/* * Copyright (c) 1983-2023 Trevor Wishart and Composers Desktop Project Ltd * http://www.trevorwishart.co.uk * http://www.composersdesktop.com * This file is part of the CDP System. The CDP System is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The CDP System is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the CDP System; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ // // BUG dz->brksize[ITF_DEL] IS 14 .... should be much bigger ... this is #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef unix #include #endif #ifdef unix #define round(x) lround((x)) #endif char errstr[2400]; #define infilespace rampbrksize #define ampvaried is_rectified #define overflowsize temp_sampsize int anal_infiles = 1; int sloom = 0; int sloombatch = 0; #define MINFADE 2 // minimum fade of element in MS const char* cdp_version = "7.1.0"; //CDP LIB REPLACEMENTS static int setup_iterfof_application(dataptr dz); static int parse_sloom_data(int argc,char *argv[],char ***cmdline,int *cmdlinecnt,dataptr dz); static int parse_infile_and_check_type(char **cmdline,dataptr dz); static int setup_iterfof_param_ranges_and_defaults(dataptr dz); static int handle_the_outfile(int *cmdlinecnt,char ***cmdline,dataptr dz); static int setup_and_init_input_param_activity(dataptr dz,int tipc); static int setup_input_param_defaultval_stores(int tipc,aplptr ap); static int establish_application(dataptr dz); static int initialise_vflags(dataptr dz); static int setup_parameter_storage_and_constants(int storage_cnt,dataptr dz); static int initialise_is_int_and_no_brk_constants(int storage_cnt,dataptr dz); static int mark_parameter_types(dataptr dz,aplptr ap); static int assign_file_data_storage(int infilecnt,dataptr dz); static int get_tk_cmdline_word(int *cmdlinecnt,char ***cmdline,char *q); static int get_the_process_no(char *prog_identifier_from_cmdline,dataptr dz); static int get_the_mode_from_cmdline(char *str,dataptr dz); static int setup_and_init_input_brktable_constants(dataptr dz,int brkcnt); static int iterfof(dataptr dz); static int create_the_iterbufs(dataptr dz); static int do_iterfof_preprocess(dataptr dz); static int read_stepd_delay_value(double thistime,double *notestarttime,double *noteendtime,double *portint,dataptr dz); static int transpos_read_element(int *transposcnt,double incr,dataptr dz); static int dovibrato(int *delays,dataptr dz); static int setup_lineportion_params(double *linegains,double *linefades, double *upfades, double *linegaps,dataptr dz); static int read_lineportion_gain(double thistime,double *lasttime,double *linegain,double *linegains,dataptr dz); static int read_lineportion_envelope(double thistime,double *envlasttime,int *linedur,int *linefade,double *linefadeincr,int *upfade,double *upfadeincr, double *lineenv, double *linefades,double *upfades,double *linegaps, int minfade, double *pshift, dataptr dz); static double portion_env(int *linedur,int *linefade,double *lineenv,double linefadeincr,int *upfade,double upfadeincr); /**************************************** MAIN *********************************************/ int main(int argc,char *argv[]) { int exit_status; dataptr dz = NULL; char **cmdline; int cmdlinecnt; int n; // aplptr ap; int is_launched = FALSE; if(argc==2 && (strcmp(argv[1],"--version") == 0)) { fprintf(stdout,"%s\n",cdp_version); fflush(stdout); return 0; } /* CHECK FOR SOUNDLOOM */ if((sloom = sound_loom_in_use(&argc,&argv)) > 1) { sloom = 0; sloombatch = 1; } if(sflinit("cdp")){ sfperror("cdp: initialisation\n"); return(FAILED); } /* SET UP THE PRINCIPLE DATASTRUCTURE */ if((exit_status = establish_datastructure(&dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if(!sloom) { if(argc == 1) { usage1(); return(FAILED); } else if(argc == 2) { usage2(argv[1]); return(FAILED); } } if(!sloom) { if((exit_status = make_initial_cmdline_check(&argc,&argv))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } cmdline = argv; cmdlinecnt = argc; if((get_the_process_no(argv[0],dz))<0) return(FAILED); cmdline++; cmdlinecnt--; dz->maxmode = 4; if((exit_status = get_the_mode_from_cmdline(cmdline[0],dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(exit_status); } cmdline++; cmdlinecnt--; // setup_particular_application = if((exit_status = setup_iterfof_application(dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = count_and_allocate_for_infiles(cmdlinecnt,cmdline,dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } } else { //parse_TK_data() = if((exit_status = parse_sloom_data(argc,argv,&cmdline,&cmdlinecnt,dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(exit_status); } } // ap = dz->application; // parse_infile_and_hone_type() = if((exit_status = parse_infile_and_check_type(cmdline,dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // setup_param_ranges_and_defaults() = if((exit_status = setup_iterfof_param_ranges_and_defaults(dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // open_first_infile CDP LIB if((exit_status = open_first_infile(cmdline[0],dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } cmdlinecnt--; cmdline++; // handle_extra_infiles() : redundant // handle_outfile() = if((exit_status = handle_the_outfile(&cmdlinecnt,&cmdline,dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // handle_formants() redundant // handle_formant_quiksearch() redundant // handle_formant_quiksearch() redundant // handle_the_special_data() redundant if((exit_status = read_parameters_and_flags(&cmdline,&cmdlinecnt,dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // check_param_validity_and_consistency() redundant is_launched = TRUE; dz->bufcnt = 4; if((dz->sampbuf = (float **)malloc(sizeof(float *) * (dz->bufcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing sample buffers.\n"); return(MEMORY_ERROR); } if((dz->sbufptr = (float **)malloc(sizeof(float *) * dz->bufcnt+1))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing sample buffer pointers.\n"); return(MEMORY_ERROR); } for(n = 0;n bufcnt; n++) dz->sampbuf[n] = dz->sbufptr[n] = (float *)0; dz->sampbuf[n] = (float *)0; if((exit_status = do_iterfof_preprocess(dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } //spec_process_file = if((exit_status = iterfof(dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = complete_output(dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } exit_status = print_messages_and_close_sndfiles(FINISHED,is_launched,dz); // CDP LIB free(dz); return(SUCCEEDED); } /********************************************** REPLACED CDP LIB FUNCTIONS **********************************************/ /****************************** SET_PARAM_DATA *********************************/ int set_param_data(aplptr ap, int special_data,int maxparamcnt,int paramcnt,char *paramlist) { ap->special_data = (char)special_data; ap->param_cnt = (char)paramcnt; ap->max_param_cnt = (char)maxparamcnt; if(ap->max_param_cnt>0) { if((ap->param_list = (char *)malloc((size_t)(ap->max_param_cnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for param_list\n"); return(MEMORY_ERROR); } strcpy(ap->param_list,paramlist); } return(FINISHED); } /****************************** SET_VFLGS *********************************/ int set_vflgs (aplptr ap,char *optflags,int optcnt,char *optlist,char *varflags,int vflagcnt, int vparamcnt,char *varlist) { ap->option_cnt = (char) optcnt; /*RWD added cast */ if(optcnt) { if((ap->option_list = (char *)malloc((size_t)(optcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for option_list\n"); return(MEMORY_ERROR); } strcpy(ap->option_list,optlist); if((ap->option_flags = (char *)malloc((size_t)(optcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for option_flags\n"); return(MEMORY_ERROR); } strcpy(ap->option_flags,optflags); } ap->vflag_cnt = (char) vflagcnt; ap->variant_param_cnt = (char) vparamcnt; if(vflagcnt) { if((ap->variant_list = (char *)malloc((size_t)(vflagcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for variant_list\n"); return(MEMORY_ERROR); } strcpy(ap->variant_list,varlist); if((ap->variant_flags = (char *)malloc((size_t)(vflagcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for variant_flags\n"); return(MEMORY_ERROR); } strcpy(ap->variant_flags,varflags); } return(FINISHED); } /***************************** APPLICATION_INIT **************************/ int application_init(dataptr dz) { int exit_status; int storage_cnt; int tipc, brkcnt; aplptr ap = dz->application; if(ap->vflag_cnt>0) initialise_vflags(dz); tipc = ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt; ap->total_input_param_cnt = (char)tipc; if(tipc>0) { if((exit_status = setup_input_param_range_stores(tipc,ap))<0) return(exit_status); if((exit_status = setup_input_param_defaultval_stores(tipc,ap))<0) return(exit_status); if((exit_status = setup_and_init_input_param_activity(dz,tipc))<0) return(exit_status); } brkcnt = tipc; //THERE ARE NO INPUTFILE brktables USED IN THIS PROCESS if(brkcnt>0) { if((exit_status = setup_and_init_input_brktable_constants(dz,brkcnt))<0) return(exit_status); } if((storage_cnt = tipc + ap->internal_param_cnt)>0) { if((exit_status = setup_parameter_storage_and_constants(storage_cnt,dz))<0) return(exit_status); if((exit_status = initialise_is_int_and_no_brk_constants(storage_cnt,dz))<0) return(exit_status); } if((exit_status = mark_parameter_types(dz,ap))<0) return(exit_status); // establish_infile_constants() replaced by dz->infilecnt = 1; //establish_bufptrs_and_extra_buffers(): return(FINISHED); } /********************** SETUP_PARAMETER_STORAGE_AND_CONSTANTS ********************/ /* RWD mallo changed to calloc; helps debug verison run as release! */ int setup_parameter_storage_and_constants(int storage_cnt,dataptr dz) { if((dz->param = (double *)calloc(storage_cnt, sizeof(double)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 1\n"); return(MEMORY_ERROR); } if((dz->iparam = (int *)calloc(storage_cnt, sizeof(int) ))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 2\n"); return(MEMORY_ERROR); } if((dz->is_int = (char *)calloc(storage_cnt, sizeof(char)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 3\n"); return(MEMORY_ERROR); } if((dz->no_brk = (char *)calloc(storage_cnt, sizeof(char)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 5\n"); return(MEMORY_ERROR); } return(FINISHED); } /************** INITIALISE_IS_INT_AND_NO_BRK_CONSTANTS *****************/ int initialise_is_int_and_no_brk_constants(int storage_cnt,dataptr dz) { int n; for(n=0;nis_int[n] = (char)0; dz->no_brk[n] = (char)0; } return(FINISHED); } /***************************** MARK_PARAMETER_TYPES **************************/ int mark_parameter_types(dataptr dz,aplptr ap) { int n, m; /* PARAMS */ for(n=0;nmax_param_cnt;n++) { switch(ap->param_list[n]) { case('0'): break; /* dz->is_active[n] = 0 is default */ case('i'): dz->is_active[n] = (char)1; dz->is_int[n] = (char)1;dz->no_brk[n] = (char)1; break; case('I'): dz->is_active[n] = (char)1; dz->is_int[n] = (char)1; break; case('d'): dz->is_active[n] = (char)1; dz->no_brk[n] = (char)1; break; case('D'): dz->is_active[n] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid parameter type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* OPTIONS */ for(n=0,m=ap->max_param_cnt;noption_cnt;n++,m++) { switch(ap->option_list[n]) { case('i'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('I'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; break; case('d'): dz->is_active[m] = (char)1; dz->no_brk[m] = (char)1; break; case('D'): dz->is_active[m] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid option type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* VARIANTS */ for(n=0,m=ap->max_param_cnt + ap->option_cnt;n < ap->variant_param_cnt; n++, m++) { switch(ap->variant_list[n]) { case('0'): break; case('i'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('I'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; break; case('d'): dz->is_active[m] = (char)1; dz->no_brk[m] = (char)1; break; case('D'): dz->is_active[m] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid variant type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* INTERNAL */ for(n=0, m=ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt; ninternal_param_cnt; n++,m++) { switch(ap->internal_param_list[n]) { case('0'): break; /* dummy variables: variables not used: but important for internal paream numbering!! */ case('i'): dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('d'): dz->no_brk[m] = (char)1; break; default: sprintf(errstr,"Programming error: invalid internal param type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } return(FINISHED); } /************************ HANDLE_THE_OUTFILE *********************/ int handle_the_outfile(int *cmdlinecnt,char ***cmdline,dataptr dz) { int exit_status; char *filename = (*cmdline)[0]; if(filename[0]=='-' && filename[1]=='f') { dz->floatsam_output = 1; dz->true_outfile_stype = SAMP_FLOAT; filename+= 2; } if(!sloom) { if(file_has_invalid_startchar(filename) || value_is_numeric(filename)) { sprintf(errstr,"Outfile name %s has invalid start character(s) or looks too much like a number.\n",filename); return(DATA_ERROR); } } strcpy(dz->outfilename,filename); if((exit_status = create_sized_outfile(filename,dz))<0) return(exit_status); (*cmdline)++; (*cmdlinecnt)--; return(FINISHED); } /***************************** ESTABLISH_APPLICATION **************************/ int establish_application(dataptr dz) { aplptr ap; if((dz->application = (aplptr)malloc(sizeof (struct applic)))==NULL) { sprintf(errstr,"establish_application()\n"); return(MEMORY_ERROR); } ap = dz->application; memset((char *)ap,0,sizeof(struct applic)); return(FINISHED); } /************************* INITIALISE_VFLAGS *************************/ int initialise_vflags(dataptr dz) { int n; if((dz->vflag = (char *)malloc(dz->application->vflag_cnt * sizeof(char)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: vflag store,\n"); return(MEMORY_ERROR); } for(n=0;napplication->vflag_cnt;n++) dz->vflag[n] = FALSE; return FINISHED; } /************************* SETUP_INPUT_PARAM_DEFAULTVALS *************************/ int setup_input_param_defaultval_stores(int tipc,aplptr ap) { int n; if((ap->default_val = (double *)malloc(tipc * sizeof(double)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for application default values store\n"); return(MEMORY_ERROR); } for(n=0;ndefault_val[n] = 0.0; return(FINISHED); } /***************************** SETUP_AND_INIT_INPUT_PARAM_ACTIVITY **************************/ int setup_and_init_input_param_activity(dataptr dz,int tipc) { int n; if((dz->is_active = (char *)malloc((size_t)tipc))==NULL) { sprintf(errstr,"setup_and_init_input_param_activity()\n"); return(MEMORY_ERROR); } for(n=0;nis_active[n] = (char)0; return(FINISHED); } /************************* SETUP_ITERLINE_APPLICATION *******************/ int setup_iterfof_application(dataptr dz) { int exit_status; aplptr ap; if((exit_status = establish_application(dz))<0) // GLOBAL return(FAILED); ap = dz->application; if((exit_status = set_param_data(ap,0,2,2,"Dd"))<0) return(FAILED); if(EVEN(dz->mode)) exit_status = set_vflgs(ap,"patTErvVdD",10,"DDDDdDDDDD","s",1,1,"i"); else exit_status = set_vflgs(ap,"patTErvVdDgGFfSPi",17,"DDDDdDDDDDDDDDDiD","s",1,1,"i"); if(exit_status < 0) return FAILED; // set_legal_infile_structure --> dz->has_otherfile = FALSE; // assign_process_logic --> dz->input_data_type = SNDFILES_ONLY; dz->process_type = UNEQUAL_SNDFILE; dz->outfiletype = SNDFILE_OUT; dz->maxmode = 4; return application_init(dz); //GLOBAL } /************************* PARSE_INFILE_AND_CHECK_TYPE *******************/ int parse_infile_and_check_type(char **cmdline,dataptr dz) { int exit_status; infileptr infile_info; if(!sloom) { if((infile_info = (infileptr)malloc(sizeof(struct filedata)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for infile structure to test file data."); return(MEMORY_ERROR); } else if((exit_status = cdparse(cmdline[0],infile_info))<0) { sprintf(errstr,"Failed to parse input file %s\n",cmdline[0]); return(PROGRAM_ERROR); } else if(infile_info->filetype != SNDFILE) { sprintf(errstr,"File %s is not of correct type\n",cmdline[0]); return(DATA_ERROR); } else if(infile_info->channels != MONO) { sprintf(errstr,"File %s is not of correct type: must be MONO\n",cmdline[0]); return(DATA_ERROR); } else if((exit_status = copy_parse_info_to_main_structure(infile_info,dz))<0) { sprintf(errstr,"Failed to copy file parsing information\n"); return(PROGRAM_ERROR); } free(infile_info); } return(FINISHED); } /************************* SETUP_ITERLINE_PARAM_RANGES_AND_DEFAULTS *******************/ int setup_iterfof_param_ranges_and_defaults(dataptr dz) { int exit_status; aplptr ap = dz->application; // set_param_ranges() ap->total_input_param_cnt = (char)(ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt); // NB total_input_param_cnt is > 0 !!! if((exit_status = setup_input_param_range_stores(ap->total_input_param_cnt,ap))<0) return(FAILED); // get_param_ranges() if(dz->mode <2) { ap->lo[ITF_DEL] = -24; ap->hi[ITF_DEL] = 12; ap->default_val[ITF_DEL] = 0; } else { ap->lo[ITF_DEL] = 24; ap->hi[ITF_DEL] = 96; ap->default_val[ITF_DEL] = 60; } ap->lo[ITF_DUR] = dz->duration; ap->hi[ITF_DUR] = BIG_TIME; ap->default_val[ITF_DUR] = 20; ap->lo[ITF_RAND] = 0.0; ap->hi[ITF_RAND] = 1.0; ap->default_val[ITF_RAND] = 0.0; ap->lo[ITF_VMIN] = 0.0; ap->hi[ITF_VMIN] = 20.0; ap->default_val[ITF_VMIN] = 0.0; ap->lo[ITF_VMAX] = 0.0; ap->hi[ITF_VMAX] = 20.0; ap->default_val[ITF_VMAX] = 0.0; ap->lo[ITF_DMIN] = 0.0; ap->hi[ITF_DMIN] = 2.0; ap->default_val[ITF_DMIN] = 0.0; ap->lo[ITF_DMAX] = 0.0; ap->hi[ITF_DMAX] = 2.0; ap->default_val[ITF_DMAX] = 0.0; ap->lo[ITF_PRND] = 0.0; ap->hi[ITF_PRND] = 2.0; ap->default_val[ITF_PRND] = 0.0; ap->lo[ITF_AMPC] = 0.0; ap->hi[ITF_AMPC] = 1.0; ap->default_val[ITF_AMPC] = 0.0; ap->lo[ITF_TRIM] = 0.0; ap->hi[ITF_TRIM] = dz->duration; ap->default_val[ITF_TRIM] = 0.0; ap->lo[ITF_TRBY] = 0.0; ap->hi[ITF_TRBY] = dz->duration; ap->default_val[ITF_TRBY] = 0.0; ap->lo[ITF_SLOP] = 1.0; ap->hi[ITF_SLOP] = 4.0; ap->default_val[ITF_SLOP] = 1.0; if(EVEN(dz->mode)) { ap->lo[ITF_SEED1] = 0.0; ap->hi[ITF_SEED1] = MAXSHORT; ap->default_val[ITF_SEED1] = 0.0; } else { ap->lo[ITF_GMIN] = 0.0; ap->hi[ITF_GMIN] = 1.0; ap->default_val[ITF_GMIN] = 1.0; ap->lo[ITF_GMAX] = 0.0; ap->hi[ITF_GMAX] = 1.0; ap->default_val[ITF_GMAX] = 1.0; ap->lo[ITF_UFAD] = 0.0; ap->hi[ITF_UFAD] = 10; ap->default_val[ITF_UFAD] = 0.0; ap->lo[ITF_FADE] = 0.0; ap->hi[ITF_FADE] = 10; ap->default_val[ITF_FADE] = 0.0; ap->lo[ITF_GAPP] = 0.0; ap->hi[ITF_GAPP] = 1.0; ap->default_val[ITF_GAPP] = 0.0; ap->lo[ITF_PORT] = -1; ap->hi[ITF_PORT] = 2.0; ap->default_val[ITF_PORT] = 0.0; ap->lo[ITF_PINT] = 0.0; ap->hi[ITF_PINT] = 2.0; ap->default_val[ITF_PINT] = 0.0; ap->lo[ITF_SEED2] = 0.0; ap->hi[ITF_SEED2] = MAXSHORT; ap->default_val[ITF_SEED2] = 0.0; } dz->maxmode = 4; if(!sloom) put_default_vals_in_all_params(dz); return(FINISHED); } /********************************* PARSE_SLOOM_DATA *********************************/ int parse_sloom_data(int argc,char *argv[],char ***cmdline,int *cmdlinecnt,dataptr dz) { int exit_status; int cnt = 1, infilecnt; int filesize, insams, inbrksize; double dummy; int true_cnt = 0; // aplptr ap; while(cnt<=PRE_CMDLINE_DATACNT) { if(cnt > argc) { sprintf(errstr,"Insufficient data sent from TK\n"); return(DATA_ERROR); } switch(cnt) { case(1): if(sscanf(argv[cnt],"%d",&dz->process)!=1) { sprintf(errstr,"Cannot read process no. sent from TK\n"); return(DATA_ERROR); } break; case(2): if(sscanf(argv[cnt],"%d",&dz->mode)!=1) { sprintf(errstr,"Cannot read mode no. sent from TK\n"); return(DATA_ERROR); } if(dz->mode > 0) dz->mode--; //setup_particular_application() = if((exit_status = setup_iterfof_application(dz))<0) return(exit_status); // ap = dz->application; break; case(3): if(sscanf(argv[cnt],"%d",&infilecnt)!=1) { sprintf(errstr,"Cannot read infilecnt sent from TK\n"); return(DATA_ERROR); } if(infilecnt < 1) { true_cnt = cnt + 1; cnt = PRE_CMDLINE_DATACNT; /* force exit from loop after assign_file_data_storage */ } if((exit_status = assign_file_data_storage(infilecnt,dz))<0) return(exit_status); break; case(INPUT_FILETYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->filetype)!=1) { sprintf(errstr,"Cannot read filetype sent from TK (%s)\n",argv[cnt]); return(DATA_ERROR); } break; case(INPUT_FILESIZE+4): if(sscanf(argv[cnt],"%d",&filesize)!=1) { sprintf(errstr,"Cannot read infilesize sent from TK\n"); return(DATA_ERROR); } dz->insams[0] = filesize; break; case(INPUT_INSAMS+4): if(sscanf(argv[cnt],"%d",&insams)!=1) { sprintf(errstr,"Cannot read insams sent from TK\n"); return(DATA_ERROR); } dz->insams[0] = insams; break; case(INPUT_SRATE+4): if(sscanf(argv[cnt],"%d",&dz->infile->srate)!=1) { sprintf(errstr,"Cannot read srate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_CHANNELS+4): if(sscanf(argv[cnt],"%d",&dz->infile->channels)!=1) { sprintf(errstr,"Cannot read channels sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_STYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->stype)!=1) { sprintf(errstr,"Cannot read stype sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGSTYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->origstype)!=1) { sprintf(errstr,"Cannot read origstype sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGRATE+4): if(sscanf(argv[cnt],"%d",&dz->infile->origrate)!=1) { sprintf(errstr,"Cannot read origrate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MLEN+4): if(sscanf(argv[cnt],"%d",&dz->infile->Mlen)!=1) { sprintf(errstr,"Cannot read Mlen sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DFAC+4): if(sscanf(argv[cnt],"%d",&dz->infile->Dfac)!=1) { sprintf(errstr,"Cannot read Dfac sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGCHANS+4): if(sscanf(argv[cnt],"%d",&dz->infile->origchans)!=1) { sprintf(errstr,"Cannot read origchans sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_SPECENVCNT+4): if(sscanf(argv[cnt],"%d",&dz->infile->specenvcnt)!=1) { sprintf(errstr,"Cannot read specenvcnt sent from TK\n"); return(DATA_ERROR); } dz->specenvcnt = dz->infile->specenvcnt; break; case(INPUT_WANTED+4): if(sscanf(argv[cnt],"%d",&dz->wanted)!=1) { sprintf(errstr,"Cannot read wanted sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_WLENGTH+4): if(sscanf(argv[cnt],"%d",&dz->wlength)!=1) { sprintf(errstr,"Cannot read wlength sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_OUT_CHANS+4): if(sscanf(argv[cnt],"%d",&dz->out_chans)!=1) { sprintf(errstr,"Cannot read out_chans sent from TK\n"); return(DATA_ERROR); } break; /* RWD these chanegs to samps - tk will have to deal with that! */ case(INPUT_DESCRIPTOR_BYTES+4): if(sscanf(argv[cnt],"%d",&dz->descriptor_samps)!=1) { sprintf(errstr,"Cannot read descriptor_samps sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_IS_TRANSPOS+4): if(sscanf(argv[cnt],"%d",&dz->is_transpos)!=1) { sprintf(errstr,"Cannot read is_transpos sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_COULD_BE_TRANSPOS+4): if(sscanf(argv[cnt],"%d",&dz->could_be_transpos)!=1) { sprintf(errstr,"Cannot read could_be_transpos sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_COULD_BE_PITCH+4): if(sscanf(argv[cnt],"%d",&dz->could_be_pitch)!=1) { sprintf(errstr,"Cannot read could_be_pitch sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DIFFERENT_SRATES+4): if(sscanf(argv[cnt],"%d",&dz->different_srates)!=1) { sprintf(errstr,"Cannot read different_srates sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DUPLICATE_SNDS+4): if(sscanf(argv[cnt],"%d",&dz->duplicate_snds)!=1) { sprintf(errstr,"Cannot read duplicate_snds sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_BRKSIZE+4): if(sscanf(argv[cnt],"%d",&inbrksize)!=1) { sprintf(errstr,"Cannot read brksize sent from TK\n"); return(DATA_ERROR); } if(inbrksize > 0) { switch(dz->input_data_type) { case(WORDLIST_ONLY): break; case(PITCH_AND_PITCH): case(PITCH_AND_TRANSPOS): case(TRANSPOS_AND_TRANSPOS): dz->tempsize = inbrksize; break; case(BRKFILES_ONLY): case(UNRANGED_BRKFILE_ONLY): case(DB_BRKFILES_ONLY): case(ALL_FILES): case(ANY_NUMBER_OF_ANY_FILES): if(dz->extrabrkno < 0) { sprintf(errstr,"Storage location number for brktable not established by CDP.\n"); return(DATA_ERROR); } if(dz->brksize == NULL) { sprintf(errstr,"CDP has not established storage space for input brktable.\n"); return(PROGRAM_ERROR); } dz->brksize[dz->extrabrkno] = inbrksize; break; default: sprintf(errstr,"TK sent brktablesize > 0 for input_data_type [%d] not using brktables.\n", dz->input_data_type); return(PROGRAM_ERROR); } break; } break; case(INPUT_NUMSIZE+4): if(sscanf(argv[cnt],"%d",&dz->numsize)!=1) { sprintf(errstr,"Cannot read numsize sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_LINECNT+4): if(sscanf(argv[cnt],"%d",&dz->linecnt)!=1) { sprintf(errstr,"Cannot read linecnt sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ALL_WORDS+4): if(sscanf(argv[cnt],"%d",&dz->all_words)!=1) { sprintf(errstr,"Cannot read all_words sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ARATE+4): if(sscanf(argv[cnt],"%f",&dz->infile->arate)!=1) { sprintf(errstr,"Cannot read arate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_FRAMETIME+4): if(sscanf(argv[cnt],"%lf",&dummy)!=1) { sprintf(errstr,"Cannot read frametime sent from TK\n"); return(DATA_ERROR); } dz->frametime = (float)dummy; break; case(INPUT_WINDOW_SIZE+4): if(sscanf(argv[cnt],"%f",&dz->infile->window_size)!=1) { sprintf(errstr,"Cannot read window_size sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_NYQUIST+4): if(sscanf(argv[cnt],"%lf",&dz->nyquist)!=1) { sprintf(errstr,"Cannot read nyquist sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DURATION+4): if(sscanf(argv[cnt],"%lf",&dz->duration)!=1) { sprintf(errstr,"Cannot read duration sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MINBRK+4): if(sscanf(argv[cnt],"%lf",&dz->minbrk)!=1) { sprintf(errstr,"Cannot read minbrk sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MAXBRK+4): if(sscanf(argv[cnt],"%lf",&dz->maxbrk)!=1) { sprintf(errstr,"Cannot read maxbrk sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MINNUM+4): if(sscanf(argv[cnt],"%lf",&dz->minnum)!=1) { sprintf(errstr,"Cannot read minnum sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MAXNUM+4): if(sscanf(argv[cnt],"%lf",&dz->maxnum)!=1) { sprintf(errstr,"Cannot read maxnum sent from TK\n"); return(DATA_ERROR); } break; default: sprintf(errstr,"case switch item missing: parse_sloom_data()\n"); return(PROGRAM_ERROR); } cnt++; } if(cnt!=PRE_CMDLINE_DATACNT+1) { sprintf(errstr,"Insufficient pre-cmdline params sent from TK\n"); return(DATA_ERROR); } if(true_cnt) cnt = true_cnt; *cmdlinecnt = 0; while(cnt < argc) { if((exit_status = get_tk_cmdline_word(cmdlinecnt,cmdline,argv[cnt]))<0) return(exit_status); cnt++; } return(FINISHED); } /********************************* GET_TK_CMDLINE_WORD *********************************/ int get_tk_cmdline_word(int *cmdlinecnt,char ***cmdline,char *q) { if(*cmdlinecnt==0) { if((*cmdline = (char **)malloc(sizeof(char *)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline array.\n"); return(MEMORY_ERROR); } } else { if((*cmdline = (char **)realloc(*cmdline,((*cmdlinecnt)+1) * sizeof(char *)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline array.\n"); return(MEMORY_ERROR); } } if(((*cmdline)[*cmdlinecnt] = (char *)malloc((strlen(q) + 1) * sizeof(char)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline item %d.\n",(*cmdlinecnt)+1); return(MEMORY_ERROR); } strcpy((*cmdline)[*cmdlinecnt],q); (*cmdlinecnt)++; return(FINISHED); } /****************************** ASSIGN_FILE_DATA_STORAGE *********************************/ int assign_file_data_storage(int infilecnt,dataptr dz) { int exit_status; int no_sndfile_system_files = FALSE; dz->infilecnt = infilecnt; if((exit_status = allocate_filespace(dz))<0) return(exit_status); if(no_sndfile_system_files) dz->infilecnt = 0; return(FINISHED); } /************************* redundant functions: to ensure libs compile OK *******************/ int assign_process_logic(dataptr dz) { return(FINISHED); } void set_legal_infile_structure(dataptr dz) {} int set_legal_internalparam_structure(int process,int mode,aplptr ap) { int exit_status; exit_status = set_internalparam_data("diiii", ap); return(exit_status); } int setup_internal_arrays_and_array_pointers(dataptr dz) { return(FINISHED); } int establish_bufptrs_and_extra_buffers(dataptr dz) { return(FINISHED); } int read_special_data(char *str,dataptr dz) { return(FINISHED); } int inner_loop (int *peakscore,int *descnt,int *in_start_portion,int *least,int *pitchcnt,int windows_in_buf,dataptr dz) { return(FINISHED); } int get_process_no(char *prog_identifier_from_cmdline,dataptr dz) { return(FINISHED); } /******************************** USAGE1 ********************************/ int usage1(void) { usage2("iterfof"); return(USAGE_ONLY); } /********************************************************************************************/ int get_the_process_no(char *prog_identifier_from_cmdline,dataptr dz) { if(!strcmp(prog_identifier_from_cmdline,"iterfof")) dz->process = ITERFOF; else { fprintf(stderr,"Unknown program identification string '%s'\n",prog_identifier_from_cmdline); return(USAGE_ONLY); } return(FINISHED); } /******************************** SETUP_AND_INIT_INPUT_BRKTABLE_CONSTANTS ********************************/ int setup_and_init_input_brktable_constants(dataptr dz,int brkcnt) { int n; if((dz->brk = (double **)malloc(brkcnt * sizeof(double *)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 1\n"); return(MEMORY_ERROR); } if((dz->brkptr = (double **)malloc(brkcnt * sizeof(double *)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 6\n"); return(MEMORY_ERROR); } if((dz->brksize = (int *)malloc(brkcnt * sizeof(int)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 2\n"); return(MEMORY_ERROR); } if((dz->firstval = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 3\n"); return(MEMORY_ERROR); } if((dz->lastind = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 4\n"); return(MEMORY_ERROR); } if((dz->lastval = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 5\n"); return(MEMORY_ERROR); } if((dz->brkinit = (int *)malloc(brkcnt * sizeof(int)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 7\n"); return(MEMORY_ERROR); } for(n=0;nbrk[n] = NULL; dz->brkptr[n] = NULL; dz->brkinit[n] = 0; dz->brksize[n] = 0; } return(FINISHED); } /******************************** USAGE2 ********************************/ int usage2(char *str) { if(!strcmp(str,"iterfof")) { fprintf(stderr, "USAGE:\n" "iterfof iterfof 1-4 infile outfile linedata outduration\n" " [-pprand] [-aampcut] [-ttrimto] [-Ttrimby] [-Etrimslope]\n" " [-rrand] [-vvibmin] [-Vvibmax] [-depmin] [-Ddepmax]\n" " [-ggainmin] [-Ggainmax] [-Fupfade] [-ffade] [-Sseparation]\n" " [-Pportamento] [-iinterval]\n" " [-sseed]\n" "\n" "ITERATE AN INPUT FOF OR SOUND-PACKET, FOLLOWING A DEFINED PITCHLINE.\n" "\n" "MODES 1 & 2: linedata is transposition in semitones.\n" "(Input sound assumed to represent 1 wavelength, at zero transposition.)\n" "MODES 3 & 4: linedata is MIDI pitch.\n" "(Input sound can be anything.)\n" "\n" "LINEDATA Modes 1 & 2: semitone-transposition (can vary through time).\n" " (varies delay between segments in output)\n" " Modes 3 & 4: MIDI-pitch (can vary through time).\n" "IF \"linedata\" is a breakpoint file\n" "MODES 1 & 3: interpolate between timed values in the file.\n" "MODES 2 & 4: step between timed values in the file.\n" "\n" "SEED the same seed-number will produce similar output on rerun.\n" "\n" "(FOR MORE INFORMATION ----- hit any key)\n" "\n"); } while(!kbhit()) ; if(kbhit()) { fprintf(stderr, "Parameters of the line-elements\n" "\n" "PRAND randomises pitch of segments (semitones in range +- 2)\n" "AMPCUT max of random amp-reduction on each iter: Range 0-1:\n" " default 0 (no amp-reduction)\n" "TRIMTO Shorten elements to specified duration\n" "TRIMBY Fade elements over specified duration\n" "TRIMSLOPE Slope of any fades\n" "\n" "Parameters of the line\n" "\n" "RAND transposition/pitch randomisation: Range 0 - 1: Default 0\n" " (randomises delay between segments in output)\n" "VIBMIN/MAX Min & max vib frequency (frq set rand between these).\n" "DEPMIN/MAX Min & max vib depth (semitones) (depth set rand between these).\n" "(Modes 2 and 4 only)\n" "GAINMIN/MAX min and max level of stable-pitched portions of line.\n" "UPFADE duration of fade into stable-pitched portions.\n" "FADE duration of fade out of stable-pitched portions.\n" "SEPARATION end-fraction of any stable-pitched portion which is silent.\n" "PORTAMENTO type of line-portamento (if any)\n" " 0 = none : 1 = up : -1 = down : 2 = randomly up/down\n" "INTERVAL Portamento interval (semitones : range 0 - 2)\n" " Interval attained only by start of next note.\n" " (If note fades before next note enters, interval not reached).\n"); } else fprintf(stderr,"Unknown option '%s'\n",str); return(USAGE_ONLY); } int usage3(char *str1,char *str2) { fprintf(stderr,"Insufficient parameters on command line.\n"); return(USAGE_ONLY); } /****************************** GET_MODE *********************************/ int get_the_mode_from_cmdline(char *str,dataptr dz) { char temp[200], *p; if(sscanf(str,"%s",temp)!=1) { sprintf(errstr,"Cannot read mode of program.\n"); return(USAGE_ONLY); } p = temp + strlen(temp) - 1; while(p >= temp) { if(!isdigit(*p)) { fprintf(stderr,"Invalid mode of program entered.\n"); return(USAGE_ONLY); } p--; } if(sscanf(str,"%d",&dz->mode)!=1) { fprintf(stderr,"Cannot read mode of program.\n"); return(USAGE_ONLY); } if(dz->mode <= 0 || dz->mode > dz->maxmode) { fprintf(stderr,"Program mode value [%d] is out of range [1 - %d].\n",dz->mode,dz->maxmode); return(USAGE_ONLY); } dz->mode--; /* CHANGE TO INTERNAL REPRESENTATION OF MODE NO */ return(FINISHED); } /**************************** DO_ITERATE_PREPROCESS ******************************/ int do_iterfof_preprocess(dataptr dz) { int n, m; double wavelen, val, srate; if(dz->brksize[ITF_DEL] == 1) { dz->param[ITF_DEL] = dz->brk[ITF_DEL][1]; dz->brksize[ITF_DEL] = 0; // Shrink 1-line brkfile to single value parameter } if(dz->mode < 2) { // Data is transpositions wavelen = (double)dz->insams[0]; if(dz->brksize[ITF_DEL]) { for(n=0,m=1;nbrksize[ITF_DEL];n++,m+=2) { val = pow(2.0,dz->brk[ITF_DEL][m]/SEMITONES_PER_OCTAVE); // Semitones to frq ratio dz->brk[ITF_DEL][m] = round(wavelen/val); // Delay = wavelen/frqratio } } else { val = pow(2.0,dz->param[ITF_DEL]/SEMITONES_PER_OCTAVE); // Semitones to frq ratio dz->param[ITF_DEL] = round(wavelen/val); // Delay = wavelen/frqratio } } else { srate = (double)dz->infile->srate; if(dz->brksize[ITF_DEL]) { for(n=0,m=1;nbrksize[ITF_DEL];n++,m+=2) { val = miditohz(dz->brk[ITF_DEL][m]); // MIDI to frq dz->brk[ITF_DEL][m] = round(srate/val); // Delay = srate/frq } } else { val = miditohz(dz->param[ITF_DEL]); // MIDI to frq dz->param[ITF_DEL] = round(srate/val); // Delay = srate/frq } } if(dz->brksize[ITF_AMPC] == 0 && dz->param[ITF_AMPC] == 0.0) dz->ampvaried = 0; else dz->ampvaried = 1; if(ODD(dz->mode)) { if(dz->brksize[ITF_DEL] == 0) { // If only a single transpos/pitch specified if(dz->brksize[ITF_GMIN] || dz->brksize[ITF_GMAX] || dz->brksize[ITF_FADE] || dz->brksize[ITF_GAPP]) { sprintf(errstr,"Line portion parameters set as time-varying, but only one note is being generated.\n"); return DATA_ERROR; } } } return create_the_iterbufs(dz); } /*************************** CREATE_THE_ITERBUFS ************************** * * (1) Create extra spaces for interpolation guard points at end of infile. * * (2) Allow for transposition of source * * (3) Output buffer must be at least as big as the overflow buffer. * Output buffer must be big enough for the whole of any possible * data overflow (in overflow_size buff) to be copied back into it. * This is because the overflow buffer is ZEROED after such a copy * and if a 2nd copy of the overflow back into the main buffer * were necessary , we would be copying zeroes rather than true data. * * * true buffer (insams[0]) (insams[0]) + SAFETY * |-----------------------------|------------------------------------------| * ^ worst ^ * ^ possible case ^ * |<-------- BUFFER_SIZE-------> * */ int create_the_iterbufs(dataptr dz) { int seccnt; int extra_space, infile_space, big_buffer_size; int overflow_size; infile_space = dz->insams[0] + 1; /* Allows for wraparound point for tansposition interps */ overflow_size = dz->insams[0]; overflow_size *= 2; /* Allows for transposition of source up to 1 octave lower */ if((seccnt = overflow_size/F_SECSIZE) * F_SECSIZE < overflow_size) seccnt++; overflow_size = F_SECSIZE * overflow_size; if((seccnt = infile_space/F_SECSIZE) * F_SECSIZE < infile_space) seccnt++; infile_space = F_SECSIZE * seccnt; extra_space = infile_space + (overflow_size * 2); /* overflow_size for overflow, and also for transposition buffer */ dz->buflen = infile_space; big_buffer_size = dz->buflen + extra_space; if((dz->bigbuf = (float *)Malloc(big_buffer_size * sizeof(float)))==NULL) { sprintf(errstr, "INSUFFICIENT MEMORY to create sound buffers.\n"); return(MEMORY_ERROR); } dz->sbufptr[0] = dz->sampbuf[0] = dz->bigbuf; // INPUT BUFFER dz->sbufptr[1] = dz->sampbuf[1] = dz->sampbuf[0] + infile_space; // OUTPUT BUFFER dz->sbufptr[2] = dz->sampbuf[2] = dz->sampbuf[1] + dz->buflen; // OUTPUT BUFFER OVERFLOW dz->sbufptr[3] = dz->sampbuf[3] = dz->sampbuf[2] + overflow_size; // TRANSPOSITION BUFFER dz->sbufptr[4] = dz->sampbuf[4] = dz->sampbuf[3] + overflow_size; memset((char *)dz->sampbuf[0],0,(size_t)(infile_space * sizeof(float))); memset((char *)dz->sampbuf[1],0,(size_t)(dz->buflen * sizeof(float))); memset((char *)dz->sampbuf[2],0,(size_t)(overflow_size * sizeof(float))); dz->infilespace = infile_space; dz->overflowsize = overflow_size; return(FINISHED); } /****************************** ITERFOF *************************/ #define ACCEPTABLE_MAXLEVEL 0.9 int iterfof(dataptr dz) { int exit_status, dovib; int n, m, k, obufpos, absobufpos, *delays, ldelay, transposcnt, last_write = 0, this_last_write, local_last_write, minfade; int bufs_written, bufs_before; double time = 0.0, normaliser = 1.0, gain, delay, srate = (double)dz->infile->srate, *gains, *pshifts; double *linegains = NULL, *linefades = NULL, *upfades = NULL, *linegaps = NULL; double maxoutsamp = 0.0, pshift; int passno; float *ibuf = dz->sampbuf[0], *obuf = dz->sampbuf[1], *ovflw = dz->sampbuf[2], *tbuf = dz->sampbuf[3], *getbuf; int dozeros, trimdur, trimfade, fade_to, write_to; double spliceval, spliceincr, splicer, lasttime, envlasttime, lineoutgain, outtime; double linegain = 0.0, linefadeincr = 0.0, lineenv = 1.0, portint = 0.0; int linedur = 0, linefade = 0, upfade = 0; double upfadeincr = 0.0, notestarttime = 0.0, noteendtime = 0.0; double thisdelay, time_in_note, note_dur, timefrac, current_port_int, current_port_trans; int itfseed; if(EVEN(dz->mode)) itfseed = dz->iparam[ITF_SEED1]; else itfseed = dz->iparam[ITF_SEED2]; if(sloom) dz->tempsize = (int)round(dz->param[ITF_DUR] * srate) * dz->infile->channels; srand((int)itfseed); initrand48(); minfade = (int)round(MINFADE * MS_TO_SECS * srate); print_outmessage_flush("Initial pass, checking segment count.\n"); k = 0; notestarttime = -1.0; noteendtime = 0.0; while(time < dz->param[ITF_DUR]) { if(dz->brksize[ITF_DEL]) { if(ODD(dz->mode)) { if((exit_status = read_stepd_delay_value(time,¬estarttime,¬eendtime,&portint,dz))<0) return exit_status; thisdelay = dz->param[ITF_DEL]; if(!flteq(portint,0.0)) { // If portamento interval > 0 time_in_note = time - notestarttime; // Find fraction of time into current note note_dur = noteendtime - notestarttime; timefrac = time_in_note/note_dur; current_port_int = portint * timefrac; current_port_trans = pow(2.0,(current_port_int/SEMITONES_PER_OCTAVE)); thisdelay /= current_port_trans; } } else { if((exit_status = read_value_from_brktable(time,ITF_DEL,dz))<0) return exit_status; thisdelay = dz->param[ITF_DEL]; } } else thisdelay = dz->param[ITF_DEL]; if(dz->brksize[ITF_RAND]) { if((exit_status = read_value_from_brktable(time,ITF_RAND,dz))<0) return exit_status; } if(dz->param[ITF_RAND] > 0.0) { delay = (drand48() * 2.0) - 1.0; // Range -1 to +1 delay /= 2.0; // Range -1/2 to +1/2 delay *= dz->param[ITF_RAND]; // Range scaled to +- rand max * 1/2 delay += 1.0; // Range scaled to 1 +- rand max * 1/2 delay *= thisdelay; ldelay = (int)round(delay); } else ldelay = (int)round(thisdelay); time += (double)ldelay/srate; // update time for next table-read k++; } dz->itemcnt = k; if((delays = (int *)malloc(sizeof(int) * (k + 20)))==NULL) { // 20 is safety margin sprintf(errstr,"INSUFFICIENT MEMORY establishing delays store.\n"); return(MEMORY_ERROR); } if((gains = (double *)malloc(sizeof(double) * (k + 20)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing gains store.\n"); return(MEMORY_ERROR); } if((pshifts = (double *)malloc(sizeof(double) * (k + 20)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing gains store.\n"); return(MEMORY_ERROR); } if(ODD(dz->mode)) { if((linegains = (double *)malloc(sizeof(double) * (dz->brksize[ITF_DEL] + 1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing linegains store.\n"); return(MEMORY_ERROR); } if((linefades = (double *)malloc(sizeof(double) * (dz->brksize[ITF_DEL] + 1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing linefades store.\n"); return(MEMORY_ERROR); } if((upfades = (double *)malloc(sizeof(double) * (dz->brksize[ITF_DEL] + 1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing linefades store.\n"); return(MEMORY_ERROR); } if((linegaps = (double *)malloc(sizeof(double) * (dz->brksize[ITF_DEL] + 1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing linegaps store.\n"); return(MEMORY_ERROR); } if((exit_status = setup_lineportion_params(linegains,linefades,upfades,linegaps,dz))<0) return exit_status; } srand((int)itfseed); // Restart SAME random sequence initrand48(); notestarttime = -1.0; // Initialise reading of note starttimes noteendtime = 0.0; portint = 0.0; sndseekEx(dz->ifd[0],0L,0); memset((char *)dz->sampbuf[1],0,(dz->sampbuf[3] - dz->sampbuf[1]) * sizeof(float)); time = 0.0; k = 0; while(time < dz->param[ITF_DUR]) { if(dz->brksize[ITF_DEL]) { if(ODD(dz->mode)) { if((exit_status = read_stepd_delay_value(time,¬estarttime,¬eendtime,&portint,dz))<0) return exit_status; thisdelay = dz->param[ITF_DEL]; if(!flteq(portint,0.0)) { // If portamento interval > 0 time_in_note = time - notestarttime; // Find fraction of time into current note note_dur = noteendtime - notestarttime; timefrac = time_in_note/note_dur; current_port_int = portint * timefrac; current_port_trans = pow(2.0,(current_port_int/SEMITONES_PER_OCTAVE)); thisdelay /= current_port_trans; // Adjust current delay for any portamento } } else { if((exit_status = read_value_from_brktable(time,ITF_DEL,dz))<0) return exit_status; thisdelay = dz->param[ITF_DEL]; } } else thisdelay = dz->param[ITF_DEL]; if(dz->brksize[ITF_RAND]) { if((exit_status = read_value_from_brktable(time,ITF_RAND,dz))<0) return exit_status; } if(dz->param[ITF_RAND] > 0.0) { delay = (drand48() * 2.0) - 1.0; // Range -1 to +1 delay /= 2.0; // Range -1/2 to +1/2 delay *= dz->param[ITF_RAND]; // Range scaled to +- rand max * 1/2 delay += 1.0; // Range scaled to 1 +- rand max * 1/2 delay *= thisdelay; ldelay = (int)round(delay); } else ldelay = (int)round(thisdelay); delays[k] = ldelay; time += (double)ldelay/srate; // update time for next table-read k++; } dovib = 1; if(dz->brksize[ITF_VMIN]==0 && flteq(dz->param[ITF_VMIN],0.0) && dz->brksize[ITF_VMAX]==0 && flteq(dz->param[ITF_VMAX],0.0) && dz->brksize[ITF_DMIN]==0 && flteq(dz->param[ITF_DMIN],0.0) && dz->brksize[ITF_DMAX]==0 && flteq(dz->param[ITF_DMAX],0.0)) dovib = 0; if(dovib) { if((exit_status = dovibrato(delays,dz))<0) return exit_status; } memset((char *)dz->sampbuf[0],0,(dz->sampbuf[3] - dz->sampbuf[0]) * sizeof(float)); if((exit_status = read_samps(ibuf,dz))<0) return(exit_status); for(passno=2;passno<4;passno++) { sndseekEx(dz->ifd[0],0L,0); memset((char *)dz->sampbuf[1],0,(dz->sampbuf[3] - dz->sampbuf[1]) * sizeof(float)); time = 0.0; lasttime = -1.0; envlasttime = -1.0; obufpos = 0; absobufpos = 0; bufs_written = 0; k = 0; if(passno == 2) print_outmessage_flush("Second pass, assessing level.\n"); else { print_outmessage_flush("Third pass, writing sound.\n"); dz->tempsize = dz->total_samps_written; dz->total_samps_written = 0; } display_virtual_time(0L,dz); fflush(stdout); for(k = 0;k < dz->itemcnt;k++) { if(passno == 2) { if(dz->brksize[ITF_PRND]) { if((exit_status = read_value_from_brktable(time,ITF_PRND,dz))<0) return exit_status; } if(flteq(dz->param[ITF_PRND],0.0)) pshifts[k] = 1.0; else { pshift = (drand48() * 2.0) - 1.0; pshift *= dz->param[ITF_PRND]; pshift = pow(2.0,pshift/SEMITONES_PER_OCTAVE); // semitones to frq ratio pshifts[k] = 1.0/pshift; // frq ratio to read-increment } if(dz->ampvaried) { gain = drand48() * dz->param[ITF_AMPC]; // Random amp reduction up to max at ITF_MAXC gain = 1.0 - gain; // Actual gain } else gain = 1.0; if(ODD(dz->mode)) { if((exit_status = read_lineportion_gain(time,&lasttime,&linegain,linegains,dz))<0) return exit_status; gain *= linegain; } gains[k] = gain; // On pass 2, store gain } ldelay = delays[k]; // Get stored delay gain = gains[k] * normaliser; // On pass 2, normaliser = 1: On pass 3, gain gets adjusted by normaliser (if ness) if(dz->brksize[ITF_TRIM]) { if((exit_status = read_value_from_brktable(time,ITF_TRIM,dz))<0) return exit_status; } trimdur = 0; // Trim ZERO indicates no trim if(dz->param[ITF_TRIM] > 0.0) trimdur = (int)round(dz->param[ITF_TRIM] * srate); if(dz->brksize[ITF_TRBY]) { if((exit_status = read_value_from_brktable(time,ITF_TRBY,dz))<0) return exit_status; } trimfade = 0; // Trimfade ZERO indicates no fade if(dz->param[ITF_TRBY] > 0.0) trimfade = (int)round(dz->param[ITF_TRBY] * srate); if(!flteq(pshifts[k],1.0)) { if((exit_status = transpos_read_element(&transposcnt,pshifts[k],dz)) < 0) return exit_status; // Transpos source into intermediate tbuf getbuf = tbuf; // Set to read from tbuf } else { transposcnt = dz->insams[0]; // Simply a 1-1 read from input buffer getbuf = ibuf; // Set to read from input buffer } dozeros = 0; if(trimdur > 0) { // If trim is to be done dozeros = max(transposcnt - trimdur,0); // Can the trim be done on the length of sound available (some smaples will be zeroed) ?? if(dozeros > 0) { // If trim can be done if(trimfade == 0) // If no fade is specified, use minimum fade (if poss) trimfade = min(transposcnt - dozeros,minfade); else // Else use specified fade (if poss) trimfade = min(transposcnt - dozeros,trimfade); } else if(trimfade > 0) // If trim can't be done, but fade is specified trimfade = min(transposcnt,trimfade); // Set up fade } else if(trimfade > 0) // If trim is not specified, but fade is set trimfade = min(transposcnt,trimfade); // Check fade length fade_to = transposcnt - dozeros; // Number of non-zero samples to write write_to = fade_to - trimfade; // Number of original level samples to write for(n = 0; n < write_to;n++) { // Write all samples before any element_fade obuf[obufpos] = (float)(obuf[obufpos] + (getbuf[n] * gain)); obufpos++; } if(trimfade) { // Where necessary, do fade of element spliceval = 1.0; spliceincr = 1.0/(double)trimfade; for(; n < fade_to;n++) { spliceval = max(0.0,spliceval - spliceincr); splicer = pow(spliceval,dz->param[ITF_SLOP]); obuf[obufpos] = (float)(obuf[obufpos] + (getbuf[n] * gain * splicer)); obufpos++; } } this_last_write = (bufs_written * dz->buflen) + obufpos; if(this_last_write > last_write) last_write = this_last_write; absobufpos += delays[k]; // Absolute position of next write in output bufs_before = absobufpos/dz->buflen; // Number of full buffers preceding this while(bufs_written < bufs_before) { // If not yet written this many bufs if(passno == 2) { // output the missing bufs if(ODD(dz->mode)) { // Where line is in pitched portions, adjust for envelope of these pitched-portions for(m = 0; m < dz->buflen;m++) { outtime = (double)((bufs_written * dz->buflen) + m)/srate; if((exit_status = read_lineportion_envelope(outtime,&envlasttime,&linedur,&linefade,&linefadeincr,&upfade,&upfadeincr, &lineenv,linefades,upfades,linegaps,minfade,pshifts,dz))<0) return exit_status; lineoutgain = portion_env(&linedur,&linefade,&lineenv,linefadeincr,&upfade,upfadeincr); maxoutsamp = max(maxoutsamp,fabs(obuf[m] * lineoutgain)); } } else { for(m = 0; m < dz->buflen;m++) maxoutsamp = max(maxoutsamp,fabs(obuf[m])); } } else { if(ODD(dz->mode)) { // Where line is in pitched portions, adjust for envelope of these pitched-portions for(m = 0; m < dz->buflen;m++) { outtime = (double)((bufs_written * dz->buflen) + m)/srate; if((exit_status = read_lineportion_envelope(outtime,&envlasttime,&linedur,&linefade,&linefadeincr,&upfade,&upfadeincr, &lineenv,linefades,upfades,linegaps,minfade,pshifts,dz))<0) return exit_status; lineoutgain = portion_env(&linedur,&linefade,&lineenv,linefadeincr,&upfade,upfadeincr); obuf[m] = (float)(obuf[m] * lineoutgain); } } if((exit_status = write_samps(obuf,dz->buflen,dz))<0) return(exit_status); } memcpy((char *)obuf,(char *)ovflw,dz->buflen * sizeof(float)); memset((char *)ovflw,0,dz->buflen * sizeof(float)); bufs_written++; } obufpos = absobufpos % dz->buflen; // Find position in output buffer time += (double)delays[k]/srate; // update time for next table-read } local_last_write = last_write - (bufs_written * dz->buflen); if(local_last_write > 0) { // Flush output if(passno == 2) { if(ODD(dz->mode)) { // Where line is in pitched portions, adjust for envelope of these pitched-portions for(m = 0; m < local_last_write;m++) { outtime = (double)((bufs_written * dz->buflen) + m)/srate; if((exit_status = read_lineportion_envelope(outtime,&envlasttime,&linedur,&linefade,&linefadeincr,&upfade,&upfadeincr, &lineenv,linefades,upfades,linegaps,minfade,pshifts,dz))<0) return exit_status; lineoutgain = portion_env(&linedur,&linefade,&lineenv,linefadeincr,&upfade,upfadeincr); maxoutsamp = max(maxoutsamp,fabs(obuf[m] * lineoutgain)); } } else { for(m = 0; m < local_last_write;m++) maxoutsamp = max(maxoutsamp,fabs(obuf[m])); } } else { if(ODD(dz->mode)) { // Where line is in pitched portions, adjust for envelope of these pitched-portions for(m = 0; m < local_last_write;m++) { outtime = (double)((bufs_written * dz->buflen) + m)/srate; if((exit_status = read_lineportion_envelope(outtime,&envlasttime,&linedur,&linefade,&linefadeincr,&upfade,&upfadeincr, &lineenv,linefades,upfades,linegaps,minfade,pshifts,dz))<0) return exit_status; lineoutgain = portion_env(&linedur,&linefade,&lineenv,linefadeincr,&upfade,upfadeincr); obuf[m] = (float)(obuf[m] * lineoutgain); } } if((exit_status = write_samps(obuf,local_last_write,dz))<0) return(exit_status); } } if(passno == 2) { // If overload, set normaliser < 1.0 if(maxoutsamp > ACCEPTABLE_MAXLEVEL) normaliser = ACCEPTABLE_MAXLEVEL/maxoutsamp; } } return FINISHED; } /**************************** READ_STEPD_DELAY_VALUE *****************************/ int read_stepd_delay_value(double thistime,double *notestarttime,double *noteendtime,double *portint,dataptr dz) { int exit_status; double *p, *del = dz->brk[ITF_DEL], *delend = dz->brk[ITF_DEL] + (dz->brksize[ITF_DEL] * 2); double currentnotestart = 0.0, val, thisport; int lastval = (dz->brksize[ITF_DEL] * 2) - 1; p = del; while(thistime >= *p) { p += 2; if(p >= delend) { dz->param[ITF_DEL] = del[lastval]; currentnotestart = *(delend-2); *noteendtime = dz->param[ITF_DUR]; break; } } if(p < delend) { dz->param[ITF_DEL] = *(p-1); currentnotestart = *(p-2); *noteendtime = *p; } if(currentnotestart > *notestarttime) { // IF in new note if(dz->iparam[ITF_PORT] == 0) *portint = 0.0; else { // IF portamento is set if(dz->brksize[ITF_PINT]) { // Get portamento interval if((exit_status = read_value_from_brktable(currentnotestart,ITF_PINT,dz))<0) return exit_status; } thisport = dz->param[ITF_PINT]; switch(dz->iparam[ITF_PORT]) { // Portamento up, down or randomly up/dn case(1): break; case(-1): thisport = -thisport; break; default: val = drand48(); if(val < 0.5) thisport = -thisport; break; } *portint = thisport; // Set (end of) portamento interval } } *notestarttime = currentnotestart; // (Re)set start of current note return FINISHED; } /********************** TRANSPOS_READ_ELEMENT ********************************/ int transpos_read_element(int *transposcnt,double incr,dataptr dz) { float *ibuf = dz->sampbuf[0], *tbuf = dz->sampbuf[3]; int k, lo, hi; double dpos, loval, hival, diff, frac; dpos = 0.0; k = 0; while(dpos < (double)dz->insams[0]) { lo = (int)floor(dpos); hi = (int)ceil(dpos); frac = dpos - (double)lo; loval = ibuf[lo]; hival = ibuf[hi]; diff = hival - loval; tbuf[k++] = (float)(loval + (diff * frac)); if(k > dz->overflowsize) { sprintf(errstr,"TRANSPOSITION BUFFER OVERFLOW\n"); return PROGRAM_ERROR; } dpos += incr; } *transposcnt = k; return FINISHED; } /********************** DOVIBRATO ********************************/ int dovibrato(int *delays,dataptr dz) { int cyclestart, n, exit_status; int *vdelays; double *sintab; double vfrq, vdep, time, sintabincr, sintabpos, loval, hival, frac, diff, vval, srate = (double)dz->infile->srate; double time_advance; int k, samptime, lo, hi; if((vdelays = (int *)malloc(sizeof(int) * dz->itemcnt))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing vibrato delays store.\n"); return(MEMORY_ERROR); } if((sintab = (double *)malloc(sizeof(double) * (TS_SINTABSIZE + 1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing sintable array for vibrato.\n"); return(MEMORY_ERROR); } for(n=0;n < TS_SINTABSIZE;n++) // Vibrato sintable sintab[n] = sin((double)n/(double)TS_SINTABSIZE) * TWOPI; sintab[n] = 0.0; // wraparound point if(dz->brksize[ITF_VMIN]) { // Initialise vibrato params if((exit_status = read_value_from_brktable(0,ITF_VMIN,dz))<0) return exit_status; } if(dz->brksize[ITF_VMAX]) { if((exit_status = read_value_from_brktable(0,ITF_VMAX,dz))<0) return exit_status; } vfrq = drand48() * (dz->param[ITF_VMAX] - dz->param[ITF_VMIN]); vfrq += dz->param[ITF_VMIN]; time_advance = (double)delays[0]/srate; // Set increment in sintable sintabincr = time_advance * TS_SINTABSIZE * vfrq; if(dz->brksize[ITF_DMIN]) { if((exit_status = read_value_from_brktable(0,ITF_DMIN,dz))<0) return exit_status; } if(dz->brksize[ITF_DMAX]) { if((exit_status = read_value_from_brktable(0,ITF_DMAX,dz))<0) return exit_status; } vdep = drand48() * (dz->param[ITF_DMAX] - dz->param[ITF_DMIN]); vdep += dz->param[ITF_DMIN]; sintabpos = 0.0; samptime = 0; time = 0.0; cyclestart = 0; for(k=0;k < dz->itemcnt;k++) { if(cyclestart) { // At the start of a vibrato sine-cycle time = (double)samptime/srate; // Reset all vibrato values if(dz->brksize[ITF_VMIN]) { if((exit_status = read_value_from_brktable(time,ITF_VMIN,dz))<0) return exit_status; } if(dz->brksize[ITF_VMAX]) { if((exit_status = read_value_from_brktable(time,ITF_VMAX,dz))<0) return exit_status; } vfrq = drand48() * (dz->param[ITF_VMAX] - dz->param[ITF_VMIN]); vfrq += dz->param[ITF_VMIN]; time_advance = (double)delays[k]/srate; // Set increment in sintable sintabincr = time_advance * TS_SINTABSIZE * vfrq; if(dz->brksize[ITF_DMIN]) { if((exit_status = read_value_from_brktable(time,ITF_DMIN,dz))<0) return exit_status; } if(dz->brksize[ITF_DMAX]) { if((exit_status = read_value_from_brktable(time,ITF_DMAX,dz))<0) return exit_status; } vdep = drand48() * (dz->param[ITF_DMAX] - dz->param[ITF_DMIN]); vdep += dz->param[ITF_DMIN]; cyclestart = 0; } lo = (int)floor(sintabpos); // Read sin table, interpolating hi = (int)ceil(sintabpos); frac = sintabpos - (double)lo; loval = sintab[lo]; hival = sintab[hi]; diff = hival - loval; vval = loval + (diff * frac); vval *= vdep; // Multiply by semitone depth vval = pow(2.0,vval/SEMITONES_PER_OCTAVE); // Convert to frq ratio vval = 1.0/vval; // Convert to change in wavelen (> frq -> < wavelen) vdelays[k] = (int)round((double)delays[k] * vval); // Vibrato modifies wavelen sintabpos += sintabincr; // Advance in sintable if(sintabpos >= TS_SINTABSIZE) { // Once sine-cycle completed, set flag to reset vibrato params (above) cyclestart = 1; sintabpos -= (double)TS_SINTABSIZE; } samptime += delays[k]; // Advance time } for(k=0;k < dz->itemcnt;k++) // Convert orig delays to vibratoed delays delays[k] = vdelays[k]; free(vdelays); return FINISHED; } /**************************** SETUP_LINEPORTION_PARAMS *****************************/ int setup_lineportion_params(double *linegains,double *linefades, double *upfades, double *linegaps,dataptr dz) { int exit_status; double *p, *del = dz->brk[ITF_DEL], *delend = dz->brk[ITF_DEL] + (dz->brksize[ITF_DEL] * 2); int line_portion_cnt = 0, line_portion_end = dz->brksize[ITF_DEL] + 1; double time, linegain, diff; p = del; while(p < delend) { time = *p; if(line_portion_cnt >= line_portion_end) { sprintf(errstr,"Array overrun setting line-portion parameter arrays.\n"); return PROGRAM_ERROR; } if(dz->brksize[ITF_GMIN]) { if((exit_status = read_value_from_brktable(time,ITF_GMIN,dz))<0) return exit_status; } if(dz->brksize[ITF_GMAX]) { if((exit_status = read_value_from_brktable(time,ITF_GMAX,dz))<0) return exit_status; } if(dz->brksize[ITF_FADE]) { if((exit_status = read_value_from_brktable(time,ITF_FADE,dz))<0) return exit_status; } if(dz->brksize[ITF_UFAD]) { if((exit_status = read_value_from_brktable(time,ITF_UFAD,dz))<0) return exit_status; } if(dz->brksize[ITF_GAPP]) { if((exit_status = read_value_from_brktable(time,ITF_GAPP,dz))<0) return exit_status; } if(!flteq(dz->param[ITF_GMIN],dz->param[ITF_GMAX])) { diff = dz->param[ITF_GMAX] - dz->param[ITF_GMIN]; linegain = (drand48() * diff) + dz->param[ITF_GMIN]; } else linegain = dz->param[ITF_GMAX]; linegains[line_portion_cnt] = linegain; linefades[line_portion_cnt] = dz->param[ITF_FADE]; upfades[line_portion_cnt] = dz->param[ITF_UFAD]; linegaps[line_portion_cnt] = dz->param[ITF_GAPP]; line_portion_cnt++; p +=2; } return(FINISHED); } /**************************** READ_LINEPORTION_GAIN *****************************/ int read_lineportion_gain(double thistime,double *lasttime,double *linegain,double *linegains,dataptr dz) { double *p, *del, *delend; double portion_time; int k = 0; if(dz->brksize[ITF_DEL]) { del = dz->brk[ITF_DEL]; delend = dz->brk[ITF_DEL] + (dz->brksize[ITF_DEL] * 2); p = del; while(thistime >= *p) { // Step forward in portion-pitches brkfile until time in brkfile exceeds NOW (thistime) k++; p += 2; if(p >= delend) // If step off end of breakfile, quit break; } k--; p -= 2; // We must be in previous brkfile portion, so step back to starttime of previous portion portion_time = *p; if(portion_time > *lasttime) { // If starttime of current portion is NOT same as starttime of previous portion *linegain = linegains[k]; // Reset the portion params *lasttime = portion_time; // And set new starttime for current portion } } else *linegain = 1.0; return(FINISHED); } /**************************** READ_LINEPORTION_ENVELOPE *****************************/ int read_lineportion_envelope(double thistime,double *envlasttime,int *linedur,int *linefade,double *linefadeincr,int *upfade,double *upfadeincr, double *lineenv, double *linefades,double *upfades,double *linegaps, int minfade, double *pshifts,dataptr dz) { double *p, *del, *delend; double portion_time, ratio, lineend, penultdur, nulineend, srate = (double)dz->infile->srate; int dur, fade, gap, up_fade, slopes; int k = 0; if(dz->brksize[ITF_DEL]) { del = dz->brk[ITF_DEL]; delend = dz->brk[ITF_DEL] + (dz->brksize[ITF_DEL] * 2); p = del; while(thistime >= *p) { // Step forward in portion-pitches brkfile until time in brkfile exceeds NOW (thistime) k++; p += 2; if(p >= delend) // If step off end of breakfile, quit break; } k--; p -= 2; // We must be in previous brkfile portion, so step back to starttime of previous portion portion_time = *p; if(portion_time > *envlasttime) { // If starttime of current portion is NOT same as starttime of previous portion p += 2; // Find duration of new line-portion if(p >= delend) { lineend = dz->param[ITF_DUR] + (dz->duration/pshifts[dz->itemcnt-1]); if(p-4 >= dz->brk[ITF_DEL]) { penultdur = *(p-2) - *(p-4); // Curtail last pitch to duration of prevoius line-pitch nulineend = *(p-2) + penultdur; lineend = min(lineend,nulineend); } } else lineend = *p; dur = (int)((double)(lineend - portion_time) * srate); gap = (int)((double)dur * linegaps[k]); // Silence between portions is proportion of duration dur -= gap; // Duration (at full level) reduced by length of gap up_fade = (int)(upfades[k] * srate); if(up_fade < minfade) // Upfade cannot be less than a (no-clicks) minimum up_fade = minfade; fade = (int)(linefades[k] * srate); if(fade < minfade) // Fade cannot be less than a (no-clicks) minimum fade = minfade; if((slopes = up_fade + fade) >= dur) { ratio = (double)slopes/(double)dur; up_fade = (int)round(up_fade * ratio); fade = (int)round(fade * ratio); slopes = up_fade + fade; while(slopes >= dur) { if(up_fade >= fade) up_fade--; else fade--; slopes--; } } dur -= slopes; // Duration (at full level) reduced by length of fades *upfade = up_fade; *upfadeincr = 1.0/(double)up_fade; *linefadeincr = 1.0/fade; *linedur = dur; // Set up line-counters *linefade = fade; *lineenv = 1.0; // initialise line envelope to 1.0 *envlasttime = portion_time; // And set new starttime for current portion } } else { *linedur = INT_MAX; *linefade = 0; *lineenv = 1.0; *upfade = 0; } return(FINISHED); } /**************************** PORTION_ENV *****************************/ double portion_env(int *linedur, int *linefade, double *lineenv, double linefadeincr,int *upfade,double upfadeincr) { double gain; if(*upfade > 0) { gain = max(0.0,1.0 - (*upfade * upfadeincr)); (*upfade)--; } else if(*linedur > 0) { // Still in non-fade, non-silence part of portion gain = 1.0; (*linedur)--; // No change to level } else { if(*linefade > 0) { // If in fade *lineenv = max(*lineenv - linefadeincr,0.0); // Adjust lineenv gain = *lineenv; // Multiply element gain by lineenv (*linefade)--; } else { gain = 0.0; // If fade has reached 0 , gain is zero } } return gain; }