LzmaDec.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363
  1. /* LzmaDec.c -- LZMA Decoder
  2. 2023-04-07 : Igor Pavlov : Public domain */
  3. #include "Precomp.h"
  4. #include <string.h>
  5. /* #include "CpuArch.h" */
  6. #include "LzmaDec.h"
  7. // #define kNumTopBits 24
  8. #define kTopValue ((UInt32)1 << 24)
  9. #define kNumBitModelTotalBits 11
  10. #define kBitModelTotal (1 << kNumBitModelTotalBits)
  11. #define RC_INIT_SIZE 5
  12. #ifndef Z7_LZMA_DEC_OPT
  13. #define kNumMoveBits 5
  14. #define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
  15. #define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
  16. #define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
  17. #define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
  18. #define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
  19. { UPDATE_0(p) i = (i + i); A0; } else \
  20. { UPDATE_1(p) i = (i + i) + 1; A1; }
  21. #define TREE_GET_BIT(probs, i) { GET_BIT2(probs + i, i, ;, ;); }
  22. #define REV_BIT(p, i, A0, A1) IF_BIT_0(p + i) \
  23. { UPDATE_0(p + i) A0; } else \
  24. { UPDATE_1(p + i) A1; }
  25. #define REV_BIT_VAR( p, i, m) REV_BIT(p, i, i += m; m += m, m += m; i += m; )
  26. #define REV_BIT_CONST(p, i, m) REV_BIT(p, i, i += m; , i += m * 2; )
  27. #define REV_BIT_LAST( p, i, m) REV_BIT(p, i, i -= m , ; )
  28. #define TREE_DECODE(probs, limit, i) \
  29. { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
  30. /* #define Z7_LZMA_SIZE_OPT */
  31. #ifdef Z7_LZMA_SIZE_OPT
  32. #define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
  33. #else
  34. #define TREE_6_DECODE(probs, i) \
  35. { i = 1; \
  36. TREE_GET_BIT(probs, i) \
  37. TREE_GET_BIT(probs, i) \
  38. TREE_GET_BIT(probs, i) \
  39. TREE_GET_BIT(probs, i) \
  40. TREE_GET_BIT(probs, i) \
  41. TREE_GET_BIT(probs, i) \
  42. i -= 0x40; }
  43. #endif
  44. #define NORMAL_LITER_DEC TREE_GET_BIT(prob, symbol)
  45. #define MATCHED_LITER_DEC \
  46. matchByte += matchByte; \
  47. bit = offs; \
  48. offs &= matchByte; \
  49. probLit = prob + (offs + bit + symbol); \
  50. GET_BIT2(probLit, symbol, offs ^= bit; , ;)
  51. #endif // Z7_LZMA_DEC_OPT
  52. #define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_INPUT_EOF; range <<= 8; code = (code << 8) | (*buf++); }
  53. #define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
  54. #define UPDATE_0_CHECK range = bound;
  55. #define UPDATE_1_CHECK range -= bound; code -= bound;
  56. #define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
  57. { UPDATE_0_CHECK i = (i + i); A0; } else \
  58. { UPDATE_1_CHECK i = (i + i) + 1; A1; }
  59. #define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
  60. #define TREE_DECODE_CHECK(probs, limit, i) \
  61. { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
  62. #define REV_BIT_CHECK(p, i, m) IF_BIT_0_CHECK(p + i) \
  63. { UPDATE_0_CHECK i += m; m += m; } else \
  64. { UPDATE_1_CHECK m += m; i += m; }
  65. #define kNumPosBitsMax 4
  66. #define kNumPosStatesMax (1 << kNumPosBitsMax)
  67. #define kLenNumLowBits 3
  68. #define kLenNumLowSymbols (1 << kLenNumLowBits)
  69. #define kLenNumHighBits 8
  70. #define kLenNumHighSymbols (1 << kLenNumHighBits)
  71. #define LenLow 0
  72. #define LenHigh (LenLow + 2 * (kNumPosStatesMax << kLenNumLowBits))
  73. #define kNumLenProbs (LenHigh + kLenNumHighSymbols)
  74. #define LenChoice LenLow
  75. #define LenChoice2 (LenLow + (1 << kLenNumLowBits))
  76. #define kNumStates 12
  77. #define kNumStates2 16
  78. #define kNumLitStates 7
  79. #define kStartPosModelIndex 4
  80. #define kEndPosModelIndex 14
  81. #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
  82. #define kNumPosSlotBits 6
  83. #define kNumLenToPosStates 4
  84. #define kNumAlignBits 4
  85. #define kAlignTableSize (1 << kNumAlignBits)
  86. #define kMatchMinLen 2
  87. #define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols * 2 + kLenNumHighSymbols)
  88. #define kMatchSpecLen_Error_Data (1 << 9)
  89. #define kMatchSpecLen_Error_Fail (kMatchSpecLen_Error_Data - 1)
  90. /* External ASM code needs same CLzmaProb array layout. So don't change it. */
  91. /* (probs_1664) is faster and better for code size at some platforms */
  92. /*
  93. #ifdef MY_CPU_X86_OR_AMD64
  94. */
  95. #define kStartOffset 1664
  96. #define GET_PROBS p->probs_1664
  97. /*
  98. #define GET_PROBS p->probs + kStartOffset
  99. #else
  100. #define kStartOffset 0
  101. #define GET_PROBS p->probs
  102. #endif
  103. */
  104. #define SpecPos (-kStartOffset)
  105. #define IsRep0Long (SpecPos + kNumFullDistances)
  106. #define RepLenCoder (IsRep0Long + (kNumStates2 << kNumPosBitsMax))
  107. #define LenCoder (RepLenCoder + kNumLenProbs)
  108. #define IsMatch (LenCoder + kNumLenProbs)
  109. #define Align (IsMatch + (kNumStates2 << kNumPosBitsMax))
  110. #define IsRep (Align + kAlignTableSize)
  111. #define IsRepG0 (IsRep + kNumStates)
  112. #define IsRepG1 (IsRepG0 + kNumStates)
  113. #define IsRepG2 (IsRepG1 + kNumStates)
  114. #define PosSlot (IsRepG2 + kNumStates)
  115. #define Literal (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
  116. #define NUM_BASE_PROBS (Literal + kStartOffset)
  117. #if Align != 0 && kStartOffset != 0
  118. #error Stop_Compiling_Bad_LZMA_kAlign
  119. #endif
  120. #if NUM_BASE_PROBS != 1984
  121. #error Stop_Compiling_Bad_LZMA_PROBS
  122. #endif
  123. #define LZMA_LIT_SIZE 0x300
  124. #define LzmaProps_GetNumProbs(p) (NUM_BASE_PROBS + ((UInt32)LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
  125. #define CALC_POS_STATE(processedPos, pbMask) (((processedPos) & (pbMask)) << 4)
  126. #define COMBINED_PS_STATE (posState + state)
  127. #define GET_LEN_STATE (posState)
  128. #define LZMA_DIC_MIN (1 << 12)
  129. /*
  130. p->remainLen : shows status of LZMA decoder:
  131. < kMatchSpecLenStart : the number of bytes to be copied with (p->rep0) offset
  132. = kMatchSpecLenStart : the LZMA stream was finished with end mark
  133. = kMatchSpecLenStart + 1 : need init range coder
  134. = kMatchSpecLenStart + 2 : need init range coder and state
  135. = kMatchSpecLen_Error_Fail : Internal Code Failure
  136. = kMatchSpecLen_Error_Data + [0 ... 273] : LZMA Data Error
  137. */
  138. /* ---------- LZMA_DECODE_REAL ---------- */
  139. /*
  140. LzmaDec_DecodeReal_3() can be implemented in external ASM file.
  141. 3 - is the code compatibility version of that function for check at link time.
  142. */
  143. #define LZMA_DECODE_REAL LzmaDec_DecodeReal_3
  144. /*
  145. LZMA_DECODE_REAL()
  146. In:
  147. RangeCoder is normalized
  148. if (p->dicPos == limit)
  149. {
  150. LzmaDec_TryDummy() was called before to exclude LITERAL and MATCH-REP cases.
  151. So first symbol can be only MATCH-NON-REP. And if that MATCH-NON-REP symbol
  152. is not END_OF_PAYALOAD_MARKER, then the function doesn't write any byte to dictionary,
  153. the function returns SZ_OK, and the caller can use (p->remainLen) and (p->reps[0]) later.
  154. }
  155. Processing:
  156. The first LZMA symbol will be decoded in any case.
  157. All main checks for limits are at the end of main loop,
  158. It decodes additional LZMA-symbols while (p->buf < bufLimit && dicPos < limit),
  159. RangeCoder is still without last normalization when (p->buf < bufLimit) is being checked.
  160. But if (p->buf < bufLimit), the caller provided at least (LZMA_REQUIRED_INPUT_MAX + 1) bytes for
  161. next iteration before limit (bufLimit + LZMA_REQUIRED_INPUT_MAX),
  162. that is enough for worst case LZMA symbol with one additional RangeCoder normalization for one bit.
  163. So that function never reads bufLimit [LZMA_REQUIRED_INPUT_MAX] byte.
  164. Out:
  165. RangeCoder is normalized
  166. Result:
  167. SZ_OK - OK
  168. p->remainLen:
  169. < kMatchSpecLenStart : the number of bytes to be copied with (p->reps[0]) offset
  170. = kMatchSpecLenStart : the LZMA stream was finished with end mark
  171. SZ_ERROR_DATA - error, when the MATCH-Symbol refers out of dictionary
  172. p->remainLen : undefined
  173. p->reps[*] : undefined
  174. */
  175. #ifdef Z7_LZMA_DEC_OPT
  176. int Z7_FASTCALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit);
  177. #else
  178. static
  179. int Z7_FASTCALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
  180. {
  181. CLzmaProb *probs = GET_PROBS;
  182. unsigned state = (unsigned)p->state;
  183. UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
  184. unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
  185. unsigned lc = p->prop.lc;
  186. unsigned lpMask = ((unsigned)0x100 << p->prop.lp) - ((unsigned)0x100 >> lc);
  187. Byte *dic = p->dic;
  188. SizeT dicBufSize = p->dicBufSize;
  189. SizeT dicPos = p->dicPos;
  190. UInt32 processedPos = p->processedPos;
  191. UInt32 checkDicSize = p->checkDicSize;
  192. unsigned len = 0;
  193. const Byte *buf = p->buf;
  194. UInt32 range = p->range;
  195. UInt32 code = p->code;
  196. do
  197. {
  198. CLzmaProb *prob;
  199. UInt32 bound;
  200. unsigned ttt;
  201. unsigned posState = CALC_POS_STATE(processedPos, pbMask);
  202. prob = probs + IsMatch + COMBINED_PS_STATE;
  203. IF_BIT_0(prob)
  204. {
  205. unsigned symbol;
  206. UPDATE_0(prob)
  207. prob = probs + Literal;
  208. if (processedPos != 0 || checkDicSize != 0)
  209. prob += (UInt32)3 * ((((processedPos << 8) + dic[(dicPos == 0 ? dicBufSize : dicPos) - 1]) & lpMask) << lc);
  210. processedPos++;
  211. if (state < kNumLitStates)
  212. {
  213. state -= (state < 4) ? state : 3;
  214. symbol = 1;
  215. #ifdef Z7_LZMA_SIZE_OPT
  216. do { NORMAL_LITER_DEC } while (symbol < 0x100);
  217. #else
  218. NORMAL_LITER_DEC
  219. NORMAL_LITER_DEC
  220. NORMAL_LITER_DEC
  221. NORMAL_LITER_DEC
  222. NORMAL_LITER_DEC
  223. NORMAL_LITER_DEC
  224. NORMAL_LITER_DEC
  225. NORMAL_LITER_DEC
  226. #endif
  227. }
  228. else
  229. {
  230. unsigned matchByte = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
  231. unsigned offs = 0x100;
  232. state -= (state < 10) ? 3 : 6;
  233. symbol = 1;
  234. #ifdef Z7_LZMA_SIZE_OPT
  235. do
  236. {
  237. unsigned bit;
  238. CLzmaProb *probLit;
  239. MATCHED_LITER_DEC
  240. }
  241. while (symbol < 0x100);
  242. #else
  243. {
  244. unsigned bit;
  245. CLzmaProb *probLit;
  246. MATCHED_LITER_DEC
  247. MATCHED_LITER_DEC
  248. MATCHED_LITER_DEC
  249. MATCHED_LITER_DEC
  250. MATCHED_LITER_DEC
  251. MATCHED_LITER_DEC
  252. MATCHED_LITER_DEC
  253. MATCHED_LITER_DEC
  254. }
  255. #endif
  256. }
  257. dic[dicPos++] = (Byte)symbol;
  258. continue;
  259. }
  260. {
  261. UPDATE_1(prob)
  262. prob = probs + IsRep + state;
  263. IF_BIT_0(prob)
  264. {
  265. UPDATE_0(prob)
  266. state += kNumStates;
  267. prob = probs + LenCoder;
  268. }
  269. else
  270. {
  271. UPDATE_1(prob)
  272. prob = probs + IsRepG0 + state;
  273. IF_BIT_0(prob)
  274. {
  275. UPDATE_0(prob)
  276. prob = probs + IsRep0Long + COMBINED_PS_STATE;
  277. IF_BIT_0(prob)
  278. {
  279. UPDATE_0(prob)
  280. // that case was checked before with kBadRepCode
  281. // if (checkDicSize == 0 && processedPos == 0) { len = kMatchSpecLen_Error_Data + 1; break; }
  282. // The caller doesn't allow (dicPos == limit) case here
  283. // so we don't need the following check:
  284. // if (dicPos == limit) { state = state < kNumLitStates ? 9 : 11; len = 1; break; }
  285. dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
  286. dicPos++;
  287. processedPos++;
  288. state = state < kNumLitStates ? 9 : 11;
  289. continue;
  290. }
  291. UPDATE_1(prob)
  292. }
  293. else
  294. {
  295. UInt32 distance;
  296. UPDATE_1(prob)
  297. prob = probs + IsRepG1 + state;
  298. IF_BIT_0(prob)
  299. {
  300. UPDATE_0(prob)
  301. distance = rep1;
  302. }
  303. else
  304. {
  305. UPDATE_1(prob)
  306. prob = probs + IsRepG2 + state;
  307. IF_BIT_0(prob)
  308. {
  309. UPDATE_0(prob)
  310. distance = rep2;
  311. }
  312. else
  313. {
  314. UPDATE_1(prob)
  315. distance = rep3;
  316. rep3 = rep2;
  317. }
  318. rep2 = rep1;
  319. }
  320. rep1 = rep0;
  321. rep0 = distance;
  322. }
  323. state = state < kNumLitStates ? 8 : 11;
  324. prob = probs + RepLenCoder;
  325. }
  326. #ifdef Z7_LZMA_SIZE_OPT
  327. {
  328. unsigned lim, offset;
  329. CLzmaProb *probLen = prob + LenChoice;
  330. IF_BIT_0(probLen)
  331. {
  332. UPDATE_0(probLen)
  333. probLen = prob + LenLow + GET_LEN_STATE;
  334. offset = 0;
  335. lim = (1 << kLenNumLowBits);
  336. }
  337. else
  338. {
  339. UPDATE_1(probLen)
  340. probLen = prob + LenChoice2;
  341. IF_BIT_0(probLen)
  342. {
  343. UPDATE_0(probLen)
  344. probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
  345. offset = kLenNumLowSymbols;
  346. lim = (1 << kLenNumLowBits);
  347. }
  348. else
  349. {
  350. UPDATE_1(probLen)
  351. probLen = prob + LenHigh;
  352. offset = kLenNumLowSymbols * 2;
  353. lim = (1 << kLenNumHighBits);
  354. }
  355. }
  356. TREE_DECODE(probLen, lim, len)
  357. len += offset;
  358. }
  359. #else
  360. {
  361. CLzmaProb *probLen = prob + LenChoice;
  362. IF_BIT_0(probLen)
  363. {
  364. UPDATE_0(probLen)
  365. probLen = prob + LenLow + GET_LEN_STATE;
  366. len = 1;
  367. TREE_GET_BIT(probLen, len)
  368. TREE_GET_BIT(probLen, len)
  369. TREE_GET_BIT(probLen, len)
  370. len -= 8;
  371. }
  372. else
  373. {
  374. UPDATE_1(probLen)
  375. probLen = prob + LenChoice2;
  376. IF_BIT_0(probLen)
  377. {
  378. UPDATE_0(probLen)
  379. probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
  380. len = 1;
  381. TREE_GET_BIT(probLen, len)
  382. TREE_GET_BIT(probLen, len)
  383. TREE_GET_BIT(probLen, len)
  384. }
  385. else
  386. {
  387. UPDATE_1(probLen)
  388. probLen = prob + LenHigh;
  389. TREE_DECODE(probLen, (1 << kLenNumHighBits), len)
  390. len += kLenNumLowSymbols * 2;
  391. }
  392. }
  393. }
  394. #endif
  395. if (state >= kNumStates)
  396. {
  397. UInt32 distance;
  398. prob = probs + PosSlot +
  399. ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
  400. TREE_6_DECODE(prob, distance)
  401. if (distance >= kStartPosModelIndex)
  402. {
  403. unsigned posSlot = (unsigned)distance;
  404. unsigned numDirectBits = (unsigned)(((distance >> 1) - 1));
  405. distance = (2 | (distance & 1));
  406. if (posSlot < kEndPosModelIndex)
  407. {
  408. distance <<= numDirectBits;
  409. prob = probs + SpecPos;
  410. {
  411. UInt32 m = 1;
  412. distance++;
  413. do
  414. {
  415. REV_BIT_VAR(prob, distance, m)
  416. }
  417. while (--numDirectBits);
  418. distance -= m;
  419. }
  420. }
  421. else
  422. {
  423. numDirectBits -= kNumAlignBits;
  424. do
  425. {
  426. NORMALIZE
  427. range >>= 1;
  428. {
  429. UInt32 t;
  430. code -= range;
  431. t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
  432. distance = (distance << 1) + (t + 1);
  433. code += range & t;
  434. }
  435. /*
  436. distance <<= 1;
  437. if (code >= range)
  438. {
  439. code -= range;
  440. distance |= 1;
  441. }
  442. */
  443. }
  444. while (--numDirectBits);
  445. prob = probs + Align;
  446. distance <<= kNumAlignBits;
  447. {
  448. unsigned i = 1;
  449. REV_BIT_CONST(prob, i, 1)
  450. REV_BIT_CONST(prob, i, 2)
  451. REV_BIT_CONST(prob, i, 4)
  452. REV_BIT_LAST (prob, i, 8)
  453. distance |= i;
  454. }
  455. if (distance == (UInt32)0xFFFFFFFF)
  456. {
  457. len = kMatchSpecLenStart;
  458. state -= kNumStates;
  459. break;
  460. }
  461. }
  462. }
  463. rep3 = rep2;
  464. rep2 = rep1;
  465. rep1 = rep0;
  466. rep0 = distance + 1;
  467. state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
  468. if (distance >= (checkDicSize == 0 ? processedPos: checkDicSize))
  469. {
  470. len += kMatchSpecLen_Error_Data + kMatchMinLen;
  471. // len = kMatchSpecLen_Error_Data;
  472. // len += kMatchMinLen;
  473. break;
  474. }
  475. }
  476. len += kMatchMinLen;
  477. {
  478. SizeT rem;
  479. unsigned curLen;
  480. SizeT pos;
  481. if ((rem = limit - dicPos) == 0)
  482. {
  483. /*
  484. We stop decoding and return SZ_OK, and we can resume decoding later.
  485. Any error conditions can be tested later in caller code.
  486. For more strict mode we can stop decoding with error
  487. // len += kMatchSpecLen_Error_Data;
  488. */
  489. break;
  490. }
  491. curLen = ((rem < len) ? (unsigned)rem : len);
  492. pos = dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0);
  493. processedPos += (UInt32)curLen;
  494. len -= curLen;
  495. if (curLen <= dicBufSize - pos)
  496. {
  497. Byte *dest = dic + dicPos;
  498. ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
  499. const Byte *lim = dest + curLen;
  500. dicPos += (SizeT)curLen;
  501. do
  502. *(dest) = (Byte)*(dest + src);
  503. while (++dest != lim);
  504. }
  505. else
  506. {
  507. do
  508. {
  509. dic[dicPos++] = dic[pos];
  510. if (++pos == dicBufSize)
  511. pos = 0;
  512. }
  513. while (--curLen != 0);
  514. }
  515. }
  516. }
  517. }
  518. while (dicPos < limit && buf < bufLimit);
  519. NORMALIZE
  520. p->buf = buf;
  521. p->range = range;
  522. p->code = code;
  523. p->remainLen = (UInt32)len; // & (kMatchSpecLen_Error_Data - 1); // we can write real length for error matches too.
  524. p->dicPos = dicPos;
  525. p->processedPos = processedPos;
  526. p->reps[0] = rep0;
  527. p->reps[1] = rep1;
  528. p->reps[2] = rep2;
  529. p->reps[3] = rep3;
  530. p->state = (UInt32)state;
  531. if (len >= kMatchSpecLen_Error_Data)
  532. return SZ_ERROR_DATA;
  533. return SZ_OK;
  534. }
  535. #endif
  536. static void Z7_FASTCALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
  537. {
  538. unsigned len = (unsigned)p->remainLen;
  539. if (len == 0 /* || len >= kMatchSpecLenStart */)
  540. return;
  541. {
  542. SizeT dicPos = p->dicPos;
  543. Byte *dic;
  544. SizeT dicBufSize;
  545. SizeT rep0; /* we use SizeT to avoid the BUG of VC14 for AMD64 */
  546. {
  547. SizeT rem = limit - dicPos;
  548. if (rem < len)
  549. {
  550. len = (unsigned)(rem);
  551. if (len == 0)
  552. return;
  553. }
  554. }
  555. if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
  556. p->checkDicSize = p->prop.dicSize;
  557. p->processedPos += (UInt32)len;
  558. p->remainLen -= (UInt32)len;
  559. dic = p->dic;
  560. rep0 = p->reps[0];
  561. dicBufSize = p->dicBufSize;
  562. do
  563. {
  564. dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
  565. dicPos++;
  566. }
  567. while (--len);
  568. p->dicPos = dicPos;
  569. }
  570. }
  571. /*
  572. At staring of new stream we have one of the following symbols:
  573. - Literal - is allowed
  574. - Non-Rep-Match - is allowed only if it's end marker symbol
  575. - Rep-Match - is not allowed
  576. We use early check of (RangeCoder:Code) over kBadRepCode to simplify main decoding code
  577. */
  578. #define kRange0 0xFFFFFFFF
  579. #define kBound0 ((kRange0 >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1))
  580. #define kBadRepCode (kBound0 + (((kRange0 - kBound0) >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1)))
  581. #if kBadRepCode != (0xC0000000 - 0x400)
  582. #error Stop_Compiling_Bad_LZMA_Check
  583. #endif
  584. /*
  585. LzmaDec_DecodeReal2():
  586. It calls LZMA_DECODE_REAL() and it adjusts limit according (p->checkDicSize).
  587. We correct (p->checkDicSize) after LZMA_DECODE_REAL() and in LzmaDec_WriteRem(),
  588. and we support the following state of (p->checkDicSize):
  589. if (total_processed < p->prop.dicSize) then
  590. {
  591. (total_processed == p->processedPos)
  592. (p->checkDicSize == 0)
  593. }
  594. else
  595. (p->checkDicSize == p->prop.dicSize)
  596. */
  597. static int Z7_FASTCALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
  598. {
  599. if (p->checkDicSize == 0)
  600. {
  601. UInt32 rem = p->prop.dicSize - p->processedPos;
  602. if (limit - p->dicPos > rem)
  603. limit = p->dicPos + rem;
  604. }
  605. {
  606. int res = LZMA_DECODE_REAL(p, limit, bufLimit);
  607. if (p->checkDicSize == 0 && p->processedPos >= p->prop.dicSize)
  608. p->checkDicSize = p->prop.dicSize;
  609. return res;
  610. }
  611. }
  612. typedef enum
  613. {
  614. DUMMY_INPUT_EOF, /* need more input data */
  615. DUMMY_LIT,
  616. DUMMY_MATCH,
  617. DUMMY_REP
  618. } ELzmaDummy;
  619. #define IS_DUMMY_END_MARKER_POSSIBLE(dummyRes) ((dummyRes) == DUMMY_MATCH)
  620. static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, const Byte **bufOut)
  621. {
  622. UInt32 range = p->range;
  623. UInt32 code = p->code;
  624. const Byte *bufLimit = *bufOut;
  625. const CLzmaProb *probs = GET_PROBS;
  626. unsigned state = (unsigned)p->state;
  627. ELzmaDummy res;
  628. for (;;)
  629. {
  630. const CLzmaProb *prob;
  631. UInt32 bound;
  632. unsigned ttt;
  633. unsigned posState = CALC_POS_STATE(p->processedPos, ((unsigned)1 << p->prop.pb) - 1);
  634. prob = probs + IsMatch + COMBINED_PS_STATE;
  635. IF_BIT_0_CHECK(prob)
  636. {
  637. UPDATE_0_CHECK
  638. prob = probs + Literal;
  639. if (p->checkDicSize != 0 || p->processedPos != 0)
  640. prob += ((UInt32)LZMA_LIT_SIZE *
  641. ((((p->processedPos) & (((unsigned)1 << (p->prop.lp)) - 1)) << p->prop.lc) +
  642. ((unsigned)p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
  643. if (state < kNumLitStates)
  644. {
  645. unsigned symbol = 1;
  646. do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
  647. }
  648. else
  649. {
  650. unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
  651. (p->dicPos < p->reps[0] ? p->dicBufSize : 0)];
  652. unsigned offs = 0x100;
  653. unsigned symbol = 1;
  654. do
  655. {
  656. unsigned bit;
  657. const CLzmaProb *probLit;
  658. matchByte += matchByte;
  659. bit = offs;
  660. offs &= matchByte;
  661. probLit = prob + (offs + bit + symbol);
  662. GET_BIT2_CHECK(probLit, symbol, offs ^= bit; , ; )
  663. }
  664. while (symbol < 0x100);
  665. }
  666. res = DUMMY_LIT;
  667. }
  668. else
  669. {
  670. unsigned len;
  671. UPDATE_1_CHECK
  672. prob = probs + IsRep + state;
  673. IF_BIT_0_CHECK(prob)
  674. {
  675. UPDATE_0_CHECK
  676. state = 0;
  677. prob = probs + LenCoder;
  678. res = DUMMY_MATCH;
  679. }
  680. else
  681. {
  682. UPDATE_1_CHECK
  683. res = DUMMY_REP;
  684. prob = probs + IsRepG0 + state;
  685. IF_BIT_0_CHECK(prob)
  686. {
  687. UPDATE_0_CHECK
  688. prob = probs + IsRep0Long + COMBINED_PS_STATE;
  689. IF_BIT_0_CHECK(prob)
  690. {
  691. UPDATE_0_CHECK
  692. break;
  693. }
  694. else
  695. {
  696. UPDATE_1_CHECK
  697. }
  698. }
  699. else
  700. {
  701. UPDATE_1_CHECK
  702. prob = probs + IsRepG1 + state;
  703. IF_BIT_0_CHECK(prob)
  704. {
  705. UPDATE_0_CHECK
  706. }
  707. else
  708. {
  709. UPDATE_1_CHECK
  710. prob = probs + IsRepG2 + state;
  711. IF_BIT_0_CHECK(prob)
  712. {
  713. UPDATE_0_CHECK
  714. }
  715. else
  716. {
  717. UPDATE_1_CHECK
  718. }
  719. }
  720. }
  721. state = kNumStates;
  722. prob = probs + RepLenCoder;
  723. }
  724. {
  725. unsigned limit, offset;
  726. const CLzmaProb *probLen = prob + LenChoice;
  727. IF_BIT_0_CHECK(probLen)
  728. {
  729. UPDATE_0_CHECK
  730. probLen = prob + LenLow + GET_LEN_STATE;
  731. offset = 0;
  732. limit = 1 << kLenNumLowBits;
  733. }
  734. else
  735. {
  736. UPDATE_1_CHECK
  737. probLen = prob + LenChoice2;
  738. IF_BIT_0_CHECK(probLen)
  739. {
  740. UPDATE_0_CHECK
  741. probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
  742. offset = kLenNumLowSymbols;
  743. limit = 1 << kLenNumLowBits;
  744. }
  745. else
  746. {
  747. UPDATE_1_CHECK
  748. probLen = prob + LenHigh;
  749. offset = kLenNumLowSymbols * 2;
  750. limit = 1 << kLenNumHighBits;
  751. }
  752. }
  753. TREE_DECODE_CHECK(probLen, limit, len)
  754. len += offset;
  755. }
  756. if (state < 4)
  757. {
  758. unsigned posSlot;
  759. prob = probs + PosSlot +
  760. ((len < kNumLenToPosStates - 1 ? len : kNumLenToPosStates - 1) <<
  761. kNumPosSlotBits);
  762. TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot)
  763. if (posSlot >= kStartPosModelIndex)
  764. {
  765. unsigned numDirectBits = ((posSlot >> 1) - 1);
  766. if (posSlot < kEndPosModelIndex)
  767. {
  768. prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits);
  769. }
  770. else
  771. {
  772. numDirectBits -= kNumAlignBits;
  773. do
  774. {
  775. NORMALIZE_CHECK
  776. range >>= 1;
  777. code -= range & (((code - range) >> 31) - 1);
  778. /* if (code >= range) code -= range; */
  779. }
  780. while (--numDirectBits);
  781. prob = probs + Align;
  782. numDirectBits = kNumAlignBits;
  783. }
  784. {
  785. unsigned i = 1;
  786. unsigned m = 1;
  787. do
  788. {
  789. REV_BIT_CHECK(prob, i, m)
  790. }
  791. while (--numDirectBits);
  792. }
  793. }
  794. }
  795. }
  796. break;
  797. }
  798. NORMALIZE_CHECK
  799. *bufOut = buf;
  800. return res;
  801. }
  802. void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState);
  803. void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState)
  804. {
  805. p->remainLen = kMatchSpecLenStart + 1;
  806. p->tempBufSize = 0;
  807. if (initDic)
  808. {
  809. p->processedPos = 0;
  810. p->checkDicSize = 0;
  811. p->remainLen = kMatchSpecLenStart + 2;
  812. }
  813. if (initState)
  814. p->remainLen = kMatchSpecLenStart + 2;
  815. }
  816. void LzmaDec_Init(CLzmaDec *p)
  817. {
  818. p->dicPos = 0;
  819. LzmaDec_InitDicAndState(p, True, True);
  820. }
  821. /*
  822. LZMA supports optional end_marker.
  823. So the decoder can lookahead for one additional LZMA-Symbol to check end_marker.
  824. That additional LZMA-Symbol can require up to LZMA_REQUIRED_INPUT_MAX bytes in input stream.
  825. When the decoder reaches dicLimit, it looks (finishMode) parameter:
  826. if (finishMode == LZMA_FINISH_ANY), the decoder doesn't lookahead
  827. if (finishMode != LZMA_FINISH_ANY), the decoder lookahead, if end_marker is possible for current position
  828. When the decoder lookahead, and the lookahead symbol is not end_marker, we have two ways:
  829. 1) Strict mode (default) : the decoder returns SZ_ERROR_DATA.
  830. 2) The relaxed mode (alternative mode) : we could return SZ_OK, and the caller
  831. must check (status) value. The caller can show the error,
  832. if the end of stream is expected, and the (status) is noit
  833. LZMA_STATUS_FINISHED_WITH_MARK or LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK.
  834. */
  835. #define RETURN_NOT_FINISHED_FOR_FINISH \
  836. *status = LZMA_STATUS_NOT_FINISHED; \
  837. return SZ_ERROR_DATA; // for strict mode
  838. // return SZ_OK; // for relaxed mode
  839. SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
  840. ELzmaFinishMode finishMode, ELzmaStatus *status)
  841. {
  842. SizeT inSize = *srcLen;
  843. (*srcLen) = 0;
  844. *status = LZMA_STATUS_NOT_SPECIFIED;
  845. if (p->remainLen > kMatchSpecLenStart)
  846. {
  847. if (p->remainLen > kMatchSpecLenStart + 2)
  848. return p->remainLen == kMatchSpecLen_Error_Fail ? SZ_ERROR_FAIL : SZ_ERROR_DATA;
  849. for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
  850. p->tempBuf[p->tempBufSize++] = *src++;
  851. if (p->tempBufSize != 0 && p->tempBuf[0] != 0)
  852. return SZ_ERROR_DATA;
  853. if (p->tempBufSize < RC_INIT_SIZE)
  854. {
  855. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  856. return SZ_OK;
  857. }
  858. p->code =
  859. ((UInt32)p->tempBuf[1] << 24)
  860. | ((UInt32)p->tempBuf[2] << 16)
  861. | ((UInt32)p->tempBuf[3] << 8)
  862. | ((UInt32)p->tempBuf[4]);
  863. if (p->checkDicSize == 0
  864. && p->processedPos == 0
  865. && p->code >= kBadRepCode)
  866. return SZ_ERROR_DATA;
  867. p->range = 0xFFFFFFFF;
  868. p->tempBufSize = 0;
  869. if (p->remainLen > kMatchSpecLenStart + 1)
  870. {
  871. SizeT numProbs = LzmaProps_GetNumProbs(&p->prop);
  872. SizeT i;
  873. CLzmaProb *probs = p->probs;
  874. for (i = 0; i < numProbs; i++)
  875. probs[i] = kBitModelTotal >> 1;
  876. p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
  877. p->state = 0;
  878. }
  879. p->remainLen = 0;
  880. }
  881. for (;;)
  882. {
  883. if (p->remainLen == kMatchSpecLenStart)
  884. {
  885. if (p->code != 0)
  886. return SZ_ERROR_DATA;
  887. *status = LZMA_STATUS_FINISHED_WITH_MARK;
  888. return SZ_OK;
  889. }
  890. LzmaDec_WriteRem(p, dicLimit);
  891. {
  892. // (p->remainLen == 0 || p->dicPos == dicLimit)
  893. int checkEndMarkNow = 0;
  894. if (p->dicPos >= dicLimit)
  895. {
  896. if (p->remainLen == 0 && p->code == 0)
  897. {
  898. *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
  899. return SZ_OK;
  900. }
  901. if (finishMode == LZMA_FINISH_ANY)
  902. {
  903. *status = LZMA_STATUS_NOT_FINISHED;
  904. return SZ_OK;
  905. }
  906. if (p->remainLen != 0)
  907. {
  908. RETURN_NOT_FINISHED_FOR_FINISH
  909. }
  910. checkEndMarkNow = 1;
  911. }
  912. // (p->remainLen == 0)
  913. if (p->tempBufSize == 0)
  914. {
  915. const Byte *bufLimit;
  916. int dummyProcessed = -1;
  917. if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
  918. {
  919. const Byte *bufOut = src + inSize;
  920. ELzmaDummy dummyRes = LzmaDec_TryDummy(p, src, &bufOut);
  921. if (dummyRes == DUMMY_INPUT_EOF)
  922. {
  923. size_t i;
  924. if (inSize >= LZMA_REQUIRED_INPUT_MAX)
  925. break;
  926. (*srcLen) += inSize;
  927. p->tempBufSize = (unsigned)inSize;
  928. for (i = 0; i < inSize; i++)
  929. p->tempBuf[i] = src[i];
  930. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  931. return SZ_OK;
  932. }
  933. dummyProcessed = (int)(bufOut - src);
  934. if ((unsigned)dummyProcessed > LZMA_REQUIRED_INPUT_MAX)
  935. break;
  936. if (checkEndMarkNow && !IS_DUMMY_END_MARKER_POSSIBLE(dummyRes))
  937. {
  938. unsigned i;
  939. (*srcLen) += (unsigned)dummyProcessed;
  940. p->tempBufSize = (unsigned)dummyProcessed;
  941. for (i = 0; i < (unsigned)dummyProcessed; i++)
  942. p->tempBuf[i] = src[i];
  943. // p->remainLen = kMatchSpecLen_Error_Data;
  944. RETURN_NOT_FINISHED_FOR_FINISH
  945. }
  946. bufLimit = src;
  947. // we will decode only one iteration
  948. }
  949. else
  950. bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
  951. p->buf = src;
  952. {
  953. int res = LzmaDec_DecodeReal2(p, dicLimit, bufLimit);
  954. SizeT processed = (SizeT)(p->buf - src);
  955. if (dummyProcessed < 0)
  956. {
  957. if (processed > inSize)
  958. break;
  959. }
  960. else if ((unsigned)dummyProcessed != processed)
  961. break;
  962. src += processed;
  963. inSize -= processed;
  964. (*srcLen) += processed;
  965. if (res != SZ_OK)
  966. {
  967. p->remainLen = kMatchSpecLen_Error_Data;
  968. return SZ_ERROR_DATA;
  969. }
  970. }
  971. continue;
  972. }
  973. {
  974. // we have some data in (p->tempBuf)
  975. // in strict mode: tempBufSize is not enough for one Symbol decoding.
  976. // in relaxed mode: tempBufSize not larger than required for one Symbol decoding.
  977. unsigned rem = p->tempBufSize;
  978. unsigned ahead = 0;
  979. int dummyProcessed = -1;
  980. while (rem < LZMA_REQUIRED_INPUT_MAX && ahead < inSize)
  981. p->tempBuf[rem++] = src[ahead++];
  982. // ahead - the size of new data copied from (src) to (p->tempBuf)
  983. // rem - the size of temp buffer including new data from (src)
  984. if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
  985. {
  986. const Byte *bufOut = p->tempBuf + rem;
  987. ELzmaDummy dummyRes = LzmaDec_TryDummy(p, p->tempBuf, &bufOut);
  988. if (dummyRes == DUMMY_INPUT_EOF)
  989. {
  990. if (rem >= LZMA_REQUIRED_INPUT_MAX)
  991. break;
  992. p->tempBufSize = rem;
  993. (*srcLen) += (SizeT)ahead;
  994. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  995. return SZ_OK;
  996. }
  997. dummyProcessed = (int)(bufOut - p->tempBuf);
  998. if ((unsigned)dummyProcessed < p->tempBufSize)
  999. break;
  1000. if (checkEndMarkNow && !IS_DUMMY_END_MARKER_POSSIBLE(dummyRes))
  1001. {
  1002. (*srcLen) += (unsigned)dummyProcessed - p->tempBufSize;
  1003. p->tempBufSize = (unsigned)dummyProcessed;
  1004. // p->remainLen = kMatchSpecLen_Error_Data;
  1005. RETURN_NOT_FINISHED_FOR_FINISH
  1006. }
  1007. }
  1008. p->buf = p->tempBuf;
  1009. {
  1010. // we decode one symbol from (p->tempBuf) here, so the (bufLimit) is equal to (p->buf)
  1011. int res = LzmaDec_DecodeReal2(p, dicLimit, p->buf);
  1012. SizeT processed = (SizeT)(p->buf - p->tempBuf);
  1013. rem = p->tempBufSize;
  1014. if (dummyProcessed < 0)
  1015. {
  1016. if (processed > LZMA_REQUIRED_INPUT_MAX)
  1017. break;
  1018. if (processed < rem)
  1019. break;
  1020. }
  1021. else if ((unsigned)dummyProcessed != processed)
  1022. break;
  1023. processed -= rem;
  1024. src += processed;
  1025. inSize -= processed;
  1026. (*srcLen) += processed;
  1027. p->tempBufSize = 0;
  1028. if (res != SZ_OK)
  1029. {
  1030. p->remainLen = kMatchSpecLen_Error_Data;
  1031. return SZ_ERROR_DATA;
  1032. }
  1033. }
  1034. }
  1035. }
  1036. }
  1037. /* Some unexpected error: internal error of code, memory corruption or hardware failure */
  1038. p->remainLen = kMatchSpecLen_Error_Fail;
  1039. return SZ_ERROR_FAIL;
  1040. }
  1041. SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
  1042. {
  1043. SizeT outSize = *destLen;
  1044. SizeT inSize = *srcLen;
  1045. *srcLen = *destLen = 0;
  1046. for (;;)
  1047. {
  1048. SizeT inSizeCur = inSize, outSizeCur, dicPos;
  1049. ELzmaFinishMode curFinishMode;
  1050. SRes res;
  1051. if (p->dicPos == p->dicBufSize)
  1052. p->dicPos = 0;
  1053. dicPos = p->dicPos;
  1054. if (outSize > p->dicBufSize - dicPos)
  1055. {
  1056. outSizeCur = p->dicBufSize;
  1057. curFinishMode = LZMA_FINISH_ANY;
  1058. }
  1059. else
  1060. {
  1061. outSizeCur = dicPos + outSize;
  1062. curFinishMode = finishMode;
  1063. }
  1064. res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
  1065. src += inSizeCur;
  1066. inSize -= inSizeCur;
  1067. *srcLen += inSizeCur;
  1068. outSizeCur = p->dicPos - dicPos;
  1069. memcpy(dest, p->dic + dicPos, outSizeCur);
  1070. dest += outSizeCur;
  1071. outSize -= outSizeCur;
  1072. *destLen += outSizeCur;
  1073. if (res != 0)
  1074. return res;
  1075. if (outSizeCur == 0 || outSize == 0)
  1076. return SZ_OK;
  1077. }
  1078. }
  1079. void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc)
  1080. {
  1081. ISzAlloc_Free(alloc, p->probs);
  1082. p->probs = NULL;
  1083. }
  1084. static void LzmaDec_FreeDict(CLzmaDec *p, ISzAllocPtr alloc)
  1085. {
  1086. ISzAlloc_Free(alloc, p->dic);
  1087. p->dic = NULL;
  1088. }
  1089. void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc)
  1090. {
  1091. LzmaDec_FreeProbs(p, alloc);
  1092. LzmaDec_FreeDict(p, alloc);
  1093. }
  1094. SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
  1095. {
  1096. UInt32 dicSize;
  1097. Byte d;
  1098. if (size < LZMA_PROPS_SIZE)
  1099. return SZ_ERROR_UNSUPPORTED;
  1100. else
  1101. dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
  1102. if (dicSize < LZMA_DIC_MIN)
  1103. dicSize = LZMA_DIC_MIN;
  1104. p->dicSize = dicSize;
  1105. d = data[0];
  1106. if (d >= (9 * 5 * 5))
  1107. return SZ_ERROR_UNSUPPORTED;
  1108. p->lc = (Byte)(d % 9);
  1109. d /= 9;
  1110. p->pb = (Byte)(d / 5);
  1111. p->lp = (Byte)(d % 5);
  1112. return SZ_OK;
  1113. }
  1114. static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAllocPtr alloc)
  1115. {
  1116. UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
  1117. if (!p->probs || numProbs != p->numProbs)
  1118. {
  1119. LzmaDec_FreeProbs(p, alloc);
  1120. p->probs = (CLzmaProb *)ISzAlloc_Alloc(alloc, numProbs * sizeof(CLzmaProb));
  1121. if (!p->probs)
  1122. return SZ_ERROR_MEM;
  1123. p->probs_1664 = p->probs + 1664;
  1124. p->numProbs = numProbs;
  1125. }
  1126. return SZ_OK;
  1127. }
  1128. SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
  1129. {
  1130. CLzmaProps propNew;
  1131. RINOK(LzmaProps_Decode(&propNew, props, propsSize))
  1132. RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc))
  1133. p->prop = propNew;
  1134. return SZ_OK;
  1135. }
  1136. SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
  1137. {
  1138. CLzmaProps propNew;
  1139. SizeT dicBufSize;
  1140. RINOK(LzmaProps_Decode(&propNew, props, propsSize))
  1141. RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc))
  1142. {
  1143. UInt32 dictSize = propNew.dicSize;
  1144. SizeT mask = ((UInt32)1 << 12) - 1;
  1145. if (dictSize >= ((UInt32)1 << 30)) mask = ((UInt32)1 << 22) - 1;
  1146. else if (dictSize >= ((UInt32)1 << 22)) mask = ((UInt32)1 << 20) - 1;
  1147. dicBufSize = ((SizeT)dictSize + mask) & ~mask;
  1148. if (dicBufSize < dictSize)
  1149. dicBufSize = dictSize;
  1150. }
  1151. if (!p->dic || dicBufSize != p->dicBufSize)
  1152. {
  1153. LzmaDec_FreeDict(p, alloc);
  1154. p->dic = (Byte *)ISzAlloc_Alloc(alloc, dicBufSize);
  1155. if (!p->dic)
  1156. {
  1157. LzmaDec_FreeProbs(p, alloc);
  1158. return SZ_ERROR_MEM;
  1159. }
  1160. }
  1161. p->dicBufSize = dicBufSize;
  1162. p->prop = propNew;
  1163. return SZ_OK;
  1164. }
  1165. SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
  1166. const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
  1167. ELzmaStatus *status, ISzAllocPtr alloc)
  1168. {
  1169. CLzmaDec p;
  1170. SRes res;
  1171. SizeT outSize = *destLen, inSize = *srcLen;
  1172. *destLen = *srcLen = 0;
  1173. *status = LZMA_STATUS_NOT_SPECIFIED;
  1174. if (inSize < RC_INIT_SIZE)
  1175. return SZ_ERROR_INPUT_EOF;
  1176. LzmaDec_CONSTRUCT(&p)
  1177. RINOK(LzmaDec_AllocateProbs(&p, propData, propSize, alloc))
  1178. p.dic = dest;
  1179. p.dicBufSize = outSize;
  1180. LzmaDec_Init(&p);
  1181. *srcLen = inSize;
  1182. res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
  1183. *destLen = p.dicPos;
  1184. if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
  1185. res = SZ_ERROR_INPUT_EOF;
  1186. LzmaDec_FreeProbs(&p, alloc);
  1187. return res;
  1188. }