genmath.inc 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266
  1. {
  2. This file is part of the Free Pascal run time library.
  3. Copyright (c) 1999-2007 by Several contributors
  4. Generic mathematical routines (on type real)
  5. See the file COPYING.FPC, included in this distribution,
  6. for details about the copyright.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  10. **********************************************************************}
  11. {*************************************************************************}
  12. { Credits }
  13. {*************************************************************************}
  14. { Copyright Abandoned, 1987, Fred Fish }
  15. { }
  16. { This previously copyrighted work has been placed into the }
  17. { public domain by the author (Fred Fish) and may be freely used }
  18. { for any purpose, private or commercial. I would appreciate }
  19. { it, as a courtesy, if this notice is left in all copies and }
  20. { derivative works. Thank you, and enjoy... }
  21. { }
  22. { The author makes no warranty of any kind with respect to this }
  23. { product and explicitly disclaims any implied warranties of }
  24. { merchantability or fitness for any particular purpose. }
  25. {-------------------------------------------------------------------------}
  26. { Copyright (c) 1992 Odent Jean Philippe }
  27. { }
  28. { The source can be modified as long as my name appears and some }
  29. { notes explaining the modifications done are included in the file. }
  30. {-------------------------------------------------------------------------}
  31. { Copyright (c) 1997 Carl Eric Codere }
  32. {-------------------------------------------------------------------------}
  33. {-------------------------------------------------------------------------
  34. Using functions from AMath/DAMath libraries, which are covered by the
  35. following license:
  36. (C) Copyright 2009-2013 Wolfgang Ehrhardt
  37. This software is provided 'as-is', without any express or implied warranty.
  38. In no event will the authors be held liable for any damages arising from
  39. the use of this software.
  40. Permission is granted to anyone to use this software for any purpose,
  41. including commercial applications, and to alter it and redistribute it
  42. freely, subject to the following restrictions:
  43. 1. The origin of this software must not be misrepresented; you must not
  44. claim that you wrote the original software. If you use this software in
  45. a product, an acknowledgment in the product documentation would be
  46. appreciated but is not required.
  47. 2. Altered source versions must be plainly marked as such, and must not be
  48. misrepresented as being the original software.
  49. 3. This notice may not be removed or altered from any source distribution.
  50. ----------------------------------------------------------------------------}
  51. type
  52. PReal = ^Real;
  53. { float64 definition is now in genmathh.inc,
  54. to ensure that float64 will always be in
  55. the system interface symbol table. }
  56. const
  57. PIO4 = 7.85398163397448309616E-1; { pi/4 }
  58. SQRT2 = 1.41421356237309504880; { sqrt(2) }
  59. LOG2E = 1.4426950408889634073599; { 1/log(2) }
  60. lossth = 1.073741824e9;
  61. MAXLOG = 8.8029691931113054295988E1; { log(2**127) }
  62. MINLOG = -8.872283911167299960540E1; { log(2**-128) }
  63. H2_54: double = 18014398509481984.0; {2^54}
  64. huge: double = 1e300;
  65. one: double = 1.0;
  66. zero: double = 0;
  67. {$if not defined(FPC_SYSTEM_HAS_SIN) or not defined(FPC_SYSTEM_HAS_COS)}
  68. const sincof : array[0..5] of Real = (
  69. 1.58962301576546568060E-10,
  70. -2.50507477628578072866E-8,
  71. 2.75573136213857245213E-6,
  72. -1.98412698295895385996E-4,
  73. 8.33333333332211858878E-3,
  74. -1.66666666666666307295E-1);
  75. coscof : array[0..5] of Real = (
  76. -1.13585365213876817300E-11,
  77. 2.08757008419747316778E-9,
  78. -2.75573141792967388112E-7,
  79. 2.48015872888517045348E-5,
  80. -1.38888888888730564116E-3,
  81. 4.16666666666665929218E-2);
  82. {$endif}
  83. {*
  84. -------------------------------------------------------------------------------
  85. Raises the exceptions specified by `flags'. Floating-point traps can be
  86. defined here if desired. It is currently not possible for such a trap
  87. to substitute a result value. If traps are not implemented, this routine
  88. should be simply `softfloat_exception_flags |= flags;'.
  89. -------------------------------------------------------------------------------
  90. *}
  91. procedure float_raise(i: TFPUException);
  92. begin
  93. float_raise([i]);
  94. end;
  95. procedure float_raise(i: TFPUExceptionMask);
  96. var
  97. pflags: ^TFPUExceptionMask;
  98. unmasked_flags: TFPUExceptionMask;
  99. Begin
  100. { taking address of threadvar produces somewhat more compact code }
  101. pflags := @softfloat_exception_flags;
  102. pflags^:=pflags^ + i;
  103. unmasked_flags := pflags^ - softfloat_exception_mask;
  104. { before we raise the exception, we mark it as handled,
  105. this behaviour is similiar to the hardware handler in SignalToRunerror }
  106. SysResetFPU;
  107. if (float_flag_invalid in unmasked_flags) then
  108. HandleError(207)
  109. else if (float_flag_divbyzero in unmasked_flags) then
  110. HandleError(208)
  111. else if (float_flag_overflow in unmasked_flags) then
  112. HandleError(205)
  113. else if (float_flag_underflow in unmasked_flags) then
  114. HandleError(206)
  115. else if (float_flag_inexact in unmasked_flags) then
  116. HandleError(207)
  117. else if (float_flag_denormal in unmasked_flags) then
  118. HandleError(216);
  119. end;
  120. { This function does nothing, but its argument is expected to be an expression
  121. which causes FPE when calculated. If exception is masked, it just returns true,
  122. allowing to use it in expressions. }
  123. function fpe_helper(x: valreal): boolean;
  124. begin
  125. result:=true;
  126. end;
  127. {$ifdef SUPPORT_DOUBLE}
  128. {$ifndef FPC_HAS_FLOAT64HIGH}
  129. {$define FPC_HAS_FLOAT64HIGH}
  130. function float64high(d: double): longint; inline;
  131. begin
  132. result:=float64(d).high;
  133. end;
  134. procedure float64sethigh(var d: double; l: longint); inline;
  135. begin
  136. float64(d).high:=l;
  137. end;
  138. {$endif FPC_HAS_FLOAT64HIGH}
  139. {$ifndef FPC_HAS_FLOAT64LOW}
  140. {$define FPC_HAS_FLOAT64LOW}
  141. function float64low(d: double): longint; inline;
  142. begin
  143. result:=float64(d).low;
  144. end;
  145. procedure float64setlow(var d: double; l: longint); inline;
  146. begin
  147. float64(d).low:=l;
  148. end;
  149. {$endif FPC_HAS_FLOAT64LOW}
  150. {$endif SUPPORT_DOUBLE}
  151. {$ifndef FPC_SYSTEM_HAS_TRUNC}
  152. {$ifdef SUPPORT_DOUBLE}
  153. { based on softfloat float64_to_int64_round_to_zero }
  154. function fpc_trunc_real(d : valreal) : int64; compilerproc;
  155. var
  156. aExp, shiftCount : smallint;
  157. aSig : int64;
  158. z : int64;
  159. a: float64;
  160. begin
  161. a:=float64(d);
  162. aSig:=(int64(a.high and $000fffff) shl 32) or longword(a.low);
  163. aExp:=(a.high shr 20) and $7FF;
  164. if aExp<>0 then
  165. aSig:=aSig or $0010000000000000;
  166. shiftCount:= aExp-$433;
  167. if 0<=shiftCount then
  168. begin
  169. if aExp>=$43e then
  170. begin
  171. if (a.high<>longint($C3E00000)) or (a.low<>0) then
  172. begin
  173. fpe_helper(zero/zero);
  174. if (longint(a.high)>=0) or ((aExp=$7FF) and
  175. (aSig<>$0010000000000000 )) then
  176. begin
  177. result:=$7FFFFFFFFFFFFFFF;
  178. exit;
  179. end;
  180. end;
  181. result:=$8000000000000000;
  182. exit;
  183. end;
  184. z:=aSig shl shiftCount;
  185. end
  186. else
  187. begin
  188. if aExp<$3fe then
  189. begin
  190. result:=0;
  191. exit;
  192. end;
  193. z:=aSig shr -shiftCount;
  194. {
  195. if (aSig shl (shiftCount and 63))<>0 then
  196. float_exception_flags |= float_flag_inexact;
  197. }
  198. end;
  199. if longint(a.high)<0 then
  200. z:=-z;
  201. result:=z;
  202. end;
  203. {$else SUPPORT_DOUBLE}
  204. { based on softfloat float32_to_int64_round_to_zero }
  205. Function fpc_trunc_real( d: valreal ): int64; compilerproc;
  206. Var
  207. a : float32;
  208. aExp, shiftCount : smallint;
  209. aSig : longint;
  210. aSig64, z : int64;
  211. Begin
  212. a := float32(d);
  213. aSig := a and $007FFFFF;
  214. aExp := (a shr 23) and $FF;
  215. shiftCount := aExp - $BE;
  216. if ( 0 <= shiftCount ) then
  217. Begin
  218. if ( a <> Float32($DF000000) ) then
  219. Begin
  220. fpe_helper( zero/zero );
  221. if ( (longint(a)>=0) or ( ( aExp = $FF ) and (aSig<>0) ) ) then
  222. Begin
  223. result:=$7fffffffffffffff;
  224. exit;
  225. end;
  226. End;
  227. result:=$8000000000000000;
  228. exit;
  229. End
  230. else
  231. if ( aExp <= $7E ) then
  232. Begin
  233. result := 0;
  234. exit;
  235. End;
  236. aSig64 := int64( aSig or $00800000 ) shl 40;
  237. z := aSig64 shr ( - shiftCount );
  238. if ( longint(a)<0 ) then z := - z;
  239. result := z;
  240. End;
  241. {$endif SUPPORT_DOUBLE}
  242. {$endif not FPC_SYSTEM_HAS_TRUNC}
  243. {$ifndef FPC_SYSTEM_HAS_INT}
  244. {$ifdef SUPPORT_DOUBLE}
  245. { straight Pascal translation of the code for __trunc() in }
  246. { the file sysdeps/libm-ieee754/s_trunc.c of glibc (JM) }
  247. function fpc_int_real(d: ValReal): ValReal;compilerproc;
  248. var
  249. i0, j0: longint;
  250. i1: cardinal;
  251. sx: longint;
  252. f64 : float64;
  253. begin
  254. f64:=float64(d);
  255. i0 := f64.high;
  256. i1 := cardinal(f64.low);
  257. sx := i0 and $80000000;
  258. j0 := ((i0 shr 20) and $7ff) - $3ff;
  259. if (j0 < 20) then
  260. begin
  261. if (j0 < 0) then
  262. begin
  263. { the magnitude of the number is < 1 so the result is +-0. }
  264. f64.high := sx;
  265. f64.low := 0;
  266. end
  267. else
  268. begin
  269. f64.high := sx or (i0 and not($fffff shr j0));
  270. f64.low := 0;
  271. end
  272. end
  273. else if (j0 > 51) then
  274. begin
  275. if (j0 = $400) then
  276. { d is inf or NaN }
  277. exit(d + d); { don't know why they do this (JM) }
  278. end
  279. else
  280. begin
  281. f64.high := i0;
  282. f64.low := longint(i1 and not(cardinal($ffffffff) shr (j0 - 20)));
  283. end;
  284. result:=double(f64);
  285. end;
  286. {$else SUPPORT_DOUBLE}
  287. function fpc_int_real(d : ValReal) : ValReal;compilerproc;
  288. begin
  289. { this will be correct since real = single in the case of }
  290. { the motorola version of the compiler... }
  291. result:=ValReal(trunc(d));
  292. end;
  293. {$endif SUPPORT_DOUBLE}
  294. {$endif not FPC_SYSTEM_HAS_INT}
  295. {$ifndef FPC_SYSTEM_HAS_ABS}
  296. function fpc_abs_real(d : ValReal) : ValReal;compilerproc;
  297. begin
  298. if (d<0.0) then
  299. result := -d
  300. else
  301. result := d ;
  302. end;
  303. {$endif not FPC_SYSTEM_HAS_ABS}
  304. {$ifndef SYSTEM_HAS_FREXP}
  305. procedure frexp(X: Real; out Mantissa: Real; out Exponent: longint);
  306. {* frexp() extracts the exponent from x. It returns an integer *}
  307. {* power of two to expnt and the significand between 0.5 and 1 *}
  308. {* to y. Thus x = y * 2**expn. *}
  309. begin
  310. exponent:=0;
  311. if (abs(x)<0.5) then
  312. While (abs(x)<0.5) do
  313. begin
  314. x := x*2;
  315. Dec(exponent);
  316. end
  317. else
  318. While (abs(x)>1) do
  319. begin
  320. x := x/2;
  321. Inc(exponent);
  322. end;
  323. Mantissa := x;
  324. end;
  325. {$endif not SYSTEM_HAS_FREXP}
  326. {$ifndef SYSTEM_HAS_LDEXP}
  327. {$ifdef SUPPORT_DOUBLE}
  328. { ldexpd function adapted from DAMath library (C) Copyright 2013 Wolfgang Ehrhardt }
  329. function ldexp( x: Real; N: Integer):Real;
  330. {* ldexp() multiplies x by 2**n. *}
  331. var
  332. i: integer;
  333. begin
  334. i := (float64high(x) and $7ff00000) shr 20;
  335. {if +-INF, NaN, 0 or if e=0 return d}
  336. if (i=$7FF) or (N=0) or (x=0.0) then
  337. ldexp := x
  338. else if i=0 then {Denormal: result = d*2^54*2^(e-54)}
  339. ldexp := ldexp(x*H2_54, N-54)
  340. else
  341. begin
  342. N := N+i;
  343. if N>$7FE then { overflow }
  344. begin
  345. if x>0.0 then
  346. ldexp := 2.0*huge
  347. else
  348. ldexp := (-2.0)*huge;
  349. end
  350. else if N<1 then
  351. begin
  352. {underflow or denormal}
  353. if N<-53 then
  354. ldexp := 0.0
  355. else
  356. begin
  357. {Denormal: result = d*2^(e+54)/2^54}
  358. inc(N,54);
  359. float64sethigh(x,(float64high(x) and $800FFFFF) or (longint(N) shl 20));
  360. ldexp := x/H2_54;
  361. end;
  362. end
  363. else
  364. begin
  365. float64sethigh(x,(float64high(x) and $800FFFFF) or (longint(N) shl 20));
  366. ldexp := x;
  367. end;
  368. end;
  369. end;
  370. {$else SUPPORT_DOUBLE}
  371. function ldexp( x: Real; N: Integer):Real;
  372. {* ldexp() multiplies x by 2**n. *}
  373. var r : Real;
  374. begin
  375. R := 1;
  376. if N>0 then
  377. while N>0 do
  378. begin
  379. R:=R*2;
  380. Dec(N);
  381. end
  382. else
  383. while N<0 do
  384. begin
  385. R:=R/2;
  386. Inc(N);
  387. end;
  388. ldexp := x * R;
  389. end;
  390. {$endif SUPPORT_DOUBLE}
  391. {$endif not SYSTEM_HAS_LDEXP}
  392. function polevl(x:Real; Coef:PReal; N:sizeint):Real;
  393. {*****************************************************************}
  394. { Evaluate polynomial }
  395. {*****************************************************************}
  396. { }
  397. { SYNOPSIS: }
  398. { }
  399. { int N; }
  400. { double x, y, coef[N+1], polevl[]; }
  401. { }
  402. { y = polevl( x, coef, N ); }
  403. { }
  404. { DESCRIPTION: }
  405. { }
  406. { Evaluates polynomial of degree N: }
  407. { }
  408. { 2 N }
  409. { y = C + C x + C x +...+ C x }
  410. { 0 1 2 N }
  411. { }
  412. { Coefficients are stored in reverse order: }
  413. { }
  414. { coef[0] = C , ..., coef[N] = C . }
  415. { N 0 }
  416. { }
  417. { The function p1evl() assumes that coef[N] = 1.0 and is }
  418. { omitted from the array. Its calling arguments are }
  419. { otherwise the same as polevl(). }
  420. { }
  421. { SPEED: }
  422. { }
  423. { In the interest of speed, there are no checks for out }
  424. { of bounds arithmetic. This routine is used by most of }
  425. { the functions in the library. Depending on available }
  426. { equipment features, the user may wish to rewrite the }
  427. { program in microcode or assembly language. }
  428. {*****************************************************************}
  429. var ans : Real;
  430. i : sizeint;
  431. begin
  432. ans := Coef[0];
  433. for i:=1 to N do
  434. ans := ans * x + Coef[i];
  435. polevl:=ans;
  436. end;
  437. function p1evl(x:Real; Coef:PReal; N:sizeint):Real;
  438. { }
  439. { Evaluate polynomial when coefficient of x is 1.0. }
  440. { Otherwise same as polevl. }
  441. { }
  442. var
  443. ans : Real;
  444. i : sizeint;
  445. begin
  446. ans := x + Coef[0];
  447. for i:=1 to N-1 do
  448. ans := ans * x + Coef[i];
  449. p1evl := ans;
  450. end;
  451. function floord(x: double): double;
  452. var
  453. t: double;
  454. begin
  455. t := int(x);
  456. if (x>=0.0) or (x=t) then
  457. floord := t
  458. else
  459. floord := t - 1.0;
  460. end;
  461. {*
  462. * ====================================================
  463. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  464. *
  465. * Developed at SunPro, a Sun Microsystems, Inc. business.
  466. * Permission to use, copy, modify, and distribute this
  467. * software is freely granted, provided that this notice
  468. * is preserved.
  469. * ====================================================
  470. *
  471. * Pascal port of this routine comes from DAMath library
  472. * (C) Copyright 2013 Wolfgang Ehrhardt
  473. *
  474. * k_rem_pio2 return the last three bits of N with y = x - N*pi/2
  475. * so that |y| < pi/2.
  476. *
  477. * The method is to compute the integer (mod 8) and fraction parts of
  478. * (2/pi)*x without doing the full multiplication. In general we
  479. * skip the part of the product that are known to be a huge integer
  480. * (more accurately, = 0 mod 8 ). Thus the number of operations are
  481. * independent of the exponent of the input.
  482. *
  483. * (2/pi) is represented by an array of 24-bit integers in ipio2[].
  484. *
  485. * Input parameters:
  486. * x[] The input value (must be positive) is broken into nx
  487. * pieces of 24-bit integers in double precision format.
  488. * x[i] will be the i-th 24 bit of x. The scaled exponent
  489. * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
  490. * match x's up to 24 bits.
  491. *
  492. * Example of breaking a double positive z into x[0]+x[1]+x[2]:
  493. * e0 = ilogb(z)-23
  494. * z = scalbn(z,-e0)
  495. * for i = 0,1,2
  496. * x[i] = floor(z)
  497. * z = (z-x[i])*2**24
  498. *
  499. *
  500. * y[] output result in an array of double precision numbers.
  501. * The dimension of y[] is:
  502. * 24-bit precision 1
  503. * 53-bit precision 2
  504. * 64-bit precision 2
  505. * 113-bit precision 3
  506. * The actual value is the sum of them. Thus for 113-bit
  507. * precison, one may have to do something like:
  508. *
  509. * long double t,w,r_head, r_tail;
  510. * t = (long double)y[2] + (long double)y[1];
  511. * w = (long double)y[0];
  512. * r_head = t+w;
  513. * r_tail = w - (r_head - t);
  514. *
  515. * e0 The exponent of x[0]. Must be <= 16360 or you need to
  516. * expand the ipio2 table.
  517. *
  518. * nx dimension of x[]
  519. *
  520. * prec an integer indicating the precision:
  521. * 0 24 bits (single)
  522. * 1 53 bits (double)
  523. * 2 64 bits (extended)
  524. * 3 113 bits (quad)
  525. *
  526. * Here is the description of some local variables:
  527. *
  528. * jk jk+1 is the initial number of terms of ipio2[] needed
  529. * in the computation. The recommended value is 2,3,4,
  530. * 6 for single, double, extended,and quad.
  531. *
  532. * jz local integer variable indicating the number of
  533. * terms of ipio2[] used.
  534. *
  535. * jx nx - 1
  536. *
  537. * jv index for pointing to the suitable ipio2[] for the
  538. * computation. In general, we want
  539. * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
  540. * is an integer. Thus
  541. * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
  542. * Hence jv = max(0,(e0-3)/24).
  543. *
  544. * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
  545. *
  546. * q[] double array with integral value, representing the
  547. * 24-bits chunk of the product of x and 2/pi.
  548. *
  549. * q0 the corresponding exponent of q[0]. Note that the
  550. * exponent for q[i] would be q0-24*i.
  551. *
  552. * PIo2[] double precision array, obtained by cutting pi/2
  553. * into 24 bits chunks.
  554. *
  555. * f[] ipio2[] in floating point
  556. *
  557. * iq[] integer array by breaking up q[] in 24-bits chunk.
  558. *
  559. * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
  560. *
  561. * ih integer. If >0 it indicates q[] is >= 0.5, hence
  562. * it also indicates the *sign* of the result.
  563. *}
  564. {PIo2[] double array, obtained by cutting pi/2 into 24 bits chunks.}
  565. const
  566. PIo2chunked: array[0..7] of double = (
  567. 1.57079625129699707031e+00, { 0x3FF921FB, 0x40000000 }
  568. 7.54978941586159635335e-08, { 0x3E74442D, 0x00000000 }
  569. 5.39030252995776476554e-15, { 0x3CF84698, 0x80000000 }
  570. 3.28200341580791294123e-22, { 0x3B78CC51, 0x60000000 }
  571. 1.27065575308067607349e-29, { 0x39F01B83, 0x80000000 }
  572. 1.22933308981111328932e-36, { 0x387A2520, 0x40000000 }
  573. 2.73370053816464559624e-44, { 0x36E38222, 0x80000000 }
  574. 2.16741683877804819444e-51 { 0x3569F31D, 0x00000000 }
  575. );
  576. {Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi }
  577. ipio2: array[0..65] of longint = (
  578. $A2F983, $6E4E44, $1529FC, $2757D1, $F534DD, $C0DB62,
  579. $95993C, $439041, $FE5163, $ABDEBB, $C561B7, $246E3A,
  580. $424DD2, $E00649, $2EEA09, $D1921C, $FE1DEB, $1CB129,
  581. $A73EE8, $8235F5, $2EBB44, $84E99C, $7026B4, $5F7E41,
  582. $3991D6, $398353, $39F49C, $845F8B, $BDF928, $3B1FF8,
  583. $97FFDE, $05980F, $EF2F11, $8B5A0A, $6D1F6D, $367ECF,
  584. $27CB09, $B74F46, $3F669E, $5FEA2D, $7527BA, $C7EBE5,
  585. $F17B3D, $0739F7, $8A5292, $EA6BFB, $5FB11F, $8D5D08,
  586. $560330, $46FC7B, $6BABF0, $CFBC20, $9AF436, $1DA9E3,
  587. $91615E, $E61B08, $659985, $5F14A0, $68408D, $FFD880,
  588. $4D7327, $310606, $1556CA, $73A8C9, $60E27B, $C08C6B);
  589. init_jk: array[0..3] of integer = (2,3,4,6); {initial value for jk}
  590. two24: double = 16777216.0; {2^24}
  591. twon24: double = 5.9604644775390625e-08; {1/2^24}
  592. type
  593. TDA02 = array[0..2] of double; { 3 elements is enough for float128 }
  594. function k_rem_pio2(const x: TDA02; out y: TDA02; e0, nx, prec: integer): sizeint;
  595. var
  596. i,ih,j,jz,jx,jv,jp,jk,carry,k,n,q0: longint;
  597. t: longint;
  598. iq: array[0..19] of longint;
  599. f,fq,q: array[0..19] of double;
  600. z,fw: double;
  601. begin
  602. {initialize jk}
  603. jk := init_jk[prec];
  604. jp := jk;
  605. {determine jx,jv,q0, note that 3>q0}
  606. jx := nx-1;
  607. jv := (e0-3) div 24; if jv<0 then jv := 0;
  608. q0 := e0-24*(jv+1);
  609. {set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk]}
  610. j := jv-jx;
  611. for i:=0 to jx+jk do
  612. begin
  613. if j<0 then f[i] := 0.0 else f[i] := ipio2[j];
  614. inc(j);
  615. end;
  616. {compute q[0],q[1],...q[jk]}
  617. for i:=0 to jk do
  618. begin
  619. fw := 0.0;
  620. for j:=0 to jx do
  621. fw := fw + x[j]*f[jx+i-j];
  622. q[i] := fw;
  623. end;
  624. jz := jk;
  625. repeat
  626. {distill q[] into iq[] reversingly}
  627. i := 0;
  628. z := q[jz];
  629. for j:=jz downto 1 do
  630. begin
  631. fw := trunc(twon24*z);
  632. iq[i] := trunc(z-two24*fw);
  633. z := q[j-1]+fw;
  634. inc(i);
  635. end;
  636. {compute n}
  637. z := ldexp(z,q0); {actual value of z}
  638. z := z - 8.0*floord(z*0.125); {trim off integer >= 8}
  639. n := trunc(z);
  640. z := z - n;
  641. ih := 0;
  642. if q0>0 then
  643. begin
  644. {need iq[jz-1] to determine n}
  645. t := (iq[jz-1] shr (24-q0));
  646. inc(n,t);
  647. dec(iq[jz-1], t shl (24-q0));
  648. ih := iq[jz-1] shr (23-q0);
  649. end
  650. else if q0=0 then
  651. ih := iq[jz-1] shr 23
  652. else if z>=0.5 then
  653. ih := 2;
  654. if ih>0 then {q > 0.5}
  655. begin
  656. inc(n);
  657. carry := 0;
  658. for i:=0 to jz-1 do
  659. begin
  660. {compute 1-q}
  661. t := iq[i];
  662. if carry=0 then
  663. begin
  664. if t<>0 then
  665. begin
  666. carry := 1;
  667. iq[i] := $1000000 - t;
  668. end
  669. end
  670. else
  671. iq[i] := $ffffff - t;
  672. end;
  673. if q0>0 then
  674. begin
  675. {rare case: chance is 1 in 12}
  676. case q0 of
  677. 1: iq[jz-1] := iq[jz-1] and $7fffff;
  678. 2: iq[jz-1] := iq[jz-1] and $3fffff;
  679. end;
  680. end;
  681. if ih=2 then
  682. begin
  683. z := 1.0 - z;
  684. if carry<>0 then
  685. z := z - ldexp(1.0,q0);
  686. end;
  687. end;
  688. {check if recomputation is needed}
  689. if z<>0.0 then
  690. break;
  691. t := 0;
  692. for i:=jz-1 downto jk do
  693. t := t or iq[i];
  694. if t<>0 then
  695. break;
  696. {need recomputation}
  697. k := 1;
  698. while iq[jk-k]=0 do {k = no. of terms needed}
  699. inc(k);
  700. for i:=jz+1 to jz+k do
  701. begin
  702. {add q[jz+1] to q[jz+k]}
  703. f[jx+i] := ipio2[jv+i];
  704. fw := 0.0;
  705. for j:=0 to jx do
  706. fw := fw + x[j]*f[jx+i-j];
  707. q[i] := fw;
  708. end;
  709. inc(jz,k);
  710. until False;
  711. {chop off zero terms}
  712. if z=0.0 then
  713. begin
  714. repeat
  715. dec(jz);
  716. dec(q0,24);
  717. until iq[jz]<>0;
  718. end
  719. else
  720. begin
  721. {break z into 24-bit if necessary}
  722. z := ldexp(z,-q0);
  723. if z>=two24 then
  724. begin
  725. fw := trunc(twon24*z);
  726. iq[jz] := trunc(z-two24*fw);
  727. inc(jz);
  728. inc(q0,24);
  729. iq[jz] := trunc(fw);
  730. end
  731. else
  732. iq[jz] := trunc(z);
  733. end;
  734. {convert integer "bit" chunk to floating-point value}
  735. fw := ldexp(1.0,q0);
  736. for i:=jz downto 0 do
  737. begin
  738. q[i] := fw*iq[i];
  739. fw := fw*twon24;
  740. end;
  741. {compute PIo2[0,...,jp]*q[jz,...,0]}
  742. for i:=jz downto 0 do
  743. begin
  744. fw :=0.0;
  745. k := 0;
  746. while (k<=jp) and (k<=jz-i) do
  747. begin
  748. fw := fw + double(PIo2chunked[k])*(q[i+k]);
  749. inc(k);
  750. end;
  751. fq[jz-i] := fw;
  752. end;
  753. {compress fq[] into y[]}
  754. case prec of
  755. 0:
  756. begin
  757. fw := 0.0;
  758. for i:=jz downto 0 do
  759. fw := fw + fq[i];
  760. if ih=0 then
  761. y[0] := fw
  762. else
  763. y[0] := -fw;
  764. end;
  765. 1, 2:
  766. begin
  767. fw := 0.0;
  768. for i:=jz downto 0 do
  769. fw := fw + fq[i];
  770. if ih=0 then
  771. y[0] := fw
  772. else
  773. y[0] := -fw;
  774. fw := fq[0]-fw;
  775. for i:=1 to jz do
  776. fw := fw + fq[i];
  777. if ih=0 then
  778. y[1] := fw
  779. else
  780. y[1] := -fw;
  781. end;
  782. 3:
  783. begin
  784. {painful}
  785. for i:=jz downto 1 do
  786. begin
  787. fw := fq[i-1]+fq[i];
  788. fq[i] := fq[i]+(fq[i-1]-fw);
  789. fq[i-1]:= fw;
  790. end;
  791. for i:=jz downto 2 do
  792. begin
  793. fw := fq[i-1]+fq[i];
  794. fq[i] := fq[i]+(fq[i-1]-fw);
  795. fq[i-1]:= fw;
  796. end;
  797. fw := 0.0;
  798. for i:=jz downto 2 do
  799. fw := fw + fq[i];
  800. if ih=0 then
  801. begin
  802. y[0] := fq[0];
  803. y[1] := fq[1];
  804. y[2] := fw;
  805. end
  806. else
  807. begin
  808. y[0] := -fq[0];
  809. y[1] := -fq[1];
  810. y[2] := -fw;
  811. end;
  812. end;
  813. end;
  814. k_rem_pio2 := n and 7;
  815. end;
  816. { Argument reduction of x: z = x - n*Pi/2, |z| <= Pi/4, result = n mod 8.}
  817. { Uses Payne/Hanek if |x| >= lossth, Cody/Waite otherwise}
  818. function rem_pio2(x: double; out z: double): sizeint;
  819. const
  820. tol: double = 2.384185791015625E-7; {lossth*eps_d}
  821. DP1 = double(7.85398125648498535156E-1);
  822. DP2 = double(3.77489470793079817668E-8);
  823. DP3 = double(2.69515142907905952645E-15);
  824. var
  825. i,e0,nx: longint;
  826. y: double;
  827. tx,ty: TDA02;
  828. begin
  829. y := abs(x);
  830. if (y < PIO4) then
  831. begin
  832. z := x;
  833. result := 0;
  834. exit;
  835. end
  836. else if (y < lossth) then
  837. begin
  838. y := floord(x/PIO4);
  839. i := trunc(y - 16.0*floord(y*0.0625));
  840. if odd(i) then
  841. begin
  842. inc(i);
  843. y := y + 1.0;
  844. end;
  845. z := ((x - y * DP1) - y * DP2) - y * DP3;
  846. result := (i shr 1) and 7;
  847. {If x is near a multiple of Pi/2, the C/W relative error may be large.}
  848. {In this case redo the calculation with the Payne/Hanek algorithm. }
  849. if abs(z) > tol then
  850. exit;
  851. end;
  852. z := abs(x);
  853. e0 := (float64high(z) shr 20)-1046;
  854. if (e0 = ($7ff-1046)) then { z is Inf or NaN }
  855. begin
  856. z := x - x;
  857. result:=0;
  858. exit;
  859. end;
  860. float64sethigh(z,float64high(z) - (e0 shl 20));
  861. tx[0] := trunc(z);
  862. z := (z-tx[0])*two24;
  863. tx[1] := trunc(z);
  864. tx[2] := (z-tx[1])*two24;
  865. nx := 3;
  866. while (tx[nx-1]=0.0) do dec(nx); { skip zero terms }
  867. result := k_rem_pio2(tx,ty,e0,nx,2);
  868. if (x<0) then
  869. begin
  870. result := (-result) and 7;
  871. z := -ty[0] - ty[1];
  872. end
  873. else
  874. z := ty[0] + ty[1];
  875. end;
  876. {$ifndef FPC_SYSTEM_HAS_SQR}
  877. function fpc_sqr_real(d : ValReal) : ValReal;compilerproc;{$ifdef MATHINLINE}inline;{$endif}
  878. begin
  879. result := d*d;
  880. end;
  881. {$endif}
  882. {$ifndef FPC_SYSTEM_HAS_SQRT}
  883. function fpc_sqrt_real(d:ValReal):ValReal;compilerproc;
  884. {*****************************************************************}
  885. { Square root }
  886. {*****************************************************************}
  887. { }
  888. { SYNOPSIS: }
  889. { }
  890. { double x, y, sqrt(); }
  891. { }
  892. { y = sqrt( x ); }
  893. { }
  894. { DESCRIPTION: }
  895. { }
  896. { Returns the square root of x. }
  897. { }
  898. { Range reduction involves isolating the power of two of the }
  899. { argument and using a polynomial approximation to obtain }
  900. { a rough value for the square root. Then Heron's iteration }
  901. { is used three times to converge to an accurate value. }
  902. {*****************************************************************}
  903. var e : Longint;
  904. w,z : Real;
  905. begin
  906. if( d <= 0.0 ) then
  907. begin
  908. if d < 0.0 then
  909. result:=(d-d)/zero
  910. else
  911. result := 0.0;
  912. end
  913. else
  914. begin
  915. w := d;
  916. { separate exponent and significand }
  917. frexp( d, z, e );
  918. { approximate square root of number between 0.5 and 1 }
  919. { relative error of approximation = 7.47e-3 }
  920. d := 4.173075996388649989089E-1 + 5.9016206709064458299663E-1 * z;
  921. { adjust for odd powers of 2 }
  922. if odd(e) then
  923. d := d*SQRT2;
  924. { re-insert exponent }
  925. d := ldexp( d, (e div 2) );
  926. { Newton iterations: }
  927. d := 0.5*(d + w/d);
  928. d := 0.5*(d + w/d);
  929. d := 0.5*(d + w/d);
  930. d := 0.5*(d + w/d);
  931. d := 0.5*(d + w/d);
  932. d := 0.5*(d + w/d);
  933. result := d;
  934. end;
  935. end;
  936. {$endif}
  937. {$ifndef FPC_SYSTEM_HAS_EXP}
  938. {$ifdef SUPPORT_DOUBLE}
  939. {
  940. This code was translated from uclib code, the original code
  941. had the following copyright notice:
  942. *
  943. * ====================================================
  944. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  945. *
  946. * Developed at SunPro, a Sun Microsystems, Inc. business.
  947. * Permission to use, copy, modify, and distribute this
  948. * software is freely granted, provided that this notice
  949. * is preserved.
  950. * ====================================================
  951. *}
  952. {*
  953. * Returns the exponential of x.
  954. *
  955. * Method
  956. * 1. Argument reduction:
  957. * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
  958. * Given x, find r and integer k such that
  959. *
  960. * x = k*ln2 + r, |r| <= 0.5*ln2.
  961. *
  962. * Here r will be represented as r = hi-lo for better
  963. * accuracy.
  964. *
  965. * 2. Approximation of exp(r) by a special rational function on
  966. * the interval [0,0.34658]:
  967. * Write
  968. * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
  969. * We use a special Reme algorithm on [0,0.34658] to generate
  970. * a polynomial of degree 5 to approximate R. The maximum error
  971. * of this polynomial approximation is bounded by 2**-59. In
  972. * other words,
  973. * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
  974. * (where z=r*r, and the values of P1 to P5 are listed below)
  975. * and
  976. * | 5 | -59
  977. * | 2.0+P1*z+...+P5*z - R(z) | <= 2
  978. * | |
  979. * The computation of exp(r) thus becomes
  980. * 2*r
  981. * exp(r) = 1 + -------
  982. * R - r
  983. * r*R1(r)
  984. * = 1 + r + ----------- (for better accuracy)
  985. * 2 - R1(r)
  986. * where
  987. 2 4 10
  988. * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
  989. *
  990. * 3. Scale back to obtain exp(x):
  991. * From step 1, we have
  992. * exp(x) = 2^k * exp(r)
  993. *
  994. * Special cases:
  995. * exp(INF) is INF, exp(NaN) is NaN;
  996. * exp(-INF) is 0, and
  997. * for finite argument, only exp(0)=1 is exact.
  998. *
  999. * Accuracy:
  1000. * according to an error analysis, the error is always less than
  1001. * 1 ulp (unit in the last place).
  1002. *
  1003. * Misc. info.
  1004. * For IEEE double
  1005. * if x > 7.09782712893383973096e+02 then exp(x) overflow
  1006. * if x < -7.45133219101941108420e+02 then exp(x) underflow
  1007. *
  1008. * Constants:
  1009. * The hexadecimal values are the intended ones for the following
  1010. * constants. The decimal values may be used, provided that the
  1011. * compiler will convert from decimal to binary accurately enough
  1012. * to produce the hexadecimal values shown.
  1013. *
  1014. }
  1015. function fpc_exp_real(d: ValReal):ValReal;compilerproc;
  1016. const
  1017. halF : array[0..1] of double = (0.5,-0.5);
  1018. twom1000: double = 9.33263618503218878990e-302; { 2**-1000=0x01700000,0}
  1019. o_threshold: double = 7.09782712893383973096e+02; { 0x40862E42, 0xFEFA39EF }
  1020. u_threshold: double = -7.45133219101941108420e+02; { 0xc0874910, 0xD52D3051 }
  1021. ln2HI : array[0..1] of double = ( 6.93147180369123816490e-01, { 0x3fe62e42, 0xfee00000 }
  1022. -6.93147180369123816490e-01); { 0xbfe62e42, 0xfee00000 }
  1023. ln2LO : array[0..1] of double = (1.90821492927058770002e-10, { 0x3dea39ef, 0x35793c76 }
  1024. -1.90821492927058770002e-10); { 0xbdea39ef, 0x35793c76 }
  1025. invln2: double = 1.44269504088896338700e+00; { 0x3ff71547, 0x652b82fe }
  1026. P1: double = 1.66666666666666019037e-01; { 0x3FC55555, 0x5555553E }
  1027. P2: double = -2.77777777770155933842e-03; { 0xBF66C16C, 0x16BEBD93 }
  1028. P3: double = 6.61375632143793436117e-05; { 0x3F11566A, 0xAF25DE2C }
  1029. P4: double = -1.65339022054652515390e-06; { 0xBEBBBD41, 0xC5D26BF1 }
  1030. P5: double = 4.13813679705723846039e-08; { 0x3E663769, 0x72BEA4D0 }
  1031. var
  1032. c,hi,lo,t,y : double;
  1033. k,xsb : longint;
  1034. hx,hy,lx : dword;
  1035. begin
  1036. hi:=0.0;
  1037. lo:=0.0;
  1038. k:=0;
  1039. hx:=float64high(d);
  1040. xsb := (hx shr 31) and 1; { sign bit of d }
  1041. hx := hx and $7fffffff; { high word of |d| }
  1042. { filter out non-finite argument }
  1043. if hx >= $40862E42 then
  1044. begin { if |d|>=709.78... }
  1045. if hx >= $7ff00000 then
  1046. begin
  1047. lx:=float64low(d);
  1048. if ((hx and $fffff) or lx)<>0 then
  1049. begin
  1050. result:=d+d; { NaN }
  1051. exit;
  1052. end
  1053. else
  1054. begin
  1055. if xsb=0 then
  1056. result:=d
  1057. else
  1058. result:=0.0; { exp(+-inf)=(inf,0) }
  1059. exit;
  1060. end;
  1061. end;
  1062. if d > o_threshold then begin
  1063. result:=huge*huge; { overflow }
  1064. exit;
  1065. end;
  1066. if d < u_threshold then begin
  1067. result:=twom1000*twom1000; { underflow }
  1068. exit;
  1069. end;
  1070. end;
  1071. { argument reduction }
  1072. if hx > $3fd62e42 then
  1073. begin { if |d| > 0.5 ln2 }
  1074. if hx < $3FF0A2B2 then { and |d| < 1.5 ln2 }
  1075. begin
  1076. hi := d-ln2HI[xsb];
  1077. lo:=ln2LO[xsb];
  1078. k := 1-xsb-xsb;
  1079. end
  1080. else
  1081. begin
  1082. k := trunc(invln2*d+halF[xsb]);
  1083. t := k;
  1084. hi := d - t*ln2HI[0]; { t*ln2HI is exact here }
  1085. lo := t*ln2LO[0];
  1086. end;
  1087. d := hi - lo;
  1088. end
  1089. else if hx < $3e300000 then
  1090. begin { when |d|<2**-28 }
  1091. if huge+d>one then
  1092. begin
  1093. result:=one+d;{ trigger inexact }
  1094. exit;
  1095. end;
  1096. end
  1097. else
  1098. k := 0;
  1099. { d is now in primary range }
  1100. t:=d*d;
  1101. c:=d - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
  1102. if k=0 then
  1103. begin
  1104. result:=one-((d*c)/(c-2.0)-d);
  1105. exit;
  1106. end
  1107. else
  1108. y := one-((lo-(d*c)/(2.0-c))-hi);
  1109. if k >= -1021 then
  1110. begin
  1111. hy:=float64high(y);
  1112. float64sethigh(y,longint(hy)+(k shl 20)); { add k to y's exponent }
  1113. result:=y;
  1114. end
  1115. else
  1116. begin
  1117. hy:=float64high(y);
  1118. float64sethigh(y,longint(hy)+((k+1000) shl 20)); { add k to y's exponent }
  1119. result:=y*twom1000;
  1120. end;
  1121. end;
  1122. {$else SUPPORT_DOUBLE}
  1123. function fpc_exp_real(d: ValReal):ValReal;compilerproc;
  1124. {*****************************************************************}
  1125. { Exponential Function }
  1126. {*****************************************************************}
  1127. { }
  1128. { SYNOPSIS: }
  1129. { }
  1130. { double x, y, exp(); }
  1131. { }
  1132. { y = exp( x ); }
  1133. { }
  1134. { DESCRIPTION: }
  1135. { }
  1136. { Returns e (2.71828...) raised to the x power. }
  1137. { }
  1138. { Range reduction is accomplished by separating the argument }
  1139. { into an integer k and fraction f such that }
  1140. { }
  1141. { x k f }
  1142. { e = 2 e. }
  1143. { }
  1144. { A Pade' form of degree 2/3 is used to approximate exp(f)- 1 }
  1145. { in the basic range [-0.5 ln 2, 0.5 ln 2]. }
  1146. {*****************************************************************}
  1147. const P : array[0..2] of Real = (
  1148. 1.26183092834458542160E-4,
  1149. 3.02996887658430129200E-2,
  1150. 1.00000000000000000000E0);
  1151. Q : array[0..3] of Real = (
  1152. 3.00227947279887615146E-6,
  1153. 2.52453653553222894311E-3,
  1154. 2.27266044198352679519E-1,
  1155. 2.00000000000000000005E0);
  1156. C1 = 6.9335937500000000000E-1;
  1157. C2 = 2.1219444005469058277E-4;
  1158. var n : Integer;
  1159. px, qx, xx : Real;
  1160. begin
  1161. if( d > MAXLOG) then
  1162. float_raise(float_flag_overflow)
  1163. else
  1164. if( d < MINLOG ) then
  1165. begin
  1166. float_raise(float_flag_underflow);
  1167. result:=0; { Result if underflow masked }
  1168. end
  1169. else
  1170. begin
  1171. { Express e**x = e**g 2**n }
  1172. { = e**g e**( n loge(2) ) }
  1173. { = e**( g + n loge(2) ) }
  1174. px := d * LOG2E;
  1175. qx := Trunc( px + 0.5 ); { Trunc() truncates toward -infinity. }
  1176. n := Trunc(qx);
  1177. d := d - qx * C1;
  1178. d := d + qx * C2;
  1179. { rational approximation for exponential }
  1180. { of the fractional part: }
  1181. { e**x - 1 = 2x P(x**2)/( Q(x**2) - P(x**2) ) }
  1182. xx := d * d;
  1183. px := d * polevl( xx, P, 2 );
  1184. d := px/( polevl( xx, Q, 3 ) - px );
  1185. d := ldexp( d, 1 );
  1186. d := d + 1.0;
  1187. d := ldexp( d, n );
  1188. result := d;
  1189. end;
  1190. end;
  1191. {$endif SUPPORT_DOUBLE}
  1192. {$endif}
  1193. {$ifndef FPC_SYSTEM_HAS_ROUND}
  1194. function fpc_round_real(d : ValReal) : int64;compilerproc;
  1195. var
  1196. tmp: double;
  1197. j0: longint;
  1198. hx: longword;
  1199. sx: longint;
  1200. const
  1201. H2_52: array[0..1] of double = (
  1202. 4.50359962737049600000e+15,
  1203. -4.50359962737049600000e+15
  1204. );
  1205. Begin
  1206. { This basically calculates trunc((d+2**52)-2**52) }
  1207. hx:=float64high(d);
  1208. j0:=((hx shr 20) and $7ff) - $3ff;
  1209. sx:=hx shr 31;
  1210. hx:=(hx and $fffff) or $100000;
  1211. if j0>=52 then { No fraction bits, already integer }
  1212. begin
  1213. if j0>=63 then { Overflow, let trunc() raise an exception }
  1214. exit(trunc(d)) { and/or return +/-MaxInt64 if it's masked }
  1215. else
  1216. result:=((int64(hx) shl 32) or dword(float64low(d))) shl (j0-52);
  1217. end
  1218. else
  1219. begin
  1220. { Rounding happens here. It is important that the expression is not
  1221. optimized by selecting a larger type to store 'tmp'. }
  1222. tmp:=H2_52[sx]+d;
  1223. d:=tmp-H2_52[sx];
  1224. hx:=float64high(d);
  1225. j0:=((hx shr 20) and $7ff)-$3ff;
  1226. hx:=(hx and $fffff) or $100000;
  1227. if j0<=20 then
  1228. begin
  1229. if j0<0 then
  1230. exit(0)
  1231. else { more than 32 fraction bits, low dword discarded }
  1232. result:=hx shr (20-j0);
  1233. end
  1234. else
  1235. result:=(int64(hx) shl (j0-20)) or (float64low(d) shr (52-j0));
  1236. end;
  1237. if sx<>0 then
  1238. result:=-result;
  1239. end;
  1240. {$endif FPC_SYSTEM_HAS_ROUND}
  1241. {$ifndef FPC_SYSTEM_HAS_LN}
  1242. function fpc_ln_real(d:ValReal):ValReal;compilerproc;
  1243. {
  1244. This code was translated from uclib code, the original code
  1245. had the following copyright notice:
  1246. *
  1247. * ====================================================
  1248. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  1249. *
  1250. * Developed at SunPro, a Sun Microsystems, Inc. business.
  1251. * Permission to use, copy, modify, and distribute this
  1252. * software is freely granted, provided that this notice
  1253. * is preserved.
  1254. * ====================================================
  1255. *}
  1256. {*****************************************************************}
  1257. { Natural Logarithm }
  1258. {*****************************************************************}
  1259. {*
  1260. * SYNOPSIS:
  1261. *
  1262. * double x, y, log();
  1263. *
  1264. * y = ln( x );
  1265. *
  1266. * DESCRIPTION:
  1267. *
  1268. * Returns the base e (2.718...) logarithm of x.
  1269. *
  1270. * Method :
  1271. * 1. Argument Reduction: find k and f such that
  1272. * x = 2^k * (1+f),
  1273. * where sqrt(2)/2 < 1+f < sqrt(2) .
  1274. *
  1275. * 2. Approximation of log(1+f).
  1276. * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
  1277. * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
  1278. * = 2s + s*R
  1279. * We use a special Reme algorithm on [0,0.1716] to generate
  1280. * a polynomial of degree 14 to approximate R The maximum error
  1281. * of this polynomial approximation is bounded by 2**-58.45. In
  1282. * other words,
  1283. * 2 4 6 8 10 12 14
  1284. * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
  1285. * (the values of Lg1 to Lg7 are listed in the program)
  1286. * and
  1287. * | 2 14 | -58.45
  1288. * | Lg1*s +...+Lg7*s - R(z) | <= 2
  1289. * | |
  1290. * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
  1291. * In order to guarantee error in log below 1ulp, we compute log
  1292. * by
  1293. * log(1+f) = f - s*(f - R) (if f is not too large)
  1294. * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
  1295. *
  1296. * 3. Finally, log(x) = k*ln2 + log(1+f).
  1297. * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
  1298. * Here ln2 is split into two floating point number:
  1299. * ln2_hi + ln2_lo,
  1300. * where n*ln2_hi is always exact for |n| < 2000.
  1301. *
  1302. * Special cases:
  1303. * log(x) is NaN with signal if x < 0 (including -INF) ;
  1304. * log(+INF) is +INF; log(0) is -INF with signal;
  1305. * log(NaN) is that NaN with no signal.
  1306. *
  1307. * Accuracy:
  1308. * according to an error analysis, the error is always less than
  1309. * 1 ulp (unit in the last place).
  1310. *}
  1311. const
  1312. ln2_hi: double = 6.93147180369123816490e-01; { 3fe62e42 fee00000 }
  1313. ln2_lo: double = 1.90821492927058770002e-10; { 3dea39ef 35793c76 }
  1314. two54: double = 1.80143985094819840000e+16; { 43500000 00000000 }
  1315. Lg1: double = 6.666666666666735130e-01; { 3FE55555 55555593 }
  1316. Lg2: double = 3.999999999940941908e-01; { 3FD99999 9997FA04 }
  1317. Lg3: double = 2.857142874366239149e-01; { 3FD24924 94229359 }
  1318. Lg4: double = 2.222219843214978396e-01; { 3FCC71C5 1D8E78AF }
  1319. Lg5: double = 1.818357216161805012e-01; { 3FC74664 96CB03DE }
  1320. Lg6: double = 1.531383769920937332e-01; { 3FC39A09 D078C69F }
  1321. Lg7: double = 1.479819860511658591e-01; { 3FC2F112 DF3E5244 }
  1322. zero: double = 0.0;
  1323. var
  1324. hfsq,f,s,z,R,w,t1,t2,dk: double;
  1325. k,hx,i,j: longint;
  1326. lx: longword;
  1327. {$push}
  1328. { if we have to check manually fpu exceptions, then force the exit statements here to
  1329. throw one }
  1330. {$CHECKFPUEXCEPTIONS+}
  1331. { turn off fastmath as it converts (d-d)/zero into 0 and thus not raising an exception }
  1332. {$OPTIMIZATION NOFASTMATH}
  1333. begin
  1334. hx := float64high(d);
  1335. lx := float64low(d);
  1336. k := 0;
  1337. if (hx < $00100000) then { x < 2**-1022 }
  1338. begin
  1339. if (((hx and $7fffffff) or longint(lx))=0) then
  1340. exit(-two54/zero); { log(+-0)=-inf }
  1341. if (hx<0) then
  1342. exit((d-d)/zero); { log(-#) = NaN }
  1343. dec(k, 54); d := d * two54; { subnormal number, scale up x }
  1344. hx := float64high(d);
  1345. end;
  1346. if (hx >= $7ff00000) then
  1347. exit(d+d);
  1348. {$pop}
  1349. inc(k, (hx shr 20)-1023);
  1350. hx := hx and $000fffff;
  1351. i := (hx + $95f64) and $100000;
  1352. float64sethigh(d,hx or (i xor $3ff00000)); { normalize x or x/2 }
  1353. inc(k, (i shr 20));
  1354. f := d-1.0;
  1355. if (($000fffff and (2+hx))<3) then { |f| < 2**-20 }
  1356. begin
  1357. if (f=zero) then
  1358. begin
  1359. if (k=0) then
  1360. exit(zero)
  1361. else
  1362. begin
  1363. dk := k;
  1364. exit(dk*ln2_hi+dk*ln2_lo);
  1365. end;
  1366. end;
  1367. R := f*f*(0.5-0.33333333333333333*f);
  1368. if (k=0) then
  1369. exit(f-R)
  1370. else
  1371. begin
  1372. dk := k;
  1373. exit(dk*ln2_hi-((R-dk*ln2_lo)-f));
  1374. end;
  1375. end;
  1376. s := f/(2.0+f);
  1377. dk := k;
  1378. z := s*s;
  1379. i := hx-$6147a;
  1380. w := z*z;
  1381. j := $6b851-hx;
  1382. t1 := w*(Lg2+w*(Lg4+w*Lg6));
  1383. t2 := z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
  1384. i := i or j;
  1385. R := t2+t1;
  1386. if (i>0) then
  1387. begin
  1388. hfsq := 0.5*f*f;
  1389. if (k=0) then
  1390. result := f-(hfsq-s*(hfsq+R))
  1391. else
  1392. result := dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
  1393. end
  1394. else
  1395. begin
  1396. if (k=0) then
  1397. result := f-s*(f-R)
  1398. else
  1399. result := dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
  1400. end;
  1401. end;
  1402. {$endif}
  1403. {$ifndef FPC_SYSTEM_HAS_SIN}
  1404. function fpc_Sin_real(d:ValReal):ValReal;compilerproc;
  1405. {*****************************************************************}
  1406. { Circular Sine }
  1407. {*****************************************************************}
  1408. { }
  1409. { SYNOPSIS: }
  1410. { }
  1411. { double x, y, sin(); }
  1412. { }
  1413. { y = sin( x ); }
  1414. { }
  1415. { DESCRIPTION: }
  1416. { }
  1417. { Range reduction is into intervals of pi/4. The reduction }
  1418. { error is nearly eliminated by contriving an extended }
  1419. { precision modular arithmetic. }
  1420. { }
  1421. { Two polynomial approximating functions are employed. }
  1422. { Between 0 and pi/4 the sine is approximated by }
  1423. { x + x**3 P(x**2). }
  1424. { Between pi/4 and pi/2 the cosine is represented as }
  1425. { 1 - x**2 Q(x**2). }
  1426. {*****************************************************************}
  1427. var y, z, zz : Real;
  1428. j : sizeint;
  1429. begin
  1430. { This seemingly useless condition ensures that sin(-0.0)=-0.0 }
  1431. if (d=0.0) then
  1432. exit(d);
  1433. j := rem_pio2(d,z) and 3;
  1434. zz := z * z;
  1435. if( (j=1) or (j=3) ) then
  1436. y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 )
  1437. else
  1438. { y = z + z * (zz * polevl( zz, sincof, 5 )); }
  1439. y := z + z * z * z * polevl( zz, sincof, 5 );
  1440. if (j > 1) then
  1441. result := -y
  1442. else
  1443. result := y;
  1444. end;
  1445. {$endif}
  1446. {$ifndef FPC_SYSTEM_HAS_COS}
  1447. function fpc_Cos_real(d:ValReal):ValReal;compilerproc;
  1448. {*****************************************************************}
  1449. { Circular cosine }
  1450. {*****************************************************************}
  1451. { }
  1452. { Circular cosine }
  1453. { }
  1454. { SYNOPSIS: }
  1455. { }
  1456. { double x, y, cos(); }
  1457. { }
  1458. { y = cos( x ); }
  1459. { }
  1460. { DESCRIPTION: }
  1461. { }
  1462. { Range reduction is into intervals of pi/4. The reduction }
  1463. { error is nearly eliminated by contriving an extended }
  1464. { precision modular arithmetic. }
  1465. { }
  1466. { Two polynomial approximating functions are employed. }
  1467. { Between 0 and pi/4 the cosine is approximated by }
  1468. { 1 - x**2 Q(x**2). }
  1469. { Between pi/4 and pi/2 the sine is represented as }
  1470. { x + x**3 P(x**2). }
  1471. {*****************************************************************}
  1472. var y, z, zz : Real;
  1473. j : sizeint;
  1474. begin
  1475. j := rem_pio2(d,z) and 3;
  1476. zz := z * z;
  1477. if( (j=1) or (j=3) ) then
  1478. { y = z + z * (zz * polevl( zz, sincof, 5 )); }
  1479. y := z + z * z * z * polevl( zz, sincof, 5 )
  1480. else
  1481. y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );
  1482. if (j = 1) or (j = 2) then
  1483. result := -y
  1484. else
  1485. result := y ;
  1486. end;
  1487. {$endif}
  1488. {$ifndef FPC_SYSTEM_HAS_ARCTAN}
  1489. function fpc_ArcTan_real(d:ValReal):ValReal;compilerproc;
  1490. {
  1491. This code was translated from uclibc code, the original code
  1492. had the following copyright notice:
  1493. *
  1494. * ====================================================
  1495. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  1496. *
  1497. * Developed at SunPro, a Sun Microsystems, Inc. business.
  1498. * Permission to use, copy, modify, and distribute this
  1499. * software is freely granted, provided that this notice
  1500. * is preserved.
  1501. * ====================================================
  1502. *}
  1503. {********************************************************************}
  1504. { Inverse circular tangent (arctangent) }
  1505. {********************************************************************}
  1506. { }
  1507. { SYNOPSIS: }
  1508. { }
  1509. { double x, y, atan(); }
  1510. { }
  1511. { y = atan( x ); }
  1512. { }
  1513. { DESCRIPTION: }
  1514. { }
  1515. { Returns radian angle between -pi/2 and +pi/2 whose tangent }
  1516. { is x. }
  1517. { }
  1518. { Method }
  1519. { 1. Reduce x to positive by atan(x) = -atan(-x). }
  1520. { 2. According to the integer k=4t+0.25 chopped, t=x, the argument }
  1521. { is further reduced to one of the following intervals and the }
  1522. { arctangent of t is evaluated by the corresponding formula: }
  1523. { }
  1524. { [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) }
  1525. { [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) }
  1526. { [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) }
  1527. { [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) }
  1528. { [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) }
  1529. {********************************************************************}
  1530. const
  1531. atanhi: array [0..3] of double = (
  1532. 4.63647609000806093515e-01, { atan(0.5)hi 0x3FDDAC67, 0x0561BB4F }
  1533. 7.85398163397448278999e-01, { atan(1.0)hi 0x3FE921FB, 0x54442D18 }
  1534. 9.82793723247329054082e-01, { atan(1.5)hi 0x3FEF730B, 0xD281F69B }
  1535. 1.57079632679489655800e+00 { atan(inf)hi 0x3FF921FB, 0x54442D18 }
  1536. );
  1537. atanlo: array [0..3] of double = (
  1538. 2.26987774529616870924e-17, { atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 }
  1539. 3.06161699786838301793e-17, { atan(1.0)lo 0x3C81A626, 0x33145C07 }
  1540. 1.39033110312309984516e-17, { atan(1.5)lo 0x3C700788, 0x7AF0CBBD }
  1541. 6.12323399573676603587e-17 { atan(inf)lo 0x3C91A626, 0x33145C07 }
  1542. );
  1543. aT: array[0..10] of double = (
  1544. 3.33333333333329318027e-01, { 0x3FD55555, 0x5555550D }
  1545. -1.99999999998764832476e-01, { 0xBFC99999, 0x9998EBC4 }
  1546. 1.42857142725034663711e-01, { 0x3FC24924, 0x920083FF }
  1547. -1.11111104054623557880e-01, { 0xBFBC71C6, 0xFE231671 }
  1548. 9.09088713343650656196e-02, { 0x3FB745CD, 0xC54C206E }
  1549. -7.69187620504482999495e-02, { 0xBFB3B0F2, 0xAF749A6D }
  1550. 6.66107313738753120669e-02, { 0x3FB10D66, 0xA0D03D51 }
  1551. -5.83357013379057348645e-02, { 0xBFADDE2D, 0x52DEFD9A }
  1552. 4.97687799461593236017e-02, { 0x3FA97B4B, 0x24760DEB }
  1553. -3.65315727442169155270e-02, { 0xBFA2B444, 0x2C6A6C2F }
  1554. 1.62858201153657823623e-02 { 0x3F90AD3A, 0xE322DA11 }
  1555. );
  1556. var
  1557. w,s1,s2,z: double;
  1558. ix,hx,id: longint;
  1559. low: longword;
  1560. begin
  1561. hx:=float64high(d);
  1562. ix := hx and $7fffffff;
  1563. if (ix>=$44100000) then { if |x| >= 2^66 }
  1564. begin
  1565. low:=float64low(d);
  1566. if (ix > $7ff00000) or ((ix = $7ff00000) and (low<>0)) then
  1567. exit(d+d); { NaN }
  1568. if (hx>0) then
  1569. exit(atanhi[3]+atanlo[3])
  1570. else
  1571. exit(-atanhi[3]-atanlo[3]);
  1572. end;
  1573. if (ix < $3fdc0000) then { |x| < 0.4375 }
  1574. begin
  1575. if (ix < $3e200000) then { |x| < 2^-29 }
  1576. begin
  1577. if (huge+d>one) then exit(d); { raise inexact }
  1578. end;
  1579. id := -1;
  1580. end
  1581. else
  1582. begin
  1583. d := abs(d);
  1584. if (ix < $3ff30000) then { |x| < 1.1875 }
  1585. begin
  1586. if (ix < $3fe60000) then { 7/16 <=|x|<11/16 }
  1587. begin
  1588. id := 0; d := (2.0*d-one)/(2.0+d);
  1589. end
  1590. else { 11/16<=|x|< 19/16 }
  1591. begin
  1592. id := 1; d := (d-one)/(d+one);
  1593. end
  1594. end
  1595. else
  1596. begin
  1597. if (ix < $40038000) then { |x| < 2.4375 }
  1598. begin
  1599. id := 2; d := (d-1.5)/(one+1.5*d);
  1600. end
  1601. else { 2.4375 <= |x| < 2^66 }
  1602. begin
  1603. id := 3; d := -1.0/d;
  1604. end;
  1605. end;
  1606. end;
  1607. { end of argument reduction }
  1608. z := d*d;
  1609. w := z*z;
  1610. { break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly }
  1611. s1 := z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
  1612. s2 := w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
  1613. if (id<0) then
  1614. result := d - d*(s1+s2)
  1615. else
  1616. begin
  1617. z := atanhi[id] - ((d*(s1+s2) - atanlo[id]) - d);
  1618. if hx<0 then
  1619. result := -z
  1620. else
  1621. result := z;
  1622. end;
  1623. end;
  1624. {$endif}
  1625. {$ifndef FPC_SYSTEM_HAS_FRAC}
  1626. function fpc_frac_real(d : ValReal) : ValReal;compilerproc;
  1627. begin
  1628. result := d - Int(d);
  1629. end;
  1630. {$endif}
  1631. {$ifdef FPC_INCLUDE_SOFTWARE_INT64_TO_DOUBLE}
  1632. {$ifndef FPC_SYSTEM_HAS_QWORD_TO_DOUBLE}
  1633. function fpc_qword_to_double(q : qword): double; compilerproc;
  1634. begin
  1635. result:=dword(q and $ffffffff)+dword(q shr 32)*double(4294967296.0);
  1636. end;
  1637. {$endif FPC_SYSTEM_HAS_INT64_TO_DOUBLE}
  1638. {$ifndef FPC_SYSTEM_HAS_INT64_TO_DOUBLE}
  1639. function fpc_int64_to_double(i : int64): double; compilerproc;
  1640. begin
  1641. result:=dword(i and $ffffffff)+longint(i shr 32)*double(4294967296.0);
  1642. end;
  1643. {$endif FPC_SYSTEM_HAS_INT64_TO_DOUBLE}
  1644. {$endif FPC_INCLUDE_SOFTWARE_INT64_TO_DOUBLE}
  1645. {$ifdef SUPPORT_DOUBLE}
  1646. {****************************************************************************
  1647. Helper routines to support old TP styled reals
  1648. ****************************************************************************}
  1649. {$ifndef FPC_SYSTEM_HAS_REAL2DOUBLE}
  1650. function real2double(r : real48) : double;
  1651. var
  1652. res : array[0..7] of byte;
  1653. exponent : word;
  1654. begin
  1655. { check for zero }
  1656. if r[0]=0 then
  1657. begin
  1658. real2double:=0.0;
  1659. exit;
  1660. end;
  1661. { copy mantissa }
  1662. res[0]:=0;
  1663. res[1]:=r[1] shl 5;
  1664. res[2]:=(r[1] shr 3) or (r[2] shl 5);
  1665. res[3]:=(r[2] shr 3) or (r[3] shl 5);
  1666. res[4]:=(r[3] shr 3) or (r[4] shl 5);
  1667. res[5]:=(r[4] shr 3) or (r[5] and $7f) shl 5;
  1668. res[6]:=(r[5] and $7f) shr 3;
  1669. { copy exponent }
  1670. { correct exponent: }
  1671. exponent:=(word(r[0])+(1023-129));
  1672. res[6]:=res[6] or ((exponent and $f) shl 4);
  1673. res[7]:=exponent shr 4;
  1674. { set sign }
  1675. res[7]:=res[7] or (r[5] and $80);
  1676. real2double:=double(res);
  1677. end;
  1678. {$endif FPC_SYSTEM_HAS_REAL2DOUBLE}
  1679. {$endif SUPPORT_DOUBLE}
  1680. {$ifdef SUPPORT_EXTENDED}
  1681. { fast 10^n routine }
  1682. function FPower10(val: Extended; Power: Longint): Extended;
  1683. const
  1684. pow32 : array[0..31] of extended =
  1685. (
  1686. 1e0,1e1,1e2,1e3,1e4,1e5,1e6,1e7,1e8,1e9,1e10,
  1687. 1e11,1e12,1e13,1e14,1e15,1e16,1e17,1e18,1e19,1e20,
  1688. 1e21,1e22,1e23,1e24,1e25,1e26,1e27,1e28,1e29,1e30,
  1689. 1e31
  1690. );
  1691. pow512 : array[0..15] of extended =
  1692. (
  1693. 1,1e32,1e64,1e96,1e128,1e160,1e192,1e224,
  1694. 1e256,1e288,1e320,1e352,1e384,1e416,1e448,
  1695. 1e480
  1696. );
  1697. pow4096 : array[0..9] of extended =
  1698. (1,1e512,1e1024,1e1536,
  1699. 1e2048,1e2560,1e3072,1e3584,
  1700. 1e4096,1e4608
  1701. );
  1702. negpow32 : array[0..31] of extended =
  1703. (
  1704. 1e-0,1e-1,1e-2,1e-3,1e-4,1e-5,1e-6,1e-7,1e-8,1e-9,1e-10,
  1705. 1e-11,1e-12,1e-13,1e-14,1e-15,1e-16,1e-17,1e-18,1e-19,1e-20,
  1706. 1e-21,1e-22,1e-23,1e-24,1e-25,1e-26,1e-27,1e-28,1e-29,1e-30,
  1707. 1e-31
  1708. );
  1709. negpow512 : array[0..15] of extended =
  1710. (
  1711. 0,1e-32,1e-64,1e-96,1e-128,1e-160,1e-192,1e-224,
  1712. 1e-256,1e-288,1e-320,1e-352,1e-384,1e-416,1e-448,
  1713. 1e-480
  1714. );
  1715. negpow4096 : array[0..9] of extended =
  1716. (
  1717. 0,1e-512,1e-1024,1e-1536,
  1718. 1e-2048,1e-2560,1e-3072,1e-3584,
  1719. 1e-4096,1e-4608
  1720. );
  1721. begin
  1722. if Power<0 then
  1723. begin
  1724. Power:=-Power;
  1725. result:=val*negpow32[Power and $1f];
  1726. power:=power shr 5;
  1727. if power<>0 then
  1728. begin
  1729. result:=result*negpow512[Power and $f];
  1730. power:=power shr 4;
  1731. if power<>0 then
  1732. begin
  1733. if power<=9 then
  1734. result:=result*negpow4096[Power]
  1735. else
  1736. result:=1.0/0.0;
  1737. end;
  1738. end;
  1739. end
  1740. else
  1741. begin
  1742. result:=val*pow32[Power and $1f];
  1743. power:=power shr 5;
  1744. if power<>0 then
  1745. begin
  1746. result:=result*pow512[Power and $f];
  1747. power:=power shr 4;
  1748. if power<>0 then
  1749. begin
  1750. if power<=9 then
  1751. result:=result*pow4096[Power]
  1752. else
  1753. result:=1.0/0.0;
  1754. end;
  1755. end;
  1756. end;
  1757. end;
  1758. {$endif SUPPORT_EXTENDED}
  1759. {$if defined(SUPPORT_EXTENDED) or defined(FPC_SOFT_FPUX80)}
  1760. function TExtended80Rec.Mantissa(IncludeHiddenBit: Boolean = False) : QWord;
  1761. begin
  1762. if IncludeHiddenbit then
  1763. Result:=Frac
  1764. else
  1765. Result:=Frac and $7fffffffffffffff;
  1766. end;
  1767. function TExtended80Rec.Fraction : Extended;
  1768. begin
  1769. {$ifdef SUPPORT_EXTENDED}
  1770. Result:=system.frac(Value);
  1771. {$else}
  1772. Result:=Frac / Double (1 shl 63) / 2.0;
  1773. {$endif}
  1774. end;
  1775. function TExtended80Rec.Exponent : Longint;
  1776. var
  1777. E: QWord;
  1778. begin
  1779. Result := 0;
  1780. E := GetExp;
  1781. if (0<E) and (E<2*Bias+1) then
  1782. Result:=Exp-Bias
  1783. else if (Exp=0) and (Frac<>0) then
  1784. Result:=-(Bias-1);
  1785. end;
  1786. function TExtended80Rec.GetExp : QWord;
  1787. begin
  1788. Result:=_Exp and $7fff;
  1789. end;
  1790. procedure TExtended80Rec.SetExp(e : QWord);
  1791. begin
  1792. _Exp:=(_Exp and $8000) or (e and $7fff);
  1793. end;
  1794. function TExtended80Rec.GetSign : Boolean;
  1795. begin
  1796. Result:=(_Exp and $8000)<>0;
  1797. end;
  1798. procedure TExtended80Rec.SetSign(s : Boolean);
  1799. begin
  1800. _Exp:=(_Exp and $7ffff) or (ord(s) shl 15);
  1801. end;
  1802. {
  1803. Based on information taken from http://en.wikipedia.org/wiki/Extended_precision#x86_Extended_Precision_Format
  1804. }
  1805. function TExtended80Rec.SpecialType : TFloatSpecial;
  1806. const
  1807. Denormal : array[boolean] of TFloatSpecial = (fsDenormal,fsNDenormal);
  1808. begin
  1809. case Exp of
  1810. 0:
  1811. begin
  1812. if Mantissa=0 then
  1813. begin
  1814. if Sign then
  1815. Result:=fsNZero
  1816. else
  1817. Result:=fsZero
  1818. end
  1819. else
  1820. Result:=Denormal[Sign];
  1821. end;
  1822. $7fff:
  1823. case (Frac shr 62) and 3 of
  1824. 0,1:
  1825. Result:=fsInvalidOp;
  1826. 2:
  1827. begin
  1828. if (Frac and $3fffffffffffffff)=0 then
  1829. begin
  1830. if Sign then
  1831. Result:=fsNInf
  1832. else
  1833. Result:=fsInf;
  1834. end
  1835. else
  1836. Result:=fsNaN;
  1837. end;
  1838. 3:
  1839. Result:=fsNaN;
  1840. end
  1841. else
  1842. begin
  1843. if (Frac and $8000000000000000)=0 then
  1844. Result:=fsInvalidOp
  1845. else
  1846. begin
  1847. if Sign then
  1848. Result:=fsNegative
  1849. else
  1850. Result:=fsPositive;
  1851. end;
  1852. end;
  1853. end;
  1854. end;
  1855. procedure TExtended80Rec.BuildUp(const _Sign: Boolean; const _Mantissa: QWord; const _Exponent: Longint);
  1856. begin
  1857. {$ifdef SUPPORT_EXTENDED}
  1858. Value := 0.0;
  1859. {$else SUPPORT_EXTENDED}
  1860. FillChar(Value, SizeOf(Value),0);
  1861. {$endif SUPPORT_EXTENDED}
  1862. if (_Mantissa=0) and (_Exponent=0) then
  1863. SetExp(0)
  1864. else
  1865. SetExp(_Exponent + Bias);
  1866. SetSign(_Sign);
  1867. Frac := _Mantissa;
  1868. end;
  1869. {$endif SUPPORT_EXTENDED or FPC_SOFT_FPUX80}
  1870. {$ifdef SUPPORT_DOUBLE}
  1871. function TDoubleRec.Mantissa(IncludeHiddenBit: Boolean = False) : QWord;
  1872. begin
  1873. Result:=(Data and $fffffffffffff);
  1874. if (Result=0) and (GetExp=0) then Exit;
  1875. if IncludeHiddenBit then Result := Result or $10000000000000; //add the hidden bit
  1876. end;
  1877. function TDoubleRec.Fraction : ValReal;
  1878. begin
  1879. Result:=system.frac(Value);
  1880. end;
  1881. function TDoubleRec.Exponent : Longint;
  1882. var
  1883. E: QWord;
  1884. begin
  1885. Result := 0;
  1886. E := GetExp;
  1887. if (0<E) and (E<2*Bias+1) then
  1888. Result:=Exp-Bias
  1889. else if (Exp=0) and (Frac<>0) then
  1890. Result:=-(Bias-1);
  1891. end;
  1892. function TDoubleRec.GetExp : QWord;
  1893. begin
  1894. Result:=(Data and $7ff0000000000000) shr 52;
  1895. end;
  1896. procedure TDoubleRec.SetExp(e : QWord);
  1897. begin
  1898. Data:=(Data and $800fffffffffffff) or ((e and $7ff) shl 52);
  1899. end;
  1900. function TDoubleRec.GetSign : Boolean;
  1901. begin
  1902. Result:=(Data and $8000000000000000)<>0;
  1903. end;
  1904. procedure TDoubleRec.SetSign(s : Boolean);
  1905. begin
  1906. Data:=(Data and $7fffffffffffffff) or (QWord(ord(s)) shl 63);
  1907. end;
  1908. function TDoubleRec.GetFrac : QWord;
  1909. begin
  1910. Result := Data and $fffffffffffff;
  1911. end;
  1912. procedure TDoubleRec.SetFrac(e : QWord);
  1913. begin
  1914. Data:=(Data and $fff0000000000000) or (e and $fffffffffffff);
  1915. end;
  1916. {
  1917. Based on information taken from http://en.wikipedia.org/wiki/Double_precision#x86_Extended_Precision_Format
  1918. }
  1919. function TDoubleRec.SpecialType : TFloatSpecial;
  1920. const
  1921. Denormal : array[boolean] of TFloatSpecial = (fsDenormal,fsNDenormal);
  1922. begin
  1923. case Exp of
  1924. 0:
  1925. begin
  1926. if Mantissa=0 then
  1927. begin
  1928. if Sign then
  1929. Result:=fsNZero
  1930. else
  1931. Result:=fsZero
  1932. end
  1933. else
  1934. Result:=Denormal[Sign];
  1935. end;
  1936. $7ff:
  1937. if Mantissa=0 then
  1938. begin
  1939. if Sign then
  1940. Result:=fsNInf
  1941. else
  1942. Result:=fsInf;
  1943. end
  1944. else
  1945. Result:=fsNaN;
  1946. else
  1947. begin
  1948. if Sign then
  1949. Result:=fsNegative
  1950. else
  1951. Result:=fsPositive;
  1952. end;
  1953. end;
  1954. end;
  1955. procedure TDoubleRec.BuildUp(const _Sign: Boolean; const _Mantissa: QWord; const _Exponent: Longint);
  1956. begin
  1957. Value := 0.0;
  1958. SetSign(_Sign);
  1959. if (_Mantissa=0) and (_Exponent=0) then
  1960. Exit //SetExp(0)
  1961. else
  1962. SetExp(_Exponent + Bias);
  1963. SetFrac(_Mantissa and $fffffffffffff); //clear top bit
  1964. end;
  1965. {$endif SUPPORT_DOUBLE}
  1966. {$ifdef SUPPORT_SINGLE}
  1967. function TSingleRec.Mantissa(IncludeHiddenBit: Boolean = False) : QWord;
  1968. begin
  1969. Result:=(Data and $7fffff);
  1970. if (Result=0) and (GetExp=0) then Exit;
  1971. if IncludeHiddenBit then Result:=Result or $800000; //add the hidden bit
  1972. end;
  1973. function TSingleRec.Fraction : ValReal;
  1974. begin
  1975. Result:=system.frac(Value);
  1976. end;
  1977. function TSingleRec.Exponent : Longint;
  1978. var
  1979. E: QWord;
  1980. begin
  1981. Result := 0;
  1982. E := GetExp;
  1983. if (0<E) and (E<2*Bias+1) then
  1984. Result:=Exp-Bias
  1985. else if (Exp=0) and (Frac<>0) then
  1986. Result:=-(Bias-1);
  1987. end;
  1988. function TSingleRec.GetExp : QWord;
  1989. begin
  1990. Result:=(Data and $7f800000) shr 23;
  1991. end;
  1992. procedure TSingleRec.SetExp(e : QWord);
  1993. begin
  1994. Data:=(Data and $807fffff) or ((e and $ff) shl 23);
  1995. end;
  1996. function TSingleRec.GetSign : Boolean;
  1997. begin
  1998. Result:=(Data and $80000000)<>0;
  1999. end;
  2000. procedure TSingleRec.SetSign(s : Boolean);
  2001. begin
  2002. Data:=(Data and $7fffffff) or (DWord(ord(s)) shl 31);
  2003. end;
  2004. function TSingleRec.GetFrac : QWord;
  2005. begin
  2006. Result:=Data and $7fffff;
  2007. end;
  2008. procedure TSingleRec.SetFrac(e : QWord);
  2009. begin
  2010. Data:=(Data and $ff800000) or (e and $7fffff);
  2011. end;
  2012. {
  2013. Based on information taken from http://en.wikipedia.org/wiki/Single_precision#x86_Extended_Precision_Format
  2014. }
  2015. function TSingleRec.SpecialType : TFloatSpecial;
  2016. const
  2017. Denormal : array[boolean] of TFloatSpecial = (fsDenormal,fsNDenormal);
  2018. begin
  2019. case Exp of
  2020. 0:
  2021. begin
  2022. if Mantissa=0 then
  2023. begin
  2024. if Sign then
  2025. Result:=fsNZero
  2026. else
  2027. Result:=fsZero
  2028. end
  2029. else
  2030. Result:=Denormal[Sign];
  2031. end;
  2032. $ff:
  2033. if Mantissa=0 then
  2034. begin
  2035. if Sign then
  2036. Result:=fsNInf
  2037. else
  2038. Result:=fsInf;
  2039. end
  2040. else
  2041. Result:=fsNaN;
  2042. else
  2043. begin
  2044. if Sign then
  2045. Result:=fsNegative
  2046. else
  2047. Result:=fsPositive;
  2048. end;
  2049. end;
  2050. end;
  2051. procedure TSingleRec.BuildUp(const _Sign: Boolean; const _Mantissa: QWord; const _Exponent: Longint);
  2052. begin
  2053. Value := 0.0;
  2054. SetSign(_Sign);
  2055. if (_Mantissa=0) and (_Exponent=0) then
  2056. Exit //SetExp(0)
  2057. else
  2058. SetExp(_Exponent + Bias);
  2059. SetFrac(_Mantissa and $7fffff); //clear top bit
  2060. end;
  2061. {$endif SUPPORT_SINGLE}