rgx86.pas 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl
  3. This unit implements the x86 specific class for the register
  4. allocator
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; if not, write to the Free Software
  15. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  16. ****************************************************************************
  17. }
  18. unit rgx86;
  19. {$i fpcdefs.inc}
  20. interface
  21. uses
  22. cclasses,globtype,
  23. cpubase,cpuinfo,cgbase,cgutils,
  24. aasmbase,aasmtai,aasmdata,aasmcpu,
  25. rgobj;
  26. type
  27. trgx86 = class(trgobj)
  28. function get_spill_subreg(r : tregister) : tsubregister;override;
  29. function do_spill_replace(list:TAsmList;instr:taicpu;orgreg:tsuperregister;const spilltemp:treference):boolean;override;
  30. end;
  31. tpushedsavedloc = record
  32. case byte of
  33. 0: (pushed: boolean);
  34. 1: (ofs: longint);
  35. end;
  36. tpushedsavedfpu = array[tsuperregister] of tpushedsavedloc;
  37. trgx86fpu = class
  38. { The "usableregsxxx" contain all registers of type "xxx" that }
  39. { aren't currently allocated to a regvar. The "unusedregsxxx" }
  40. { contain all registers of type "xxx" that aren't currently }
  41. { allocated }
  42. unusedregsfpu,usableregsfpu : Tsuperregisterset;
  43. { these counters contain the number of elements in the }
  44. { unusedregsxxx/usableregsxxx sets }
  45. countunusedregsfpu : byte;
  46. { Contains the registers which are really used by the proc itself.
  47. It doesn't take care of registers used by called procedures
  48. }
  49. used_in_proc : tcpuregisterset;
  50. {reg_pushes_other : regvarother_longintarray;
  51. is_reg_var_other : regvarother_booleanarray;
  52. regvar_loaded_other : regvarother_booleanarray;}
  53. fpuvaroffset : byte;
  54. constructor create;
  55. function getregisterfpu(list: TAsmList) : tregister;
  56. procedure ungetregisterfpu(list: TAsmList; r : tregister);
  57. { pushes and restores registers }
  58. procedure saveusedfpuregisters(list:TAsmList;
  59. var saved:Tpushedsavedfpu;
  60. const s:Tcpuregisterset);
  61. procedure restoreusedfpuregisters(list:TAsmList;
  62. const saved:Tpushedsavedfpu);
  63. { corrects the fpu stack register by ofs }
  64. function correct_fpuregister(r : tregister;ofs : byte) : tregister;
  65. end;
  66. implementation
  67. uses
  68. systems,
  69. verbose;
  70. const
  71. { This value is used in tsaved. If the array value is equal
  72. to this, then this means that this register is not used.}
  73. reg_not_saved = $7fffffff;
  74. {******************************************************************************
  75. Trgcpu
  76. ******************************************************************************}
  77. function trgx86.get_spill_subreg(r : tregister) : tsubregister;
  78. begin
  79. result:=getsubreg(r);
  80. end;
  81. function trgx86.do_spill_replace(list:TAsmList;instr:taicpu;orgreg:tsuperregister;const spilltemp:treference):boolean;
  82. {Decide wether a "replace" spill is possible, i.e. wether we can replace a register
  83. in an instruction by a memory reference. For example, in "mov ireg26d,0", the imaginary
  84. register ireg26d can be replaced by a memory reference.}
  85. var
  86. n,replaceoper : longint;
  87. is_subh: Boolean;
  88. begin
  89. result:=false;
  90. with instr do
  91. begin
  92. replaceoper:=-1;
  93. case ops of
  94. 1 :
  95. begin
  96. if (oper[0]^.typ=top_reg) and
  97. (getregtype(oper[0]^.reg)=regtype) then
  98. begin
  99. if get_alias(getsupreg(oper[0]^.reg))<>orgreg then
  100. internalerror(200410101);
  101. replaceoper:=0;
  102. end;
  103. end;
  104. 2,3 :
  105. begin
  106. { We can handle opcodes with 2 and 3 operands the same way. The opcodes
  107. with 3 registers are shrd/shld, where the 3rd operand is const or CL,
  108. that doesn't need spilling.
  109. However, due to AT&T order inside the compiler, the 3rd operand is
  110. numbered 0, so look at operand no. 1 and 2 if we have 3 operands by
  111. adding a "n". }
  112. n:=0;
  113. if ops=3 then
  114. n:=1;
  115. if (oper[n+0]^.typ=top_reg) and
  116. (oper[n+1]^.typ=top_reg) and
  117. ((getregtype(oper[n+0]^.reg)<>regtype) or
  118. (getregtype(oper[n+1]^.reg)<>regtype) or
  119. (get_alias(getsupreg(oper[n+0]^.reg))<>get_alias(getsupreg(oper[n+1]^.reg)))) then
  120. begin
  121. if (getregtype(oper[n+0]^.reg)=regtype) and
  122. (get_alias(getsupreg(oper[n+0]^.reg))=orgreg) then
  123. replaceoper:=0+n
  124. else if (getregtype(oper[n+1]^.reg)=regtype) and
  125. (get_alias(getsupreg(oper[n+1]^.reg))=orgreg) then
  126. replaceoper:=1+n;
  127. end
  128. else if (oper[n+0]^.typ=top_reg) and
  129. (oper[n+1]^.typ=top_const) then
  130. begin
  131. if (getregtype(oper[0+n]^.reg)=regtype) and
  132. (get_alias(getsupreg(oper[0+n]^.reg))=orgreg) then
  133. replaceoper:=0+n
  134. else
  135. internalerror(200704282);
  136. end
  137. else if (oper[n+0]^.typ=top_const) and
  138. (oper[n+1]^.typ=top_reg) then
  139. begin
  140. if (getregtype(oper[1+n]^.reg)=regtype) and
  141. (get_alias(getsupreg(oper[1+n]^.reg))=orgreg) then
  142. replaceoper:=1+n
  143. else
  144. internalerror(200704283);
  145. end;
  146. case replaceoper of
  147. 0 :
  148. begin
  149. { Some instructions don't allow memory references
  150. for source }
  151. case instr.opcode of
  152. A_BT,
  153. A_BTS,
  154. A_BTC,
  155. A_BTR,
  156. { shufp* would require 16 byte alignment for memory locations so we force the source
  157. operand into a register }
  158. A_SHUFPD,
  159. A_SHUFPS :
  160. replaceoper:=-1;
  161. end;
  162. end;
  163. 1 :
  164. begin
  165. { Some instructions don't allow memory references
  166. for destination }
  167. case instr.opcode of
  168. A_CMOVcc,
  169. A_MOVZX,
  170. A_MOVSX,
  171. A_MOVSXD,
  172. A_MULSS,
  173. A_MULSD,
  174. A_SUBSS,
  175. A_SUBSD,
  176. A_ADDSD,
  177. A_ADDSS,
  178. A_DIVSD,
  179. A_DIVSS,
  180. A_SHLD,
  181. A_SHRD,
  182. A_COMISD,
  183. A_COMISS,
  184. A_CVTDQ2PD,
  185. A_CVTDQ2PS,
  186. A_CVTPD2DQ,
  187. A_CVTPD2PI,
  188. A_CVTPD2PS,
  189. A_CVTPI2PD,
  190. A_CVTPS2DQ,
  191. A_CVTPS2PD,
  192. A_CVTSD2SI,
  193. A_CVTSD2SS,
  194. A_CVTSI2SD,
  195. A_CVTSS2SD,
  196. A_CVTTPD2PI,
  197. A_CVTTPD2DQ,
  198. A_CVTTPS2DQ,
  199. A_CVTTSD2SI,
  200. A_CVTPI2PS,
  201. A_CVTPS2PI,
  202. A_CVTSI2SS,
  203. A_CVTSS2SI,
  204. A_CVTTPS2PI,
  205. A_CVTTSS2SI,
  206. A_IMUL,
  207. A_XORPD,
  208. A_XORPS,
  209. A_ORPD,
  210. A_ORPS,
  211. A_ANDPD,
  212. A_ANDPS,
  213. A_UNPCKLPS,
  214. A_UNPCKHPS,
  215. A_SHUFPD,
  216. A_SHUFPS:
  217. replaceoper:=-1;
  218. {$ifdef x86_64}
  219. A_MOV:
  220. { 64 bit constants can only be moved into registers }
  221. if (oper[0]^.typ=top_const) and
  222. (oper[1]^.typ=top_reg) and
  223. ((oper[0]^.val<low(longint)) or
  224. (oper[0]^.val>high(longint))) then
  225. replaceoper:=-1;
  226. {$endif x86_64}
  227. end;
  228. end;
  229. end;
  230. end;
  231. end;
  232. {$ifdef x86_64}
  233. { 32 bit operations on 32 bit registers on x86_64 can result in
  234. zeroing the upper 32 bits of the register. This does not happen
  235. with memory operations, so we have to perform these calculations
  236. in registers. }
  237. if (instr.opsize=S_L) then
  238. replaceoper:=-1;
  239. {$endif x86_64}
  240. { Replace register with spill reference }
  241. if replaceoper<>-1 then
  242. begin
  243. is_subh:=getsubreg(oper[replaceoper]^.reg)=R_SUBH;
  244. oper[replaceoper]^.typ:=top_ref;
  245. new(oper[replaceoper]^.ref);
  246. oper[replaceoper]^.ref^:=spilltemp;
  247. if is_subh then
  248. inc(oper[replaceoper]^.ref^.offset);
  249. { memory locations aren't guaranteed to be aligned }
  250. case opcode of
  251. A_MOVAPS:
  252. opcode:=A_MOVSS;
  253. A_MOVAPD:
  254. opcode:=A_MOVSD;
  255. end;
  256. result:=true;
  257. end;
  258. end;
  259. end;
  260. {******************************************************************************
  261. Trgx86fpu
  262. ******************************************************************************}
  263. constructor Trgx86fpu.create;
  264. begin
  265. used_in_proc:=[];
  266. unusedregsfpu:=usableregsfpu;
  267. end;
  268. function trgx86fpu.getregisterfpu(list: TAsmList) : tregister;
  269. begin
  270. { note: don't return R_ST0, see comments above implementation of }
  271. { a_loadfpu_* methods in cgcpu (JM) }
  272. result:=NR_ST;
  273. end;
  274. procedure trgx86fpu.ungetregisterfpu(list : TAsmList; r : tregister);
  275. begin
  276. { nothing to do, fpu stack management is handled by the load/ }
  277. { store operations in cgcpu (JM) }
  278. end;
  279. function trgx86fpu.correct_fpuregister(r : tregister;ofs : byte) : tregister;
  280. begin
  281. correct_fpuregister:=r;
  282. setsupreg(correct_fpuregister,ofs);
  283. end;
  284. procedure trgx86fpu.saveusedfpuregisters(list: TAsmList;
  285. var saved : tpushedsavedfpu;
  286. const s: tcpuregisterset);
  287. { var
  288. r : tregister;
  289. hr : treference; }
  290. begin
  291. used_in_proc:=used_in_proc+s;
  292. { TODO: firstsavefpureg}
  293. (*
  294. { don't try to save the fpu registers if not desired (e.g. for }
  295. { the 80x86) }
  296. if firstsavefpureg <> R_NO then
  297. for r.enum:=firstsavefpureg to lastsavefpureg do
  298. begin
  299. saved[r.enum].ofs:=reg_not_saved;
  300. { if the register is used by the calling subroutine and if }
  301. { it's not a regvar (those are handled separately) }
  302. if not is_reg_var_other[r.enum] and
  303. (r.enum in s) and
  304. { and is present in use }
  305. not(r.enum in unusedregsfpu) then
  306. begin
  307. { then save it }
  308. tg.GetTemp(list,extended_size,tt_persistent,hr);
  309. saved[r.enum].ofs:=hr.offset;
  310. cg.a_loadfpu_reg_ref(list,OS_FLOAT,OS_FLOAT,r,hr);
  311. cg.a_reg_dealloc(list,r);
  312. include(unusedregsfpu,r.enum);
  313. inc(countunusedregsfpu);
  314. end;
  315. end;
  316. *)
  317. end;
  318. procedure trgx86fpu.restoreusedfpuregisters(list : TAsmList;
  319. const saved : tpushedsavedfpu);
  320. {
  321. var
  322. r,r2 : tregister;
  323. hr : treference;
  324. }
  325. begin
  326. { TODO: firstsavefpureg}
  327. (*
  328. if firstsavefpureg <> R_NO then
  329. for r.enum:=lastsavefpureg downto firstsavefpureg do
  330. begin
  331. if saved[r.enum].ofs <> reg_not_saved then
  332. begin
  333. r2.enum:=R_INTREGISTER;
  334. r2.number:=NR_FRAME_POINTER_REG;
  335. reference_reset_base(hr,r2,saved[r.enum].ofs);
  336. cg.a_reg_alloc(list,r);
  337. cg.a_loadfpu_ref_reg(list,OS_FLOAT,OS_FLOAT,hr,r);
  338. if not (r.enum in unusedregsfpu) then
  339. { internalerror(10)
  340. in n386cal we always save/restore the reg *state*
  341. using save/restoreunusedstate -> the current state
  342. may not be real (JM) }
  343. else
  344. begin
  345. dec(countunusedregsfpu);
  346. exclude(unusedregsfpu,r.enum);
  347. end;
  348. tg.UnGetTemp(list,hr);
  349. end;
  350. end;
  351. *)
  352. end;
  353. (*
  354. procedure Trgx86fpu.saveotherregvars(list: TAsmList; const s: totherregisterset);
  355. var
  356. r: Tregister;
  357. begin
  358. if not(cs_opt_regvar in current_settings.optimizerswitches) then
  359. exit;
  360. if firstsavefpureg <> NR_NO then
  361. for r.enum := firstsavefpureg to lastsavefpureg do
  362. if is_reg_var_other[r.enum] and
  363. (r.enum in s) then
  364. store_regvar(list,r);
  365. end;
  366. *)
  367. end.