cpubase.pas 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the i8086, i386 and x86-64 architecture
  4. * This code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. {# Base unit for processor information. This unit contains
  21. enumerations of registers, opcodes, sizes, and other
  22. such things which are processor specific.
  23. }
  24. unit cpubase;
  25. {$i fpcdefs.inc}
  26. interface
  27. uses
  28. globals,
  29. cgbase
  30. ;
  31. {*****************************************************************************
  32. Assembler Opcodes
  33. *****************************************************************************}
  34. type
  35. {$if defined(x86_64)}
  36. TAsmOp={$i x8664op.inc}
  37. {$elseif defined(i386)}
  38. TAsmOp={$i i386op.inc}
  39. {$elseif defined(i8086)}
  40. TAsmOp={$i i8086op.inc}
  41. {$endif}
  42. { This should define the array of instructions as string }
  43. op2strtable=array[tasmop] of string[16];
  44. {$ifdef i8086}
  45. ImmInt = SmallInt;
  46. {$else i8086}
  47. ImmInt = Longint;
  48. {$endif i8086}
  49. const
  50. { First value of opcode enumeration }
  51. firstop = low(tasmop);
  52. { Last value of opcode enumeration }
  53. lastop = high(tasmop);
  54. {*****************************************************************************
  55. Registers
  56. *****************************************************************************}
  57. const
  58. { Integer Super registers }
  59. RS_NO = $ffffffff;
  60. RS_RAX = $00; {EAX}
  61. RS_RCX = $01; {ECX}
  62. RS_RDX = $02; {EDX}
  63. RS_RBX = $03; {EBX}
  64. RS_RSI = $04; {ESI}
  65. RS_RDI = $05; {EDI}
  66. RS_RBP = $06; {EBP}
  67. RS_RSP = $07; {ESP}
  68. RS_R8 = $08; {R8}
  69. RS_R9 = $09; {R9}
  70. RS_R10 = $0a; {R10}
  71. RS_R11 = $0b; {R11}
  72. RS_R12 = $0c; {R12}
  73. RS_R13 = $0d; {R13}
  74. RS_R14 = $0e; {R14}
  75. RS_R15 = $0f; {R15}
  76. { create aliases to allow code sharing between x86-64 and i386 }
  77. RS_EAX = RS_RAX;
  78. RS_EBX = RS_RBX;
  79. RS_ECX = RS_RCX;
  80. RS_EDX = RS_RDX;
  81. RS_ESI = RS_RSI;
  82. RS_EDI = RS_RDI;
  83. RS_EBP = RS_RBP;
  84. RS_ESP = RS_RSP;
  85. { create aliases to allow code sharing between i386 and i8086 }
  86. RS_AX = RS_RAX;
  87. RS_BX = RS_RBX;
  88. RS_CX = RS_RCX;
  89. RS_DX = RS_RDX;
  90. RS_SI = RS_RSI;
  91. RS_DI = RS_RDI;
  92. RS_BP = RS_RBP;
  93. RS_SP = RS_RSP;
  94. { Number of first imaginary register }
  95. first_int_imreg = $10;
  96. { Float Super registers }
  97. RS_ST0 = $00;
  98. RS_ST1 = $01;
  99. RS_ST2 = $02;
  100. RS_ST3 = $03;
  101. RS_ST4 = $04;
  102. RS_ST5 = $05;
  103. RS_ST6 = $06;
  104. RS_ST7 = $07;
  105. RS_ST = $08;
  106. { Number of first imaginary register }
  107. first_fpu_imreg = $09;
  108. { MM Super registers }
  109. RS_XMM0 = $00;
  110. RS_XMM1 = $01;
  111. RS_XMM2 = $02;
  112. RS_XMM3 = $03;
  113. RS_XMM4 = $04;
  114. RS_XMM5 = $05;
  115. RS_XMM6 = $06;
  116. RS_XMM7 = $07;
  117. RS_XMM8 = $08;
  118. RS_XMM9 = $09;
  119. RS_XMM10 = $0a;
  120. RS_XMM11 = $0b;
  121. RS_XMM12 = $0c;
  122. RS_XMM13 = $0d;
  123. RS_XMM14 = $0e;
  124. RS_XMM15 = $0f;
  125. RS_XMM16 = $10;
  126. RS_XMM17 = $11;
  127. RS_XMM18 = $12;
  128. RS_XMM19 = $13;
  129. RS_XMM20 = $14;
  130. RS_XMM21 = $15;
  131. RS_XMM22 = $16;
  132. RS_XMM23 = $17;
  133. RS_XMM24 = $18;
  134. RS_XMM25 = $19;
  135. RS_XMM26 = $1a;
  136. RS_XMM27 = $1b;
  137. RS_XMM28 = $1c;
  138. RS_XMM29 = $1d;
  139. RS_XMM30 = $1e;
  140. RS_XMM31 = $1f;
  141. {$if defined(x86_64)}
  142. RS_RFLAGS = $06;
  143. {$elseif defined(i386)}
  144. RS_EFLAGS = $06;
  145. {$elseif defined(i8086)}
  146. RS_FLAGS = $06;
  147. {$endif}
  148. { Number of first imaginary register }
  149. {$ifdef x86_64}
  150. first_mm_imreg = $10;
  151. {$else x86_64}
  152. first_mm_imreg = $08;
  153. {$endif x86_64}
  154. { The subregister that specifies the entire register and an address }
  155. {$if defined(x86_64)}
  156. { Hammer }
  157. R_SUBWHOLE = R_SUBQ;
  158. R_SUBADDR = R_SUBQ;
  159. {$elseif defined(i386)}
  160. { i386 }
  161. R_SUBWHOLE = R_SUBD;
  162. R_SUBADDR = R_SUBD;
  163. {$elseif defined(i8086)}
  164. { i8086 }
  165. R_SUBWHOLE = R_SUBW;
  166. R_SUBADDR = R_SUBW;
  167. {$endif}
  168. { Available Registers }
  169. {$if defined(x86_64)}
  170. {$i r8664con.inc}
  171. {$elseif defined(i386)}
  172. {$i r386con.inc}
  173. {$elseif defined(i8086)}
  174. {$i r8086con.inc}
  175. {$endif}
  176. type
  177. { Number of registers used for indexing in tables }
  178. {$if defined(x86_64)}
  179. tregisterindex=0..{$i r8664nor.inc}-1;
  180. {$elseif defined(i386)}
  181. tregisterindex=0..{$i r386nor.inc}-1;
  182. {$elseif defined(i8086)}
  183. tregisterindex=0..{$i r8086nor.inc}-1;
  184. {$endif}
  185. const
  186. regnumber_table : array[tregisterindex] of tregister = (
  187. {$if defined(x86_64)}
  188. {$i r8664num.inc}
  189. {$elseif defined(i386)}
  190. {$i r386num.inc}
  191. {$elseif defined(i8086)}
  192. {$i r8086num.inc}
  193. {$endif}
  194. );
  195. regstabs_table : array[tregisterindex] of shortint = (
  196. {$if defined(x86_64)}
  197. {$i r8664stab.inc}
  198. {$elseif defined(i386)}
  199. {$i r386stab.inc}
  200. {$elseif defined(i8086)}
  201. {$i r8086stab.inc}
  202. {$endif}
  203. );
  204. regdwarf_table : array[tregisterindex] of shortint = (
  205. {$if defined(x86_64)}
  206. {$i r8664dwrf.inc}
  207. {$elseif defined(i386)}
  208. {$i r386dwrf.inc}
  209. {$elseif defined(i8086)}
  210. {$i r8086dwrf.inc}
  211. {$endif}
  212. );
  213. {$if defined(x86_64)}
  214. RS_DEFAULTFLAGS = RS_RFLAGS;
  215. NR_DEFAULTFLAGS = NR_RFLAGS;
  216. {$elseif defined(i386)}
  217. RS_DEFAULTFLAGS = RS_EFLAGS;
  218. NR_DEFAULTFLAGS = NR_EFLAGS;
  219. {$elseif defined(i8086)}
  220. RS_DEFAULTFLAGS = RS_FLAGS;
  221. NR_DEFAULTFLAGS = NR_FLAGS;
  222. {$endif}
  223. type
  224. totherregisterset = set of tregisterindex;
  225. {*****************************************************************************
  226. Conditions
  227. *****************************************************************************}
  228. type
  229. TAsmCond=(C_None,
  230. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  231. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  232. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  233. );
  234. const
  235. cond2str:array[TAsmCond] of string[3]=('',
  236. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  237. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  238. 'ns','nz','o','p','pe','po','s','z'
  239. );
  240. {*****************************************************************************
  241. Flags
  242. *****************************************************************************}
  243. type
  244. TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
  245. F_A,F_AE,F_B,F_BE,
  246. F_S,F_NS,F_O,F_NO,
  247. { For IEEE-compliant floating-point compares,
  248. same as normal counterparts but additionally check PF }
  249. F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
  250. const
  251. FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
  252. FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
  253. F_E,F_NE,F_A,F_AE,F_B,F_BE
  254. );
  255. {*****************************************************************************
  256. Constants
  257. *****************************************************************************}
  258. const
  259. { declare aliases }
  260. LOC_SSEREGISTER = LOC_MMREGISTER;
  261. LOC_CSSEREGISTER = LOC_CMMREGISTER;
  262. max_operands = 4;
  263. maxfpuregs = 8;
  264. {*****************************************************************************
  265. CPU Dependent Constants
  266. *****************************************************************************}
  267. {$i cpubase.inc}
  268. const
  269. {$ifdef x86_64}
  270. topsize2memsize: array[topsize] of integer =
  271. (0, 8,16,32,64,8,8,16,8,16,32,
  272. 16,32,64,
  273. 16,32,64,0,0,
  274. 64,
  275. 0,0,0,
  276. 80,
  277. 128,
  278. 256,
  279. 512
  280. );
  281. {$else}
  282. topsize2memsize: array[topsize] of integer =
  283. (0, 8,16,32,64,8,8,16,
  284. 16,32,64,
  285. 16,32,64,0,0,
  286. 64,
  287. 0,0,0,
  288. 80,
  289. 128,
  290. 256,
  291. 512
  292. );
  293. {$endif}
  294. {*****************************************************************************
  295. Helpers
  296. *****************************************************************************}
  297. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  298. function reg2opsize(r:Tregister):topsize;
  299. function reg_cgsize(const reg: tregister): tcgsize;
  300. function is_calljmp(o:tasmop):boolean;
  301. procedure inverse_flags(var f: TResFlags);
  302. function flags_to_cond(const f: TResFlags) : TAsmCond;
  303. function is_segment_reg(r:tregister):boolean;
  304. function findreg_by_number(r:Tregister):tregisterindex;
  305. function std_regnum_search(const s:string):Tregister;
  306. function std_regname(r:Tregister):string;
  307. function dwarf_reg(r:tregister):shortint;
  308. function dwarf_reg_no_error(r:tregister):shortint;
  309. function eh_return_data_regno(nr: longint): longint;
  310. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  311. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  312. { checks whether two segment registers are normally equal in the current memory model }
  313. function segment_regs_equal(r1,r2:tregister):boolean;
  314. { checks whether the specified op is an x86 string instruction (e.g. cmpsb, movsd, scasw, etc.) }
  315. function is_x86_string_op(op: TAsmOp): boolean;
  316. { checks whether the specified op is an x86 parameterless string instruction
  317. (e.g. returns true for movsb, cmpsw, etc, but returns false for movs, cmps, etc.) }
  318. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  319. { checks whether the specified op is an x86 parameterized string instruction
  320. (e.g. returns true for movs, cmps, etc, but returns false for movsb, cmpsb, etc.) }
  321. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  322. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  323. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  324. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  325. { returns the 0-based operand number (intel syntax) of the ds:[si] param of
  326. a x86 string instruction }
  327. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  328. { returns the 0-based operand number (intel syntax) of the es:[di] param of
  329. a x86 string instruction }
  330. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  331. {$ifdef i8086}
  332. { return whether we need to add an extra FWAIT instruction before the given
  333. instruction, when we're targeting the i8087. This includes almost all x87
  334. instructions, but certain ones, which always have or have not a built in
  335. FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
  336. function requires_fwait_on_8087(op: TAsmOp): boolean;
  337. {$endif i8086}
  338. implementation
  339. uses
  340. globtype,
  341. rgbase,verbose;
  342. const
  343. {$if defined(x86_64)}
  344. std_regname_table : TRegNameTable = (
  345. {$i r8664std.inc}
  346. );
  347. regnumber_index : array[tregisterindex] of tregisterindex = (
  348. {$i r8664rni.inc}
  349. );
  350. std_regname_index : array[tregisterindex] of tregisterindex = (
  351. {$i r8664sri.inc}
  352. );
  353. {$elseif defined(i386)}
  354. std_regname_table : TRegNameTable = (
  355. {$i r386std.inc}
  356. );
  357. regnumber_index : array[tregisterindex] of tregisterindex = (
  358. {$i r386rni.inc}
  359. );
  360. std_regname_index : array[tregisterindex] of tregisterindex = (
  361. {$i r386sri.inc}
  362. );
  363. {$elseif defined(i8086)}
  364. std_regname_table : TRegNameTable = (
  365. {$i r8086std.inc}
  366. );
  367. regnumber_index : array[tregisterindex] of tregisterindex = (
  368. {$i r8086rni.inc}
  369. );
  370. std_regname_index : array[tregisterindex] of tregisterindex = (
  371. {$i r8086sri.inc}
  372. );
  373. {$endif}
  374. {*****************************************************************************
  375. Helpers
  376. *****************************************************************************}
  377. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  378. begin
  379. case s of
  380. OS_8,OS_S8:
  381. cgsize2subreg:=R_SUBL;
  382. OS_16,OS_S16:
  383. cgsize2subreg:=R_SUBW;
  384. OS_32,OS_S32:
  385. cgsize2subreg:=R_SUBD;
  386. OS_64,OS_S64:
  387. cgsize2subreg:=R_SUBQ;
  388. OS_M64:
  389. cgsize2subreg:=R_SUBNONE;
  390. OS_F32,OS_F64,OS_C64:
  391. case regtype of
  392. R_FPUREGISTER:
  393. cgsize2subreg:=R_SUBWHOLE;
  394. R_MMREGISTER:
  395. case s of
  396. OS_F32:
  397. cgsize2subreg:=R_SUBMMS;
  398. OS_F64:
  399. cgsize2subreg:=R_SUBMMD;
  400. else
  401. internalerror(2009071901);
  402. end;
  403. else
  404. internalerror(2009071902);
  405. end;
  406. OS_M128,OS_MS128,OS_MF128,OS_MD128:
  407. cgsize2subreg:=R_SUBMMX;
  408. OS_M256,OS_MS256,OS_MF256,OS_MD256:
  409. cgsize2subreg:=R_SUBMMY;
  410. OS_M512,OS_MS512,OS_MF512,OS_MD512:
  411. cgsize2subreg:=R_SUBMMZ;
  412. OS_NO:
  413. { error message should have been thrown already before, so avoid only
  414. an internal error }
  415. cgsize2subreg:=R_SUBNONE;
  416. else
  417. internalerror(200301231);
  418. end;
  419. end;
  420. function reg_cgsize(const reg: tregister): tcgsize;
  421. const subreg2cgsize:array[Tsubregister] of Tcgsize =
  422. (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256,OS_M512,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO);
  423. begin
  424. case getregtype(reg) of
  425. R_INTREGISTER :
  426. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  427. R_FPUREGISTER :
  428. reg_cgsize:=OS_F80;
  429. R_MMXREGISTER:
  430. reg_cgsize:=OS_M64;
  431. R_MMREGISTER:
  432. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  433. R_SPECIALREGISTER :
  434. case reg of
  435. NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
  436. reg_cgsize:=OS_16;
  437. {$ifdef x86_64}
  438. NR_DR0..NR_TR7:
  439. reg_cgsize:=OS_64;
  440. {$endif x86_64}
  441. else
  442. reg_cgsize:=OS_32
  443. end;
  444. R_ADDRESSREGISTER:
  445. case reg of
  446. NR_K0..NR_K7: reg_cgsize:=OS_64;
  447. else internalerror(2003031801);
  448. end;
  449. else
  450. internalerror(2003031801);
  451. end;
  452. end;
  453. function reg2opsize(r:Tregister):topsize;
  454. const
  455. subreg2opsize : array[tsubregister] of topsize =
  456. (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  457. begin
  458. reg2opsize:=S_L;
  459. case getregtype(r) of
  460. R_INTREGISTER :
  461. reg2opsize:=subreg2opsize[getsubreg(r)];
  462. R_FPUREGISTER :
  463. reg2opsize:=S_FL;
  464. R_MMXREGISTER,
  465. R_MMREGISTER :
  466. reg2opsize:=S_MD;
  467. R_SPECIALREGISTER :
  468. begin
  469. case r of
  470. NR_CS,NR_DS,NR_ES,
  471. NR_SS,NR_FS,NR_GS :
  472. reg2opsize:=S_W;
  473. else
  474. ;
  475. end;
  476. end;
  477. else
  478. internalerror(200303181);
  479. end;
  480. end;
  481. function is_calljmp(o:tasmop):boolean;
  482. begin
  483. case o of
  484. A_CALL,
  485. {$if defined(i386) or defined(i8086)}
  486. A_JCXZ,
  487. {$endif defined(i386) or defined(i8086)}
  488. A_JECXZ,
  489. {$ifdef x86_64}
  490. A_JRCXZ,
  491. {$endif x86_64}
  492. A_JMP,
  493. A_LOOP,
  494. A_LOOPE,
  495. A_LOOPNE,
  496. A_LOOPNZ,
  497. A_LOOPZ,
  498. A_LCALL,
  499. A_LJMP,
  500. A_Jcc :
  501. is_calljmp:=true;
  502. else
  503. is_calljmp:=false;
  504. end;
  505. end;
  506. procedure inverse_flags(var f: TResFlags);
  507. const
  508. inv_flags: array[TResFlags] of TResFlags =
  509. (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
  510. F_BE,F_B,F_AE,F_A,
  511. F_NS,F_S,F_NO,F_O,
  512. F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
  513. begin
  514. f:=inv_flags[f];
  515. end;
  516. function flags_to_cond(const f: TResFlags) : TAsmCond;
  517. const
  518. flags_2_cond : array[TResFlags] of TAsmCond =
  519. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
  520. C_None,C_None,C_None,C_None,C_None,C_None);
  521. begin
  522. result := flags_2_cond[f];
  523. if (result=C_None) then
  524. InternalError(2014041301);
  525. end;
  526. function is_segment_reg(r:tregister):boolean;
  527. begin
  528. case r of
  529. NR_CS,NR_DS,NR_ES,
  530. NR_SS,NR_FS,NR_GS :
  531. result:=true;
  532. else
  533. result:=false;
  534. end;
  535. end;
  536. function findreg_by_number(r:Tregister):tregisterindex;
  537. var
  538. hr : tregister;
  539. begin
  540. { for the name the sub reg doesn't matter }
  541. hr:=r;
  542. if (getregtype(hr)=R_MMREGISTER) and
  543. (getsubreg(hr)<>R_SUBMMY) and
  544. (getsubreg(hr)<>R_SUBMMZ) then
  545. setsubreg(hr,R_SUBMMX);
  546. //// TG TODO check
  547. //if (getregtype(hr)=R_MMREGISTER) then
  548. // case getsubreg(hr) of
  549. // R_SUBMMX: setsubreg(hr,R_SUBMMX);
  550. // R_SUBMMY: setsubreg(hr,R_SUBMMY);
  551. // R_SUBMMZ: setsubreg(hr,R_SUBMMZ);
  552. // else setsubreg(hr,R_SUBMMX);
  553. // end;
  554. result:=findreg_by_number_table(hr,regnumber_index);
  555. end;
  556. function std_regnum_search(const s:string):Tregister;
  557. begin
  558. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  559. end;
  560. function std_regname(r:Tregister):string;
  561. var
  562. p : tregisterindex;
  563. begin
  564. if (getregtype(r)=R_MMXREGISTER) or
  565. ((getregtype(r)=R_MMREGISTER) and not(getsubreg(r) in [R_SUBMMX,R_SUBMMY])) then
  566. r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
  567. p:=findreg_by_number(r);
  568. if p<>0 then
  569. result:=std_regname_table[p]
  570. else
  571. result:=generic_regname(r);
  572. end;
  573. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  574. const
  575. inverse: array[TAsmCond] of TAsmCond=(C_None,
  576. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  577. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  578. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  579. );
  580. begin
  581. result := inverse[c];
  582. end;
  583. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  584. begin
  585. result := c1 = c2;
  586. end;
  587. function dwarf_reg(r:tregister):shortint;
  588. begin
  589. result:=regdwarf_table[findreg_by_number(r)];
  590. if result=-1 then
  591. internalerror(200603251);
  592. end;
  593. function dwarf_reg_no_error(r:tregister):shortint;
  594. begin
  595. result:=regdwarf_table[findreg_by_number(r)];
  596. end;
  597. function eh_return_data_regno(nr: longint): longint;
  598. begin
  599. case nr of
  600. 0: result:=0;
  601. {$ifdef x86_64}
  602. 1: result:=1;
  603. {$else}
  604. 1: result:=2;
  605. {$endif}
  606. else
  607. result:=-1;
  608. end;
  609. end;
  610. function segment_regs_equal(r1, r2: tregister): boolean;
  611. begin
  612. if not is_segment_reg(r1) or not is_segment_reg(r2) then
  613. internalerror(2013062301);
  614. { every segment register is equal to itself }
  615. if r1=r2 then
  616. exit(true);
  617. {$if defined(i8086)}
  618. case current_settings.x86memorymodel of
  619. mm_tiny:
  620. begin
  621. { CS=DS=SS }
  622. if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
  623. ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
  624. exit(true);
  625. { the remaining are distinct from each other }
  626. exit(false);
  627. end;
  628. mm_small,mm_medium:
  629. begin
  630. { DS=SS }
  631. if ((r1=NR_DS) or (r1=NR_SS)) and
  632. ((r2=NR_DS) or (r2=NR_SS)) then
  633. exit(true);
  634. { the remaining are distinct from each other }
  635. exit(false);
  636. end;
  637. mm_compact,mm_large,mm_huge:
  638. { all segment registers are different in these models }
  639. exit(false);
  640. end;
  641. {$elseif defined(i386) or defined(x86_64)}
  642. { DS=SS=ES }
  643. if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
  644. ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
  645. exit(true);
  646. { the remaining are distinct from each other }
  647. exit(false);
  648. {$endif}
  649. end;
  650. function is_x86_string_op(op: TAsmOp): boolean;
  651. begin
  652. case op of
  653. {$ifdef x86_64}
  654. A_MOVSQ,
  655. A_CMPSQ,
  656. A_SCASQ,
  657. A_LODSQ,
  658. A_STOSQ,
  659. {$endif x86_64}
  660. A_MOVSB,A_MOVSW,A_MOVSD,
  661. A_CMPSB,A_CMPSW,A_CMPSD,
  662. A_SCASB,A_SCASW,A_SCASD,
  663. A_LODSB,A_LODSW,A_LODSD,
  664. A_STOSB,A_STOSW,A_STOSD,
  665. A_INSB, A_INSW, A_INSD,
  666. A_OUTSB,A_OUTSW,A_OUTSD,
  667. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  668. result:=true;
  669. else
  670. result:=false;
  671. end;
  672. end;
  673. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  674. begin
  675. case op of
  676. {$ifdef x86_64}
  677. A_MOVSQ,
  678. A_CMPSQ,
  679. A_SCASQ,
  680. A_LODSQ,
  681. A_STOSQ,
  682. {$endif x86_64}
  683. A_MOVSB,A_MOVSW,A_MOVSD,
  684. A_CMPSB,A_CMPSW,A_CMPSD,
  685. A_SCASB,A_SCASW,A_SCASD,
  686. A_LODSB,A_LODSW,A_LODSD,
  687. A_STOSB,A_STOSW,A_STOSD,
  688. A_INSB, A_INSW, A_INSD,
  689. A_OUTSB,A_OUTSW,A_OUTSD:
  690. result:=true;
  691. else
  692. result:=false;
  693. end;
  694. end;
  695. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  696. begin
  697. case op of
  698. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  699. result:=true;
  700. else
  701. result:=false;
  702. end;
  703. end;
  704. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  705. begin
  706. case op of
  707. A_MOVS,A_CMPS,A_INS,A_OUTS:
  708. result:=2;
  709. A_SCAS,A_LODS,A_STOS:
  710. result:=1;
  711. else
  712. internalerror(2017101203);
  713. end;
  714. end;
  715. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  716. begin
  717. case op of
  718. A_MOVSB,A_MOVSW,A_MOVSD{$ifdef x86_64},A_MOVSQ{$endif}:
  719. result:=A_MOVS;
  720. A_CMPSB,A_CMPSW,A_CMPSD{$ifdef x86_64},A_CMPSQ{$endif}:
  721. result:=A_CMPS;
  722. A_SCASB,A_SCASW,A_SCASD{$ifdef x86_64},A_SCASQ{$endif}:
  723. result:=A_SCAS;
  724. A_LODSB,A_LODSW,A_LODSD{$ifdef x86_64},A_LODSQ{$endif}:
  725. result:=A_LODS;
  726. A_STOSB,A_STOSW,A_STOSD{$ifdef x86_64},A_STOSQ{$endif}:
  727. result:=A_STOS;
  728. A_INSB, A_INSW, A_INSD:
  729. result:=A_INS;
  730. A_OUTSB,A_OUTSW,A_OUTSD:
  731. result:=A_OUTS;
  732. else
  733. internalerror(2017101201);
  734. end;
  735. end;
  736. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  737. begin
  738. case op of
  739. A_MOVSB,A_CMPSB,A_SCASB,A_LODSB,A_STOSB,A_INSB,A_OUTSB:
  740. result:=S_B;
  741. A_MOVSW,A_CMPSW,A_SCASW,A_LODSW,A_STOSW,A_INSW,A_OUTSW:
  742. result:=S_W;
  743. A_MOVSD,A_CMPSD,A_SCASD,A_LODSD,A_STOSD,A_INSD,A_OUTSD:
  744. result:=S_L;
  745. {$ifdef x86_64}
  746. A_MOVSQ,A_CMPSQ,A_SCASQ,A_LODSQ,A_STOSQ:
  747. result:=S_Q;
  748. {$endif x86_64}
  749. else
  750. internalerror(2017101202);
  751. end;
  752. end;
  753. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  754. begin
  755. case op of
  756. A_MOVS,A_OUTS:
  757. result:=1;
  758. A_CMPS,A_LODS:
  759. result:=0;
  760. A_SCAS,A_STOS,A_INS:
  761. result:=-1;
  762. else
  763. internalerror(2017101102);
  764. end;
  765. end;
  766. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  767. begin
  768. case op of
  769. A_MOVS,A_SCAS,A_STOS,A_INS:
  770. result:=0;
  771. A_CMPS:
  772. result:=1;
  773. A_LODS,A_OUTS:
  774. result:=-1;
  775. else
  776. internalerror(2017101204);
  777. end;
  778. end;
  779. {$ifdef i8086}
  780. function requires_fwait_on_8087(op: TAsmOp): boolean;
  781. begin
  782. case op of
  783. A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
  784. A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
  785. A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
  786. A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
  787. A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
  788. A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
  789. A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
  790. A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
  791. A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
  792. result:=true;
  793. else
  794. result:=false;
  795. end;
  796. end;
  797. {$endif i8086}
  798. end.