aasmcpu.pas 134 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. symtype,
  28. aasmbase,aasmtai,aasmdata,aasmsym,
  29. ogbase;
  30. const
  31. { "mov reg,reg" source operand number }
  32. O_MOV_SOURCE = 0;
  33. { "mov reg,reg" destination operand number }
  34. O_MOV_DEST = 1;
  35. { Operand types }
  36. OT_NONE = $00000000;
  37. { Bits 0..7: sizes }
  38. OT_BITS8 = $00000001;
  39. OT_BITS16 = $00000002;
  40. OT_BITS32 = $00000004;
  41. OT_BITS64 = $00000008; { x86_64 and FPU }
  42. OT_BITS128 = $10000000; { 16 byte SSE }
  43. OT_BITS256 = $20000000; { 32 byte AVX }
  44. OT_BITS80 = $00000010; { FPU only }
  45. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  46. OT_NEAR = $00000040;
  47. OT_SHORT = $00000080;
  48. { TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
  49. but this requires adjusting the opcode table }
  50. OT_SIZE_MASK = $3000001F; { all the size attributes }
  51. OT_NON_SIZE = longint(not OT_SIZE_MASK);
  52. { Bits 8..11: modifiers }
  53. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  54. OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
  55. OT_COLON = $00000400; { operand is followed by a colon }
  56. OT_MODIFIER_MASK = $00000F00;
  57. { Bits 12..15: type of operand }
  58. OT_REGISTER = $00001000;
  59. OT_IMMEDIATE = $00002000;
  60. OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
  61. OT_REGMEM = $00008000; { for r/m, ie EA, operands }
  62. OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
  63. OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
  64. { Bits 20..22, 24..26: register classes
  65. otf_* consts are not used alone, only to build other constants. }
  66. otf_reg_cdt = $00100000;
  67. otf_reg_gpr = $00200000;
  68. otf_reg_sreg = $00400000;
  69. otf_reg_fpu = $01000000;
  70. otf_reg_mmx = $02000000;
  71. otf_reg_xmm = $04000000;
  72. otf_reg_ymm = $08000000;
  73. { Bits 16..19: subclasses, meaning depends on classes field }
  74. otf_sub0 = $00010000;
  75. otf_sub1 = $00020000;
  76. otf_sub2 = $00040000;
  77. otf_sub3 = $00080000;
  78. OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
  79. OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_fpu or otf_reg_mmx or otf_reg_xmm or otf_reg_ymm;
  80. { register class 0: CRx, DRx and TRx }
  81. {$ifdef x86_64}
  82. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
  83. {$else x86_64}
  84. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
  85. {$endif x86_64}
  86. OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
  87. OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
  88. OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
  89. OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
  90. { register class 1: general-purpose registers }
  91. OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
  92. OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
  93. OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
  94. OT_REG16 = OT_REG_GPR or OT_BITS16;
  95. OT_REG32 = OT_REG_GPR or OT_BITS32;
  96. OT_REG64 = OT_REG_GPR or OT_BITS64;
  97. { GPR subclass 0: accumulator: AL, AX, EAX or RAX }
  98. OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
  99. OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
  100. OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
  101. OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
  102. {$ifdef x86_64}
  103. OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
  104. {$endif x86_64}
  105. { GPR subclass 1: counter: CL, CX, ECX or RCX }
  106. OT_REG_COUNT = OT_REG_GPR or otf_sub1;
  107. OT_REG_CL = OT_REG_COUNT or OT_BITS8;
  108. OT_REG_CX = OT_REG_COUNT or OT_BITS16;
  109. OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
  110. {$ifdef x86_64}
  111. OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
  112. {$endif x86_64}
  113. { GPR subclass 2: data register: DL, DX, EDX or RDX }
  114. OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
  115. OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
  116. { register class 2: Segment registers }
  117. OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
  118. OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
  119. OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
  120. OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
  121. { register class 3: FPU registers }
  122. OT_FPUREG = OT_REGISTER or otf_reg_fpu;
  123. OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
  124. { register class 4: MMX (both reg and r/m) }
  125. OT_MMXREG = OT_REGNORM or otf_reg_mmx;
  126. OT_MMXRM = OT_REGMEM or otf_reg_mmx;
  127. { register class 5: XMM (both reg and r/m) }
  128. OT_XMMREG = OT_REGNORM or otf_reg_xmm;
  129. OT_XMMRM = OT_REGMEM or otf_reg_xmm;
  130. OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
  131. OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
  132. { register class 5: XMM (both reg and r/m) }
  133. OT_YMMREG = OT_REGNORM or otf_reg_ymm;
  134. OT_YMMRM = OT_REGMEM or otf_reg_ymm;
  135. OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
  136. OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
  137. { Vector-Memory operands }
  138. OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64;
  139. { Memory operands }
  140. OT_MEM8 = OT_MEMORY or OT_BITS8;
  141. OT_MEM16 = OT_MEMORY or OT_BITS16;
  142. OT_MEM32 = OT_MEMORY or OT_BITS32;
  143. OT_MEM64 = OT_MEMORY or OT_BITS64;
  144. OT_MEM128 = OT_MEMORY or OT_BITS128;
  145. OT_MEM256 = OT_MEMORY or OT_BITS256;
  146. OT_MEM80 = OT_MEMORY or OT_BITS80;
  147. OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
  148. { simple [address] offset }
  149. { Matches any type of r/m operand }
  150. OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM;
  151. { Immediate operands }
  152. OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
  153. OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
  154. OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
  155. OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
  156. OT_ONENESS = otf_sub0; { special type of immediate operand }
  157. OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
  158. { Size of the instruction table converted by nasmconv.pas }
  159. {$if defined(x86_64)}
  160. instabentries = {$i x8664nop.inc}
  161. {$elseif defined(i386)}
  162. instabentries = {$i i386nop.inc}
  163. {$elseif defined(i8086)}
  164. instabentries = {$i i8086nop.inc}
  165. {$endif}
  166. maxinfolen = 8;
  167. MaxInsChanges = 3; { Max things a instruction can change }
  168. type
  169. { What an instruction can change. Needed for optimizer and spilling code.
  170. Note: The order of this enumeration is should not be changed! }
  171. TInsChange = (Ch_None,
  172. {Read from a register}
  173. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  174. {write from a register}
  175. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  176. {read and write from/to a register}
  177. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  178. {modify the contents of a register with the purpose of using
  179. this changed content afterwards (add/sub/..., but e.g. not rep
  180. or movsd)}
  181. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  182. Ch_CDirFlag {clear direction flag}, Ch_SDirFlag {set dir flag},
  183. Ch_RFlags, Ch_WFlags, Ch_RWFlags, Ch_FPU,
  184. Ch_Rop1, Ch_Wop1, Ch_RWop1,Ch_Mop1,
  185. Ch_Rop2, Ch_Wop2, Ch_RWop2,Ch_Mop2,
  186. Ch_Rop3, Ch_WOp3, Ch_RWOp3,Ch_Mop3,
  187. Ch_WMemEDI,
  188. Ch_All,
  189. { x86_64 registers }
  190. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  191. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  192. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  193. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
  194. );
  195. TInsProp = packed record
  196. Ch : Array[1..MaxInsChanges] of TInsChange;
  197. end;
  198. TMemRefSizeInfo = (msiUnkown, msiUnsupported, msiNoSize,
  199. msiMultiple, msiMultiple8, msiMultiple16, msiMultiple32,
  200. msiMultiple64, msiMultiple128, msiMultiple256,
  201. msiMemRegSize, msiMemRegx16y32, msiMemRegx32y64, msiMemRegx64y128, msiMemRegx64y256,
  202. msiMem8, msiMem16, msiMem32, msiMem64, msiMem128, msiMem256,
  203. msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  204. msiVMemMultiple, msiVMemRegSize);
  205. TConstSizeInfo = (csiUnkown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
  206. TInsTabMemRefSizeInfoRec = record
  207. MemRefSize : TMemRefSizeInfo;
  208. ExistsSSEAVX: boolean;
  209. ConstSize : TConstSizeInfo;
  210. end;
  211. const
  212. MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultiple8,
  213. msiMultiple16, msiMultiple32,
  214. msiMultiple64, msiMultiple128,
  215. msiMultiple256, msiVMemMultiple];
  216. MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  217. msiVMemMultiple, msiVMemRegSize];
  218. InsProp : array[tasmop] of TInsProp =
  219. {$if defined(x86_64)}
  220. {$i x8664pro.inc}
  221. {$elseif defined(i386)}
  222. {$i i386prop.inc}
  223. {$elseif defined(i8086)}
  224. {$i i8086prop.inc}
  225. {$endif}
  226. type
  227. TOperandOrder = (op_intel,op_att);
  228. tinsentry=packed record
  229. opcode : tasmop;
  230. ops : byte;
  231. optypes : array[0..max_operands-1] of longint;
  232. code : array[0..maxinfolen] of char;
  233. flags : int64;
  234. end;
  235. pinsentry=^tinsentry;
  236. { alignment for operator }
  237. tai_align = class(tai_align_abstract)
  238. reg : tregister;
  239. constructor create(b:byte);override;
  240. constructor create_op(b: byte; _op: byte);override;
  241. function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
  242. end;
  243. taicpu = class(tai_cpu_abstract_sym)
  244. opsize : topsize;
  245. constructor op_none(op : tasmop);
  246. constructor op_none(op : tasmop;_size : topsize);
  247. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  248. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  249. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  250. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  251. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  252. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  253. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  254. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  255. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  256. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  257. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  258. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  259. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  260. constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  261. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  262. { this is for Jmp instructions }
  263. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  264. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  265. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  266. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  267. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  268. procedure changeopsize(siz:topsize);
  269. function GetString:string;
  270. { This is a workaround for the GAS non commutative fpu instruction braindamage.
  271. Early versions of the UnixWare assembler had a bug where some fpu instructions
  272. were reversed and GAS still keeps this "feature" for compatibility.
  273. for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
  274. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
  275. http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
  276. Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
  277. when generating output for other assemblers, the opcodes must be fixed before writing them.
  278. This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
  279. because in case of smartlinking assembler is generated twice so at the second run wrong
  280. assembler is generated.
  281. }
  282. function FixNonCommutativeOpcodes: tasmop;
  283. private
  284. FOperandOrder : TOperandOrder;
  285. procedure init(_size : topsize); { this need to be called by all constructor }
  286. public
  287. { the next will reset all instructions that can change in pass 2 }
  288. procedure ResetPass1;override;
  289. procedure ResetPass2;override;
  290. function CheckIfValid:boolean;
  291. function Pass1(objdata:TObjData):longint;override;
  292. procedure Pass2(objdata:TObjData);override;
  293. procedure SetOperandOrder(order:TOperandOrder);
  294. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  295. { register spilling code }
  296. function spilling_get_operation_type(opnr: longint): topertype;override;
  297. private
  298. { next fields are filled in pass1, so pass2 is faster }
  299. insentry : PInsEntry;
  300. insoffset : longint;
  301. LastInsOffset : longint; { need to be public to be reset }
  302. inssize : shortint;
  303. {$ifdef x86_64}
  304. rex : byte;
  305. {$endif x86_64}
  306. function InsEnd:longint;
  307. procedure create_ot(objdata:TObjData);
  308. function Matches(p:PInsEntry):boolean;
  309. function calcsize(p:PInsEntry):shortint;
  310. procedure gencode(objdata:TObjData);
  311. function NeedAddrPrefix(opidx:byte):boolean;
  312. procedure Swapoperands;
  313. function FindInsentry(objdata:TObjData):boolean;
  314. end;
  315. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  316. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  317. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  318. procedure InitAsm;
  319. procedure DoneAsm;
  320. implementation
  321. uses
  322. cutils,
  323. globals,
  324. systems,
  325. procinfo,
  326. itcpugas,
  327. symsym,
  328. cpuinfo;
  329. {*****************************************************************************
  330. Instruction table
  331. *****************************************************************************}
  332. const
  333. {Instruction flags }
  334. IF_NONE = $00000000;
  335. IF_SM = $00000001; { size match first two operands }
  336. IF_SM2 = $00000002;
  337. IF_SB = $00000004; { unsized operands can't be non-byte }
  338. IF_SW = $00000008; { unsized operands can't be non-word }
  339. IF_SD = $00000010; { unsized operands can't be nondword }
  340. IF_SMASK = $0000001f;
  341. IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
  342. IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
  343. IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
  344. IF_ARMASK = $00000060; { mask for unsized argument spec }
  345. IF_ARSHIFT = 5; { LSB of IF_ARMASK }
  346. IF_PRIV = $00000100; { it's a privileged instruction }
  347. IF_SMM = $00000200; { it's only valid in SMM }
  348. IF_PROT = $00000400; { it's protected mode only }
  349. IF_NOX86_64 = $00000800; { removed instruction in x86_64 }
  350. IF_UNDOC = $00001000; { it's an undocumented instruction }
  351. IF_FPU = $00002000; { it's an FPU instruction }
  352. IF_MMX = $00004000; { it's an MMX instruction }
  353. { it's a 3DNow! instruction }
  354. IF_3DNOW = $00008000;
  355. { it's a SSE (KNI, MMX2) instruction }
  356. IF_SSE = $00010000;
  357. { SSE2 instructions }
  358. IF_SSE2 = $00020000;
  359. { SSE3 instructions }
  360. IF_SSE3 = $00040000;
  361. { SSE64 instructions }
  362. IF_SSE64 = $00080000;
  363. { the mask for processor types }
  364. {IF_PMASK = longint($FF000000);}
  365. { the mask for disassembly "prefer" }
  366. {IF_PFMASK = longint($F001FF00);}
  367. { SVM instructions }
  368. IF_SVM = $00100000;
  369. { SSE4 instructions }
  370. IF_SSE4 = $00200000;
  371. { TODO: These flags were added to make x86ins.dat more readable.
  372. Values must be reassigned to make any other use of them. }
  373. IF_SSSE3 = $00200000;
  374. IF_SSE41 = $00200000;
  375. IF_SSE42 = $00200000;
  376. IF_AVX = $00200000;
  377. IF_AVX2 = $00200000;
  378. IF_BMI1 = $00200000;
  379. IF_BMI2 = $00200000;
  380. IF_16BITONLY = $00200000;
  381. IF_FMA = $00200000;
  382. IF_FMA4 = $00200000;
  383. IF_PLEVEL = $0F000000; { mask for processor level }
  384. IF_8086 = $00000000; { 8086 instruction }
  385. IF_186 = $01000000; { 186+ instruction }
  386. IF_286 = $02000000; { 286+ instruction }
  387. IF_386 = $03000000; { 386+ instruction }
  388. IF_486 = $04000000; { 486+ instruction }
  389. IF_PENT = $05000000; { Pentium instruction }
  390. IF_P6 = $06000000; { P6 instruction }
  391. IF_KATMAI = $07000000; { Katmai instructions }
  392. IF_WILLAMETTE = $08000000; { Willamette instructions }
  393. IF_PRESCOTT = $09000000; { Prescott instructions }
  394. IF_X86_64 = $0a000000;
  395. IF_CYRIX = $0b000000; { Cyrix-specific instruction }
  396. IF_AMD = $0c000000; { AMD-specific instruction }
  397. IF_CENTAUR = $0d000000; { centaur-specific instruction }
  398. IF_SANDYBRIDGE = $0e000000; { Sandybridge-specific instruction }
  399. IF_NEC = $0f000000; { NEC V20/V30 instruction }
  400. { added flags }
  401. IF_PRE = $40000000; { it's a prefix instruction }
  402. IF_PASS2 = $80000000; { if the instruction can change in a second pass }
  403. type
  404. TInsTabCache=array[TasmOp] of longint;
  405. PInsTabCache=^TInsTabCache;
  406. TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
  407. PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
  408. const
  409. {$if defined(x86_64)}
  410. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  411. {$elseif defined(i386)}
  412. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  413. {$elseif defined(i8086)}
  414. InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
  415. {$endif}
  416. var
  417. InsTabCache : PInsTabCache;
  418. InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
  419. const
  420. {$if defined(x86_64)}
  421. { Intel style operands ! }
  422. opsize_2_type:array[0..2,topsize] of longint=(
  423. (OT_NONE,
  424. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  425. OT_BITS16,OT_BITS32,OT_BITS64,
  426. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  427. OT_BITS64,
  428. OT_NEAR,OT_FAR,OT_SHORT,
  429. OT_NONE,
  430. OT_BITS128,
  431. OT_BITS256
  432. ),
  433. (OT_NONE,
  434. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  435. OT_BITS16,OT_BITS32,OT_BITS64,
  436. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  437. OT_BITS64,
  438. OT_NEAR,OT_FAR,OT_SHORT,
  439. OT_NONE,
  440. OT_BITS128,
  441. OT_BITS256
  442. ),
  443. (OT_NONE,
  444. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  445. OT_BITS16,OT_BITS32,OT_BITS64,
  446. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  447. OT_BITS64,
  448. OT_NEAR,OT_FAR,OT_SHORT,
  449. OT_NONE,
  450. OT_BITS128,
  451. OT_BITS256
  452. )
  453. );
  454. reg_ot_table : array[tregisterindex] of longint = (
  455. {$i r8664ot.inc}
  456. );
  457. {$elseif defined(i386)}
  458. { Intel style operands ! }
  459. opsize_2_type:array[0..2,topsize] of longint=(
  460. (OT_NONE,
  461. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  462. OT_BITS16,OT_BITS32,OT_BITS64,
  463. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  464. OT_BITS64,
  465. OT_NEAR,OT_FAR,OT_SHORT,
  466. OT_NONE,
  467. OT_BITS128,
  468. OT_BITS256
  469. ),
  470. (OT_NONE,
  471. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  472. OT_BITS16,OT_BITS32,OT_BITS64,
  473. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  474. OT_BITS64,
  475. OT_NEAR,OT_FAR,OT_SHORT,
  476. OT_NONE,
  477. OT_BITS128,
  478. OT_BITS256
  479. ),
  480. (OT_NONE,
  481. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  482. OT_BITS16,OT_BITS32,OT_BITS64,
  483. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  484. OT_BITS64,
  485. OT_NEAR,OT_FAR,OT_SHORT,
  486. OT_NONE,
  487. OT_BITS128,
  488. OT_BITS256
  489. )
  490. );
  491. reg_ot_table : array[tregisterindex] of longint = (
  492. {$i r386ot.inc}
  493. );
  494. {$elseif defined(i8086)}
  495. { Intel style operands ! }
  496. opsize_2_type:array[0..2,topsize] of longint=(
  497. (OT_NONE,
  498. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  499. OT_BITS16,OT_BITS32,OT_BITS64,
  500. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  501. OT_BITS64,
  502. OT_NEAR,OT_FAR,OT_SHORT,
  503. OT_NONE,
  504. OT_BITS128,
  505. OT_BITS256
  506. ),
  507. (OT_NONE,
  508. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  509. OT_BITS16,OT_BITS32,OT_BITS64,
  510. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  511. OT_BITS64,
  512. OT_NEAR,OT_FAR,OT_SHORT,
  513. OT_NONE,
  514. OT_BITS128,
  515. OT_BITS256
  516. ),
  517. (OT_NONE,
  518. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  519. OT_BITS16,OT_BITS32,OT_BITS64,
  520. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  521. OT_BITS64,
  522. OT_NEAR,OT_FAR,OT_SHORT,
  523. OT_NONE,
  524. OT_BITS128,
  525. OT_BITS256
  526. )
  527. );
  528. reg_ot_table : array[tregisterindex] of longint = (
  529. {$i r8086ot.inc}
  530. );
  531. {$endif}
  532. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  533. begin
  534. result := InsTabMemRefSizeInfoCache^[aAsmop];
  535. end;
  536. { Operation type for spilling code }
  537. type
  538. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  539. var
  540. operation_type_table : ^toperation_type_table;
  541. {****************************************************************************
  542. TAI_ALIGN
  543. ****************************************************************************}
  544. constructor tai_align.create(b: byte);
  545. begin
  546. inherited create(b);
  547. reg:=NR_ECX;
  548. end;
  549. constructor tai_align.create_op(b: byte; _op: byte);
  550. begin
  551. inherited create_op(b,_op);
  552. reg:=NR_NO;
  553. end;
  554. function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
  555. const
  556. { Updated according to
  557. Software Optimization Guide for AMD Family 15h Processors, Verison 3.08, January 2014
  558. and
  559. Intel 64 and IA-32 Architectures Software Developer’s Manual
  560. Volume 2B: Instruction Set Reference, N-Z, January 2015
  561. }
  562. alignarray_cmovcpus:array[0..10] of string[11]=(
  563. #$66#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  564. #$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  565. #$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  566. #$0F#$1F#$84#$00#$00#$00#$00#$00,
  567. #$0F#$1F#$80#$00#$00#$00#$00,
  568. #$66#$0F#$1F#$44#$00#$00,
  569. #$0F#$1F#$44#$00#$00,
  570. #$0F#$1F#$40#$00,
  571. #$0F#$1F#$00,
  572. #$66#$90,
  573. #$90);
  574. alignarray:array[0..5] of string[8]=(
  575. #$8D#$B4#$26#$00#$00#$00#$00,
  576. #$8D#$B6#$00#$00#$00#$00,
  577. #$8D#$74#$26#$00,
  578. #$8D#$76#$00,
  579. #$89#$F6,
  580. #$90);
  581. var
  582. bufptr : pchar;
  583. j : longint;
  584. localsize: byte;
  585. begin
  586. inherited calculatefillbuf(buf,executable);
  587. if not(use_op) and executable then
  588. begin
  589. bufptr:=pchar(@buf);
  590. { fillsize may still be used afterwards, so don't modify }
  591. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  592. localsize:=fillsize;
  593. while (localsize>0) do
  594. begin
  595. {$ifndef i8086}
  596. if CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype] then
  597. begin
  598. for j:=low(alignarray_cmovcpus) to high(alignarray_cmovcpus) do
  599. if (localsize>=length(alignarray_cmovcpus[j])) then
  600. break;
  601. move(alignarray_cmovcpus[j][1],bufptr^,length(alignarray_cmovcpus[j]));
  602. inc(bufptr,length(alignarray_cmovcpus[j]));
  603. dec(localsize,length(alignarray_cmovcpus[j]));
  604. end
  605. else
  606. {$endif not i8086}
  607. begin
  608. for j:=low(alignarray) to high(alignarray) do
  609. if (localsize>=length(alignarray[j])) then
  610. break;
  611. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  612. inc(bufptr,length(alignarray[j]));
  613. dec(localsize,length(alignarray[j]));
  614. end
  615. end;
  616. end;
  617. calculatefillbuf:=pchar(@buf);
  618. end;
  619. {*****************************************************************************
  620. Taicpu Constructors
  621. *****************************************************************************}
  622. procedure taicpu.changeopsize(siz:topsize);
  623. begin
  624. opsize:=siz;
  625. end;
  626. procedure taicpu.init(_size : topsize);
  627. begin
  628. { default order is att }
  629. FOperandOrder:=op_att;
  630. segprefix:=NR_NO;
  631. opsize:=_size;
  632. insentry:=nil;
  633. LastInsOffset:=-1;
  634. InsOffset:=0;
  635. InsSize:=0;
  636. end;
  637. constructor taicpu.op_none(op : tasmop);
  638. begin
  639. inherited create(op);
  640. init(S_NO);
  641. end;
  642. constructor taicpu.op_none(op : tasmop;_size : topsize);
  643. begin
  644. inherited create(op);
  645. init(_size);
  646. end;
  647. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  648. begin
  649. inherited create(op);
  650. init(_size);
  651. ops:=1;
  652. loadreg(0,_op1);
  653. end;
  654. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  655. begin
  656. inherited create(op);
  657. init(_size);
  658. ops:=1;
  659. loadconst(0,_op1);
  660. end;
  661. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  662. begin
  663. inherited create(op);
  664. init(_size);
  665. ops:=1;
  666. loadref(0,_op1);
  667. end;
  668. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  669. begin
  670. inherited create(op);
  671. init(_size);
  672. ops:=2;
  673. loadreg(0,_op1);
  674. loadreg(1,_op2);
  675. end;
  676. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  677. begin
  678. inherited create(op);
  679. init(_size);
  680. ops:=2;
  681. loadreg(0,_op1);
  682. loadconst(1,_op2);
  683. end;
  684. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  685. begin
  686. inherited create(op);
  687. init(_size);
  688. ops:=2;
  689. loadreg(0,_op1);
  690. loadref(1,_op2);
  691. end;
  692. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  693. begin
  694. inherited create(op);
  695. init(_size);
  696. ops:=2;
  697. loadconst(0,_op1);
  698. loadreg(1,_op2);
  699. end;
  700. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  701. begin
  702. inherited create(op);
  703. init(_size);
  704. ops:=2;
  705. loadconst(0,_op1);
  706. loadconst(1,_op2);
  707. end;
  708. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  709. begin
  710. inherited create(op);
  711. init(_size);
  712. ops:=2;
  713. loadconst(0,_op1);
  714. loadref(1,_op2);
  715. end;
  716. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  717. begin
  718. inherited create(op);
  719. init(_size);
  720. ops:=2;
  721. loadref(0,_op1);
  722. loadreg(1,_op2);
  723. end;
  724. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  725. begin
  726. inherited create(op);
  727. init(_size);
  728. ops:=3;
  729. loadreg(0,_op1);
  730. loadreg(1,_op2);
  731. loadreg(2,_op3);
  732. end;
  733. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  734. begin
  735. inherited create(op);
  736. init(_size);
  737. ops:=3;
  738. loadconst(0,_op1);
  739. loadreg(1,_op2);
  740. loadreg(2,_op3);
  741. end;
  742. constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  743. begin
  744. inherited create(op);
  745. init(_size);
  746. ops:=3;
  747. loadref(0,_op1);
  748. loadreg(1,_op2);
  749. loadreg(2,_op3);
  750. end;
  751. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  752. begin
  753. inherited create(op);
  754. init(_size);
  755. ops:=3;
  756. loadconst(0,_op1);
  757. loadref(1,_op2);
  758. loadreg(2,_op3);
  759. end;
  760. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  761. begin
  762. inherited create(op);
  763. init(_size);
  764. ops:=3;
  765. loadconst(0,_op1);
  766. loadreg(1,_op2);
  767. loadref(2,_op3);
  768. end;
  769. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  770. begin
  771. inherited create(op);
  772. init(_size);
  773. condition:=cond;
  774. ops:=1;
  775. loadsymbol(0,_op1,0);
  776. end;
  777. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  778. begin
  779. inherited create(op);
  780. init(_size);
  781. ops:=1;
  782. loadsymbol(0,_op1,0);
  783. end;
  784. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  785. begin
  786. inherited create(op);
  787. init(_size);
  788. ops:=1;
  789. loadsymbol(0,_op1,_op1ofs);
  790. end;
  791. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  792. begin
  793. inherited create(op);
  794. init(_size);
  795. ops:=2;
  796. loadsymbol(0,_op1,_op1ofs);
  797. loadreg(1,_op2);
  798. end;
  799. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  800. begin
  801. inherited create(op);
  802. init(_size);
  803. ops:=2;
  804. loadsymbol(0,_op1,_op1ofs);
  805. loadref(1,_op2);
  806. end;
  807. function taicpu.GetString:string;
  808. var
  809. i : longint;
  810. s : string;
  811. addsize : boolean;
  812. begin
  813. s:='['+std_op2str[opcode];
  814. for i:=0 to ops-1 do
  815. begin
  816. with oper[i]^ do
  817. begin
  818. if i=0 then
  819. s:=s+' '
  820. else
  821. s:=s+',';
  822. { type }
  823. addsize:=false;
  824. if (ot and OT_XMMREG)=OT_XMMREG then
  825. s:=s+'xmmreg'
  826. else
  827. if (ot and OT_YMMREG)=OT_YMMREG then
  828. s:=s+'ymmreg'
  829. else
  830. if (ot and OT_MMXREG)=OT_MMXREG then
  831. s:=s+'mmxreg'
  832. else
  833. if (ot and OT_FPUREG)=OT_FPUREG then
  834. s:=s+'fpureg'
  835. else
  836. if (ot and OT_REGISTER)=OT_REGISTER then
  837. begin
  838. s:=s+'reg';
  839. addsize:=true;
  840. end
  841. else
  842. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  843. begin
  844. s:=s+'imm';
  845. addsize:=true;
  846. end
  847. else
  848. if (ot and OT_MEMORY)=OT_MEMORY then
  849. begin
  850. s:=s+'mem';
  851. addsize:=true;
  852. end
  853. else
  854. s:=s+'???';
  855. { size }
  856. if addsize then
  857. begin
  858. if (ot and OT_BITS8)<>0 then
  859. s:=s+'8'
  860. else
  861. if (ot and OT_BITS16)<>0 then
  862. s:=s+'16'
  863. else
  864. if (ot and OT_BITS32)<>0 then
  865. s:=s+'32'
  866. else
  867. if (ot and OT_BITS64)<>0 then
  868. s:=s+'64'
  869. else
  870. if (ot and OT_BITS128)<>0 then
  871. s:=s+'128'
  872. else
  873. if (ot and OT_BITS256)<>0 then
  874. s:=s+'256'
  875. else
  876. s:=s+'??';
  877. { signed }
  878. if (ot and OT_SIGNED)<>0 then
  879. s:=s+'s';
  880. end;
  881. end;
  882. end;
  883. GetString:=s+']';
  884. end;
  885. procedure taicpu.Swapoperands;
  886. var
  887. p : POper;
  888. begin
  889. { Fix the operands which are in AT&T style and we need them in Intel style }
  890. case ops of
  891. 0,1:
  892. ;
  893. 2 : begin
  894. { 0,1 -> 1,0 }
  895. p:=oper[0];
  896. oper[0]:=oper[1];
  897. oper[1]:=p;
  898. end;
  899. 3 : begin
  900. { 0,1,2 -> 2,1,0 }
  901. p:=oper[0];
  902. oper[0]:=oper[2];
  903. oper[2]:=p;
  904. end;
  905. 4 : begin
  906. { 0,1,2,3 -> 3,2,1,0 }
  907. p:=oper[0];
  908. oper[0]:=oper[3];
  909. oper[3]:=p;
  910. p:=oper[1];
  911. oper[1]:=oper[2];
  912. oper[2]:=p;
  913. end;
  914. else
  915. internalerror(201108141);
  916. end;
  917. end;
  918. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  919. begin
  920. if FOperandOrder<>order then
  921. begin
  922. Swapoperands;
  923. FOperandOrder:=order;
  924. end;
  925. end;
  926. function taicpu.FixNonCommutativeOpcodes: tasmop;
  927. begin
  928. result:=opcode;
  929. { we need ATT order }
  930. SetOperandOrder(op_att);
  931. if (
  932. (ops=2) and
  933. (oper[0]^.typ=top_reg) and
  934. (oper[1]^.typ=top_reg) and
  935. { if the first is ST and the second is also a register
  936. it is necessarily ST1 .. ST7 }
  937. ((oper[0]^.reg=NR_ST) or
  938. (oper[0]^.reg=NR_ST0))
  939. ) or
  940. { ((ops=1) and
  941. (oper[0]^.typ=top_reg) and
  942. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  943. (ops=0) then
  944. begin
  945. if opcode=A_FSUBR then
  946. result:=A_FSUB
  947. else if opcode=A_FSUB then
  948. result:=A_FSUBR
  949. else if opcode=A_FDIVR then
  950. result:=A_FDIV
  951. else if opcode=A_FDIV then
  952. result:=A_FDIVR
  953. else if opcode=A_FSUBRP then
  954. result:=A_FSUBP
  955. else if opcode=A_FSUBP then
  956. result:=A_FSUBRP
  957. else if opcode=A_FDIVRP then
  958. result:=A_FDIVP
  959. else if opcode=A_FDIVP then
  960. result:=A_FDIVRP;
  961. end;
  962. if (
  963. (ops=1) and
  964. (oper[0]^.typ=top_reg) and
  965. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  966. (oper[0]^.reg<>NR_ST)
  967. ) then
  968. begin
  969. if opcode=A_FSUBRP then
  970. result:=A_FSUBP
  971. else if opcode=A_FSUBP then
  972. result:=A_FSUBRP
  973. else if opcode=A_FDIVRP then
  974. result:=A_FDIVP
  975. else if opcode=A_FDIVP then
  976. result:=A_FDIVRP;
  977. end;
  978. end;
  979. {*****************************************************************************
  980. Assembler
  981. *****************************************************************************}
  982. type
  983. ea = packed record
  984. sib_present : boolean;
  985. bytes : byte;
  986. size : byte;
  987. modrm : byte;
  988. sib : byte;
  989. {$ifdef x86_64}
  990. rex : byte;
  991. {$endif x86_64}
  992. end;
  993. procedure taicpu.create_ot(objdata:TObjData);
  994. {
  995. this function will also fix some other fields which only needs to be once
  996. }
  997. var
  998. i,l,relsize : longint;
  999. currsym : TObjSymbol;
  1000. begin
  1001. if ops=0 then
  1002. exit;
  1003. { update oper[].ot field }
  1004. for i:=0 to ops-1 do
  1005. with oper[i]^ do
  1006. begin
  1007. case typ of
  1008. top_reg :
  1009. begin
  1010. ot:=reg_ot_table[findreg_by_number(reg)];
  1011. end;
  1012. top_ref :
  1013. begin
  1014. if (ref^.refaddr=addr_no)
  1015. {$ifdef i386}
  1016. or (
  1017. (ref^.refaddr in [addr_pic]) and
  1018. { allow any base for assembler blocks }
  1019. ((assigned(current_procinfo) and
  1020. (pi_has_assembler_block in current_procinfo.flags) and
  1021. (ref^.base<>NR_NO)) or (ref^.base=NR_EBX))
  1022. )
  1023. {$endif i386}
  1024. {$ifdef x86_64}
  1025. or (
  1026. (ref^.refaddr in [addr_pic,addr_pic_no_got]) and
  1027. (ref^.base<>NR_NO)
  1028. )
  1029. {$endif x86_64}
  1030. then
  1031. begin
  1032. { create ot field }
  1033. if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
  1034. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1035. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1036. ) then
  1037. // AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
  1038. ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
  1039. (reg_ot_table[findreg_by_number(ref^.index)])
  1040. else if (ref^.base = NR_NO) and
  1041. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1042. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1043. ) then
  1044. // AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
  1045. ot := (OT_REG_GPR) or
  1046. (reg_ot_table[findreg_by_number(ref^.index)])
  1047. else if (ot and OT_SIZE_MASK)=0 then
  1048. ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
  1049. else
  1050. ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
  1051. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  1052. ot:=ot or OT_MEM_OFFS;
  1053. { fix scalefactor }
  1054. if (ref^.index=NR_NO) then
  1055. ref^.scalefactor:=0
  1056. else
  1057. if (ref^.scalefactor=0) then
  1058. ref^.scalefactor:=1;
  1059. end
  1060. else
  1061. begin
  1062. { Jumps use a relative offset which can be 8bit,
  1063. for other opcodes we always need to generate the full
  1064. 32bit address }
  1065. if assigned(objdata) and
  1066. is_jmp then
  1067. begin
  1068. currsym:=objdata.symbolref(ref^.symbol);
  1069. l:=ref^.offset;
  1070. {$push}
  1071. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  1072. if assigned(currsym) then
  1073. inc(l,currsym.address);
  1074. {$pop}
  1075. { when it is a forward jump we need to compensate the
  1076. offset of the instruction since the previous time,
  1077. because the symbol address is then still using the
  1078. 'old-style' addressing.
  1079. For backwards jumps this is not required because the
  1080. address of the symbol is already adjusted to the
  1081. new offset }
  1082. if (l>InsOffset) and (LastInsOffset<>-1) then
  1083. inc(l,InsOffset-LastInsOffset);
  1084. { instruction size will then always become 2 (PFV) }
  1085. relsize:=(InsOffset+2)-l;
  1086. if (relsize>=-128) and (relsize<=127) and
  1087. (
  1088. not assigned(currsym) or
  1089. (currsym.objsection=objdata.currobjsec)
  1090. ) then
  1091. ot:=OT_IMM8 or OT_SHORT
  1092. else
  1093. {$ifdef i8086}
  1094. ot:=OT_IMM16 or OT_NEAR;
  1095. {$else i8086}
  1096. ot:=OT_IMM32 or OT_NEAR;
  1097. {$endif i8086}
  1098. end
  1099. else
  1100. {$ifdef i8086}
  1101. if opsize=S_FAR then
  1102. ot:=OT_IMM16 or OT_FAR
  1103. else
  1104. ot:=OT_IMM16 or OT_NEAR;
  1105. {$else i8086}
  1106. ot:=OT_IMM32 or OT_NEAR;
  1107. {$endif i8086}
  1108. end;
  1109. end;
  1110. top_local :
  1111. begin
  1112. if (ot and OT_SIZE_MASK)=0 then
  1113. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  1114. else
  1115. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  1116. end;
  1117. top_const :
  1118. begin
  1119. // if opcode is a SSE or AVX-instruction then we need a
  1120. // special handling (opsize can different from const-size)
  1121. // (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
  1122. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
  1123. (not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnkown])) then
  1124. begin
  1125. case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
  1126. csiNoSize: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE;
  1127. csiMem8: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS8;
  1128. csiMem16: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS16;
  1129. csiMem32: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS32;
  1130. csiMem64: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS64;
  1131. end;
  1132. end
  1133. else
  1134. begin
  1135. { allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
  1136. { further, allow AAD and AAM with imm. operand }
  1137. if (opsize=S_NO) and not((i in [1,2,3])
  1138. {$ifndef x86_64}
  1139. or ((i=0) and (opcode in [A_AAD,A_AAM]))
  1140. {$endif x86_64}
  1141. ) then
  1142. message(asmr_e_invalid_opcode_and_operand);
  1143. if
  1144. {$ifndef i8086}
  1145. (opsize<>S_W) and
  1146. {$endif not i8086}
  1147. (aint(val)>=-128) and (val<=127) then
  1148. ot:=OT_IMM8 or OT_SIGNED
  1149. else
  1150. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  1151. if (val=1) and (i=1) then
  1152. ot := ot or OT_ONENESS;
  1153. end;
  1154. end;
  1155. top_none :
  1156. begin
  1157. { generated when there was an error in the
  1158. assembler reader. It never happends when generating
  1159. assembler }
  1160. end;
  1161. else
  1162. internalerror(200402266);
  1163. end;
  1164. end;
  1165. end;
  1166. function taicpu.InsEnd:longint;
  1167. begin
  1168. InsEnd:=InsOffset+InsSize;
  1169. end;
  1170. function taicpu.Matches(p:PInsEntry):boolean;
  1171. { * IF_SM stands for Size Match: any operand whose size is not
  1172. * explicitly specified by the template is `really' intended to be
  1173. * the same size as the first size-specified operand.
  1174. * Non-specification is tolerated in the input instruction, but
  1175. * _wrong_ specification is not.
  1176. *
  1177. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  1178. * three-operand instructions such as SHLD: it implies that the
  1179. * first two operands must match in size, but that the third is
  1180. * required to be _unspecified_.
  1181. *
  1182. * IF_SB invokes Size Byte: operands with unspecified size in the
  1183. * template are really bytes, and so no non-byte specification in
  1184. * the input instruction will be tolerated. IF_SW similarly invokes
  1185. * Size Word, and IF_SD invokes Size Doubleword.
  1186. *
  1187. * (The default state if neither IF_SM nor IF_SM2 is specified is
  1188. * that any operand with unspecified size in the template is
  1189. * required to have unspecified size in the instruction too...)
  1190. }
  1191. var
  1192. insot,
  1193. currot,
  1194. i,j,asize,oprs : longint;
  1195. insflags:cardinal;
  1196. siz : array[0..max_operands-1] of longint;
  1197. begin
  1198. result:=false;
  1199. { Check the opcode and operands }
  1200. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  1201. exit;
  1202. {$ifdef i8086}
  1203. { On i8086, we need to skip the i386+ version of Jcc near, if the target
  1204. cpu is earlier than 386. There's another entry, later in the table for
  1205. i8086, which simulates it with i8086 instructions:
  1206. JNcc short +3
  1207. JMP near target }
  1208. if (p^.opcode=A_Jcc) and (current_settings.cputype<cpu_386) and
  1209. ((p^.flags and IF_386)<>0) then
  1210. exit;
  1211. {$endif i8086}
  1212. for i:=0 to p^.ops-1 do
  1213. begin
  1214. insot:=p^.optypes[i];
  1215. currot:=oper[i]^.ot;
  1216. { Check the operand flags }
  1217. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1218. exit;
  1219. { Check if the passed operand size matches with one of
  1220. the supported operand sizes }
  1221. if ((insot and OT_SIZE_MASK)<>0) and
  1222. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1223. exit;
  1224. { "far" matches only with "far" }
  1225. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1226. exit;
  1227. end;
  1228. { Check operand sizes }
  1229. insflags:=p^.flags;
  1230. if insflags and IF_SMASK<>0 then
  1231. begin
  1232. { as default an untyped size can get all the sizes, this is different
  1233. from nasm, but else we need to do a lot checking which opcodes want
  1234. size or not with the automatic size generation }
  1235. asize:=-1;
  1236. if (insflags and IF_SB)<>0 then
  1237. asize:=OT_BITS8
  1238. else if (insflags and IF_SW)<>0 then
  1239. asize:=OT_BITS16
  1240. else if (insflags and IF_SD)<>0 then
  1241. asize:=OT_BITS32;
  1242. if (insflags and IF_ARMASK)<>0 then
  1243. begin
  1244. siz[0]:=-1;
  1245. siz[1]:=-1;
  1246. siz[2]:=-1;
  1247. siz[((insflags and IF_ARMASK) shr IF_ARSHIFT)-1]:=asize;
  1248. end
  1249. else
  1250. begin
  1251. siz[0]:=asize;
  1252. siz[1]:=asize;
  1253. siz[2]:=asize;
  1254. end;
  1255. if (insflags and (IF_SM or IF_SM2))<>0 then
  1256. begin
  1257. if (insflags and IF_SM2)<>0 then
  1258. oprs:=2
  1259. else
  1260. oprs:=p^.ops;
  1261. for i:=0 to oprs-1 do
  1262. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  1263. begin
  1264. for j:=0 to oprs-1 do
  1265. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  1266. break;
  1267. end;
  1268. end
  1269. else
  1270. oprs:=2;
  1271. { Check operand sizes }
  1272. for i:=0 to p^.ops-1 do
  1273. begin
  1274. insot:=p^.optypes[i];
  1275. currot:=oper[i]^.ot;
  1276. if ((insot and OT_SIZE_MASK)=0) and
  1277. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  1278. { Immediates can always include smaller size }
  1279. ((currot and OT_IMMEDIATE)=0) and
  1280. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1281. exit;
  1282. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1283. exit;
  1284. end;
  1285. end;
  1286. if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
  1287. (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1288. begin
  1289. for i:=0 to p^.ops-1 do
  1290. begin
  1291. insot:=p^.optypes[i];
  1292. if ((insot and OT_XMMRM) = OT_XMMRM) OR
  1293. ((insot and OT_YMMRM) = OT_YMMRM) then
  1294. begin
  1295. if (insot and OT_SIZE_MASK) = 0 then
  1296. begin
  1297. case insot and (OT_XMMRM or OT_YMMRM) of
  1298. OT_XMMRM: insot := insot or OT_BITS128;
  1299. OT_YMMRM: insot := insot or OT_BITS256;
  1300. end;
  1301. end;
  1302. end;
  1303. currot:=oper[i]^.ot;
  1304. { Check the operand flags }
  1305. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1306. exit;
  1307. { Check if the passed operand size matches with one of
  1308. the supported operand sizes }
  1309. if ((insot and OT_SIZE_MASK)<>0) and
  1310. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1311. exit;
  1312. end;
  1313. end;
  1314. result:=true;
  1315. end;
  1316. procedure taicpu.ResetPass1;
  1317. begin
  1318. { we need to reset everything here, because the choosen insentry
  1319. can be invalid for a new situation where the previously optimized
  1320. insentry is not correct }
  1321. InsEntry:=nil;
  1322. InsSize:=0;
  1323. LastInsOffset:=-1;
  1324. end;
  1325. procedure taicpu.ResetPass2;
  1326. begin
  1327. { we are here in a second pass, check if the instruction can be optimized }
  1328. if assigned(InsEntry) and
  1329. ((InsEntry^.flags and IF_PASS2)<>0) then
  1330. begin
  1331. InsEntry:=nil;
  1332. InsSize:=0;
  1333. end;
  1334. LastInsOffset:=-1;
  1335. end;
  1336. function taicpu.CheckIfValid:boolean;
  1337. begin
  1338. result:=FindInsEntry(nil);
  1339. end;
  1340. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1341. var
  1342. i : longint;
  1343. begin
  1344. result:=false;
  1345. { Things which may only be done once, not when a second pass is done to
  1346. optimize }
  1347. if (Insentry=nil) or ((InsEntry^.flags and IF_PASS2)<>0) then
  1348. begin
  1349. current_filepos:=fileinfo;
  1350. { We need intel style operands }
  1351. SetOperandOrder(op_intel);
  1352. { create the .ot fields }
  1353. create_ot(objdata);
  1354. { set the file postion }
  1355. end
  1356. else
  1357. begin
  1358. { we've already an insentry so it's valid }
  1359. result:=true;
  1360. exit;
  1361. end;
  1362. { Lookup opcode in the table }
  1363. InsSize:=-1;
  1364. i:=instabcache^[opcode];
  1365. if i=-1 then
  1366. begin
  1367. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1368. exit;
  1369. end;
  1370. insentry:=@instab[i];
  1371. while (insentry^.opcode=opcode) do
  1372. begin
  1373. if matches(insentry) then
  1374. begin
  1375. result:=true;
  1376. exit;
  1377. end;
  1378. inc(insentry);
  1379. end;
  1380. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1381. { No instruction found, set insentry to nil and inssize to -1 }
  1382. insentry:=nil;
  1383. inssize:=-1;
  1384. end;
  1385. function taicpu.Pass1(objdata:TObjData):longint;
  1386. begin
  1387. Pass1:=0;
  1388. { Save the old offset and set the new offset }
  1389. InsOffset:=ObjData.CurrObjSec.Size;
  1390. { Error? }
  1391. if (Insentry=nil) and (InsSize=-1) then
  1392. exit;
  1393. { set the file postion }
  1394. current_filepos:=fileinfo;
  1395. { Get InsEntry }
  1396. if FindInsEntry(ObjData) then
  1397. begin
  1398. { Calculate instruction size }
  1399. InsSize:=calcsize(insentry);
  1400. if segprefix<>NR_NO then
  1401. inc(InsSize);
  1402. { Fix opsize if size if forced }
  1403. if (insentry^.flags and (IF_SB or IF_SW or IF_SD))<>0 then
  1404. begin
  1405. if (insentry^.flags and IF_ARMASK)=0 then
  1406. begin
  1407. if (insentry^.flags and IF_SB)<>0 then
  1408. begin
  1409. if opsize=S_NO then
  1410. opsize:=S_B;
  1411. end
  1412. else if (insentry^.flags and IF_SW)<>0 then
  1413. begin
  1414. if opsize=S_NO then
  1415. opsize:=S_W;
  1416. end
  1417. else if (insentry^.flags and IF_SD)<>0 then
  1418. begin
  1419. if opsize=S_NO then
  1420. opsize:=S_L;
  1421. end;
  1422. end;
  1423. end;
  1424. LastInsOffset:=InsOffset;
  1425. Pass1:=InsSize;
  1426. exit;
  1427. end;
  1428. LastInsOffset:=-1;
  1429. end;
  1430. const
  1431. segprefixes: array[NR_ES..NR_GS] of Byte=(
  1432. // es cs ss ds fs gs
  1433. $26, $2E, $36, $3E, $64, $65
  1434. );
  1435. procedure taicpu.Pass2(objdata:TObjData);
  1436. begin
  1437. { error in pass1 ? }
  1438. if insentry=nil then
  1439. exit;
  1440. current_filepos:=fileinfo;
  1441. { Segment override }
  1442. if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
  1443. begin
  1444. objdata.writebytes(segprefixes[segprefix],1);
  1445. { fix the offset for GenNode }
  1446. inc(InsOffset);
  1447. end
  1448. else if segprefix<>NR_NO then
  1449. InternalError(201001071);
  1450. { Generate the instruction }
  1451. GenCode(objdata);
  1452. end;
  1453. function taicpu.needaddrprefix(opidx:byte):boolean;
  1454. begin
  1455. result:=(oper[opidx]^.typ=top_ref) and
  1456. (oper[opidx]^.ref^.refaddr=addr_no) and
  1457. {$ifdef x86_64}
  1458. (oper[opidx]^.ref^.base<>NR_RIP) and
  1459. {$endif x86_64}
  1460. (
  1461. (
  1462. (oper[opidx]^.ref^.index<>NR_NO) and
  1463. (getsubreg(oper[opidx]^.ref^.index)<>R_SUBADDR)
  1464. ) or
  1465. (
  1466. (oper[opidx]^.ref^.base<>NR_NO) and
  1467. (getsubreg(oper[opidx]^.ref^.base)<>R_SUBADDR)
  1468. )
  1469. );
  1470. end;
  1471. procedure badreg(r:Tregister);
  1472. begin
  1473. Message1(asmw_e_invalid_register,generic_regname(r));
  1474. end;
  1475. function regval(r:Tregister):byte;
  1476. const
  1477. intsupreg2opcode: array[0..7] of byte=
  1478. // ax cx dx bx si di bp sp -- in x86reg.dat
  1479. // ax cx dx bx sp bp si di -- needed order
  1480. (0, 1, 2, 3, 6, 7, 5, 4);
  1481. maxsupreg: array[tregistertype] of tsuperregister=
  1482. {$ifdef x86_64}
  1483. (0, 16, 9, 8, 16, 32, 0, 0);
  1484. {$else x86_64}
  1485. (0, 8, 9, 8, 8, 32, 0, 0);
  1486. {$endif x86_64}
  1487. var
  1488. rs: tsuperregister;
  1489. rt: tregistertype;
  1490. begin
  1491. rs:=getsupreg(r);
  1492. rt:=getregtype(r);
  1493. if (rs>=maxsupreg[rt]) then
  1494. badreg(r);
  1495. result:=rs and 7;
  1496. if (rt=R_INTREGISTER) then
  1497. begin
  1498. if (rs<8) then
  1499. result:=intsupreg2opcode[rs];
  1500. if getsubreg(r)=R_SUBH then
  1501. inc(result,4);
  1502. end;
  1503. end;
  1504. {$if defined(x86_64)}
  1505. function rexbits(r: tregister): byte;
  1506. begin
  1507. result:=0;
  1508. case getregtype(r) of
  1509. R_INTREGISTER:
  1510. if (getsupreg(r)>=RS_R8) then
  1511. { Either B,X or R bits can be set, depending on register role in instruction.
  1512. Set all three bits here, caller will discard unnecessary ones. }
  1513. result:=result or $47
  1514. else if (getsubreg(r)=R_SUBL) and
  1515. (getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1516. result:=result or $40
  1517. else if (getsubreg(r)=R_SUBH) then
  1518. { Not an actual REX bit, used to detect incompatible usage of
  1519. AH/BH/CH/DH }
  1520. result:=result or $80;
  1521. R_MMREGISTER:
  1522. if getsupreg(r)>=RS_XMM8 then
  1523. result:=result or $47;
  1524. end;
  1525. end;
  1526. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1527. var
  1528. sym : tasmsymbol;
  1529. md,s,rv : byte;
  1530. base,index,scalefactor,
  1531. o : longint;
  1532. ir,br : Tregister;
  1533. isub,bsub : tsubregister;
  1534. begin
  1535. process_ea:=false;
  1536. fillchar(output,sizeof(output),0);
  1537. {Register ?}
  1538. if (input.typ=top_reg) then
  1539. begin
  1540. rv:=regval(input.reg);
  1541. output.modrm:=$c0 or (rfield shl 3) or rv;
  1542. output.size:=1;
  1543. output.rex:=output.rex or (rexbits(input.reg) and $F1);
  1544. process_ea:=true;
  1545. exit;
  1546. end;
  1547. {No register, so memory reference.}
  1548. if input.typ<>top_ref then
  1549. internalerror(200409263);
  1550. ir:=input.ref^.index;
  1551. br:=input.ref^.base;
  1552. isub:=getsubreg(ir);
  1553. bsub:=getsubreg(br);
  1554. s:=input.ref^.scalefactor;
  1555. o:=input.ref^.offset;
  1556. sym:=input.ref^.symbol;
  1557. //if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  1558. // ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1559. if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
  1560. ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
  1561. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1562. internalerror(200301081);
  1563. { it's direct address }
  1564. if (br=NR_NO) and (ir=NR_NO) then
  1565. begin
  1566. output.sib_present:=true;
  1567. output.bytes:=4;
  1568. output.modrm:=4 or (rfield shl 3);
  1569. output.sib:=$25;
  1570. end
  1571. else if (br=NR_RIP) and (ir=NR_NO) then
  1572. begin
  1573. { rip based }
  1574. output.sib_present:=false;
  1575. output.bytes:=4;
  1576. output.modrm:=5 or (rfield shl 3);
  1577. end
  1578. else
  1579. { it's an indirection }
  1580. begin
  1581. { 16 bit? }
  1582. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1583. (br<>NR_NO) and (bsub=R_SUBADDR)
  1584. ) then
  1585. begin
  1586. // vector memory (AVX2) =>> ignore
  1587. end
  1588. else if ((ir<>NR_NO) and (isub<>R_SUBADDR) and (isub<>R_SUBD)) or
  1589. ((br<>NR_NO) and (bsub<>R_SUBADDR) and (bsub<>R_SUBD)) then
  1590. begin
  1591. message(asmw_e_16bit_32bit_not_supported);
  1592. end;
  1593. { wrong, for various reasons }
  1594. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1595. exit;
  1596. output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
  1597. process_ea:=true;
  1598. { base }
  1599. case br of
  1600. NR_R8D,
  1601. NR_EAX,
  1602. NR_R8,
  1603. NR_RAX : base:=0;
  1604. NR_R9D,
  1605. NR_ECX,
  1606. NR_R9,
  1607. NR_RCX : base:=1;
  1608. NR_R10D,
  1609. NR_EDX,
  1610. NR_R10,
  1611. NR_RDX : base:=2;
  1612. NR_R11D,
  1613. NR_EBX,
  1614. NR_R11,
  1615. NR_RBX : base:=3;
  1616. NR_R12D,
  1617. NR_ESP,
  1618. NR_R12,
  1619. NR_RSP : base:=4;
  1620. NR_R13D,
  1621. NR_EBP,
  1622. NR_R13,
  1623. NR_NO,
  1624. NR_RBP : base:=5;
  1625. NR_R14D,
  1626. NR_ESI,
  1627. NR_R14,
  1628. NR_RSI : base:=6;
  1629. NR_R15D,
  1630. NR_EDI,
  1631. NR_R15,
  1632. NR_RDI : base:=7;
  1633. else
  1634. exit;
  1635. end;
  1636. { index }
  1637. case ir of
  1638. NR_R8D,
  1639. NR_EAX,
  1640. NR_R8,
  1641. NR_RAX,
  1642. NR_XMM0,
  1643. NR_XMM8,
  1644. NR_YMM0,
  1645. NR_YMM8 : index:=0;
  1646. NR_R9D,
  1647. NR_ECX,
  1648. NR_R9,
  1649. NR_RCX,
  1650. NR_XMM1,
  1651. NR_XMM9,
  1652. NR_YMM1,
  1653. NR_YMM9 : index:=1;
  1654. NR_R10D,
  1655. NR_EDX,
  1656. NR_R10,
  1657. NR_RDX,
  1658. NR_XMM2,
  1659. NR_XMM10,
  1660. NR_YMM2,
  1661. NR_YMM10 : index:=2;
  1662. NR_R11D,
  1663. NR_EBX,
  1664. NR_R11,
  1665. NR_RBX,
  1666. NR_XMM3,
  1667. NR_XMM11,
  1668. NR_YMM3,
  1669. NR_YMM11 : index:=3;
  1670. NR_R12D,
  1671. NR_ESP,
  1672. NR_R12,
  1673. NR_NO,
  1674. NR_XMM4,
  1675. NR_XMM12,
  1676. NR_YMM4,
  1677. NR_YMM12 : index:=4;
  1678. NR_R13D,
  1679. NR_EBP,
  1680. NR_R13,
  1681. NR_RBP,
  1682. NR_XMM5,
  1683. NR_XMM13,
  1684. NR_YMM5,
  1685. NR_YMM13: index:=5;
  1686. NR_R14D,
  1687. NR_ESI,
  1688. NR_R14,
  1689. NR_RSI,
  1690. NR_XMM6,
  1691. NR_XMM14,
  1692. NR_YMM6,
  1693. NR_YMM14: index:=6;
  1694. NR_R15D,
  1695. NR_EDI,
  1696. NR_R15,
  1697. NR_RDI,
  1698. NR_XMM7,
  1699. NR_XMM15,
  1700. NR_YMM7,
  1701. NR_YMM15: index:=7;
  1702. else
  1703. exit;
  1704. end;
  1705. case s of
  1706. 0,
  1707. 1 : scalefactor:=0;
  1708. 2 : scalefactor:=1;
  1709. 4 : scalefactor:=2;
  1710. 8 : scalefactor:=3;
  1711. else
  1712. exit;
  1713. end;
  1714. { If rbp or r13 is used we must always include an offset }
  1715. if (br=NR_NO) or
  1716. ((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
  1717. md:=0
  1718. else
  1719. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1720. md:=1
  1721. else
  1722. md:=2;
  1723. if (br=NR_NO) or (md=2) then
  1724. output.bytes:=4
  1725. else
  1726. output.bytes:=md;
  1727. { SIB needed ? }
  1728. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
  1729. begin
  1730. output.sib_present:=false;
  1731. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  1732. end
  1733. else
  1734. begin
  1735. output.sib_present:=true;
  1736. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  1737. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1738. end;
  1739. end;
  1740. output.size:=1+ord(output.sib_present)+output.bytes;
  1741. process_ea:=true;
  1742. end;
  1743. {$elseif defined(i386)}
  1744. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1745. var
  1746. sym : tasmsymbol;
  1747. md,s,rv : byte;
  1748. base,index,scalefactor,
  1749. o : longint;
  1750. ir,br : Tregister;
  1751. isub,bsub : tsubregister;
  1752. begin
  1753. process_ea:=false;
  1754. fillchar(output,sizeof(output),0);
  1755. {Register ?}
  1756. if (input.typ=top_reg) then
  1757. begin
  1758. rv:=regval(input.reg);
  1759. output.modrm:=$c0 or (rfield shl 3) or rv;
  1760. output.size:=1;
  1761. process_ea:=true;
  1762. exit;
  1763. end;
  1764. {No register, so memory reference.}
  1765. if (input.typ<>top_ref) then
  1766. internalerror(200409262);
  1767. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) and (input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) or // vector memory (AVX2)
  1768. ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER) and (getregtype(input.ref^.index)<>R_MMREGISTER)) or
  1769. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1770. internalerror(200301081);
  1771. ir:=input.ref^.index;
  1772. br:=input.ref^.base;
  1773. isub:=getsubreg(ir);
  1774. bsub:=getsubreg(br);
  1775. s:=input.ref^.scalefactor;
  1776. o:=input.ref^.offset;
  1777. sym:=input.ref^.symbol;
  1778. { it's direct address }
  1779. if (br=NR_NO) and (ir=NR_NO) then
  1780. begin
  1781. { it's a pure offset }
  1782. output.sib_present:=false;
  1783. output.bytes:=4;
  1784. output.modrm:=5 or (rfield shl 3);
  1785. end
  1786. else
  1787. { it's an indirection }
  1788. begin
  1789. { 16 bit address? }
  1790. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1791. (br<>NR_NO) and (bsub=R_SUBADDR)
  1792. ) then
  1793. begin
  1794. // vector memory (AVX2) =>> ignore
  1795. end
  1796. else if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1797. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1798. message(asmw_e_16bit_not_supported);
  1799. {$ifdef OPTEA}
  1800. { make single reg base }
  1801. if (br=NR_NO) and (s=1) then
  1802. begin
  1803. br:=ir;
  1804. ir:=NR_NO;
  1805. end;
  1806. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  1807. if (br=NR_NO) and
  1808. (((s=2) and (ir<>NR_ESP)) or
  1809. (s=3) or (s=5) or (s=9)) then
  1810. begin
  1811. br:=ir;
  1812. dec(s);
  1813. end;
  1814. { swap ESP into base if scalefactor is 1 }
  1815. if (s=1) and (ir=NR_ESP) then
  1816. begin
  1817. ir:=br;
  1818. br:=NR_ESP;
  1819. end;
  1820. {$endif OPTEA}
  1821. { wrong, for various reasons }
  1822. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1823. exit;
  1824. { base }
  1825. case br of
  1826. NR_EAX : base:=0;
  1827. NR_ECX : base:=1;
  1828. NR_EDX : base:=2;
  1829. NR_EBX : base:=3;
  1830. NR_ESP : base:=4;
  1831. NR_NO,
  1832. NR_EBP : base:=5;
  1833. NR_ESI : base:=6;
  1834. NR_EDI : base:=7;
  1835. else
  1836. exit;
  1837. end;
  1838. { index }
  1839. case ir of
  1840. NR_EAX,
  1841. NR_XMM0,
  1842. NR_YMM0: index:=0;
  1843. NR_ECX,
  1844. NR_XMM1,
  1845. NR_YMM1: index:=1;
  1846. NR_EDX,
  1847. NR_XMM2,
  1848. NR_YMM2: index:=2;
  1849. NR_EBX,
  1850. NR_XMM3,
  1851. NR_YMM3: index:=3;
  1852. NR_NO,
  1853. NR_XMM4,
  1854. NR_YMM4: index:=4;
  1855. NR_EBP,
  1856. NR_XMM5,
  1857. NR_YMM5: index:=5;
  1858. NR_ESI,
  1859. NR_XMM6,
  1860. NR_YMM6: index:=6;
  1861. NR_EDI,
  1862. NR_XMM7,
  1863. NR_YMM7: index:=7;
  1864. else
  1865. exit;
  1866. end;
  1867. case s of
  1868. 0,
  1869. 1 : scalefactor:=0;
  1870. 2 : scalefactor:=1;
  1871. 4 : scalefactor:=2;
  1872. 8 : scalefactor:=3;
  1873. else
  1874. exit;
  1875. end;
  1876. if (br=NR_NO) or
  1877. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  1878. md:=0
  1879. else
  1880. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1881. md:=1
  1882. else
  1883. md:=2;
  1884. if (br=NR_NO) or (md=2) then
  1885. output.bytes:=4
  1886. else
  1887. output.bytes:=md;
  1888. { SIB needed ? }
  1889. if (ir=NR_NO) and (br<>NR_ESP) then
  1890. begin
  1891. output.sib_present:=false;
  1892. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  1893. end
  1894. else
  1895. begin
  1896. output.sib_present:=true;
  1897. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
  1898. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1899. end;
  1900. end;
  1901. if output.sib_present then
  1902. output.size:=2+output.bytes
  1903. else
  1904. output.size:=1+output.bytes;
  1905. process_ea:=true;
  1906. end;
  1907. {$elseif defined(i8086)}
  1908. procedure maybe_swap_index_base(var br,ir:Tregister);
  1909. var
  1910. tmpreg: Tregister;
  1911. begin
  1912. if ((br=NR_NO) or (br=NR_SI) or (br=NR_DI)) and
  1913. ((ir=NR_NO) or (ir=NR_BP) or (ir=NR_BX)) then
  1914. begin
  1915. tmpreg:=br;
  1916. br:=ir;
  1917. ir:=tmpreg;
  1918. end;
  1919. end;
  1920. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1921. var
  1922. sym : tasmsymbol;
  1923. md,s,rv : byte;
  1924. base,
  1925. o : longint;
  1926. ir,br : Tregister;
  1927. isub,bsub : tsubregister;
  1928. begin
  1929. process_ea:=false;
  1930. fillchar(output,sizeof(output),0);
  1931. {Register ?}
  1932. if (input.typ=top_reg) then
  1933. begin
  1934. rv:=regval(input.reg);
  1935. output.modrm:=$c0 or (rfield shl 3) or rv;
  1936. output.size:=1;
  1937. process_ea:=true;
  1938. exit;
  1939. end;
  1940. {No register, so memory reference.}
  1941. if (input.typ<>top_ref) then
  1942. internalerror(200409262);
  1943. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  1944. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1945. internalerror(200301081);
  1946. ir:=input.ref^.index;
  1947. br:=input.ref^.base;
  1948. isub:=getsubreg(ir);
  1949. bsub:=getsubreg(br);
  1950. s:=input.ref^.scalefactor;
  1951. o:=input.ref^.offset;
  1952. sym:=input.ref^.symbol;
  1953. { it's a direct address }
  1954. if (br=NR_NO) and (ir=NR_NO) then
  1955. begin
  1956. { it's a pure offset }
  1957. output.bytes:=2;
  1958. output.modrm:=6 or (rfield shl 3);
  1959. end
  1960. else
  1961. { it's an indirection }
  1962. begin
  1963. { 32 bit address? }
  1964. if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1965. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1966. message(asmw_e_32bit_not_supported);
  1967. { scalefactor can only be 1 in 16-bit addresses }
  1968. if (s<>1) and (ir<>NR_NO) then
  1969. exit;
  1970. maybe_swap_index_base(br,ir);
  1971. if (br=NR_BX) and (ir=NR_SI) then
  1972. base:=0
  1973. else if (br=NR_BX) and (ir=NR_DI) then
  1974. base:=1
  1975. else if (br=NR_BP) and (ir=NR_SI) then
  1976. base:=2
  1977. else if (br=NR_BP) and (ir=NR_DI) then
  1978. base:=3
  1979. else if (br=NR_NO) and (ir=NR_SI) then
  1980. base:=4
  1981. else if (br=NR_NO) and (ir=NR_DI) then
  1982. base:=5
  1983. else if (br=NR_BP) and (ir=NR_NO) then
  1984. base:=6
  1985. else if (br=NR_BX) and (ir=NR_NO) then
  1986. base:=7
  1987. else
  1988. exit;
  1989. if (base<>6) and (o=0) and (sym=nil) then
  1990. md:=0
  1991. else if ((o>=-128) and (o<=127) and (sym=nil)) then
  1992. md:=1
  1993. else
  1994. md:=2;
  1995. output.bytes:=md;
  1996. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  1997. end;
  1998. output.size:=1+output.bytes;
  1999. output.sib_present:=false;
  2000. process_ea:=true;
  2001. end;
  2002. {$endif}
  2003. function taicpu.calcsize(p:PInsEntry):shortint;
  2004. var
  2005. codes : pchar;
  2006. c : byte;
  2007. len : shortint;
  2008. ea_data : ea;
  2009. exists_vex: boolean;
  2010. exists_vex_extension: boolean;
  2011. exists_prefix_66: boolean;
  2012. exists_prefix_F2: boolean;
  2013. exists_prefix_F3: boolean;
  2014. {$ifdef x86_64}
  2015. omit_rexw : boolean;
  2016. {$endif x86_64}
  2017. begin
  2018. len:=0;
  2019. codes:=@p^.code[0];
  2020. exists_vex := false;
  2021. exists_vex_extension := false;
  2022. exists_prefix_66 := false;
  2023. exists_prefix_F2 := false;
  2024. exists_prefix_F3 := false;
  2025. {$ifdef x86_64}
  2026. rex:=0;
  2027. omit_rexw:=false;
  2028. {$endif x86_64}
  2029. repeat
  2030. c:=ord(codes^);
  2031. inc(codes);
  2032. case c of
  2033. &0 :
  2034. break;
  2035. &1,&2,&3 :
  2036. begin
  2037. inc(codes,c);
  2038. inc(len,c);
  2039. end;
  2040. &10,&11,&12 :
  2041. begin
  2042. {$ifdef x86_64}
  2043. rex:=rex or (rexbits(oper[c-&10]^.reg) and $F1);
  2044. {$endif x86_64}
  2045. inc(codes);
  2046. inc(len);
  2047. end;
  2048. &13,&23 :
  2049. begin
  2050. inc(codes);
  2051. inc(len);
  2052. end;
  2053. &4,&5,&6,&7 :
  2054. begin
  2055. if opsize={$ifdef i8086}S_L{$else}S_W{$endif} then
  2056. inc(len,2)
  2057. else
  2058. inc(len);
  2059. end;
  2060. &14,&15,&16,
  2061. &20,&21,&22,
  2062. &24,&25,&26,&27,
  2063. &50,&51,&52 :
  2064. inc(len);
  2065. &30,&31,&32,
  2066. &37,
  2067. &60,&61,&62 :
  2068. inc(len,2);
  2069. &34,&35,&36:
  2070. begin
  2071. {$ifdef i8086}
  2072. inc(len,2);
  2073. {$else i8086}
  2074. if opsize=S_Q then
  2075. inc(len,8)
  2076. else
  2077. inc(len,4);
  2078. {$endif i8086}
  2079. end;
  2080. &44,&45,&46:
  2081. inc(len,sizeof(pint));
  2082. &54,&55,&56:
  2083. inc(len,8);
  2084. &40,&41,&42,
  2085. &70,&71,&72,
  2086. &254,&255,&256 :
  2087. inc(len,4);
  2088. &64,&65,&66:
  2089. {$ifdef i8086}
  2090. inc(len,2);
  2091. {$else i8086}
  2092. inc(len,4);
  2093. {$endif i8086}
  2094. &74,&75,&76,&77: ; // ignore vex-coded operand-idx
  2095. &320,&321,&322 :
  2096. begin
  2097. case (oper[c-&320]^.ot and OT_SIZE_MASK) of
  2098. {$if defined(i386) or defined(x86_64)}
  2099. OT_BITS16 :
  2100. {$elseif defined(i8086)}
  2101. OT_BITS32 :
  2102. {$endif}
  2103. inc(len);
  2104. {$ifdef x86_64}
  2105. OT_BITS64:
  2106. begin
  2107. rex:=rex or $48;
  2108. end;
  2109. {$endif x86_64}
  2110. end;
  2111. end;
  2112. &310 :
  2113. {$if defined(x86_64)}
  2114. { every insentry with code 0310 must be marked with NOX86_64 }
  2115. InternalError(2011051301);
  2116. {$elseif defined(i386)}
  2117. inc(len);
  2118. {$elseif defined(i8086)}
  2119. {nothing};
  2120. {$endif}
  2121. &311 :
  2122. {$if defined(x86_64) or defined(i8086)}
  2123. inc(len)
  2124. {$endif x86_64 or i8086}
  2125. ;
  2126. &324 :
  2127. {$ifndef i8086}
  2128. inc(len)
  2129. {$endif not i8086}
  2130. ;
  2131. &326 :
  2132. begin
  2133. {$ifdef x86_64}
  2134. rex:=rex or $48;
  2135. {$endif x86_64}
  2136. end;
  2137. &312,
  2138. &323,
  2139. &325,
  2140. &327,
  2141. &331,&332: ;
  2142. &333:
  2143. begin
  2144. inc(len);
  2145. exists_prefix_F2 := true;
  2146. end;
  2147. &334:
  2148. begin
  2149. inc(len);
  2150. exists_prefix_F3 := true;
  2151. end;
  2152. &361:
  2153. begin
  2154. {$ifndef i8086}
  2155. inc(len);
  2156. exists_prefix_66 := true;
  2157. {$endif not i8086}
  2158. end;
  2159. &335:
  2160. {$ifdef x86_64}
  2161. omit_rexw:=true
  2162. {$endif x86_64}
  2163. ;
  2164. &100..&227 :
  2165. begin
  2166. {$ifdef x86_64}
  2167. if (c<&177) then
  2168. begin
  2169. if (oper[c and 7]^.typ=top_reg) then
  2170. begin
  2171. rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
  2172. end;
  2173. end;
  2174. {$endif x86_64}
  2175. if not process_ea(oper[(c shr 3) and 7]^, ea_data, 0) then
  2176. Message(asmw_e_invalid_effective_address)
  2177. else
  2178. inc(len,ea_data.size);
  2179. {$ifdef x86_64}
  2180. rex:=rex or ea_data.rex;
  2181. {$endif x86_64}
  2182. end;
  2183. &362: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
  2184. // =>> DEFAULT = 2 Bytes
  2185. begin
  2186. if not(exists_vex) then
  2187. begin
  2188. inc(len, 2);
  2189. exists_vex := true;
  2190. end;
  2191. end;
  2192. &363: // REX.W = 1
  2193. // =>> VEX prefix length = 3
  2194. begin
  2195. if not(exists_vex_extension) then
  2196. begin
  2197. inc(len);
  2198. exists_vex_extension := true;
  2199. end;
  2200. end;
  2201. &364: ; // VEX length bit
  2202. &366, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
  2203. &367: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
  2204. &370: // VEX-Extension prefix $0F
  2205. // ignore for calculating length
  2206. ;
  2207. &371, // VEX-Extension prefix $0F38
  2208. &372: // VEX-Extension prefix $0F3A
  2209. begin
  2210. if not(exists_vex_extension) then
  2211. begin
  2212. inc(len);
  2213. exists_vex_extension := true;
  2214. end;
  2215. end;
  2216. &300,&301,&302:
  2217. begin
  2218. {$if defined(x86_64) or defined(i8086)}
  2219. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2220. inc(len);
  2221. {$endif x86_64 or i8086}
  2222. end;
  2223. else
  2224. InternalError(200603141);
  2225. end;
  2226. until false;
  2227. {$ifdef x86_64}
  2228. if ((rex and $80)<>0) and ((rex and $4F)<>0) then
  2229. Message(asmw_e_bad_reg_with_rex);
  2230. rex:=rex and $4F; { reset extra bits in upper nibble }
  2231. if omit_rexw then
  2232. begin
  2233. if rex=$48 then { remove rex entirely? }
  2234. rex:=0
  2235. else
  2236. rex:=rex and $F7;
  2237. end;
  2238. if not(exists_vex) then
  2239. begin
  2240. if rex<>0 then
  2241. Inc(len);
  2242. end;
  2243. {$endif}
  2244. if exists_vex then
  2245. begin
  2246. if exists_prefix_66 then dec(len);
  2247. if exists_prefix_F2 then dec(len);
  2248. if exists_prefix_F3 then dec(len);
  2249. {$ifdef x86_64}
  2250. if not(exists_vex_extension) then
  2251. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  2252. {$endif x86_64}
  2253. end;
  2254. calcsize:=len;
  2255. end;
  2256. procedure taicpu.GenCode(objdata:TObjData);
  2257. {
  2258. * the actual codes (C syntax, i.e. octal):
  2259. * \0 - terminates the code. (Unless it's a literal of course.)
  2260. * \1, \2, \3 - that many literal bytes follow in the code stream
  2261. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  2262. * (POP is never used for CS) depending on operand 0
  2263. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  2264. * on operand 0
  2265. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  2266. * to the register value of operand 0, 1 or 2
  2267. * \13 - a literal byte follows in the code stream, to be added
  2268. * to the condition code value of the instruction.
  2269. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  2270. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  2271. * \23 - a literal byte follows in the code stream, to be added
  2272. * to the inverted condition code value of the instruction
  2273. * (inverted version of \13).
  2274. * \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
  2275. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  2276. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  2277. * assembly mode or the address-size override on the operand
  2278. * \37 - a word constant, from the _segment_ part of operand 0
  2279. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  2280. * \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
  2281. on the address size of instruction
  2282. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  2283. * \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
  2284. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  2285. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  2286. * assembly mode or the address-size override on the operand
  2287. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  2288. * \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
  2289. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  2290. * field the register value of operand b.
  2291. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  2292. * field equal to digit b.
  2293. * \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
  2294. * \300,\301,\302 - might be an 0x67, depending on the address size of
  2295. * the memory reference in operand x.
  2296. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  2297. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  2298. * \312 - (disassembler only) invalid with non-default address size.
  2299. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  2300. * size of operand x.
  2301. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  2302. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  2303. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  2304. * \327 - indicates that this instruction is only valid when the
  2305. * operand size is the default (instruction to disassembler,
  2306. * generates no code in the assembler)
  2307. * \331 - instruction not valid with REP prefix. Hint for
  2308. * disassembler only; for SSE instructions.
  2309. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  2310. * \333 - 0xF3 prefix for SSE instructions
  2311. * \334 - 0xF2 prefix for SSE instructions
  2312. * \335 - Indicates 64-bit operand size with REX.W not necessary
  2313. * \361 - 0x66 prefix for SSE instructions
  2314. * \362 - VEX prefix for AVX instructions
  2315. * \363 - VEX W1
  2316. * \364 - VEX Vector length 256
  2317. * \366 - operand 2 (ymmreg) encoded in bit 4-7 of the immediate byte
  2318. * \367 - operand 3 (ymmreg) encoded in bit 4-7 of the immediate byte
  2319. * \370 - VEX 0F-FLAG
  2320. * \371 - VEX 0F38-FLAG
  2321. * \372 - VEX 0F3A-FLAG
  2322. }
  2323. var
  2324. currval : aint;
  2325. currsym : tobjsymbol;
  2326. currrelreloc,
  2327. currabsreloc,
  2328. currabsreloc32 : TObjRelocationType;
  2329. {$ifdef x86_64}
  2330. rexwritten : boolean;
  2331. {$endif x86_64}
  2332. procedure getvalsym(opidx:longint);
  2333. begin
  2334. case oper[opidx]^.typ of
  2335. top_ref :
  2336. begin
  2337. currval:=oper[opidx]^.ref^.offset;
  2338. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  2339. {$ifdef i8086}
  2340. if oper[opidx]^.ref^.refaddr=addr_seg then
  2341. begin
  2342. currrelreloc:=RELOC_SEGREL;
  2343. currabsreloc:=RELOC_SEG;
  2344. currabsreloc32:=RELOC_SEG;
  2345. end
  2346. else if oper[opidx]^.ref^.refaddr=addr_dgroup then
  2347. begin
  2348. currrelreloc:=RELOC_DGROUPREL;
  2349. currabsreloc:=RELOC_DGROUP;
  2350. currabsreloc32:=RELOC_DGROUP;
  2351. end
  2352. else
  2353. {$endif i8086}
  2354. {$ifdef i386}
  2355. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2356. (tf_pic_uses_got in target_info.flags) then
  2357. begin
  2358. currrelreloc:=RELOC_PLT32;
  2359. currabsreloc:=RELOC_GOT32;
  2360. currabsreloc32:=RELOC_GOT32;
  2361. end
  2362. else
  2363. {$endif i386}
  2364. {$ifdef x86_64}
  2365. if oper[opidx]^.ref^.refaddr=addr_pic then
  2366. begin
  2367. currrelreloc:=RELOC_PLT32;
  2368. currabsreloc:=RELOC_GOTPCREL;
  2369. currabsreloc32:=RELOC_GOTPCREL;
  2370. end
  2371. else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
  2372. begin
  2373. currrelreloc:=RELOC_RELATIVE;
  2374. currabsreloc:=RELOC_RELATIVE;
  2375. currabsreloc32:=RELOC_RELATIVE;
  2376. end
  2377. else
  2378. {$endif x86_64}
  2379. begin
  2380. currrelreloc:=RELOC_RELATIVE;
  2381. currabsreloc:=RELOC_ABSOLUTE;
  2382. currabsreloc32:=RELOC_ABSOLUTE32;
  2383. end;
  2384. end;
  2385. top_const :
  2386. begin
  2387. currval:=aint(oper[opidx]^.val);
  2388. currsym:=nil;
  2389. currabsreloc:=RELOC_ABSOLUTE;
  2390. currabsreloc32:=RELOC_ABSOLUTE32;
  2391. end;
  2392. else
  2393. Message(asmw_e_immediate_or_reference_expected);
  2394. end;
  2395. end;
  2396. {$ifdef x86_64}
  2397. procedure maybewriterex;
  2398. begin
  2399. if (rex<>0) and not(rexwritten) then
  2400. begin
  2401. rexwritten:=true;
  2402. objdata.writebytes(rex,1);
  2403. end;
  2404. end;
  2405. {$endif x86_64}
  2406. procedure objdata_writereloc(Data:aint;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
  2407. begin
  2408. {$ifdef i386}
  2409. { Special case of '_GLOBAL_OFFSET_TABLE_'
  2410. which needs a special relocation type R_386_GOTPC }
  2411. if assigned (p) and
  2412. (p.name='_GLOBAL_OFFSET_TABLE_') and
  2413. (tf_pic_uses_got in target_info.flags) then
  2414. begin
  2415. { nothing else than a 4 byte relocation should occur
  2416. for GOT }
  2417. if len<>4 then
  2418. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  2419. Reloctype:=RELOC_GOTPC;
  2420. { We need to add the offset of the relocation
  2421. of _GLOBAL_OFFSET_TABLE symbol within
  2422. the current instruction }
  2423. inc(data,objdata.currobjsec.size-insoffset);
  2424. end;
  2425. {$endif i386}
  2426. objdata.writereloc(data,len,p,Reloctype);
  2427. end;
  2428. const
  2429. CondVal:array[TAsmCond] of byte=($0,
  2430. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  2431. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  2432. $0, $A, $A, $B, $8, $4);
  2433. var
  2434. c : byte;
  2435. pb : pbyte;
  2436. codes : pchar;
  2437. bytes : array[0..3] of byte;
  2438. rfield,
  2439. data,s,opidx : longint;
  2440. ea_data : ea;
  2441. relsym : TObjSymbol;
  2442. needed_VEX_Extension: boolean;
  2443. needed_VEX: boolean;
  2444. opmode: integer;
  2445. VEXvvvv: byte;
  2446. VEXmmmmm: byte;
  2447. begin
  2448. { safety check }
  2449. if objdata.currobjsec.size<>longword(insoffset) then
  2450. internalerror(200130121);
  2451. { those variables are initialized inside local procedures, the dfa cannot handle this yet }
  2452. currsym:=nil;
  2453. currabsreloc:=RELOC_NONE;
  2454. currabsreloc32:=RELOC_NONE;
  2455. currrelreloc:=RELOC_NONE;
  2456. currval:=0;
  2457. { load data to write }
  2458. codes:=insentry^.code;
  2459. {$ifdef x86_64}
  2460. rexwritten:=false;
  2461. {$endif x86_64}
  2462. { Force word push/pop for registers }
  2463. if (opsize={$ifdef i8086}S_L{$else}S_W{$endif}) and ((codes[0]=#4) or (codes[0]=#6) or
  2464. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  2465. begin
  2466. bytes[0]:=$66;
  2467. objdata.writebytes(bytes,1);
  2468. end;
  2469. // needed VEX Prefix (for AVX etc.)
  2470. needed_VEX := false;
  2471. needed_VEX_Extension := false;
  2472. opmode := -1;
  2473. VEXvvvv := 0;
  2474. VEXmmmmm := 0;
  2475. repeat
  2476. c:=ord(codes^);
  2477. inc(codes);
  2478. case c of
  2479. &0: break;
  2480. &1,
  2481. &2,
  2482. &3: inc(codes,c);
  2483. &74: opmode := 0;
  2484. &75: opmode := 1;
  2485. &76: opmode := 2;
  2486. &333: VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
  2487. &334: VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
  2488. &361: VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
  2489. &362: needed_VEX := true;
  2490. &363: begin
  2491. needed_VEX_Extension := true;
  2492. VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
  2493. end;
  2494. &364: VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
  2495. &370: VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
  2496. &371: begin
  2497. needed_VEX_Extension := true;
  2498. VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
  2499. end;
  2500. &372: begin
  2501. needed_VEX_Extension := true;
  2502. VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
  2503. end;
  2504. end;
  2505. until false;
  2506. if needed_VEX then
  2507. begin
  2508. if (opmode > ops) or
  2509. (opmode < -1) then
  2510. begin
  2511. Internalerror(777100);
  2512. end
  2513. else if opmode = -1 then
  2514. begin
  2515. VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
  2516. end
  2517. else if oper[opmode]^.typ = top_reg then
  2518. begin
  2519. VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
  2520. {$ifdef x86_64}
  2521. if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
  2522. {$else}
  2523. VEXvvvv := VEXvvvv or (1 shl 6);
  2524. {$endif x86_64}
  2525. end
  2526. else Internalerror(777101);
  2527. if not(needed_VEX_Extension) then
  2528. begin
  2529. {$ifdef x86_64}
  2530. if rex and $0B <> 0 then needed_VEX_Extension := true;
  2531. {$endif x86_64}
  2532. end;
  2533. if needed_VEX_Extension then
  2534. begin
  2535. // VEX-Prefix-Length = 3 Bytes
  2536. bytes[0]:=$C4;
  2537. objdata.writebytes(bytes,1);
  2538. {$ifdef x86_64}
  2539. VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
  2540. {$else}
  2541. VEXmmmmm := VEXmmmmm or (7 shl 5); //
  2542. {$endif x86_64}
  2543. bytes[0] := VEXmmmmm;
  2544. objdata.writebytes(bytes,1);
  2545. {$ifdef x86_64}
  2546. VEXvvvv := VEXvvvv OR ((rex and $08) shl 7); // set REX.w
  2547. {$endif x86_64}
  2548. bytes[0] := VEXvvvv;
  2549. objdata.writebytes(bytes,1);
  2550. end
  2551. else
  2552. begin
  2553. // VEX-Prefix-Length = 2 Bytes
  2554. bytes[0]:=$C5;
  2555. objdata.writebytes(bytes,1);
  2556. {$ifdef x86_64}
  2557. if rex and $04 = 0 then
  2558. {$endif x86_64}
  2559. begin
  2560. VEXvvvv := VEXvvvv or (1 shl 7);
  2561. end;
  2562. bytes[0] := VEXvvvv;
  2563. objdata.writebytes(bytes,1);
  2564. end;
  2565. end
  2566. else
  2567. begin
  2568. needed_VEX_Extension := false;
  2569. opmode := -1;
  2570. end;
  2571. { load data to write }
  2572. codes:=insentry^.code;
  2573. repeat
  2574. c:=ord(codes^);
  2575. inc(codes);
  2576. case c of
  2577. &0 :
  2578. break;
  2579. &1,&2,&3 :
  2580. begin
  2581. {$ifdef x86_64}
  2582. if not(needed_VEX) then // TG
  2583. maybewriterex;
  2584. {$endif x86_64}
  2585. objdata.writebytes(codes^,c);
  2586. inc(codes,c);
  2587. end;
  2588. &4,&6 :
  2589. begin
  2590. case oper[0]^.reg of
  2591. NR_CS:
  2592. bytes[0]:=$e;
  2593. NR_NO,
  2594. NR_DS:
  2595. bytes[0]:=$1e;
  2596. NR_ES:
  2597. bytes[0]:=$6;
  2598. NR_SS:
  2599. bytes[0]:=$16;
  2600. else
  2601. internalerror(777004);
  2602. end;
  2603. if c=&4 then
  2604. inc(bytes[0]);
  2605. objdata.writebytes(bytes,1);
  2606. end;
  2607. &5,&7 :
  2608. begin
  2609. case oper[0]^.reg of
  2610. NR_FS:
  2611. bytes[0]:=$a0;
  2612. NR_GS:
  2613. bytes[0]:=$a8;
  2614. else
  2615. internalerror(777005);
  2616. end;
  2617. if c=&5 then
  2618. inc(bytes[0]);
  2619. objdata.writebytes(bytes,1);
  2620. end;
  2621. &10,&11,&12 :
  2622. begin
  2623. {$ifdef x86_64}
  2624. if not(needed_VEX) then // TG
  2625. maybewriterex;
  2626. {$endif x86_64}
  2627. bytes[0]:=ord(codes^)+regval(oper[c-&10]^.reg);
  2628. inc(codes);
  2629. objdata.writebytes(bytes,1);
  2630. end;
  2631. &13 :
  2632. begin
  2633. bytes[0]:=ord(codes^)+condval[condition];
  2634. inc(codes);
  2635. objdata.writebytes(bytes,1);
  2636. end;
  2637. &14,&15,&16 :
  2638. begin
  2639. getvalsym(c-&14);
  2640. if (currval<-128) or (currval>127) then
  2641. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  2642. if assigned(currsym) then
  2643. objdata_writereloc(currval,1,currsym,currabsreloc)
  2644. else
  2645. objdata.writebytes(currval,1);
  2646. end;
  2647. &20,&21,&22 :
  2648. begin
  2649. getvalsym(c-&20);
  2650. if (currval<-256) or (currval>255) then
  2651. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  2652. if assigned(currsym) then
  2653. objdata_writereloc(currval,1,currsym,currabsreloc)
  2654. else
  2655. objdata.writebytes(currval,1);
  2656. end;
  2657. &23 :
  2658. begin
  2659. bytes[0]:=ord(codes^)+condval[inverse_cond(condition)];
  2660. inc(codes);
  2661. objdata.writebytes(bytes,1);
  2662. end;
  2663. &24,&25,&26,&27 :
  2664. begin
  2665. getvalsym(c-&24);
  2666. if (currval<0) or (currval>255) then
  2667. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  2668. if assigned(currsym) then
  2669. objdata_writereloc(currval,1,currsym,currabsreloc)
  2670. else
  2671. objdata.writebytes(currval,1);
  2672. end;
  2673. &30,&31,&32 : // 030..032
  2674. begin
  2675. getvalsym(c-&30);
  2676. {$ifndef i8086}
  2677. { currval is an aint so this cannot happen on i8086 and causes only a warning }
  2678. if (currval<-65536) or (currval>65535) then
  2679. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  2680. {$endif i8086}
  2681. if assigned(currsym)
  2682. {$ifdef i8086}
  2683. or (currabsreloc=RELOC_DGROUP)
  2684. {$endif i8086}
  2685. then
  2686. objdata_writereloc(currval,2,currsym,currabsreloc)
  2687. else
  2688. objdata.writebytes(currval,2);
  2689. end;
  2690. &34,&35,&36 : // 034..036
  2691. { !!! These are intended (and used in opcode table) to select depending
  2692. on address size, *not* operand size. Works by coincidence only. }
  2693. begin
  2694. getvalsym(c-&34);
  2695. {$ifdef i8086}
  2696. if assigned(currsym) then
  2697. objdata_writereloc(currval,2,currsym,currabsreloc)
  2698. else
  2699. objdata.writebytes(currval,2);
  2700. {$else i8086}
  2701. if opsize=S_Q then
  2702. begin
  2703. if assigned(currsym) then
  2704. objdata_writereloc(currval,8,currsym,currabsreloc)
  2705. else
  2706. objdata.writebytes(currval,8);
  2707. end
  2708. else
  2709. begin
  2710. if assigned(currsym) then
  2711. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2712. else
  2713. objdata.writebytes(currval,4);
  2714. end
  2715. {$endif i8086}
  2716. end;
  2717. &40,&41,&42 : // 040..042
  2718. begin
  2719. getvalsym(c-&40);
  2720. if assigned(currsym) then
  2721. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2722. else
  2723. objdata.writebytes(currval,4);
  2724. end;
  2725. &44,&45,&46 :// 044..046 - select between word/dword/qword depending on
  2726. begin // address size (we support only default address sizes).
  2727. getvalsym(c-&44);
  2728. {$if defined(x86_64)}
  2729. if assigned(currsym) then
  2730. objdata_writereloc(currval,8,currsym,currabsreloc)
  2731. else
  2732. objdata.writebytes(currval,8);
  2733. {$elseif defined(i386)}
  2734. if assigned(currsym) then
  2735. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2736. else
  2737. objdata.writebytes(currval,4);
  2738. {$elseif defined(i8086)}
  2739. if assigned(currsym) then
  2740. objdata_writereloc(currval,2,currsym,currabsreloc)
  2741. else
  2742. objdata.writebytes(currval,2);
  2743. {$endif}
  2744. end;
  2745. &50,&51,&52 : // 050..052 - byte relative operand
  2746. begin
  2747. getvalsym(c-&50);
  2748. data:=currval-insend;
  2749. {$push}
  2750. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  2751. if assigned(currsym) then
  2752. inc(data,currsym.address);
  2753. {$pop}
  2754. if (data>127) or (data<-128) then
  2755. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  2756. objdata.writebytes(data,1);
  2757. end;
  2758. &54,&55,&56: // 054..056 - qword immediate operand
  2759. begin
  2760. getvalsym(c-&54);
  2761. if assigned(currsym) then
  2762. objdata_writereloc(currval,8,currsym,currabsreloc)
  2763. else
  2764. objdata.writebytes(currval,8);
  2765. end;
  2766. &60,&61,&62 :
  2767. begin
  2768. getvalsym(c-&60);
  2769. {$ifdef i8086}
  2770. if assigned(currsym) then
  2771. objdata_writereloc(currval,2,currsym,currrelreloc)
  2772. else
  2773. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  2774. {$else i8086}
  2775. InternalError(777006);
  2776. {$endif i8086}
  2777. end;
  2778. &64,&65,&66 : // 064..066 - select between 16/32 address mode, but we support only 32 (only 16 on i8086)
  2779. begin
  2780. getvalsym(c-&64);
  2781. {$ifdef i8086}
  2782. if assigned(currsym) then
  2783. objdata_writereloc(currval,2,currsym,currrelreloc)
  2784. else
  2785. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  2786. {$else i8086}
  2787. if assigned(currsym) then
  2788. objdata_writereloc(currval,4,currsym,currrelreloc)
  2789. else
  2790. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2791. {$endif i8086}
  2792. end;
  2793. &70,&71,&72 : // 070..072 - long relative operand
  2794. begin
  2795. getvalsym(c-&70);
  2796. if assigned(currsym) then
  2797. objdata_writereloc(currval,4,currsym,currrelreloc)
  2798. else
  2799. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2800. end;
  2801. &74,&75,&76 : ; // 074..076 - vex-coded vector operand
  2802. // ignore
  2803. &254,&255,&256 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
  2804. begin
  2805. getvalsym(c-&254);
  2806. {$ifdef x86_64}
  2807. { for i386 as aint type is longint the
  2808. following test is useless }
  2809. if (currval<low(longint)) or (currval>high(longint)) then
  2810. Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
  2811. {$endif x86_64}
  2812. if assigned(currsym) then
  2813. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2814. else
  2815. objdata.writebytes(currval,4);
  2816. end;
  2817. &300,&301,&302:
  2818. begin
  2819. {$if defined(x86_64) or defined(i8086)}
  2820. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2821. begin
  2822. bytes[0]:=$67;
  2823. objdata.writebytes(bytes,1);
  2824. end;
  2825. {$endif x86_64 or i8086}
  2826. end;
  2827. &310 : { fixed 16-bit addr }
  2828. {$if defined(x86_64)}
  2829. { every insentry having code 0310 must be marked with NOX86_64 }
  2830. InternalError(2011051302);
  2831. {$elseif defined(i386)}
  2832. begin
  2833. bytes[0]:=$67;
  2834. objdata.writebytes(bytes,1);
  2835. end;
  2836. {$elseif defined(i8086)}
  2837. {nothing};
  2838. {$endif}
  2839. &311 : { fixed 32-bit addr }
  2840. {$if defined(x86_64) or defined(i8086)}
  2841. begin
  2842. bytes[0]:=$67;
  2843. objdata.writebytes(bytes,1);
  2844. end
  2845. {$endif x86_64 or i8086}
  2846. ;
  2847. &320,&321,&322 :
  2848. begin
  2849. case oper[c-&320]^.ot and OT_SIZE_MASK of
  2850. {$if defined(i386) or defined(x86_64)}
  2851. OT_BITS16 :
  2852. {$elseif defined(i8086)}
  2853. OT_BITS32 :
  2854. {$endif}
  2855. begin
  2856. bytes[0]:=$66;
  2857. objdata.writebytes(bytes,1);
  2858. end;
  2859. {$ifndef x86_64}
  2860. OT_BITS64 :
  2861. Message(asmw_e_64bit_not_supported);
  2862. {$endif x86_64}
  2863. end;
  2864. end;
  2865. &323,
  2866. &325 : {no action needed};
  2867. &324,
  2868. &361:
  2869. begin
  2870. {$ifndef i8086}
  2871. if not(needed_VEX) then
  2872. begin
  2873. bytes[0]:=$66;
  2874. objdata.writebytes(bytes,1);
  2875. end;
  2876. {$endif not i8086}
  2877. end;
  2878. &326 :
  2879. begin
  2880. {$ifndef x86_64}
  2881. Message(asmw_e_64bit_not_supported);
  2882. {$endif x86_64}
  2883. end;
  2884. &333 :
  2885. begin
  2886. if not(needed_VEX) then
  2887. begin
  2888. bytes[0]:=$f3;
  2889. objdata.writebytes(bytes,1);
  2890. end;
  2891. end;
  2892. &334 :
  2893. begin
  2894. if not(needed_VEX) then
  2895. begin
  2896. bytes[0]:=$f2;
  2897. objdata.writebytes(bytes,1);
  2898. end;
  2899. end;
  2900. &335:
  2901. ;
  2902. &312,
  2903. &327,
  2904. &331,&332 :
  2905. begin
  2906. { these are dissambler hints or 32 bit prefixes which
  2907. are not needed }
  2908. end;
  2909. &362..&364: ; // VEX flags =>> nothing todo
  2910. &366: begin
  2911. if needed_VEX then
  2912. begin
  2913. if ops = 4 then
  2914. begin
  2915. if (oper[2]^.typ=top_reg) then
  2916. begin
  2917. if (oper[2]^.ot and otf_reg_xmm <> 0) or
  2918. (oper[2]^.ot and otf_reg_ymm <> 0) then
  2919. begin
  2920. bytes[0] := ((getsupreg(oper[2]^.reg) and 15) shl 4);
  2921. objdata.writebytes(bytes,1);
  2922. end
  2923. else Internalerror(2014032001);
  2924. end
  2925. else Internalerror(2014032002);
  2926. end
  2927. else Internalerror(2014032003);
  2928. end
  2929. else Internalerror(2014032004);
  2930. end;
  2931. &367: begin
  2932. if needed_VEX then
  2933. begin
  2934. if ops = 4 then
  2935. begin
  2936. if (oper[3]^.typ=top_reg) then
  2937. begin
  2938. if (oper[3]^.ot and otf_reg_xmm <> 0) or
  2939. (oper[3]^.ot and otf_reg_ymm <> 0) then
  2940. begin
  2941. bytes[0] := ((getsupreg(oper[3]^.reg) and 15) shl 4);
  2942. objdata.writebytes(bytes,1);
  2943. end
  2944. else Internalerror(2014032005);
  2945. end
  2946. else Internalerror(2014032006);
  2947. end
  2948. else Internalerror(2014032007);
  2949. end
  2950. else Internalerror(2014032008);
  2951. end;
  2952. &370..&372: ; // VEX flags =>> nothing todo
  2953. &37:
  2954. begin
  2955. {$ifdef i8086}
  2956. if assigned(currsym) then
  2957. objdata_writereloc(0,2,currsym,RELOC_SEG)
  2958. else
  2959. InternalError(2015041503);
  2960. {$else i8086}
  2961. InternalError(777006);
  2962. {$endif i8086}
  2963. end;
  2964. else
  2965. begin
  2966. { rex should be written at this point }
  2967. {$ifdef x86_64}
  2968. if not(needed_VEX) then // TG
  2969. if (rex<>0) and not(rexwritten) then
  2970. internalerror(200603191);
  2971. {$endif x86_64}
  2972. if (c>=&100) and (c<=&227) then // 0100..0227
  2973. begin
  2974. if (c<&177) then // 0177
  2975. begin
  2976. if (oper[c and 7]^.typ=top_reg) then
  2977. rfield:=regval(oper[c and 7]^.reg)
  2978. else
  2979. rfield:=regval(oper[c and 7]^.ref^.base);
  2980. end
  2981. else
  2982. rfield:=c and 7;
  2983. opidx:=(c shr 3) and 7;
  2984. if not process_ea(oper[opidx]^,ea_data,rfield) then
  2985. Message(asmw_e_invalid_effective_address);
  2986. pb:=@bytes[0];
  2987. pb^:=ea_data.modrm;
  2988. inc(pb);
  2989. if ea_data.sib_present then
  2990. begin
  2991. pb^:=ea_data.sib;
  2992. inc(pb);
  2993. end;
  2994. s:=pb-@bytes[0];
  2995. objdata.writebytes(bytes,s);
  2996. case ea_data.bytes of
  2997. 0 : ;
  2998. 1 :
  2999. begin
  3000. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  3001. begin
  3002. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  3003. {$ifdef i386}
  3004. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3005. (tf_pic_uses_got in target_info.flags) then
  3006. currabsreloc:=RELOC_GOT32
  3007. else
  3008. {$endif i386}
  3009. {$ifdef x86_64}
  3010. if oper[opidx]^.ref^.refaddr=addr_pic then
  3011. currabsreloc:=RELOC_GOTPCREL
  3012. else
  3013. {$endif x86_64}
  3014. currabsreloc:=RELOC_ABSOLUTE;
  3015. objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  3016. end
  3017. else
  3018. begin
  3019. bytes[0]:=oper[opidx]^.ref^.offset;
  3020. objdata.writebytes(bytes,1);
  3021. end;
  3022. inc(s);
  3023. end;
  3024. 2,4 :
  3025. begin
  3026. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  3027. currval:=oper[opidx]^.ref^.offset;
  3028. {$ifdef x86_64}
  3029. if oper[opidx]^.ref^.refaddr=addr_pic then
  3030. currabsreloc:=RELOC_GOTPCREL
  3031. else
  3032. if oper[opidx]^.ref^.base=NR_RIP then
  3033. begin
  3034. currabsreloc:=RELOC_RELATIVE;
  3035. { Adjust reloc value by number of bytes following the displacement,
  3036. but not if displacement is specified by literal constant }
  3037. if Assigned(currsym) then
  3038. Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
  3039. end
  3040. else
  3041. {$endif x86_64}
  3042. {$ifdef i386}
  3043. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3044. (tf_pic_uses_got in target_info.flags) then
  3045. currabsreloc:=RELOC_GOT32
  3046. else
  3047. {$endif i386}
  3048. currabsreloc:=RELOC_ABSOLUTE32;
  3049. if (currabsreloc=RELOC_ABSOLUTE32) and
  3050. (Assigned(oper[opidx]^.ref^.relsymbol)) then
  3051. begin
  3052. relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
  3053. if relsym.objsection=objdata.CurrObjSec then
  3054. begin
  3055. currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
  3056. currabsreloc:=RELOC_RELATIVE;
  3057. end
  3058. else
  3059. begin
  3060. currabsreloc:=RELOC_PIC_PAIR;
  3061. currval:=relsym.offset;
  3062. end;
  3063. end;
  3064. objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
  3065. inc(s,ea_data.bytes);
  3066. end;
  3067. end;
  3068. end
  3069. else
  3070. InternalError(777007);
  3071. end;
  3072. end;
  3073. until false;
  3074. end;
  3075. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  3076. begin
  3077. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  3078. (regtype = R_INTREGISTER) and
  3079. (ops=2) and
  3080. (oper[0]^.typ=top_reg) and
  3081. (oper[1]^.typ=top_reg) and
  3082. (oper[0]^.reg=oper[1]^.reg)
  3083. ) or
  3084. (((opcode=A_MOVSS) or (opcode=A_MOVSD) or (opcode=A_MOVQ) or
  3085. (opcode=A_MOVAPS) or (OPCODE=A_MOVAPD) or
  3086. (opcode=A_VMOVSS) or (opcode=A_VMOVSD) or (opcode=A_VMOVQ) or
  3087. (opcode=A_VMOVAPS) or (OPCODE=A_VMOVAPD)) and
  3088. (regtype = R_MMREGISTER) and
  3089. (ops=2) and
  3090. (oper[0]^.typ=top_reg) and
  3091. (oper[1]^.typ=top_reg) and
  3092. (oper[0]^.reg=oper[1]^.reg)
  3093. );
  3094. end;
  3095. procedure build_spilling_operation_type_table;
  3096. var
  3097. opcode : tasmop;
  3098. i : integer;
  3099. begin
  3100. new(operation_type_table);
  3101. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  3102. for opcode:=low(tasmop) to high(tasmop) do
  3103. begin
  3104. for i:=1 to MaxInsChanges do
  3105. begin
  3106. case InsProp[opcode].Ch[i] of
  3107. Ch_Rop1 :
  3108. operation_type_table^[opcode,0]:=operand_read;
  3109. Ch_Wop1 :
  3110. operation_type_table^[opcode,0]:=operand_write;
  3111. Ch_RWop1,
  3112. Ch_Mop1 :
  3113. operation_type_table^[opcode,0]:=operand_readwrite;
  3114. Ch_Rop2 :
  3115. operation_type_table^[opcode,1]:=operand_read;
  3116. Ch_Wop2 :
  3117. operation_type_table^[opcode,1]:=operand_write;
  3118. Ch_RWop2,
  3119. Ch_Mop2 :
  3120. operation_type_table^[opcode,1]:=operand_readwrite;
  3121. Ch_Rop3 :
  3122. operation_type_table^[opcode,2]:=operand_read;
  3123. Ch_Wop3 :
  3124. operation_type_table^[opcode,2]:=operand_write;
  3125. Ch_RWop3,
  3126. Ch_Mop3 :
  3127. operation_type_table^[opcode,2]:=operand_readwrite;
  3128. end;
  3129. end;
  3130. end;
  3131. end;
  3132. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  3133. begin
  3134. { the information in the instruction table is made for the string copy
  3135. operation MOVSD so hack here (FK)
  3136. VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
  3137. so fix it here (FK)
  3138. }
  3139. if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
  3140. begin
  3141. case opnr of
  3142. 0:
  3143. result:=operand_read;
  3144. 1:
  3145. result:=operand_write;
  3146. else
  3147. internalerror(200506055);
  3148. end
  3149. end
  3150. { IMUL has 1, 2 and 3-operand forms }
  3151. else if opcode=A_IMUL then
  3152. begin
  3153. case ops of
  3154. 1:
  3155. if opnr=0 then
  3156. result:=operand_read
  3157. else
  3158. internalerror(2014011802);
  3159. 2:
  3160. begin
  3161. case opnr of
  3162. 0:
  3163. result:=operand_read;
  3164. 1:
  3165. result:=operand_readwrite;
  3166. else
  3167. internalerror(2014011803);
  3168. end;
  3169. end;
  3170. 3:
  3171. begin
  3172. case opnr of
  3173. 0,1:
  3174. result:=operand_read;
  3175. 2:
  3176. result:=operand_write;
  3177. else
  3178. internalerror(2014011804);
  3179. end;
  3180. end;
  3181. else
  3182. internalerror(2014011805);
  3183. end;
  3184. end
  3185. else
  3186. result:=operation_type_table^[opcode,opnr];
  3187. end;
  3188. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  3189. var
  3190. tmpref: treference;
  3191. begin
  3192. tmpref:=ref;
  3193. {$ifdef i8086}
  3194. if tmpref.segment=NR_SS then
  3195. tmpref.segment:=NR_NO;
  3196. {$endif i8086}
  3197. case getregtype(r) of
  3198. R_INTREGISTER :
  3199. begin
  3200. if getsubreg(r)=R_SUBH then
  3201. inc(tmpref.offset);
  3202. { we don't need special code here for 32 bit loads on x86_64, since
  3203. those will automatically zero-extend the upper 32 bits. }
  3204. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
  3205. end;
  3206. R_MMREGISTER :
  3207. if current_settings.fputype in fpu_avx_instructionsets then
  3208. case getsubreg(r) of
  3209. R_SUBMMD:
  3210. result:=taicpu.op_ref_reg(A_VMOVSD,reg2opsize(r),tmpref,r);
  3211. R_SUBMMS:
  3212. result:=taicpu.op_ref_reg(A_VMOVSS,reg2opsize(r),tmpref,r);
  3213. R_SUBQ,
  3214. R_SUBMMWHOLE:
  3215. result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
  3216. else
  3217. internalerror(200506043);
  3218. end
  3219. else
  3220. case getsubreg(r) of
  3221. R_SUBMMD:
  3222. result:=taicpu.op_ref_reg(A_MOVSD,reg2opsize(r),tmpref,r);
  3223. R_SUBMMS:
  3224. result:=taicpu.op_ref_reg(A_MOVSS,reg2opsize(r),tmpref,r);
  3225. R_SUBQ,
  3226. R_SUBMMWHOLE:
  3227. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
  3228. else
  3229. internalerror(200506043);
  3230. end;
  3231. else
  3232. internalerror(200401041);
  3233. end;
  3234. end;
  3235. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  3236. var
  3237. size: topsize;
  3238. tmpref: treference;
  3239. begin
  3240. tmpref:=ref;
  3241. {$ifdef i8086}
  3242. if tmpref.segment=NR_SS then
  3243. tmpref.segment:=NR_NO;
  3244. {$endif i8086}
  3245. case getregtype(r) of
  3246. R_INTREGISTER :
  3247. begin
  3248. if getsubreg(r)=R_SUBH then
  3249. inc(tmpref.offset);
  3250. size:=reg2opsize(r);
  3251. {$ifdef x86_64}
  3252. { even if it's a 32 bit reg, we still have to spill 64 bits
  3253. because we often perform 64 bit operations on them }
  3254. if (size=S_L) then
  3255. begin
  3256. size:=S_Q;
  3257. r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
  3258. end;
  3259. {$endif x86_64}
  3260. result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
  3261. end;
  3262. R_MMREGISTER :
  3263. if current_settings.fputype in fpu_avx_instructionsets then
  3264. case getsubreg(r) of
  3265. R_SUBMMD:
  3266. result:=taicpu.op_reg_ref(A_VMOVSD,reg2opsize(r),r,tmpref);
  3267. R_SUBMMS:
  3268. result:=taicpu.op_reg_ref(A_VMOVSS,reg2opsize(r),r,tmpref);
  3269. R_SUBQ,
  3270. R_SUBMMWHOLE:
  3271. result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
  3272. else
  3273. internalerror(200506042);
  3274. end
  3275. else
  3276. case getsubreg(r) of
  3277. R_SUBMMD:
  3278. result:=taicpu.op_reg_ref(A_MOVSD,reg2opsize(r),r,tmpref);
  3279. R_SUBMMS:
  3280. result:=taicpu.op_reg_ref(A_MOVSS,reg2opsize(r),r,tmpref);
  3281. R_SUBQ,
  3282. R_SUBMMWHOLE:
  3283. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
  3284. else
  3285. internalerror(200506042);
  3286. end;
  3287. else
  3288. internalerror(200401041);
  3289. end;
  3290. end;
  3291. {*****************************************************************************
  3292. Instruction table
  3293. *****************************************************************************}
  3294. procedure BuildInsTabCache;
  3295. var
  3296. i : longint;
  3297. begin
  3298. new(instabcache);
  3299. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  3300. i:=0;
  3301. while (i<InsTabEntries) do
  3302. begin
  3303. if InsTabCache^[InsTab[i].OPcode]=-1 then
  3304. InsTabCache^[InsTab[i].OPcode]:=i;
  3305. inc(i);
  3306. end;
  3307. end;
  3308. procedure BuildInsTabMemRefSizeInfoCache;
  3309. var
  3310. AsmOp: TasmOp;
  3311. i,j: longint;
  3312. insentry : PInsEntry;
  3313. MRefInfo: TMemRefSizeInfo;
  3314. SConstInfo: TConstSizeInfo;
  3315. actRegSize: int64;
  3316. actMemSize: int64;
  3317. actConstSize: int64;
  3318. actRegCount: integer;
  3319. actMemCount: integer;
  3320. actConstCount: integer;
  3321. actRegTypes : int64;
  3322. actRegMemTypes: int64;
  3323. NewRegSize: int64;
  3324. actVMemCount : integer;
  3325. actVMemTypes : int64;
  3326. RegMMXSizeMask: int64;
  3327. RegXMMSizeMask: int64;
  3328. RegYMMSizeMask: int64;
  3329. bitcount: integer;
  3330. function bitcnt(aValue: int64): integer;
  3331. var
  3332. i: integer;
  3333. begin
  3334. result := 0;
  3335. for i := 0 to 63 do
  3336. begin
  3337. if (aValue mod 2) = 1 then
  3338. begin
  3339. inc(result);
  3340. end;
  3341. aValue := aValue shr 1;
  3342. end;
  3343. end;
  3344. begin
  3345. new(InsTabMemRefSizeInfoCache);
  3346. FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
  3347. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3348. begin
  3349. i := InsTabCache^[AsmOp];
  3350. if i >= 0 then
  3351. begin
  3352. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3353. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3354. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
  3355. insentry:=@instab[i];
  3356. RegMMXSizeMask := 0;
  3357. RegXMMSizeMask := 0;
  3358. RegYMMSizeMask := 0;
  3359. while (insentry^.opcode=AsmOp) do
  3360. begin
  3361. MRefInfo := msiUnkown;
  3362. actRegSize := 0;
  3363. actRegCount := 0;
  3364. actRegTypes := 0;
  3365. NewRegSize := 0;
  3366. actMemSize := 0;
  3367. actMemCount := 0;
  3368. actRegMemTypes := 0;
  3369. actVMemCount := 0;
  3370. actVMemTypes := 0;
  3371. actConstSize := 0;
  3372. actConstCount := 0;
  3373. for j := 0 to insentry^.ops -1 do
  3374. begin
  3375. if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
  3376. ((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
  3377. ((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
  3378. ((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) then
  3379. begin
  3380. inc(actVMemCount);
  3381. case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64) of
  3382. OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
  3383. OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
  3384. OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
  3385. OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
  3386. else InternalError(777206);
  3387. end;
  3388. end
  3389. else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
  3390. begin
  3391. inc(actRegCount);
  3392. NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
  3393. if NewRegSize = 0 then
  3394. begin
  3395. case insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG) of
  3396. OT_MMXREG: begin
  3397. NewRegSize := OT_BITS64;
  3398. end;
  3399. OT_XMMREG: begin
  3400. NewRegSize := OT_BITS128;
  3401. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3402. end;
  3403. OT_YMMREG: begin
  3404. NewRegSize := OT_BITS256;
  3405. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3406. end;
  3407. else NewRegSize := not(0);
  3408. end;
  3409. end;
  3410. actRegSize := actRegSize or NewRegSize;
  3411. actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG));
  3412. end
  3413. else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
  3414. begin
  3415. inc(actMemCount);
  3416. actMemSize:=actMemSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3417. if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
  3418. begin
  3419. actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
  3420. end;
  3421. end
  3422. else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
  3423. begin
  3424. inc(actConstCount);
  3425. actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3426. end
  3427. end;
  3428. if actConstCount > 0 then
  3429. begin
  3430. case actConstSize of
  3431. 0: SConstInfo := csiNoSize;
  3432. OT_BITS8: SConstInfo := csiMem8;
  3433. OT_BITS16: SConstInfo := csiMem16;
  3434. OT_BITS32: SConstInfo := csiMem32;
  3435. OT_BITS64: SConstInfo := csiMem64;
  3436. else SConstInfo := csiMultiple;
  3437. end;
  3438. if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnkown then
  3439. begin
  3440. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
  3441. end
  3442. else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
  3443. begin
  3444. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
  3445. end;
  3446. end;
  3447. if actVMemCount > 0 then
  3448. begin
  3449. if actVMemCount = 1 then
  3450. begin
  3451. if actVMemTypes > 0 then
  3452. begin
  3453. case actVMemTypes of
  3454. OT_XMEM32: MRefInfo := msiXMem32;
  3455. OT_XMEM64: MRefInfo := msiXMem64;
  3456. OT_YMEM32: MRefInfo := msiYMem32;
  3457. OT_YMEM64: MRefInfo := msiYMem64;
  3458. else InternalError(777208);
  3459. end;
  3460. case actRegTypes of
  3461. OT_XMMREG: case MRefInfo of
  3462. msiXMem32,
  3463. msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
  3464. msiYMem32,
  3465. msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
  3466. else InternalError(777210);
  3467. end;
  3468. OT_YMMREG: case MRefInfo of
  3469. msiXMem32,
  3470. msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
  3471. msiYMem32,
  3472. msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
  3473. else InternalError(777211);
  3474. end;
  3475. //else InternalError(777209);
  3476. end;
  3477. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3478. begin
  3479. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3480. end
  3481. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3482. begin
  3483. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64] then
  3484. begin
  3485. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
  3486. end
  3487. else InternalError(777212);
  3488. end;
  3489. end;
  3490. end
  3491. else InternalError(777207);
  3492. end
  3493. else
  3494. case actMemCount of
  3495. 0: ; // nothing todo
  3496. 1: begin
  3497. MRefInfo := msiUnkown;
  3498. case actRegMemTypes and (OT_MMXRM OR OT_XMMRM OR OT_YMMRM) of
  3499. OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
  3500. OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
  3501. OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
  3502. end;
  3503. case actMemSize of
  3504. 0: MRefInfo := msiNoSize;
  3505. OT_BITS8: MRefInfo := msiMem8;
  3506. OT_BITS16: MRefInfo := msiMem16;
  3507. OT_BITS32: MRefInfo := msiMem32;
  3508. OT_BITS64: MRefInfo := msiMem64;
  3509. OT_BITS128: MRefInfo := msiMem128;
  3510. OT_BITS256: MRefInfo := msiMem256;
  3511. OT_BITS80,
  3512. OT_FAR,
  3513. OT_NEAR,
  3514. OT_SHORT: ; // ignore
  3515. else
  3516. begin
  3517. bitcount := bitcnt(actMemSize);
  3518. if bitcount > 1 then MRefInfo := msiMultiple
  3519. else InternalError(777203);
  3520. end;
  3521. end;
  3522. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3523. begin
  3524. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3525. end
  3526. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3527. begin
  3528. with InsTabMemRefSizeInfoCache^[AsmOp] do
  3529. begin
  3530. if ((MemRefSize = msiMem8) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultiple8
  3531. else if ((MemRefSize = msiMem16) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultiple16
  3532. else if ((MemRefSize = msiMem32) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultiple32
  3533. else if ((MemRefSize = msiMem64) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultiple64
  3534. else if ((MemRefSize = msiMem128) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultiple128
  3535. else if ((MemRefSize = msiMem256) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultiple256
  3536. else MemRefSize := msiMultiple;
  3537. end;
  3538. end;
  3539. if actRegCount > 0 then
  3540. begin
  3541. case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG) of
  3542. OT_MMXREG: RegMMXSizeMask := RegMMXSizeMask or actMemSize;
  3543. OT_XMMREG: RegXMMSizeMask := RegXMMSizeMask or actMemSize;
  3544. OT_YMMREG: RegYMMSizeMask := RegYMMSizeMask or actMemSize;
  3545. else begin
  3546. RegMMXSizeMask := not(0);
  3547. RegXMMSizeMask := not(0);
  3548. RegYMMSizeMask := not(0);
  3549. end;
  3550. end;
  3551. end;
  3552. end;
  3553. else InternalError(777202);
  3554. end;
  3555. inc(insentry);
  3556. end;
  3557. if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
  3558. (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
  3559. begin
  3560. case RegXMMSizeMask of
  3561. OT_BITS16: case RegYMMSizeMask of
  3562. OT_BITS32: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
  3563. end;
  3564. OT_BITS32: case RegYMMSizeMask of
  3565. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
  3566. end;
  3567. OT_BITS64: case RegYMMSizeMask of
  3568. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3569. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
  3570. end;
  3571. OT_BITS128: begin
  3572. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
  3573. begin
  3574. // vector-memory-operand AVX2 (e.g. VGATHER..)
  3575. case RegYMMSizeMask of
  3576. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
  3577. end;
  3578. end
  3579. else if RegMMXSizeMask = 0 then
  3580. begin
  3581. case RegYMMSizeMask of
  3582. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3583. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3584. end;
  3585. end
  3586. else if RegYMMSizeMask = 0 then
  3587. begin
  3588. case RegMMXSizeMask of
  3589. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3590. end;
  3591. end
  3592. else InternalError(777205);
  3593. end;
  3594. end;
  3595. end;
  3596. end;
  3597. end;
  3598. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3599. begin
  3600. // only supported intructiones with SSE- or AVX-operands
  3601. if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
  3602. begin
  3603. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3604. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3605. end;
  3606. end;
  3607. end;
  3608. procedure InitAsm;
  3609. begin
  3610. build_spilling_operation_type_table;
  3611. if not assigned(instabcache) then
  3612. BuildInsTabCache;
  3613. if not assigned(InsTabMemRefSizeInfoCache) then
  3614. BuildInsTabMemRefSizeInfoCache;
  3615. end;
  3616. procedure DoneAsm;
  3617. begin
  3618. if assigned(operation_type_table) then
  3619. begin
  3620. dispose(operation_type_table);
  3621. operation_type_table:=nil;
  3622. end;
  3623. if assigned(instabcache) then
  3624. begin
  3625. dispose(instabcache);
  3626. instabcache:=nil;
  3627. end;
  3628. if assigned(InsTabMemRefSizeInfoCache) then
  3629. begin
  3630. dispose(InsTabMemRefSizeInfoCache);
  3631. InsTabMemRefSizeInfoCache:=nil;
  3632. end;
  3633. end;
  3634. begin
  3635. cai_align:=tai_align;
  3636. cai_cpu:=taicpu;
  3637. end.