. end;
  3490. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3491. begin
  3492. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3493. end
  3494. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3495. begin
  3496. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64] then
  3497. begin
  3498. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
  3499. end
  3500. else InternalError(777212);
  3501. end;
  3502. end;
  3503. end
  3504. else InternalError(777207);
  3505. end
  3506. else
  3507. case actMemCount of
  3508. 0: ; // nothing todo
  3509. 1: begin
  3510. MRefInfo := msiUnkown;
  3511. case actRegMemTypes and (OT_MMXRM OR OT_XMMRM OR OT_YMMRM) of
  3512. OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
  3513. OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
  3514. OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
  3515. end;
  3516. case actMemSize of
  3517. 0: MRefInfo := msiNoSize;
  3518. OT_BITS8: MRefInfo := msiMem8;
  3519. OT_BITS16: MRefInfo := msiMem16;
  3520. OT_BITS32: MRefInfo := msiMem32;
  3521. OT_BITS64: MRefInfo := msiMem64;
  3522. OT_BITS128: MRefInfo := msiMem128;
  3523. OT_BITS256: MRefInfo := msiMem256;
  3524. OT_BITS80,
  3525. OT_FAR,
  3526. OT_NEAR,
  3527. OT_SHORT: ; // ignore
  3528. else
  3529. begin
  3530. bitcount := bitcnt(actMemSize);
  3531. if bitcount > 1 then MRefInfo := msiMultiple
  3532. else InternalError(777203);
  3533. end;
  3534. end;
  3535. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3536. begin
  3537. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3538. end
  3539. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3540. begin
  3541. with InsTabMemRefSizeInfoCache^[AsmOp] do
  3542. begin
  3543. if ((MemRefSize = msiMem8) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultiple8
  3544. else if ((MemRefSize = msiMem16) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultiple16
  3545. else if ((MemRefSize = msiMem32) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultiple32
  3546. else if ((MemRefSize = msiMem64) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultiple64
  3547. else if ((MemRefSize = msiMem128) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultiple128
  3548. else if ((MemRefSize = msiMem256) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultiple256
  3549. else MemRefSize := msiMultiple;
  3550. end;
  3551. end;
  3552. if actRegCount > 0 then
  3553. begin
  3554. case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG) of
  3555. OT_MMXREG: RegMMXSizeMask := RegMMXSizeMask or actMemSize;
  3556. OT_XMMREG: RegXMMSizeMask := RegXMMSizeMask or actMemSize;
  3557. OT_YMMREG: RegYMMSizeMask := RegYMMSizeMask or actMemSize;
  3558. else begin
  3559. RegMMXSizeMask := not(0);
  3560. RegXMMSizeMask := not(0);
  3561. RegYMMSizeMask := not(0);
  3562. end;
  3563. end;
  3564. end;
  3565. end;
  3566. else InternalError(777202);
  3567. end;
  3568. inc(insentry);
  3569. end;
  3570. if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
  3571. (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
  3572. begin
  3573. case RegXMMSizeMask of
  3574. OT_BITS16: case RegYMMSizeMask of
  3575. OT_BITS32: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
  3576. end;
  3577. OT_BITS32: case RegYMMSizeMask of
  3578. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
  3579. end;
  3580. OT_BITS64: case RegYMMSizeMask of
  3581. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3582. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
  3583. end;
  3584. OT_BITS128: begin
  3585. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
  3586. begin
  3587. // vector-memory-operand AVX2 (e.g. VGATHER..)
  3588. case RegYMMSizeMask of
  3589. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
  3590. end;
  3591. end
  3592. else if RegMMXSizeMask = 0 then
  3593. begin
  3594. case RegYMMSizeMask of
  3595. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3596. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3597. end;
  3598. end
  3599. else if RegYMMSizeMask = 0 then
  3600. begin
  3601. case RegMMXSizeMask of
  3602. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3603. end;
  3604. end
  3605. else InternalError(777205);
  3606. end;
  3607. end;
  3608. end;
  3609. end;
  3610. end;
  3611. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3612. begin
  3613. // only supported intructiones with SSE- or AVX-operands
  3614. if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
  3615. begin
  3616. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3617. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3618. end;
  3619. end;
  3620. end;
  3621. procedure InitAsm;
  3622. begin
  3623. build_spilling_operation_type_table;
  3624. if not assigned(instabcache) then
  3625. BuildInsTabCache;
  3626. if not assigned(InsTabMemRefSizeInfoCache) then
  3627. BuildInsTabMemRefSizeInfoCache;
  3628. end;
  3629. procedure DoneAsm;
  3630. begin
  3631. if assigned(operation_type_table) then
  3632. begin
  3633. dispose(operation_type_table);
  3634. operation_type_table:=nil;
  3635. end;
  3636. if assigned(instabcache) then
  3637. begin
  3638. dispose(instabcache);
  3639. instabcache:=nil;
  3640. end;
  3641. if assigned(InsTabMemRefSizeInfoCache) then
  3642. begin
  3643. dispose(InsTabMemRefSizeInfoCache);
  3644. InsTabMemRefSizeInfoCache:=nil;
  3645. end;
  3646. end;
  3647. begin
  3648. cai_align:=tai_align;
  3649. cai_cpu:=taicpu;
  3650. end.