2
0

cpubase.pas 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the i8086, i386 and x86-64 architecture
  4. * This code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. {# Base unit for processor information. This unit contains
  21. enumerations of registers, opcodes, sizes, and other
  22. such things which are processor specific.
  23. }
  24. unit cpubase;
  25. {$i fpcdefs.inc}
  26. interface
  27. uses
  28. globals,
  29. cgbase
  30. ;
  31. {*****************************************************************************
  32. Assembler Opcodes
  33. *****************************************************************************}
  34. type
  35. {$if defined(x86_64)}
  36. TAsmOp={$i x8664op.inc}
  37. {$elseif defined(i386)}
  38. TAsmOp={$i i386op.inc}
  39. {$elseif defined(i8086)}
  40. TAsmOp={$i i8086op.inc}
  41. {$endif}
  42. { This should define the array of instructions as string }
  43. op2strtable=array[tasmop] of string[16];
  44. {$ifdef i8086}
  45. ImmInt = SmallInt;
  46. {$else i8086}
  47. ImmInt = Longint;
  48. {$endif i8086}
  49. const
  50. { First value of opcode enumeration }
  51. firstop = low(tasmop);
  52. { Last value of opcode enumeration }
  53. lastop = high(tasmop);
  54. {*****************************************************************************
  55. Registers
  56. *****************************************************************************}
  57. const
  58. { Integer Super registers }
  59. RS_NO = $ffffffff;
  60. RS_RAX = $00; {EAX}
  61. RS_RCX = $01; {ECX}
  62. RS_RDX = $02; {EDX}
  63. RS_RBX = $03; {EBX}
  64. RS_RSI = $04; {ESI}
  65. RS_RDI = $05; {EDI}
  66. RS_RBP = $06; {EBP}
  67. RS_RSP = $07; {ESP}
  68. RS_R8 = $08; {R8}
  69. RS_R9 = $09; {R9}
  70. RS_R10 = $0a; {R10}
  71. RS_R11 = $0b; {R11}
  72. RS_R12 = $0c; {R12}
  73. RS_R13 = $0d; {R13}
  74. RS_R14 = $0e; {R14}
  75. RS_R15 = $0f; {R15}
  76. { create aliases to allow code sharing between x86-64 and i386 }
  77. RS_EAX = RS_RAX;
  78. RS_EBX = RS_RBX;
  79. RS_ECX = RS_RCX;
  80. RS_EDX = RS_RDX;
  81. RS_ESI = RS_RSI;
  82. RS_EDI = RS_RDI;
  83. RS_EBP = RS_RBP;
  84. RS_ESP = RS_RSP;
  85. { create aliases to allow code sharing between i386 and i8086 }
  86. RS_AX = RS_RAX;
  87. RS_BX = RS_RBX;
  88. RS_CX = RS_RCX;
  89. RS_DX = RS_RDX;
  90. RS_SI = RS_RSI;
  91. RS_DI = RS_RDI;
  92. RS_BP = RS_RBP;
  93. RS_SP = RS_RSP;
  94. { Number of first imaginary register }
  95. first_int_imreg = $10;
  96. { Float Super registers }
  97. RS_ST0 = $00;
  98. RS_ST1 = $01;
  99. RS_ST2 = $02;
  100. RS_ST3 = $03;
  101. RS_ST4 = $04;
  102. RS_ST5 = $05;
  103. RS_ST6 = $06;
  104. RS_ST7 = $07;
  105. RS_ST = $08;
  106. { Number of first imaginary register }
  107. first_fpu_imreg = $09;
  108. { MM Super registers }
  109. RS_XMM0 = $00;
  110. RS_XMM1 = $01;
  111. RS_XMM2 = $02;
  112. RS_XMM3 = $03;
  113. RS_XMM4 = $04;
  114. RS_XMM5 = $05;
  115. RS_XMM6 = $06;
  116. RS_XMM7 = $07;
  117. RS_XMM8 = $08;
  118. RS_XMM9 = $09;
  119. RS_XMM10 = $0a;
  120. RS_XMM11 = $0b;
  121. RS_XMM12 = $0c;
  122. RS_XMM13 = $0d;
  123. RS_XMM14 = $0e;
  124. RS_XMM15 = $0f;
  125. RS_XMM16 = $10;
  126. RS_XMM17 = $11;
  127. RS_XMM18 = $12;
  128. RS_XMM19 = $13;
  129. RS_XMM20 = $14;
  130. RS_XMM21 = $15;
  131. RS_XMM22 = $16;
  132. RS_XMM23 = $17;
  133. RS_XMM24 = $18;
  134. RS_XMM25 = $19;
  135. RS_XMM26 = $1a;
  136. RS_XMM27 = $1b;
  137. RS_XMM28 = $1c;
  138. RS_XMM29 = $1d;
  139. RS_XMM30 = $1e;
  140. RS_XMM31 = $1f;
  141. {$if defined(x86_64)}
  142. RS_RFLAGS = $06;
  143. {$elseif defined(i386)}
  144. RS_EFLAGS = $06;
  145. {$elseif defined(i8086)}
  146. RS_FLAGS = $06;
  147. {$endif}
  148. { Number of first imaginary register }
  149. {$ifdef x86_64}
  150. first_mm_imreg = $20;
  151. {$else x86_64}
  152. first_mm_imreg = $08;
  153. {$endif x86_64}
  154. { The subregister that specifies the entire register and an address }
  155. {$if defined(x86_64)}
  156. { Hammer }
  157. R_SUBWHOLE = R_SUBQ;
  158. R_SUBADDR = R_SUBQ;
  159. {$elseif defined(i386)}
  160. { i386 }
  161. R_SUBWHOLE = R_SUBD;
  162. R_SUBADDR = R_SUBD;
  163. {$elseif defined(i8086)}
  164. { i8086 }
  165. R_SUBWHOLE = R_SUBW;
  166. R_SUBADDR = R_SUBW;
  167. {$endif}
  168. { Available Registers }
  169. {$if defined(x86_64)}
  170. {$i r8664con.inc}
  171. {$elseif defined(i386)}
  172. {$i r386con.inc}
  173. {$elseif defined(i8086)}
  174. {$i r8086con.inc}
  175. {$endif}
  176. type
  177. { Number of registers used for indexing in tables }
  178. {$if defined(x86_64)}
  179. tregisterindex=0..{$i r8664nor.inc}-1;
  180. {$elseif defined(i386)}
  181. tregisterindex=0..{$i r386nor.inc}-1;
  182. {$elseif defined(i8086)}
  183. tregisterindex=0..{$i r8086nor.inc}-1;
  184. {$endif}
  185. const
  186. regnumber_table : array[tregisterindex] of tregister = (
  187. {$if defined(x86_64)}
  188. {$i r8664num.inc}
  189. {$elseif defined(i386)}
  190. {$i r386num.inc}
  191. {$elseif defined(i8086)}
  192. {$i r8086num.inc}
  193. {$endif}
  194. );
  195. regstabs_table : array[tregisterindex] of shortint = (
  196. {$if defined(x86_64)}
  197. {$i r8664stab.inc}
  198. {$elseif defined(i386)}
  199. {$i r386stab.inc}
  200. {$elseif defined(i8086)}
  201. {$i r8086stab.inc}
  202. {$endif}
  203. );
  204. regdwarf_table : array[tregisterindex] of shortint = (
  205. {$if defined(x86_64)}
  206. {$i r8664dwrf.inc}
  207. {$elseif defined(i386)}
  208. {$i r386dwrf.inc}
  209. {$elseif defined(i8086)}
  210. {$i r8086dwrf.inc}
  211. {$endif}
  212. );
  213. {$if defined(x86_64)}
  214. RS_DEFAULTFLAGS = RS_RFLAGS;
  215. NR_DEFAULTFLAGS = NR_RFLAGS;
  216. {$elseif defined(i386)}
  217. RS_DEFAULTFLAGS = RS_EFLAGS;
  218. NR_DEFAULTFLAGS = NR_EFLAGS;
  219. {$elseif defined(i8086)}
  220. RS_DEFAULTFLAGS = RS_FLAGS;
  221. NR_DEFAULTFLAGS = NR_FLAGS;
  222. {$endif}
  223. {*****************************************************************************
  224. Conditions
  225. *****************************************************************************}
  226. type
  227. TAsmCond=(C_None,
  228. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  229. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  230. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  231. );
  232. const
  233. cond2str:array[TAsmCond] of string[3]=('',
  234. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  235. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  236. 'ns','nz','o','p','pe','po','s','z'
  237. );
  238. {*****************************************************************************
  239. Flags
  240. *****************************************************************************}
  241. type
  242. TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
  243. F_A,F_AE,F_B,F_BE,
  244. F_S,F_NS,F_O,F_NO,
  245. { For IEEE-compliant floating-point compares,
  246. same as normal counterparts but additionally check PF }
  247. F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
  248. const
  249. FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
  250. FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
  251. F_E,F_NE,F_A,F_AE,F_B,F_BE
  252. );
  253. {*****************************************************************************
  254. Constants
  255. *****************************************************************************}
  256. const
  257. { declare aliases }
  258. LOC_SSEREGISTER = LOC_MMREGISTER;
  259. LOC_CSSEREGISTER = LOC_CMMREGISTER;
  260. max_operands = 4;
  261. maxfpuregs = 8;
  262. {*****************************************************************************
  263. CPU Dependent Constants
  264. *****************************************************************************}
  265. {$i cpubase.inc}
  266. const
  267. {$ifdef x86_64}
  268. topsize2memsize: array[topsize] of integer =
  269. (0, 8,16,32,64,8,8,16,8,16,32,
  270. 16,32,64,
  271. 16,32,64,0,0,
  272. 64,
  273. 0,0,0,
  274. 80,
  275. 128,
  276. 256,
  277. 512
  278. );
  279. {$else}
  280. topsize2memsize: array[topsize] of integer =
  281. (0, 8,16,32,64,8,8,16,
  282. 16,32,64,
  283. 16,32,64,0,0,
  284. 64,
  285. 0,0,0,
  286. 80,
  287. 128,
  288. 256,
  289. 512
  290. );
  291. {$endif}
  292. {*****************************************************************************
  293. Helpers
  294. *****************************************************************************}
  295. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  296. function reg2opsize(r:Tregister):topsize;
  297. function reg_cgsize(const reg: tregister): tcgsize;
  298. function is_calljmp(o:tasmop):boolean;
  299. function is_calljmpuncondret(o:tasmop):boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  300. procedure inverse_flags(var f: TResFlags);
  301. function flags_to_cond(const f: TResFlags) : TAsmCond;
  302. function is_segment_reg(r:tregister):boolean;
  303. function findreg_by_number(r:Tregister):tregisterindex;
  304. function std_regnum_search(const s:string):Tregister;
  305. function std_regname(r:Tregister):string;
  306. function dwarf_reg(r:tregister):shortint;
  307. function dwarf_reg_no_error(r:tregister):shortint;
  308. function eh_return_data_regno(nr: longint): longint;
  309. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  310. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  311. { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
  312. function condition_in(const Subset, c: TAsmCond): Boolean;
  313. { checks whether two segment registers are normally equal in the current memory model }
  314. function segment_regs_equal(r1,r2:tregister):boolean;
  315. { checks whether the specified op is an x86 string instruction (e.g. cmpsb, movsd, scasw, etc.) }
  316. function is_x86_string_op(op: TAsmOp): boolean;
  317. { checks whether the specified op is an x86 parameterless string instruction
  318. (e.g. returns true for movsb, cmpsw, etc, but returns false for movs, cmps, etc.) }
  319. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  320. { checks whether the specified op is an x86 parameterized string instruction
  321. (e.g. returns true for movs, cmps, etc, but returns false for movsb, cmpsb, etc.) }
  322. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  323. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  324. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  325. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  326. { returns the 0-based operand number (intel syntax) of the ds:[si] param of
  327. a x86 string instruction }
  328. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  329. { returns the 0-based operand number (intel syntax) of the es:[di] param of
  330. a x86 string instruction }
  331. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  332. {$ifdef i8086}
  333. { return whether we need to add an extra FWAIT instruction before the given
  334. instruction, when we're targeting the i8087. This includes almost all x87
  335. instructions, but certain ones, which always have or have not a built in
  336. FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
  337. function requires_fwait_on_8087(op: TAsmOp): boolean;
  338. {$endif i8086}
  339. function UseAVX: boolean;
  340. function UseAVX512: boolean;
  341. implementation
  342. uses
  343. globtype,
  344. rgbase,verbose,
  345. cpuinfo;
  346. const
  347. {$if defined(x86_64)}
  348. std_regname_table : TRegNameTable = (
  349. {$i r8664std.inc}
  350. );
  351. regnumber_index : array[tregisterindex] of tregisterindex = (
  352. {$i r8664rni.inc}
  353. );
  354. std_regname_index : array[tregisterindex] of tregisterindex = (
  355. {$i r8664sri.inc}
  356. );
  357. {$elseif defined(i386)}
  358. std_regname_table : TRegNameTable = (
  359. {$i r386std.inc}
  360. );
  361. regnumber_index : array[tregisterindex] of tregisterindex = (
  362. {$i r386rni.inc}
  363. );
  364. std_regname_index : array[tregisterindex] of tregisterindex = (
  365. {$i r386sri.inc}
  366. );
  367. {$elseif defined(i8086)}
  368. std_regname_table : TRegNameTable = (
  369. {$i r8086std.inc}
  370. );
  371. regnumber_index : array[tregisterindex] of tregisterindex = (
  372. {$i r8086rni.inc}
  373. );
  374. std_regname_index : array[tregisterindex] of tregisterindex = (
  375. {$i r8086sri.inc}
  376. );
  377. {$endif}
  378. {*****************************************************************************
  379. Helpers
  380. *****************************************************************************}
  381. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  382. begin
  383. case s of
  384. OS_8,OS_S8:
  385. cgsize2subreg:=R_SUBL;
  386. OS_16,OS_S16:
  387. cgsize2subreg:=R_SUBW;
  388. OS_32,OS_S32:
  389. cgsize2subreg:=R_SUBD;
  390. OS_64,OS_S64:
  391. cgsize2subreg:=R_SUBQ;
  392. OS_M64:
  393. cgsize2subreg:=R_SUBNONE;
  394. OS_F32,OS_F64,OS_C64:
  395. case regtype of
  396. R_FPUREGISTER:
  397. cgsize2subreg:=R_SUBWHOLE;
  398. R_MMREGISTER:
  399. case s of
  400. OS_F32:
  401. cgsize2subreg:=R_SUBMMS;
  402. OS_F64:
  403. cgsize2subreg:=R_SUBMMD;
  404. else
  405. internalerror(2009071901);
  406. end;
  407. else
  408. internalerror(2009071902);
  409. end;
  410. OS_M128:
  411. cgsize2subreg:=R_SUBMMX;
  412. OS_M256:
  413. cgsize2subreg:=R_SUBMMY;
  414. OS_M512:
  415. cgsize2subreg:=R_SUBMMZ;
  416. OS_S128,
  417. OS_128,
  418. OS_NO:
  419. { error message should have been thrown already before, so avoid only
  420. an internal error }
  421. cgsize2subreg:=R_SUBNONE;
  422. else
  423. internalerror(200301231);
  424. end;
  425. end;
  426. function reg_cgsize(const reg: tregister): tcgsize;
  427. const subreg2cgsize:array[Tsubregister] of Tcgsize =
  428. (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256,OS_M512,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO);
  429. begin
  430. case getregtype(reg) of
  431. R_INTREGISTER :
  432. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  433. R_FPUREGISTER :
  434. reg_cgsize:=OS_F80;
  435. R_MMXREGISTER:
  436. reg_cgsize:=OS_M64;
  437. R_MMREGISTER:
  438. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  439. R_SPECIALREGISTER :
  440. case reg of
  441. NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
  442. reg_cgsize:=OS_16;
  443. {$ifdef x86_64}
  444. NR_DR0..NR_TR7:
  445. reg_cgsize:=OS_64;
  446. {$endif x86_64}
  447. else
  448. reg_cgsize:=OS_32
  449. end;
  450. R_ADDRESSREGISTER:
  451. case reg of
  452. NR_K0..NR_K7: reg_cgsize:=OS_NO;
  453. else internalerror(2003031801);
  454. end;
  455. else
  456. internalerror(2003031802);
  457. end;
  458. end;
  459. function reg2opsize(r:Tregister):topsize;
  460. const
  461. subreg2opsize : array[tsubregister] of topsize =
  462. (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  463. begin
  464. reg2opsize:=S_L;
  465. case getregtype(r) of
  466. R_INTREGISTER :
  467. reg2opsize:=subreg2opsize[getsubreg(r)];
  468. R_FPUREGISTER :
  469. reg2opsize:=S_FL;
  470. R_MMXREGISTER,
  471. R_MMREGISTER :
  472. reg2opsize:=S_MD;
  473. R_SPECIALREGISTER :
  474. begin
  475. case r of
  476. NR_CS,NR_DS,NR_ES,
  477. NR_SS,NR_FS,NR_GS :
  478. reg2opsize:=S_W;
  479. else
  480. ;
  481. end;
  482. end;
  483. else
  484. internalerror(200303181);
  485. end;
  486. end;
  487. function is_calljmp(o:tasmop):boolean;
  488. begin
  489. case o of
  490. A_CALL,
  491. {$if defined(i386) or defined(i8086)}
  492. A_JCXZ,
  493. {$endif defined(i386) or defined(i8086)}
  494. A_JECXZ,
  495. {$ifdef x86_64}
  496. A_JRCXZ,
  497. {$endif x86_64}
  498. A_JMP,
  499. A_LOOP,
  500. A_LOOPE,
  501. A_LOOPNE,
  502. A_LOOPNZ,
  503. A_LOOPZ,
  504. A_LCALL,
  505. A_LJMP,
  506. A_Jcc :
  507. is_calljmp:=true;
  508. else
  509. is_calljmp:=false;
  510. end;
  511. end;
  512. function is_calljmpuncondret(o:tasmop):boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  513. begin
  514. case o of
  515. A_CALL,
  516. A_JMP,
  517. A_RET,
  518. A_LCALL,
  519. A_LJMP:
  520. Result:=true;
  521. else
  522. Result:=false;
  523. end;
  524. end;
  525. procedure inverse_flags(var f: TResFlags);
  526. const
  527. inv_flags: array[TResFlags] of TResFlags =
  528. (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
  529. F_BE,F_B,F_AE,F_A,
  530. F_NS,F_S,F_NO,F_O,
  531. F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
  532. begin
  533. f:=inv_flags[f];
  534. end;
  535. function flags_to_cond(const f: TResFlags) : TAsmCond;
  536. const
  537. flags_2_cond : array[TResFlags] of TAsmCond =
  538. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
  539. C_None,C_None,C_None,C_None,C_None,C_None);
  540. begin
  541. result := flags_2_cond[f];
  542. if (result=C_None) then
  543. InternalError(2014041302);
  544. end;
  545. function is_segment_reg(r:tregister):boolean;
  546. begin
  547. case r of
  548. NR_CS,NR_DS,NR_ES,
  549. NR_SS,NR_FS,NR_GS :
  550. result:=true;
  551. else
  552. result:=false;
  553. end;
  554. end;
  555. function findreg_by_number(r:Tregister):tregisterindex;
  556. var
  557. hr : tregister;
  558. begin
  559. { for the name the sub reg doesn't matter }
  560. hr:=r;
  561. if (getregtype(hr)=R_MMREGISTER) and
  562. (getsubreg(hr)<>R_SUBMMY) and
  563. (getsubreg(hr)<>R_SUBMMZ) then
  564. setsubreg(hr,R_SUBMMX);
  565. //// TG TODO check
  566. //if (getregtype(hr)=R_MMREGISTER) then
  567. // case getsubreg(hr) of
  568. // R_SUBMMX: setsubreg(hr,R_SUBMMX);
  569. // R_SUBMMY: setsubreg(hr,R_SUBMMY);
  570. // R_SUBMMZ: setsubreg(hr,R_SUBMMZ);
  571. // else setsubreg(hr,R_SUBMMX);
  572. // end;
  573. result:=findreg_by_number_table(hr,regnumber_index);
  574. end;
  575. function std_regnum_search(const s:string):Tregister;
  576. begin
  577. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  578. end;
  579. function std_regname(r:Tregister):string;
  580. var
  581. p : tregisterindex;
  582. begin
  583. if (getregtype(r)=R_MMXREGISTER) or
  584. ((getregtype(r)=R_MMREGISTER) and not(getsubreg(r) in [R_SUBMMX,R_SUBMMY])) then
  585. r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
  586. p:=findreg_by_number(r);
  587. if p<>0 then
  588. result:=std_regname_table[p]
  589. else
  590. result:=generic_regname(r);
  591. end;
  592. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  593. const
  594. inverse: array[TAsmCond] of TAsmCond=(C_None,
  595. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  596. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  597. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  598. );
  599. begin
  600. result := inverse[c];
  601. end;
  602. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  603. begin
  604. result := c1 = c2;
  605. end;
  606. { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
  607. function condition_in(const Subset, c: TAsmCond): Boolean;
  608. begin
  609. Result := (c = C_None) or conditions_equal(Subset, c);
  610. if not Result then
  611. case Subset of
  612. C_A, C_NBE:
  613. Result := (c in [C_A, C_AE, C_NB, C_NC, C_NBE,C_NE, C_NZ]);
  614. C_AE, C_NB, C_NC:
  615. { C_A / C_NBE: CF = 0 and ZF = 0; not a subset because ZF has to be zero as well
  616. C_AE / C_NB: CF = 0 }
  617. Result := (c in [C_AE, C_NB, C_NC]);
  618. C_B, C_C, C_NAE:
  619. { C_B / C_NAE: CF = 1
  620. C_BE / C_NA: CF = 1 or ZF = 1 }
  621. Result := (c in [C_B, C_BE, C_C, C_NA, C_NAE]);
  622. C_BE, C_NA:
  623. Result := (c in [C_BE, C_NA]);
  624. C_E, C_Z:
  625. Result := (c in [C_AE, C_BE, C_E, C_NA, C_NG, C_Z]);
  626. C_G, C_NLE:
  627. { Not-equal can be considered equivalent to less than or greater than }
  628. Result := (c in [C_G, C_GE, C_NE, C_NL, C_NLE,C_NZ]);
  629. C_GE, C_NL:
  630. Result := (c in [C_GE, C_NL]);
  631. C_L, C_NGE:
  632. Result := (c in [C_L, C_LE, C_NE, C_NG, C_NGE,C_NZ]);
  633. C_LE, C_NG:
  634. Result := (c in [C_LE, C_NG]);
  635. C_NE, C_NZ:
  636. { Note that not equal is NOT a subset of greater/less than because
  637. not equal is less than OR greater than. Same with above and below }
  638. Result := (c in [C_NE, C_NZ]);
  639. C_NP, C_PO:
  640. Result := (c in [C_NP, C_PO]);
  641. C_P, C_PE:
  642. Result := (c in [C_P, C_PE]);
  643. else
  644. Result := False;
  645. end;
  646. end;
  647. function dwarf_reg(r:tregister):shortint;
  648. begin
  649. result:=regdwarf_table[findreg_by_number(r)];
  650. if result=-1 then
  651. internalerror(200603251);
  652. end;
  653. function dwarf_reg_no_error(r:tregister):shortint;
  654. begin
  655. result:=regdwarf_table[findreg_by_number(r)];
  656. end;
  657. function eh_return_data_regno(nr: longint): longint;
  658. begin
  659. case nr of
  660. 0: result:=0;
  661. {$ifdef x86_64}
  662. 1: result:=1;
  663. {$else}
  664. 1: result:=2;
  665. {$endif}
  666. else
  667. result:=-1;
  668. end;
  669. end;
  670. function segment_regs_equal(r1, r2: tregister): boolean;
  671. begin
  672. if not is_segment_reg(r1) or not is_segment_reg(r2) then
  673. internalerror(2013062301);
  674. { every segment register is equal to itself }
  675. if r1=r2 then
  676. exit(true);
  677. {$if defined(i8086)}
  678. case current_settings.x86memorymodel of
  679. mm_tiny:
  680. begin
  681. { CS=DS=SS }
  682. if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
  683. ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
  684. exit(true);
  685. { the remaining are distinct from each other }
  686. exit(false);
  687. end;
  688. mm_small,mm_medium:
  689. begin
  690. { DS=SS }
  691. if ((r1=NR_DS) or (r1=NR_SS)) and
  692. ((r2=NR_DS) or (r2=NR_SS)) then
  693. exit(true);
  694. { the remaining are distinct from each other }
  695. exit(false);
  696. end;
  697. mm_compact,mm_large,mm_huge:
  698. { all segment registers are different in these models }
  699. exit(false);
  700. end;
  701. {$elseif defined(i386) or defined(x86_64)}
  702. { DS=SS=ES }
  703. if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
  704. ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
  705. exit(true);
  706. { the remaining are distinct from each other }
  707. exit(false);
  708. {$endif}
  709. end;
  710. function is_x86_string_op(op: TAsmOp): boolean;
  711. begin
  712. case op of
  713. {$ifdef x86_64}
  714. A_MOVSQ,
  715. A_CMPSQ,
  716. A_SCASQ,
  717. A_LODSQ,
  718. A_STOSQ,
  719. {$endif x86_64}
  720. A_MOVSB,A_MOVSW,A_MOVSD,
  721. A_CMPSB,A_CMPSW,A_CMPSD,
  722. A_SCASB,A_SCASW,A_SCASD,
  723. A_LODSB,A_LODSW,A_LODSD,
  724. A_STOSB,A_STOSW,A_STOSD,
  725. A_INSB, A_INSW, A_INSD,
  726. A_OUTSB,A_OUTSW,A_OUTSD,
  727. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  728. result:=true;
  729. else
  730. result:=false;
  731. end;
  732. end;
  733. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  734. begin
  735. case op of
  736. {$ifdef x86_64}
  737. A_MOVSQ,
  738. A_CMPSQ,
  739. A_SCASQ,
  740. A_LODSQ,
  741. A_STOSQ,
  742. {$endif x86_64}
  743. A_MOVSB,A_MOVSW,A_MOVSD,
  744. A_CMPSB,A_CMPSW,A_CMPSD,
  745. A_SCASB,A_SCASW,A_SCASD,
  746. A_LODSB,A_LODSW,A_LODSD,
  747. A_STOSB,A_STOSW,A_STOSD,
  748. A_INSB, A_INSW, A_INSD,
  749. A_OUTSB,A_OUTSW,A_OUTSD:
  750. result:=true;
  751. else
  752. result:=false;
  753. end;
  754. end;
  755. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  756. begin
  757. case op of
  758. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  759. result:=true;
  760. else
  761. result:=false;
  762. end;
  763. end;
  764. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  765. begin
  766. case op of
  767. A_MOVS,A_CMPS,A_INS,A_OUTS:
  768. result:=2;
  769. A_SCAS,A_LODS,A_STOS:
  770. result:=1;
  771. else
  772. internalerror(2017101203);
  773. end;
  774. end;
  775. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  776. begin
  777. case op of
  778. A_MOVSB,A_MOVSW,A_MOVSD{$ifdef x86_64},A_MOVSQ{$endif}:
  779. result:=A_MOVS;
  780. A_CMPSB,A_CMPSW,A_CMPSD{$ifdef x86_64},A_CMPSQ{$endif}:
  781. result:=A_CMPS;
  782. A_SCASB,A_SCASW,A_SCASD{$ifdef x86_64},A_SCASQ{$endif}:
  783. result:=A_SCAS;
  784. A_LODSB,A_LODSW,A_LODSD{$ifdef x86_64},A_LODSQ{$endif}:
  785. result:=A_LODS;
  786. A_STOSB,A_STOSW,A_STOSD{$ifdef x86_64},A_STOSQ{$endif}:
  787. result:=A_STOS;
  788. A_INSB, A_INSW, A_INSD:
  789. result:=A_INS;
  790. A_OUTSB,A_OUTSW,A_OUTSD:
  791. result:=A_OUTS;
  792. else
  793. internalerror(2017101201);
  794. end;
  795. end;
  796. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  797. begin
  798. case op of
  799. A_MOVSB,A_CMPSB,A_SCASB,A_LODSB,A_STOSB,A_INSB,A_OUTSB:
  800. result:=S_B;
  801. A_MOVSW,A_CMPSW,A_SCASW,A_LODSW,A_STOSW,A_INSW,A_OUTSW:
  802. result:=S_W;
  803. A_MOVSD,A_CMPSD,A_SCASD,A_LODSD,A_STOSD,A_INSD,A_OUTSD:
  804. result:=S_L;
  805. {$ifdef x86_64}
  806. A_MOVSQ,A_CMPSQ,A_SCASQ,A_LODSQ,A_STOSQ:
  807. result:=S_Q;
  808. {$endif x86_64}
  809. else
  810. internalerror(2017101202);
  811. end;
  812. end;
  813. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  814. begin
  815. case op of
  816. A_MOVS,A_OUTS:
  817. result:=1;
  818. A_CMPS,A_LODS:
  819. result:=0;
  820. A_SCAS,A_STOS,A_INS:
  821. result:=-1;
  822. else
  823. internalerror(2017101102);
  824. end;
  825. end;
  826. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  827. begin
  828. case op of
  829. A_MOVS,A_SCAS,A_STOS,A_INS:
  830. result:=0;
  831. A_CMPS:
  832. result:=1;
  833. A_LODS,A_OUTS:
  834. result:=-1;
  835. else
  836. internalerror(2017101204);
  837. end;
  838. end;
  839. {$ifdef i8086}
  840. function requires_fwait_on_8087(op: TAsmOp): boolean;
  841. begin
  842. case op of
  843. A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
  844. A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
  845. A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
  846. A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
  847. A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
  848. A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
  849. A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
  850. A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
  851. A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
  852. result:=true;
  853. else
  854. result:=false;
  855. end;
  856. end;
  857. {$endif i8086}
  858. function UseAVX: boolean;
  859. begin
  860. Result:={$ifdef i8086}false{$else i8086}(FPUX86_HAS_AVXUNIT in fpu_capabilities[current_settings.fputype]){$endif i8086};
  861. end;
  862. function UseAVX512: boolean;
  863. begin
  864. Result:={$ifdef i8086}false{$else i8086}UseAVX and (FPUX86_HAS_AVX512F in fpu_capabilities[current_settings.fputype]){$endif i8086};
  865. end;
  866. end.