123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122 |
- {
- $id: $
- Copyright (c) 2000 by Marco van de Voort ([email protected])
- member of the Free Pascal development team
- See the file COPYING.FPC, included in this distribution,
- for details about the copyright. (LGPL)
- TExpression class which does symbolic manipulation.
- Derivation routine based on 20 lines of conceptual pseudo code
- provided by Osmo Ronkanen.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- **********************************************************************
- Problems:
- - Often untested. I used my HP48g to check some complex derivatives,
- but more thorough checking and errorhandling is necessary.
- - RPN to Infix adds ()'s when not necessary. Should be made aware of precedence.
- (partially fixed)
- }
- {Should be moved to a math unit. Calculate x! with a 23 degree polynomal for
- ArbFloat values. From Numlib.
- Works for extended only. Redefine TC1 and TC3 for your numeric type
- if you want to use something else.}
- type Float10Arb =ARRAY[0..9] OF BYTE;
- const
- TC1 : Float10Arb = (0,0,$00,$00,$00,$00,0,128,192,63); {Eps}
- TC3 : Float10Arb = (1,0,0,0,0,0,0,0,0,0); {3.64519953188247460E-4951}
- var {Looks ugly, but is quite handy.}
- macheps : ArbFloat absolute TC1; { macheps = r - 1, with r
- the smallest ArbFloat > 1}
- midget : ArbFloat absolute TC3; { the smallest positive ArbFloat}
- function spepol(x: ArbFloat; var a: ArbFloat; n: ArbInt): ArbFloat;
- var pa : ^ArbFloat; {FPC extension. Uses ^ some array of ArbFloat in TP}
- i : ArbInt;
- polx : ArbFloat;
- begin
- pa:=@a;
- polx:=0;
- for i:=n downto 0 do
- polx:=polx*x+pa[i]; {and pa^[i] here}
- spepol:=polx
- end {spepol};
- function spegam(x: ArbFloat): ArbFloat;
- const
- tmax = 170;
- a: array[0..23] of ArbFloat =
- ( 8.86226925452758013e-1, 1.61691987244425092e-2,
- 1.03703363422075456e-1, -1.34118505705967765e-2,
- 9.04033494028101968e-3, -2.42259538436268176e-3,
- 9.15785997288933120e-4, -2.96890121633200000e-4,
- 1.00928148823365120e-4, -3.36375833240268800e-5,
- 1.12524642975590400e-5, -3.75499034136576000e-6,
- 1.25281466396672000e-6, -4.17808776355840000e-7,
- 1.39383522590720000e-7, -4.64774927155200000e-8,
- 1.53835215257600000e-8, -5.11961333760000000e-9,
- 1.82243164160000000e-9, -6.13513953280000000e-10,
- 1.27679856640000000e-10,-4.01499750400000000e-11,
- 4.26560716800000000e-11,-1.46381209600000000e-11);
- var tvsmall, t, g: ArbFloat;
- m, i: ArbInt;
- begin
- if sizeof(ArbFloat) = 6
- then
- tvsmall:=2*midget
- else
- tvsmall:=midget;
- t:=abs(x);
- if t > tmax
- then
- RunError(407);
- if t < macheps
- then
- begin
- if t < tvsmall
- then
- RunError(407);
- spegam:=1/x
- end
- else { abs(x) >= macheps }
- begin
- m:=trunc(x);
- if x > 0
- then
- begin
- t:=x-m; m:=m-1; g:=1;
- if m<0
- then
- g:=g/x
- else
- if m>0
- then
- for i:=1 to m do
- g:=(x-i)*g
- end
- else { x < 0 }
- begin
- t:=x-m+1;
- if t=1
- then
- RunError(407);
- m:=1-m;
- g:=x;
- for i:=1 to m do
- g:=(i+x)*g;
- g:=1/g
- end;
- spegam:=spepol(2*t-1, a[0], sizeof(a) div sizeof(ArbFloat) - 1)*g
- end { abs(x) >= macheps }
- end; {spegam}
- Procedure ExprInternalError(A,B:ArbInt);
- VAR S,S2 : String;
- begin
- Str(ORD(A),S);
- Str(ORD(B),S2);
- Raise EExprIE.Create(SExprIE+S+' '+S2);
- end;
- CONSTRUCTOR TExpression.Create(Infix:String);
- var dummy:String;
- begin
- ExprTree:=NIL;
- if (Infix<>'') then
- ExprTree:=InfixToParseTree(Infix,Dummy);
- InfixCache:=Infix;
- InfixClean:=True; {Current pnode status' infix
- representation is in infixcache}
- end;
- CONSTRUCTOR TExpression.EmptyCreate;
- begin
- ExprTree:=Nil;
- InfixClean:=false;
- end;
- Procedure TExpression.SetNewInfix(Infix:String);
- var dummy:String;
- begin
- if Assigned(ExprTree) Then
- Dispose(ExprTree);
- if infix<>'' then
- ExprTree:=InFixToParseTree(Infix,Dummy)
- else
- ExprTree:=NIL;
- InfixClean:=True;
- InfixCache:=Infix;
- end;
- Destructor TExpression.Destroy;
- begin
- If assigned(ExprTree) then
- DisposeExpr(ExprTree);
- inherited Destroy;
- end;
- function TExpression.GetRPN :String;
- begin
- if ExprTree=NIL Then
- Result:='0'
- else
- Result:=ParseTreeToRpn(ExprTree);
- end;
- function TExpression.GetInfix:String;
- begin
- if Not InfixClean then
- begin
- If ExprTree=NIL THEN
- InfixCache:='0'
- else
- InfixCache:=ParseTreeToInfix(ExprTree);
- InfixClean:=True;
- end;
- Result:=InfixCache;
- end;
- Function TExpression.GetIntValue:LongInt;
- begin
- SimplifyConstants;
- If ExprTree^.NodeType<>Iconstnode then
- Raise ENotInt.Create(SExprNotInt);
- result:=ExprTree^.ivalue;
- end;
- Procedure TExpression.SetIntValue(val:Longint);
- begin
- if ExprTree<> NIL then
- DisposeExpr(ExprTree);
- New(ExprTree);
- ExprTree^.NodeType:=iconstnode;
- ExprTree^.Ivalue:=Val;
- end;
- Function TExpression.GetFloatValue:ArbFloat;
- begin
- If ExprTree^.NodeType<>constnode then
- Raise ENotFloat.Create(SExprNotFloat);
- result:=ExprTree^.value;
- end;
- Procedure TExpression.SetFloatValue(val:ArbFloat);
- begin
- if ExprTree<> NIL then
- DisposeExpr(ExprTree);
- New(ExprTree);
- ExprTree^.NodeType:=constnode;
- ExprTree^.value:=Val;
- end;
- procedure TExpression.Simpleop(expr:TExpression;oper:calcop);
- begin
- exprtree:=NewCalc(oper,exprtree,CopyTree(expr.exprtree));
- InFixCache:='garbadge';
- InfixClean:=False;
- end;
- function TExpression.Simpleopwithresult(expr:TExpression;oper:calcop):TExpression;
- var tmp:pnode;
- begin
- result.EmptyCreate;
- result.SimplificationLevel:=simplificationlevel;
- result.exprtree:=NewCalc(Oper,CopyTree(ExprTree),CopyTree(Expr.ExprTree));
- end;
- procedure TExpression.Addto(Expr:TExpression);
- begin
- simpleop(expr,addo);
- end;
- procedure TExpression.SubFrom(Expr:TExpression);
- begin
- simpleop(expr,subo);
- end;
- procedure TExpression.Times(Expr:texpression);
- begin
- simpleop(expr,mulo);
- end;
- procedure TExpression.Divby(Expr:TExpression);
- begin
- simpleop(expr,dvdo);
- end;
- procedure TExpression.RaiseTo(Expr:TExpression);
- begin
- simpleop(expr,powo);
- end;
- function TExpression.add(Expr:TExpression):TExpression;
- begin
- result:=Simpleopwithresult(expr,addo);
- end;
- function TExpression.sub(Expr:TExpression):TExpression;
- begin
- result:=Simpleopwithresult(expr,subo);
- end;
- function TExpression.dvd(Expr:TExpression):TExpression;
- begin
- result:=Simpleopwithresult(expr,dvdo);
- end;
- function TExpression.mul(Expr:TExpression):TExpression;
- begin
- result:=Simpleopwithresult(expr,mulo);
- end;
- Function TExpression.IntDerive(const derivvariable:String;theexpr:pnode):pnode;
- function Deriv(t:pnode):pnode;
- {Derive subexpression T. Returns NIL if subexpression derives to 0, to avoid
- unnecessary (de)allocations. This is the reason why NewCalc is so big.}
- var x : ArbFloat;
- p1,p2 : pnode;
- begin
- Deriv:=nil;
- if (t=nil) then {Early out}
- exit;
- with t^ do begin
- case nodetype of
- VarNode: if upcase(variable)=derivvariable then
- Deriv:=NewiConst(ArbInt(1))
- else
- Deriv:=NIL;
- ConstNode : Deriv:=NIL;
- IConstNode: Deriv:=NIL;
- CalcNode: begin
- case op of
- addo,
- subo: Deriv:=NewCalc(op,Deriv(left),Deriv(right));
- mulo: Deriv:=NewCalc(addo,
- NewCalc(mulo,Deriv(left),copyTree(right)),
- NewCalc(mulo,Deriv(right),copytree(left)));
- dvdo: Deriv:=NewCalc(dvdo,
- NewCalc(subo,
- NewCalc(mulo,Deriv(left),copyTree(right)),
- NewCalc(mulo,Deriv(right),copytree(left))),
- NewFunc(sqrx,CopyTree(right)));
- powo: begin
- p1:=Deriv(Right);
- if P1<>NIL then
- p1:=NewCalc(mulo,p1,NewFunc(Lnx,CopyTree(Left))); { ln(l)*r'}
- p2:=Deriv(Left);
- if P2<>NIL then
- p2:=Newcalc(Mulo,CopyTree(Right),newcalc(mulo,p2,
- newfunc(invx,CopyTree(left))));
- IF (P1<>nil) and (p2<>nil) then
- deriv:=newcalc(mulo,CopyTree(t),newcalc(addo,p1,p2))
- else
- if (P1=NIL) and (P2=NIL) then {Simplify first to avoid this!}
- deriv:=NIL
- else
- begin
- if P1=NIL THEN { one of both is constant}
- P1:=P2; {The appopriate term is now in P1}
- deriv:=newcalc(mulo,CopyTree(t),p1);
- end;
- end;
- end;
- end;
- FuncNode: begin
- case fun of
- invx: Deriv:=NewCalc(dvdo,
- NewFunc(Minus,Deriv(son)),
- NewFunc(sqrx,CopyTree(son)));
- minus: Deriv:=NewFunc(minus,Deriv(son));
- sinx: Deriv:=NewCalc(Mulo,
- NewFunc(cosx,Copytree(son)),
- Deriv(son));
- cosx: deriv:=NewCalc(mulo,
- NewFunc(minus,NewFunc(sinx,copytree(son))),
- Deriv(son));
- tanx: deriv:=Newcalc(dvdo,deriv(son),
- newfunc(sqrx,newfunc(cosx,copytree(son))));
- sqrx: deriv:=newcalc(mulo, newiconst(2),
- newcalc(mulo,copytree(son),deriv(son)));
- { dx*1 /(2*sqrt(x)) }
- sqrtx: deriv:=newcalc(mulo, deriv(son),newcalc(dvdo,newiconst(1),
- newcalc(mulo,newiconst(2),newfunc(sqrtx,copytree(son)))));
- lnx : deriv:=newcalc(mulo,newcalc(dvdo,newiconst(1),CopyTree(son)),
- deriv(son)); { dln(x)=x' * 1/x}
- expx: deriv:=newcalc(mulo,newfunc(expx,copytree(son)),deriv(son));
- cotanx: deriv:=newfunc(minus,Newcalc(dvdo,deriv(son), { -dx/sqr(sin(x))}
- newfunc(sqrx,newfunc(sinx,copytree(son)))));
- coshx: deriv:=newcalc(mulo,newfunc(sinhx,copytree(son)),deriv(son));
- sinhx: deriv:=newcalc(mulo,newfunc(coshx,copytree(son)),deriv(son));
- arcsinhx, {according to HP48?}
- arcsinx: deriv:=newcalc(dvdo,deriv(son),newfunc(sqrtx,newcalc(subo,newiconst(1),
- newfunc(sqrx,copytree(son)))));
- arccosx: deriv:=newfunc(minus,newcalc(dvdo,deriv(son),
- newfunc(sqrtx,newcalc(subo,newiconst(1),newfunc(sqrx,copytree(son))))));
- arctanx: deriv:=newcalc(dvdo,deriv(son),newcalc(addo,newiconst(1),newfunc(sqrx,copytree(son))));
- log10x: deriv:=newcalc(mulo,newcalc(dvdo,newconst(0.434294481902),CopyTree(son)),
- deriv(son)); { dlog10(x)=x' * log10(e)/x}
- log2x: deriv:=newcalc(mulo,newcalc(dvdo,newconst(1.44269504089),CopyTree(son)),
- deriv(son)); { dlog2(x)=x' * log2(e)/x}
- stepx: ; {Should raise exception, not easily derivatable}
- tanhx: deriv:=newcalc(dvdo,deriv(son),newfunc(sqrx,newfunc(coshx,copytree(son))));
- arctanhx: deriv:=newcalc(dvdo,deriv(son),newfunc(sqrtx,newcalc(addo,newiconst(1),
- newfunc(sqrx,copytree(son)))));
- arccoshx: deriv:=NewCalc(dvdo,deriv(son),newcalc(mulo,newcalc(subo,newfunc(sqrtx,copytree(son)),newiconst(1)),
- newcalc(addo,newfunc(sqrtx,copytree(son)),newiconst(1))));
- lnxpix,arctan2x,
- hypotx,lognx : ; {Should also raise exceptions, not implemented yet}
- end;
- end;
- Func2Node: begin
- if son2left^.nodetype=constnode then
- x:=son2left^.value
- else
- x:=son2left^.ivalue;
- case fun of
- lognx: deriv:=newcalc(mulo,newcalc(dvdo,newconst(logn(x,2.71828182846)),
- CopyTree(son2right)),deriv(son2right));
- { dlogn(x)=x' * log(n,e)/x}
- Powerx: begin
- p1:=Deriv(Son2Right);
- if P1<>NIL then
- p1:=NewCalc(mulo,p1,NewFunc(Lnx,CopyTree(Son2Left))); { ln(l)*r'}
- p2:=Deriv(Son2Left);
- if P2<>NIL then
- p2:=Newcalc(Mulo,CopyTree(Son2Right),newcalc(mulo,p2,
- newfunc(invx,CopyTree(Son2Left))));
- IF (P1<>nil) and (p2<>nil) then
- deriv:=newcalc(mulo,CopyTree(t),newcalc(addo,p1,p2))
- else
- if (P1=NIL) and (P2=NIL) then {Simplify first to avoid this!}
- deriv:=NIL
- else
- begin
- if P1=NIL THEN { one of both is constant}
- P1:=P2; {The appopriate term is now in P1}
- deriv:=newcalc(mulo,CopyTree(t),p1);
- end;
- end;
- end;
- end;
- end;
- end; {WITH}
- end;
- begin
- Result:=Deriv(theexpr);
- end;
- function TExpression.power(Expr:TExpression):TExpression;
- begin
- result:=Simpleopwithresult(expr,powo);
- end;
- Function TExpression.Derive(derivvariable:String):TExpression;
- var tmpvar : Pnode;
- DerivObj: TExpression;
- begin
- derivvariable:=upcase(derivvariable);
- Tmpvar:=intDerive(derivvariable,exprtree);
- DerivObj:=TExpression.emptycreate;
- If tmpvar=NIL then
- derivobj.ExprTree:=NewIconst(0)
- else
- derivobj.exprtree:=tmpvar;
- derivobj.simplificationlevel:=simplificationlevel;
- DerivObj.InfixClean:=False;
- result:=derivobj;
- end;
- function ipower(x,y:ArbInt):ArbInt;
- var tmpval : ArbInt;
- begin
- if y<0 then
- ; {exception}
- if y=0 then
- result:=1
- else
- begin
- result:=x;
- if y<>1 then
- for tmpval:=2 to y do
- result:=result*x;
- end;
- end;
- function ifacul(x:ArbInt):ArbInt;
- var tmpval : ArbInt;
- begin
- if x<0 then
- ; {exception}
- if x=0 then
- result:=1
- else
- begin
- result:=1;
- if x<>1 then
- for tmpval:=2 to x do
- result:=result*tmpval;
- end;
- end;
- function EvaluateFunction(funcname:funcop;param:ArbFloat):ArbFloat;
- var Intermed : integer;
- begin
- case funcname of
- cosx : result:=Cos(param);
- sinx : result:=sin(param);
- tanx : result:=tan(param);
- sqrx : result:=sqr(param);
- sqrtx : result:=sqrt(param);
- expx : result:=exp(param);
- lnx : result:=ln(param);
- cotanx : result:=cotan(param);
- arcsinx : result:=arcsin(param);
- arccosx : result:=arccos(param);
- arctanx : result:=arctan(param);
- sinhx : result:=sinh(param);
- coshx : result:=cosh(param);
- tanhx : result:=tanh(param);
- arcsinhx : result:=arcsinh(param);
- arccoshx : result:=arccosh(param);
- arctanhx : result:=arctanh(param);
- log10x : result:=log10(param);
- log2x : result:=log2(param);
- lnxpix : result:=lnxp1(param);
- faculx : result:=spegam(param+1.0);
- else
- ExprInternalError(2,ord(funcname));
- end;
- If Result<1E-4900 then {Uncertainty in sinus(0.0)}
- Result:=0;
- end;
- procedure TExpression.SimplifyConstants;
- //procedure internalsimplify (expr:pnode;InCalc:Boolean;parent:pnode);
- procedure internalsimplify (expr:pnode);
- function isconst(p:pnode):boolean;
- begin
- isconst:=(p^.nodetype=iconstnode) or (p^.nodetype=constnode);
- end;
- function isconstnil(p:pnode):boolean;
- begin
- IsConstNil:=false;
- if (p^.nodetype=iconstnode) and (P^.ivalue=0) then
- IsConstNil:=True;
- If (p^.nodetype=constnode) and (P^.value=0) then
- IsConstNil:=True
- end;
- var val1,val2 : ArbFloat;
- ival1,
- ival2 : ArbInt;
- function setupoperation(operat:calcop;simlevel:longint;Postprocess:boolean;param2func:boolean):longint;
- function dosimple(mode:longint;theleft,theright:pnode):longint;
- begin
- If Mode >3 then
- ;
- result:=0;
- if mode=0 then
- exit;
- if (theright^.nodetype=iconstnode) and (theleft^.nodetype=iconstnode) then
- begin
- if mode=3 then
- begin
- result:=2;
- val2:=theright^.value;
- val1:=theleft^.value;
- end
- else
- begin
- result:=1;
- ival2:=theright^.ivalue;
- ival1:=theleft^.Ivalue;
- end;
- end;
- if (theright^.nodetype=constnode) and (theleft^.nodetype=constnode) then
- begin
- result:=2;
- val2:=theright^.value;
- val1:=theleft^.value;
- end;
- if mode>1 then
- begin
- if result=0 then
- begin
- if (theright^.nodetype=constnode) and (theleft^.nodetype=iconstnode) then
- begin
- result:=3;
- val2:=theright^.value;
- val1:=theleft^.ivalue;
- end;
- if (theright^.nodetype=iconstnode) and (theleft^.nodetype=constnode) then
- begin
- result:=4;
- val2:=theright^.ivalue;
- val1:=theleft^.value;
- end;
- end;
- end;
- end;
- begin
- Result:=0;
- if SimplificationLevel<>0 then
- if param2func then
- result:=DoSimple(SimLevel,expr^.son2left,expr^.son2right)
- else
- result:=DoSimple(SimLevel,expr^.left,expr^.right);
- with expr^ do
- begin
- IF (result>0) and PostProcess then
- begin
- if (operat<>dvdo) then { Divide is special case. If
- integer x/y produces a fraction
- we want to be able to roll back}
- begin
- if Param2func then
- begin
- dispose(son2right);
- dispose(son2left);
- end
- else
- begin
- dispose(right);
- dispose(left);
- end;
- if result=1 then
- nodetype:=iconstnode
- else
- nodetype:=constnode;
- flags:=[ExprIsConstant];
- end;
- end;
- end;
- end;
- procedure Checkvarnode(p:pnode);
- var treal:arbfloat;
- error:integer;
- tint :Integer;
- begin
- TrimLeft(P^.variable);
- TrimRight(p^.variable);
- Val(p^.variable, treal, Error);
- IF (error=0) then {Conversion to real succeeds. Numeric}
- begin
- p^.flags:=[ExprIsConstant];
- if (Pos('.',p^.variable)=0) and (Pos('E',p^.variable)=0) Then
- begin
- Val(p^.variable,tint,Error);
- If error=0 then
- begin
- p^.nodetype:=iconstnode;
- p^.ivalue:=tint;
- end
- else
- begin
- p^.nodetype:=constnode;
- p^.value:=treal;
- end;
- end
- else
- begin
- p^.nodetype:=constnode;
- p^.value:=treal;
- end;
- end;
- end;
- var tmpval : ArbInt;
- invdummy: pnode;
- begin
- case expr^.nodetype of
- VarNode : CheckVarnode(expr); {sometimes a numeric value can slip in as constant.
- (e.g. as people pass it as symbol to taylor or
- "subst" methods}
- calcnode : begin
- //If not
- internalsimplify(expr^.left); {Reduce left and right as much as possible}
- internalsimplify(expr^.right);
- if isconst(expr^.left) and isconst(expr^.right) then
- begin
- TmpVal:=Setupoperation(expr^.op,SimplificationLevel,true,false);
- if tmpval>0 then
- with expr^ do
- case op of
- addo :
- if tmpval=1 then
- ivalue:=ival1+ival2
- else
- value:=val1+val2;
- subo : if tmpval=1 then
- ivalue:=ival1-ival2
- else
- value:=val1-val2;
- mulo : if tmpval=1 then
- ivalue:=ival1*ival2
- else
- value:=val1*val2;
- dvdo : begin
- if tmpval=1 then
- begin
- tmpval:=ival1 div ival2;
- if (tmpval*ival2)=ival1 then {no rounding, OK!}
- begin
- Dispose(expr^.right);
- Dispose(Expr^.left);
- nodetype:=iconstnode;
- ivalue:=tmpval;
- end; {ELSE do nothing}
- end
- else
- begin
- dispose(expr^.right);
- dispose(expr^.left);
- nodetype:=constnode;
- value:=val1 / val2;
- end;
- flags:=[ExprIsConstant];
- end;
- powo : If tmpval=1 then
- begin
- if ival2<0 then {integer x^-y -> inv (x^y)}
- begin
- expr^.nodetype:=funcnode;
- expr^.son:=NewIConst(IPower(Ival1,-Ival2));
- end
- else
- ivalue:=ipower(ival1,ival2);
- end
- else
- value:=exp(val2*ln(val1));
- else
- ExprInternalError(1,ord(Expr^.op));
- end; {case}
- end {if}
- else {At least one node is symbolic, or both types are wrong}
- begin
- With Expr^ do
- if IsConstNil(Left) then
- begin
- Dispose(Left);
- case op of
- addo : begin
- InvDummy:=Right;
- Expr^:=Right^;
- Dispose(InvDummy);
- end;
- subo: begin
- invdummy:=right;
- NodeType:=funcNode;
- Fun:=Minus;
- son:=invdummy;
- Flags:=Son^.Flags;
- end;
- mulo,powo,dvdo : begin
- Dispose(Right);
- nodetype:=IconstNode;
- ivalue:=0;
- Flags:=[ExprIsConstant];
- end;
- end;
- end
- else
- if IsConstNil(Right) then
- begin
- if expr^.op<>dvdo then {Leave tree for DVD intact because of exception}
- Dispose(Right);
- case expr^.op of
- addo,subo : begin
- InvDummy:=left;
- Expr^:=left^;
- Dispose(InvDummy);
- end;
- mulo : begin
- Dispose(Left);
- nodetype:=IconstNode;
- Flags:=[ExprIsConstant];
- ivalue:=0;
- end;
- powo : begin
- Dispose(Left);
- nodetype:=IconstNode;
- Flags:=[ExprIsConstant];
- ivalue:=1;
- end;
- dvdo : Raise EDiv0.Create(SExprInvSimp);
- else
- ExprInternalError(6,ord(Expr^.op));
- end;
- end;
- end;
- With Expr^ Do
- Begin
- IF (nodetype=calcnode) and (Op in [Mulo,Addo]) then
- begin {Commutative operator rearrangements, move constants to left}
- if (ExprIsConstant IN Right^.flags) and NOT (ExprIsConstant IN Left^.flags) then
- begin
- InvDummy:=Right;
- Right:=Left;
- Left:=InvDummy;
- end;
- IF (right^.nodetype=calcnode) and (right^.Op in [Mulo,Addo]) then
- begin
- end;
- end;
- End;
- end; {case calcnode}
- funcnode: begin
- internalSimplify(expr^.son);
- Case Expr^.fun of
- Minus : if IsConst(expr^.son) then
- begin
- InvDummy:=Expr^.Son;
- expr^:=InvDummy^;
- if InvDummy^.Nodetype=IconstNode then
- expr^.ivalue:=-expr^.ivalue
- else
- expr^.value:=-expr^.value;
- dispose(InvDummy);
- end;
- invx : begin
- InvDummy:=Expr^.son;
- If InvDummy^.nodeType=ConstNode Then
- begin
- if InvDummy^.Value=0.0 then
- Raise EDiv0.Create(SExprInvMsg);
- Expr^.NodeType:=ConstNode;
- Expr^.Value:=1/InvDummy^.Value;
- Dispose(InvDummy);
- end
- else
- if InvDummy^.nodetype=iconstnode then
- begin
- if InvDummy^.iValue=0 then
- Raise EDiv0.Create(SExprinvmsg);
- If (InvDummy^.iValue=1) or (InvDummy^.iValue=-1) then
- begin
- expr^.NodeType:=Iconstnode;
- Expr^.iValue:=InvDummy^.iValue;
- Dispose(InvDummy);
- end;
- end;
- end;
- else {IE check in EvaluateFunction}
- if (expr^.son^.nodetype=constnode) and (Expr^.fun<>faculx) then {Other functions, only func(real) is simplified}
- begin
- val1:=EvaluateFunction(expr^.fun,Expr^.son^.value);
- dispose(expr^.son);
- expr^.nodetype:=constnode;
- expr^.value:=val1;
- end;
- end; {Case 2}
- end;
- Func2Node : begin
- internalSimplify(expr^.son2left);
- internalSimplify(expr^.son2right);
- case expr^.fun2 of
- powerx : begin
- TmpVal:=Setupoperation(powo,SimplificationLevel,true,true);
- if TmpVal>1 then
- begin
- If tmpval=1 then
- begin
- if ival2<0 then {integer x^-y -> inv (x^y)}
- begin
- new(invdummy);
- invdummy^.nodetype:=iconstnode;
- invdummy^.ivalue:=ipower(ival1,-ival2);
- expr^.nodetype:=funcnode;
- expr^.son:=invdummy;
- end
- else
- expr^.ivalue:=ipower(ival1,ival2);
- end;
- end;
- end;
- stepx : begin
- {N/I yet}
- end;
- arctan2x : begin
- TmpVal:=Setupoperation(powo,SimplificationLevel,false,true);
- if tmpval>1 then {1 is integer, which we don't do}
- begin
- dispose(expr^.right);
- dispose(expr^.left);
- expr^.nodetype:=constnode;
- expr^.value:=arctan2(ival2,ival1);
- end;
- end;
- hypotx :begin
- TmpVal:=Setupoperation(powo,SimplificationLevel,false,true);
- if tmpval>1 then {1 is integer, which we don't do}
- begin
- dispose(expr^.right);
- dispose(expr^.left);
- expr^.nodetype:=constnode;
- expr^.value:=hypot(ival2,ival1);
- end;
- end;
- lognx: begin
- TmpVal:=Setupoperation(powo,SimplificationLevel,false,true);
- if tmpval>1 then {1 is integer, which we don't do}
- begin
- dispose(expr^.right);
- dispose(expr^.left);
- expr^.nodetype:=constnode;
- expr^.value:=hypot(ival2,ival1);
- end;
- end;
- else
- ExprInternalError(3,ORD(expr^.fun2));
- end;
- end;
- { else
- ExprInternalError(4,ORD(expr^.nodetype));}
- end; {Case 1}
- end;
- begin
- internalsimplify(exprtree);
- InfixClean:=False; {Maybe changed}
- end;
- procedure TExpression.SymbolSubst(ToSubst,SubstWith:String);
- procedure InternalSubst(expr:Pnode);
- begin
- if Expr<>NIL THEN
- case Expr^.NodeType of
- VarNode: if Expr^.Variable=ToSubst then
- Expr^.Variable:=SubstWith;
- calcnode: begin
- InternalSubst(Expr^.left);
- InternalSubst(Expr^.right);
- end;
- funcnode: InternalSubst(Expr^.son);
- func2node: begin
- InternalSubst(Expr^.son2left);
- InternalSubst(Expr^.son2right);
- end;
- end;
- end;
- begin
- InternalSubst(ExprTree);
- end;
- function TExpression.SymbolicValueNames:TStringList;
- var TheList:TStringList;
- procedure InternalSearch(expr:Pnode);
- begin
- if Expr<>NIL THEN {NIL shouldn't be allowed, and signals corruption. IE? Let it die?}
- case Expr^.NodeType of
- VarNode: begin
- Expr^.Variable:=UpCase(Expr^.Variable);
- TheList.Add(Expr^.Variable);
- end;
- calcnode: begin
- InternalSearch(Expr^.left);
- InternalSearch(Expr^.right);
- end;
- funcnode: InternalSearch(Expr^.son);
- func2node: begin
- InternalSearch(Expr^.son2left);
- InternalSearch(Expr^.son2right);
- end;
- end;
- end;
- begin
- TheList:=TStringList.Create;
- TheList.Sorted:=TRUE;
- Thelist.Duplicates:=DupIgnore;
- InternalSearch(ExprTree);
- Result:=TheList;
- end;
- function TExpression.Taylor(Degree:ArbInt;const x,x0:String):TExpression;
- {Taylor(x,x0)=sum(m,0,degree, d(f)/d(x))(x0)/ m! * (x-x0)^m)
- = f(x0)+ (x-x0)/1! * df/d(x) + (x-x0)^2 / 2! * d^2(f)/d^2(x) +
- (x-x0)^3 / 3! * d^3(f)/d^3(x) + ....
- }
- Var TaylorPol : TExpression; { The result expression}
- Root,
- Tmp,Tmp2,
- tmp3,tmp4,tmp5 : pnode; { Always have a nice storage of pointers.
- Used to hold all intermediate results}
- I,facul : ArbInt; { Loop counters and faculty term}
- begin
- TaylorPol:=TExpression.EmptyCreate; {New expression}
- TaylorPol.ExprTree:=CopyTree(ExprTree); {make a copy of the parsetree}
- TaylorPol.SymbolSubst(X,X0); {subst x by x0. All occurances
- of f() refer to x0, not x}
- if Degree>0 then {First term only? Or nonsense (negative?)}
- {Then ready. 0th term only.}
- begin {Start preparing easy creation of higher terms}
- tmp2:=newcalc(subo,newvar(x),
- newvar(x0)); {tmp2= x-x0 needed separately for first term}
- tmp4:=Newiconst(5); {exponent for x-x0, "a" need to keep a reference}
- tmp3:=newcalc(powo,tmp2,tmp4); {tmp3= (x-x0)^a}
- tmp5:=newiconst(5); {faculty value, "b"=m! also keep a reference for later modification }
- tmp3:=Newcalc(dvdo,tmp3,tmp5); {tmp3= (x-x0)^a / b a and b can be changed}
- facul:=1; {Calculate faculty as we go along. Start with 1!=1}
- root:=TaylorPol.ExprTree; {0th term}
- tmp:=root; {term that needs to be differentiated per iteration}
- for i:=1 to Degree do
- begin
- facul:=Facul*i; {Next faculty value 1!*1 =1 btw :_)}
- tmp:=intderive(x0,tmp); {Differentiate f^n(x0) to f^(n+1)(x0)}
- If I=1 then {first term is special case. No power }
- tmp2:=NewCalc(mulo,CopyTree(tmp2),tmp) {or faculty needed (^1 and 1!)}
- else
- begin
- tmp5^.Ivalue:=facul; {Higher terms. Set faculty}
- tmp4^.ivalue:=i; {Set exponent (=a) of (x-x0)^a}
- tmp2:=NewCalc(mulo,CopyTree(tmp3),tmp); {multiplicate derivative with (x-x0)^a/b term}
- end;
- root:=NewCalc(addo,root,tmp2); {String all terms together}
- end;
- DisposeExpr(tmp3); {Is only CopyTree()'d, not in new expression}
- TaylorPol.Exprtree:=root; {Set result}
- end;
- Result:=TaylorPol;
- end;
- function TExpression.Newton(x:String):TExpression;
- {
- f(x)
- Newton(x)=x- ----
- f'(x)
- }
- Var NewtonExpr : TExpression; { The result expression}
- Root,
- Tmp,Tmp2,
- tmp3,tmp4,tmp5 : pnode; { Always have a nice storage of pointers.
- Used to hold all intermediate results}
- I,facul : ArbInt; { Loop counters and faculty term}
- begin
- NewtonExpr:=TExpression.EmptyCreate; {New expression}
- {Should I test for constant expr here?}
- Tmp:=CopyTree(ExprTree); {make a copy of the parsetree
- for the f(x) term}
- Tmp2:=intDerive(x,tmp); { calc f'(x)}
- Tmp3:=NewVar(x); { Create (x)}
- Tmp:=Newcalc(dvdo,tmp,tmp2); { f(x)/f'(x)}
- tmp:=Newcalc(subo,tmp3,tmp); { x- f(x)/f'(x)}
- {We built the above expression using a copy of the tree.
- So no pointers into self.exprtree exist. We can now safely assign it
- to the new exprtree}
- NewtonExpr.ExprTree:=tmp;
- NewtonExpr.SimplifyConstants; {Simplify if f'(x)=constant, and
- kill 0*y(x) terms}
- Result:=NewtonExpr;
- end;
- {
- $Log$
- Revision 1.1 2002/12/15 21:01:26 marco
- Initial revision
- }
|