/* * Copyright (c) 1983-2023 Trevor Wishart and Composers Desktop Project Ltd * http://www.trevorwishart.co.uk * http://www.composersdesktop.com * This file is part of the CDP System. The CDP System is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The CDP System is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the CDP System; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined unix || defined __GNUC__ #define round(x) lround((x)) #endif #ifndef HUGE #define HUGE 3.40282347e+38F #endif char errstr[2400]; int anal_infiles = 1; int sloom = 0; int sloombatch = 0; const char* cdp_version = "7.1.0"; /* CDP LIBRARY FUNCTIONS TRANSFERRED HERE */ static int set_param_data(aplptr ap, int special_data,int maxparamcnt,int paramcnt,char *paramlist); static int set_vflgs(aplptr ap,char *optflags,int optcnt,char *optlist, char *varflags,int vflagcnt, int vparamcnt,char *varlist); static int setup_parameter_storage_and_constants(int storage_cnt,dataptr dz); static int initialise_is_int_and_no_brk_constants(int storage_cnt,dataptr dz); static int mark_parameter_types(dataptr dz,aplptr ap); static int establish_application(dataptr dz); static int application_init(dataptr dz); static int initialise_vflags(dataptr dz); static int setup_input_param_defaultval_stores(int tipc,aplptr ap); static int setup_and_init_input_param_activity(dataptr dz,int tipc); static int get_tk_cmdline_word(int *cmdlinecnt,char ***cmdline,char *q); static int assign_file_data_storage(int infilecnt,dataptr dz); /* CDP LIB FUNCTION MODIFIED TO AVOID CALLING setup_particular_application() */ static int parse_sloom_data(int argc,char *argv[],char ***cmdline,int *cmdlinecnt,dataptr dz); /* SIMPLIFICATION OF LIB FUNC TO APPLY TO JUST THIS FUNCTION */ static int parse_infile_and_check_type(char **cmdline,dataptr dz); static int handle_the_outfile(int *cmdlinecnt,char ***cmdline,int is_launched,dataptr dz); static int setup_the_application(dataptr dz); static int setup_the_param_ranges_and_defaults(dataptr dz); static int get_the_process_no(char *prog_identifier_from_cmdline,dataptr dz); static int setup_and_init_input_brktable_constants(dataptr dz,int brkcnt); /* BYPASS LIBRARY GLOBAL FUNCTION TO GO DIRECTLY TO SPECIFIC APPLIC FUNCTIONS */ static int allocate_selfsim_buffer(dataptr dz); static int do_selfsim(dataptr dz); static int create_order_and_scaling_arrays(dataptr dz); static int create_dissimilarity_array(dataptr dz); /**************************************** MAIN *********************************************/ int main(int argc,char *argv[]) { int exit_status; dataptr dz = NULL; char **cmdline; int cmdlinecnt; //aplptr ap; int is_launched = FALSE; if(argc==2 && (strcmp(argv[1],"--version") == 0)) { fprintf(stdout,"%s\n",cdp_version); fflush(stdout); return 0; } /* CHECK FOR SOUNDLOOM */ if((sloom = sound_loom_in_use(&argc,&argv)) > 1) { sloom = 0; sloombatch = 1; } if(sflinit("cdp")){ sfperror("cdp: initialisation\n"); return(FAILED); } /* SET UP THE PRINCIPLE DATASTRUCTURE */ if((exit_status = establish_datastructure(&dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if(!sloom) { if(argc == 1) { usage1(); return(FAILED); } else if(argc == 2) { usage2(argv[1]); return(FAILED); } if((exit_status = make_initial_cmdline_check(&argc,&argv))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } cmdline = argv; cmdlinecnt = argc; if((get_the_process_no(argv[0],dz))<0) return(FAILED); cmdline++; cmdlinecnt--; dz->maxmode = 0; if((exit_status = setup_the_application(dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = count_and_allocate_for_infiles(cmdlinecnt,cmdline,dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } } else { //parse_TK_data() = if((exit_status = parse_sloom_data(argc,argv,&cmdline,&cmdlinecnt,dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(exit_status); } } //ap = dz->application; // parse_infile_and_hone_type() = if((exit_status = parse_infile_and_check_type(cmdline,dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // setup_param_ranges_and_defaults() = if((exit_status = setup_the_param_ranges_and_defaults(dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // open_first_infile CDP LIB if((exit_status = open_first_infile(cmdline[0],dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } cmdlinecnt--; cmdline++; // handle_outfile() = if((exit_status = handle_the_outfile(&cmdlinecnt,&cmdline,is_launched,dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = read_parameters_and_flags(&cmdline,&cmdlinecnt,dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } //check_param_validity_and_consistency ..... is_launched = TRUE; dz->extra_bufcnt = 0; dz->bptrcnt = 4; if((exit_status = establish_spec_bufptrs_and_extra_buffers(dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = allocate_selfsim_buffer(dz)) < 0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = create_order_and_scaling_arrays(dz)) < 0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = create_dissimilarity_array(dz)) < 0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = do_selfsim(dz)) < 0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = complete_output(dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } exit_status = print_messages_and_close_sndfiles(FINISHED,is_launched,dz); // CDP LIB free(dz); return(SUCCEEDED); } /********************************************** REPLACED CDP LIB FUNCTIONS **********************************************/ /****************************** SET_PARAM_DATA *********************************/ int set_param_data(aplptr ap, int special_data,int maxparamcnt,int paramcnt,char *paramlist) { ap->special_data = (char)special_data; ap->param_cnt = (char)paramcnt; ap->max_param_cnt = (char)maxparamcnt; if(ap->max_param_cnt>0) { if((ap->param_list = (char *)malloc((size_t)(ap->max_param_cnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for param_list\n"); return(MEMORY_ERROR); } strcpy(ap->param_list,paramlist); } return(FINISHED); } /****************************** SET_VFLGS *********************************/ int set_vflgs (aplptr ap,char *optflags,int optcnt,char *optlist,char *varflags,int vflagcnt, int vparamcnt,char *varlist) { ap->option_cnt = (char) optcnt; /*RWD added cast */ if(optcnt) { if((ap->option_list = (char *)malloc((size_t)(optcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for option_list\n"); return(MEMORY_ERROR); } strcpy(ap->option_list,optlist); if((ap->option_flags = (char *)malloc((size_t)(optcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for option_flags\n"); return(MEMORY_ERROR); } strcpy(ap->option_flags,optflags); } ap->vflag_cnt = (char) vflagcnt; ap->variant_param_cnt = (char) vparamcnt; if(vflagcnt) { if((ap->variant_list = (char *)malloc((size_t)(vflagcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for variant_list\n"); return(MEMORY_ERROR); } strcpy(ap->variant_list,varlist); if((ap->variant_flags = (char *)malloc((size_t)(vflagcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for variant_flags\n"); return(MEMORY_ERROR); } strcpy(ap->variant_flags,varflags); } return(FINISHED); } /***************************** APPLICATION_INIT **************************/ int application_init(dataptr dz) { int exit_status; int storage_cnt; int tipc, brkcnt; aplptr ap = dz->application; if(ap->vflag_cnt>0) initialise_vflags(dz); tipc = ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt; ap->total_input_param_cnt = (char)tipc; if(tipc>0) { if((exit_status = setup_input_param_range_stores(tipc,ap))<0) return(exit_status); if((exit_status = setup_input_param_defaultval_stores(tipc,ap))<0) return(exit_status); if((exit_status = setup_and_init_input_param_activity(dz,tipc))<0) return(exit_status); } brkcnt = tipc; if(brkcnt>0) { if((exit_status = setup_and_init_input_brktable_constants(dz,brkcnt))<0) return(exit_status); } if((storage_cnt = tipc + ap->internal_param_cnt)>0) { if((exit_status = setup_parameter_storage_and_constants(storage_cnt,dz))<0) return(exit_status); if((exit_status = initialise_is_int_and_no_brk_constants(storage_cnt,dz))<0) return(exit_status); } if((exit_status = mark_parameter_types(dz,ap))<0) return(exit_status); // establish_infile_constants() replaced by dz->infilecnt = ONE_NONSND_FILE; //establish_bufptrs_and_extra_buffers(): dz->array_cnt=3; if((dz->parray = (double **)malloc(dz->array_cnt * sizeof(double *)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for internal double arrays.\n"); return(MEMORY_ERROR); } dz->parray[0] = NULL; dz->parray[1] = NULL; dz->parray[2] = NULL; dz->larray_cnt=3; if((dz->lparray = (int **)malloc(dz->larray_cnt * sizeof(int *)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for internal long arrays.\n"); return(MEMORY_ERROR); } dz->lparray[0] = NULL; dz->lparray[1] = NULL; dz->lparray[2] = NULL; return(FINISHED); } /******************************** SETUP_AND_INIT_INPUT_BRKTABLE_CONSTANTS ********************************/ int setup_and_init_input_brktable_constants(dataptr dz,int brkcnt) { int n; if((dz->brk = (double **)malloc(brkcnt * sizeof(double *)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 1\n"); return(MEMORY_ERROR); } if((dz->brkptr = (double **)malloc(brkcnt * sizeof(double *)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 6\n"); return(MEMORY_ERROR); } if((dz->brksize = (int *)malloc(brkcnt * sizeof(int)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 2\n"); return(MEMORY_ERROR); } if((dz->firstval = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 3\n"); return(MEMORY_ERROR); } if((dz->lastind = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 4\n"); return(MEMORY_ERROR); } if((dz->lastval = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 5\n"); return(MEMORY_ERROR); } if((dz->brkinit = (int *)malloc(brkcnt * sizeof(int)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 7\n"); return(MEMORY_ERROR); } for(n=0;nbrk[n] = NULL; dz->brkptr[n] = NULL; dz->brkinit[n] = 0; dz->brksize[n] = 0; } return(FINISHED); } /********************** SETUP_PARAMETER_STORAGE_AND_CONSTANTS ********************/ /* RWD mallo changed to calloc; helps debug verison run as release! */ int setup_parameter_storage_and_constants(int storage_cnt,dataptr dz) { if((dz->param = (double *)calloc(storage_cnt, sizeof(double)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 1\n"); return(MEMORY_ERROR); } if((dz->iparam = (int *)calloc(storage_cnt, sizeof(int) ))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 2\n"); return(MEMORY_ERROR); } if((dz->is_int = (char *)calloc(storage_cnt, sizeof(char)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 3\n"); return(MEMORY_ERROR); } if((dz->no_brk = (char *)calloc(storage_cnt, sizeof(char)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 5\n"); return(MEMORY_ERROR); } return(FINISHED); } /************** INITIALISE_IS_INT_AND_NO_BRK_CONSTANTS *****************/ int initialise_is_int_and_no_brk_constants(int storage_cnt,dataptr dz) { int n; for(n=0;nis_int[n] = (char)0; dz->no_brk[n] = (char)0; } return(FINISHED); } /***************************** MARK_PARAMETER_TYPES **************************/ int mark_parameter_types(dataptr dz,aplptr ap) { int n, m; /* PARAMS */ for(n=0;nmax_param_cnt;n++) { switch(ap->param_list[n]) { case('0'): break; /* dz->is_active[n] = 0 is default */ case('i'): dz->is_active[n] = (char)1; dz->is_int[n] = (char)1;dz->no_brk[n] = (char)1; break; case('I'): dz->is_active[n] = (char)1; dz->is_int[n] = (char)1; break; case('d'): dz->is_active[n] = (char)1; dz->no_brk[n] = (char)1; break; case('D'): dz->is_active[n] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid parameter type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* OPTIONS */ for(n=0,m=ap->max_param_cnt;noption_cnt;n++,m++) { switch(ap->option_list[n]) { case('i'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('I'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; break; case('d'): dz->is_active[m] = (char)1; dz->no_brk[m] = (char)1; break; case('D'): dz->is_active[m] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid option type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* VARIANTS */ for(n=0,m=ap->max_param_cnt + ap->option_cnt;n < ap->variant_param_cnt; n++, m++) { switch(ap->variant_list[n]) { case('0'): break; case('i'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('I'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; break; case('d'): dz->is_active[m] = (char)1; dz->no_brk[m] = (char)1; break; case('D'): dz->is_active[m] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid variant type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* INTERNAL */ for(n=0, m=ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt; ninternal_param_cnt; n++,m++) { switch(ap->internal_param_list[n]) { case('0'): break; /* dummy variables: variables not used: but important for internal paream numbering!! */ case('i'): dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('d'): dz->no_brk[m] = (char)1; break; default: sprintf(errstr,"Programming error: invalid internal param type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } return(FINISHED); } /***************************** HANDLE_THE_OUTFILE **************************/ int handle_the_outfile(int *cmdlinecnt,char ***cmdline,int is_launched,dataptr dz) { int exit_status; char *filename = NULL; filename = (*cmdline)[0]; strcpy(dz->outfilename,filename); if((exit_status = create_sized_outfile(filename,dz))<0) return(exit_status); (*cmdline)++; (*cmdlinecnt)--; return(FINISHED); } /***************************** ESTABLISH_APPLICATION **************************/ int establish_application(dataptr dz) { aplptr ap; if((dz->application = (aplptr)malloc(sizeof (struct applic)))==NULL) { sprintf(errstr,"establish_application()\n"); return(MEMORY_ERROR); } ap = dz->application; memset((char *)ap,0,sizeof(struct applic)); return(FINISHED); } /************************* INITIALISE_VFLAGS *************************/ int initialise_vflags(dataptr dz) { int n; if((dz->vflag = (char *)malloc(dz->application->vflag_cnt * sizeof(char)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: vflag store,\n"); return(MEMORY_ERROR); } for(n=0;napplication->vflag_cnt;n++) dz->vflag[n] = FALSE; return FINISHED; } /************************* SETUP_INPUT_PARAM_DEFAULTVALS *************************/ int setup_input_param_defaultval_stores(int tipc,aplptr ap) { int n; if((ap->default_val = (double *)malloc(tipc * sizeof(double)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for application default values store\n"); return(MEMORY_ERROR); } for(n=0;ndefault_val[n] = 0.0; return(FINISHED); } /***************************** SETUP_AND_INIT_INPUT_PARAM_ACTIVITY **************************/ int setup_and_init_input_param_activity(dataptr dz,int tipc) { int n; if((dz->is_active = (char *)malloc((size_t)tipc))==NULL) { sprintf(errstr,"setup_and_init_input_param_activity()\n"); return(MEMORY_ERROR); } for(n=0;nis_active[n] = (char)0; return(FINISHED); } /************************* SETUP_THE_APPLICATION *******************/ int setup_the_application(dataptr dz) { int exit_status; aplptr ap; if((exit_status = establish_application(dz))<0) // GLOBAL return(FAILED); ap = dz->application; // SEE parstruct FOR EXPLANATION of next 2 functions if((exit_status = set_param_data(ap,0 ,1,1,"i"))<0) return(FAILED); if((exit_status = set_vflgs(ap,"",0,"","",0,0,""))<0) return(FAILED); dz->has_otherfile = FALSE; dz->input_data_type = ANALFILE_ONLY; dz->process_type = EQUAL_ANALFILE; dz->outfiletype = ANALFILE_OUT; return application_init(dz); //GLOBAL } /************************* PARSE_INFILE_AND_CHECK_TYPE *******************/ int parse_infile_and_check_type(char **cmdline,dataptr dz) { int exit_status; infileptr infile_info; if(!sloom) { if((infile_info = (infileptr)malloc(sizeof(struct filedata)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for infile structure to test file data."); return(MEMORY_ERROR); } else if((exit_status = cdparse(cmdline[0],infile_info))<0) { sprintf(errstr,"Failed tp parse input file %s\n",cmdline[0]); return(PROGRAM_ERROR); } else if(infile_info->filetype != ANALFILE) { sprintf(errstr,"File %s is not of correct type\n",cmdline[0]); return(DATA_ERROR); } else if((exit_status = copy_parse_info_to_main_structure(infile_info,dz))<0) { sprintf(errstr,"Failed to copy file parsing information\n"); return(PROGRAM_ERROR); } free(infile_info); } dz->clength = dz->wanted / 2; dz->chwidth = dz->nyquist/(double)(dz->clength-1); dz->halfchwidth = dz->chwidth/2.0; dz->wlength = dz->insams[0]/dz->wanted; return(FINISHED); } /************************* SETUP_THE_PARAM_RANGES_AND_DEFAULTS *******************/ int setup_the_param_ranges_and_defaults(dataptr dz) { int exit_status; aplptr ap = dz->application; // set_param_ranges() ap->total_input_param_cnt = (char)(ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt); // NB total_input_param_cnt is > 0 !!!s if((exit_status = setup_input_param_range_stores(ap->total_input_param_cnt,ap))<0) return(FAILED); // get_param_ranges() ap->lo[0] = 1; ap->hi[0] = dz->wlength - 1; ap->default_val[0] = 1; dz->maxmode = 0; if(!sloom) put_default_vals_in_all_params(dz); return(FINISHED); } /********************************* PARSE_SLOOM_DATA *********************************/ int parse_sloom_data(int argc,char *argv[],char ***cmdline,int *cmdlinecnt,dataptr dz) { int exit_status; int cnt = 1, infilecnt; int filesize, insams, inbrksize; double dummy; int true_cnt = 0; //aplptr ap; while(cnt<=PRE_CMDLINE_DATACNT) { if(cnt > argc) { sprintf(errstr,"Insufficient data sent from TK\n"); return(DATA_ERROR); } switch(cnt) { case(1): if(sscanf(argv[cnt],"%d",&dz->process)!=1) { sprintf(errstr,"Cannot read process no. sent from TK\n"); return(DATA_ERROR); } break; case(2): if(sscanf(argv[cnt],"%d",&dz->mode)!=1) { sprintf(errstr,"Cannot read mode no. sent from TK\n"); return(DATA_ERROR); } if(dz->mode > 0) dz->mode--; //setup_particular_application() = if((exit_status = setup_the_application(dz))<0) return(exit_status); //ap = dz->application; break; case(3): if(sscanf(argv[cnt],"%d",&infilecnt)!=1) { sprintf(errstr,"Cannot read infilecnt sent from TK\n"); return(DATA_ERROR); } if(infilecnt < 1) { true_cnt = cnt + 1; cnt = PRE_CMDLINE_DATACNT; /* force exit from loop after assign_file_data_storage */ } if((exit_status = assign_file_data_storage(infilecnt,dz))<0) return(exit_status); break; case(INPUT_FILETYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->filetype)!=1) { sprintf(errstr,"Cannot read filetype sent from TK (%s)\n",argv[cnt]); return(DATA_ERROR); } break; case(INPUT_FILESIZE+4): if(sscanf(argv[cnt],"%d",&filesize)!=1) { sprintf(errstr,"Cannot read infilesize sent from TK\n"); return(DATA_ERROR); } dz->insams[0] = filesize; break; case(INPUT_INSAMS+4): if(sscanf(argv[cnt],"%d",&insams)!=1) { sprintf(errstr,"Cannot read insams sent from TK\n"); return(DATA_ERROR); } dz->insams[0] = insams; break; case(INPUT_SRATE+4): if(sscanf(argv[cnt],"%d",&dz->infile->srate)!=1) { sprintf(errstr,"Cannot read srate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_CHANNELS+4): if(sscanf(argv[cnt],"%d",&dz->infile->channels)!=1) { sprintf(errstr,"Cannot read channels sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_STYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->stype)!=1) { sprintf(errstr,"Cannot read stype sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGSTYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->origstype)!=1) { sprintf(errstr,"Cannot read origstype sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGRATE+4): if(sscanf(argv[cnt],"%d",&dz->infile->origrate)!=1) { sprintf(errstr,"Cannot read origrate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MLEN+4): if(sscanf(argv[cnt],"%d",&dz->infile->Mlen)!=1) { sprintf(errstr,"Cannot read Mlen sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DFAC+4): if(sscanf(argv[cnt],"%d",&dz->infile->Dfac)!=1) { sprintf(errstr,"Cannot read Dfac sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGCHANS+4): if(sscanf(argv[cnt],"%d",&dz->infile->origchans)!=1) { sprintf(errstr,"Cannot read origchans sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_SPECENVCNT+4): if(sscanf(argv[cnt],"%d",&dz->infile->specenvcnt)!=1) { sprintf(errstr,"Cannot read specenvcnt sent from TK\n"); return(DATA_ERROR); } dz->specenvcnt = dz->infile->specenvcnt; break; case(INPUT_WANTED+4): if(sscanf(argv[cnt],"%d",&dz->wanted)!=1) { sprintf(errstr,"Cannot read wanted sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_WLENGTH+4): if(sscanf(argv[cnt],"%d",&dz->wlength)!=1) { sprintf(errstr,"Cannot read wlength sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_OUT_CHANS+4): if(sscanf(argv[cnt],"%d",&dz->out_chans)!=1) { sprintf(errstr,"Cannot read out_chans sent from TK\n"); return(DATA_ERROR); } break; /* RWD these chanegs to samps - tk will have to deal with that! */ case(INPUT_DESCRIPTOR_BYTES+4): if(sscanf(argv[cnt],"%d",&dz->descriptor_samps)!=1) { sprintf(errstr,"Cannot read descriptor_samps sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_IS_TRANSPOS+4): if(sscanf(argv[cnt],"%d",&dz->is_transpos)!=1) { sprintf(errstr,"Cannot read is_transpos sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_COULD_BE_TRANSPOS+4): if(sscanf(argv[cnt],"%d",&dz->could_be_transpos)!=1) { sprintf(errstr,"Cannot read could_be_transpos sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_COULD_BE_PITCH+4): if(sscanf(argv[cnt],"%d",&dz->could_be_pitch)!=1) { sprintf(errstr,"Cannot read could_be_pitch sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DIFFERENT_SRATES+4): if(sscanf(argv[cnt],"%d",&dz->different_srates)!=1) { sprintf(errstr,"Cannot read different_srates sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DUPLICATE_SNDS+4): if(sscanf(argv[cnt],"%d",&dz->duplicate_snds)!=1) { sprintf(errstr,"Cannot read duplicate_snds sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_BRKSIZE+4): if(sscanf(argv[cnt],"%d",&inbrksize)!=1) { sprintf(errstr,"Cannot read brksize sent from TK\n"); return(DATA_ERROR); } if(inbrksize > 0) { switch(dz->input_data_type) { case(WORDLIST_ONLY): break; case(PITCH_AND_PITCH): case(PITCH_AND_TRANSPOS): case(TRANSPOS_AND_TRANSPOS): dz->tempsize = inbrksize; break; case(BRKFILES_ONLY): case(UNRANGED_BRKFILE_ONLY): case(DB_BRKFILES_ONLY): case(ALL_FILES): case(ANY_NUMBER_OF_ANY_FILES): if(dz->extrabrkno < 0) { sprintf(errstr,"Storage location number for brktable not established by CDP.\n"); return(DATA_ERROR); } if(dz->brksize == NULL) { sprintf(errstr,"CDP has not established storage space for input brktable.\n"); return(PROGRAM_ERROR); } dz->brksize[dz->extrabrkno] = inbrksize; break; default: sprintf(errstr,"TK sent brktablesize > 0 for input_data_type [%d] not using brktables.\n", dz->input_data_type); return(PROGRAM_ERROR); } break; } break; case(INPUT_NUMSIZE+4): if(sscanf(argv[cnt],"%d",&dz->numsize)!=1) { sprintf(errstr,"Cannot read numsize sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_LINECNT+4): if(sscanf(argv[cnt],"%d",&dz->linecnt)!=1) { sprintf(errstr,"Cannot read linecnt sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ALL_WORDS+4): if(sscanf(argv[cnt],"%d",&dz->all_words)!=1) { sprintf(errstr,"Cannot read all_words sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ARATE+4): if(sscanf(argv[cnt],"%f",&dz->infile->arate)!=1) { sprintf(errstr,"Cannot read arate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_FRAMETIME+4): if(sscanf(argv[cnt],"%lf",&dummy)!=1) { sprintf(errstr,"Cannot read frametime sent from TK\n"); return(DATA_ERROR); } dz->frametime = (float)dummy; break; case(INPUT_WINDOW_SIZE+4): if(sscanf(argv[cnt],"%f",&dz->infile->window_size)!=1) { sprintf(errstr,"Cannot read window_size sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_NYQUIST+4): if(sscanf(argv[cnt],"%lf",&dz->nyquist)!=1) { sprintf(errstr,"Cannot read nyquist sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DURATION+4): if(sscanf(argv[cnt],"%lf",&dz->duration)!=1) { sprintf(errstr,"Cannot read duration sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MINBRK+4): if(sscanf(argv[cnt],"%lf",&dz->minbrk)!=1) { sprintf(errstr,"Cannot read minbrk sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MAXBRK+4): if(sscanf(argv[cnt],"%lf",&dz->maxbrk)!=1) { sprintf(errstr,"Cannot read maxbrk sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MINNUM+4): if(sscanf(argv[cnt],"%lf",&dz->minnum)!=1) { sprintf(errstr,"Cannot read minnum sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MAXNUM+4): if(sscanf(argv[cnt],"%lf",&dz->maxnum)!=1) { sprintf(errstr,"Cannot read maxnum sent from TK\n"); return(DATA_ERROR); } break; default: sprintf(errstr,"case switch item missing: parse_sloom_data()\n"); return(PROGRAM_ERROR); } cnt++; } if(cnt!=PRE_CMDLINE_DATACNT+1) { sprintf(errstr,"Insufficient pre-cmdline params sent from TK\n"); return(DATA_ERROR); } if(true_cnt) cnt = true_cnt; *cmdlinecnt = 0; while(cnt < argc) { if((exit_status = get_tk_cmdline_word(cmdlinecnt,cmdline,argv[cnt]))<0) return(exit_status); cnt++; } return(FINISHED); } /********************************* GET_TK_CMDLINE_WORD *********************************/ int get_tk_cmdline_word(int *cmdlinecnt,char ***cmdline,char *q) { if(*cmdlinecnt==0) { if((*cmdline = (char **)malloc(sizeof(char *)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline array.\n"); return(MEMORY_ERROR); } } else { if((*cmdline = (char **)realloc(*cmdline,((*cmdlinecnt)+1) * sizeof(char *)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline array.\n"); return(MEMORY_ERROR); } } if(((*cmdline)[*cmdlinecnt] = (char *)malloc((strlen(q) + 1) * sizeof(char)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline item %d.\n",(*cmdlinecnt)+1); return(MEMORY_ERROR); } strcpy((*cmdline)[*cmdlinecnt],q); (*cmdlinecnt)++; return(FINISHED); } /****************************** ASSIGN_FILE_DATA_STORAGE *********************************/ int assign_file_data_storage(int infilecnt,dataptr dz) { int exit_status; int no_sndfile_system_files = FALSE; dz->infilecnt = infilecnt; if((exit_status = allocate_filespace(dz))<0) return(exit_status); if(no_sndfile_system_files) dz->infilecnt = 0; return(FINISHED); } /************************* redundant functions: to ensure libs compile OK *******************/ int assign_process_logic(dataptr dz) { return(FINISHED); } void set_legal_infile_structure(dataptr dz) {} int set_legal_internalparam_structure(int process,int mode,aplptr ap) { return(FINISHED); } int setup_internal_arrays_and_array_pointers(dataptr dz) { return(FINISHED); } int establish_bufptrs_and_extra_buffers(dataptr dz) { return(FINISHED); } int get_process_no(char *prog_identifier_from_cmdline,dataptr dz) { return(FINISHED); } int inner_loop (int *peakscore,int *descnt,int *in_start_portion,int *least,int *pitchcnt,int windows_in_buf,dataptr dz) { return(FINISHED); } int read_special_data(char *str,dataptr dz) { return(FINISHED); } /********************************************************************************************/ int get_the_process_no(char *prog_identifier_from_cmdline,dataptr dz) { if (!strcmp(prog_identifier_from_cmdline,"selfsim")) dz->process = SELFSIM; else { sprintf(errstr,"Unknown program identification string '%s'\n",prog_identifier_from_cmdline); return(USAGE_ONLY); } return(FINISHED); } /**************************** ALLOCATE_SPECLEAN_BUFFER ******************************/ int allocate_selfsim_buffer(dataptr dz) { unsigned int buffersize; buffersize = dz->wanted * 2; dz->buflen = dz->wanted; if((dz->bigfbuf = (float*) malloc(buffersize * sizeof(float)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for sound buffers.\n"); return(MEMORY_ERROR); } dz->big_fsize = dz->buflen; dz->flbufptr[0] = dz->bigfbuf; dz->flbufptr[1] = dz->bigfbuf + dz->big_fsize; dz->flbufptr[2] = dz->flbufptr[1] + dz->big_fsize; return(FINISHED); } /******************************** USAGE1 ********************************/ int usage1(void) { fprintf(stderr, "\nINCREASE SPECTRAL SELF-SIMILARITY\n\n" "USAGE: selfsim selfsim inanalfile outanalfile param\n" "\n" "Type 'selfsim selfsim' for more info.\n"); return(USAGE_ONLY); } /******************************** USAGE2 ********************************/ int usage2(char *str) { if(!strcmp(str,"selfsim")) { fprintf(stdout, "USAGE:\n" "selfsim selfsim inanalfile outanalfile self-similarity-index\n" "\n" "Replaces spectral windows with most similar, louder window(s).\n" "\n" "SELF-SIMILARITY-INDEX Number of similar windows to replace.\n" " Value 1 uses loudest window to replace the most similar window.\n" " then the next loudest window to replace window most similar to it\n" " and so on, with appropriate overall-loudness scaling.\n" " With value 2, loudest windows replaces the TWO most simil windows.\n" " and so on.\n" " If window A replaces B, and C is most simil to B,\n" " then A also replaces C, etc\n" "\n"); } else fprintf(stdout,"Unknown option '%s'\n",str); return(USAGE_ONLY); } int usage3(char *str1,char *str2) { fprintf(stderr,"Insufficient parameters on command line.\n"); return(USAGE_ONLY); } /* * IDEA: make spectrum more selfsimilar. * * (0) List all window numbers 0 - wlength-1 in int array W, and total-window-loudnesses in array L * (1) Scale all values in array L so 1 is maximum .... * (2) Create a scaling value array S, and set all these initially to 1.0 * (3) List windows in loudness order in int-array Z * (4) Scaling each window to max loudness, compare it with every other window, and assign a similarity value * in a 1/2 matrix of values. (Lack of) Similarity = sum of all absolute differences between levels in all channels * (Deal with 0 level windows!!) * (5) For each z in Z, find the K most similar windows k1,k2 etc, and replace those window numbers in W by a "z", together with a scaling value in S to take amps of z into orig amp of the k1,k2 etc items NB replace * (6) Remove all other (z,n) (n,z) from the matrix, by setting similarity val to -1 * (7) for every k replaced, remove all (n,k) and (k,n) from the matrix, by setting similarity val to -1 * (7) Continue until Z exhausted or all similarity values set to -1 (keep a count of similarity vals) * * (4) For step 4, if z replaces g, compare similarity value of next most similar to z, and next most similar to g * replacing whichever is the closer ..... or is this too complicated (once we have a chain of N comparisons!!!) * * * Once we have a new order of windows * (1) Get the window * (2) Apply the scaling value * (3) Output the window */ // // ibuf1, ibuf2, dissarray size (wlength * wlength)/2 /*************************************** CREATE_ORDER_AND_SCALING_ARRAYS ***************************************/ int create_order_and_scaling_arrays(dataptr dz) { int n, m, itemp, samps_read; int cc, vc; float *ibuf = dz->flbufptr[0]; double *loudness; // (relative) loudness array, in original window order: size wlength double *scaling; // Loudness scaling applied to windows in final output: size wlength int *winorder; // Initial (and, later, Final) order of windows: size wlength int *loudorder; // List of windows when arranged in decreasing loudness order: size wlength int *winused; // List of windows already self-sim set double loud, maxloud = 0.0; if((dz->parray[0] = (double *)malloc(dz->wlength * dz->wlength * sizeof(double)))==NULL) { sprintf(errstr,"Setting up array for similairty measure.\n"); return(MEMORY_ERROR); } if((dz->parray[1] = (double *)malloc(dz->wlength * sizeof(double)))==NULL) { sprintf(errstr,"Setting up array for loudness values.\n"); return(MEMORY_ERROR); } if((dz->parray[2] = (double *)malloc(dz->wlength * sizeof(double)))==NULL) { sprintf(errstr,"Setting up array for loudness scaling.\n"); return(MEMORY_ERROR); } if((dz->lparray[0] = (int *)malloc(dz->wlength * sizeof(int)))==NULL) { sprintf(errstr,"Setting up array for final window order.\n"); return(MEMORY_ERROR); } if((dz->lparray[1] = (int *)malloc(dz->wlength * sizeof(int)))==NULL) { sprintf(errstr,"Setting up array for window decreasing loudness order.\n"); return(MEMORY_ERROR); } if((dz->lparray[2] = (int *)malloc(dz->wlength * sizeof(int)))==NULL) { sprintf(errstr,"Setting up array for marking windows used.\n"); return(MEMORY_ERROR); } loudness = dz->parray[1]; scaling = dz->parray[2]; winorder = dz->lparray[0]; loudorder = dz->lparray[1]; winused = dz->lparray[2]; for(n = 0;n < dz->wlength; n++) { winorder[n] = n; // Store window numbers in their initial order loudorder[n] = n; // Store window numbers in their order of decreasing LOUDNESS winused[n] = 0; // Flag windows which have been processed (initially none) if((samps_read = fgetfbufEx(ibuf,dz->wanted,dz->ifd[0],0))<0) { sprintf(errstr,"Sound read error 1: %s\n",sferrstr()); return(SYSTEM_ERROR); } loud = 0.0; // Calculate and store total amplitude of window for(cc=0,vc = 0;ccclength;cc++,vc+=2) loud += ibuf[AMPP]; loudness[n] = loud; maxloud = max(loud,maxloud); // Keep track of maximum window-amp } if(maxloud <= 0.0) { sprintf(errstr,"No significant level found in spectrum.\n"); return DATA_ERROR; } for(n = 0;n < dz->wlength; n++) { loudness[n] /= (double)maxloud; // Normalise window-loudness measures scaling[n] = 1.0; // Preset output-scaling values to 1.0 } // Create array of window-numbers in loudness order for(n = 0;n < dz->wlength-1; n++) { for(m = n+1;m < dz->wlength; m++) { if(loudness[loudorder[m]] > loudness[loudorder[n]]) { itemp = loudorder[m]; loudorder[m] = loudorder[n]; loudorder[n] = itemp; } } } return FINISHED; } /*************************************** CREATE_DISSIMILARITY_ARRAY ***************************************/ int create_dissimilarity_array(dataptr dz) { int n, m, k1, k2, nbase, mbase, samps_read, zz = 0, measure = 256 * dz->wanted; int cc, vc; double *dissarray = dz->parray[0]; // Dissimilarity-measure array: size (wlength * wlength); double *loudness = dz->parray[1]; float *ibuf1 = dz->flbufptr[0], *ibuf2 = dz->flbufptr[1]; double dissim; fprintf(stdout,"INFO: Assessing self-similarity of %d windows.\n",dz->wlength); fflush(stdout); for(n = 0;n < dz->wlength-1; n++) { nbase = n * dz->wlength; sndseekEx(dz->ifd[0],n * dz->wanted,0); // Seek to next window, and read it if((samps_read = fgetfbufEx(ibuf1,dz->wanted,dz->ifd[0],0))<0) { sprintf(errstr,"Sound read error 1: %s\n",sferrstr()); return(SYSTEM_ERROR); } for(m = n+1;m < dz->wlength; m++) { mbase = m * dz->wlength; if((samps_read = fgetfbufEx(ibuf2,dz->wanted,dz->ifd[0],0))<0) { sprintf(errstr,"Sound read error 2: %s\n",sferrstr()); return(SYSTEM_ERROR); } dissim = 0.0; for(cc=0,vc = 0;ccclength;cc++,vc+=2) // (1) Scale the amplitudes of the windows to match maxamp // (2) Frq component only significant in lowest channels dissim += fabs((ibuf1[AMPP]/loudness[n]) - (ibuf2[AMPP]/loudness[m])) + fabs(ibuf1[FREQ] - ibuf2[FREQ]); k1 = nbase + m; dissarray[k1] = dissim/(double)dz->clength; k2 = mbase + n; dissarray[k2] = dissarray[k1]; // Make a symmetrical array: easier later!!! if(++zz % measure == 0) { fprintf(stdout,"INFO: Assessed %d windows.\n",n+1); fflush(stdout); } } } fprintf(stdout,"INFO: Assessed %d windows.\n",dz->wlength); fflush(stdout); for(n = 0;n < dz->wlength; n++) { k1 = (n * dz->wlength) + n; dissarray[k1] = 0.0; // Neutralise the diagonal ... don't compare window with itself } return FINISHED; } /*************************************** DO_SELFSIM ***************************************/ int do_selfsim(dataptr dz) { int exit_status, selfsim_cnt = dz->iparam[0], cc, vc; float *ibuf = dz->flbufptr[0]; double minval; int n, m, k,jj, windowsset = 0, thiswindow, thisclose, closest, arrayclosest, lastwindow, samps_read; double *dissarray = dz->parray[0]; // Dissimilarity-measure array: size (wlength * wlength)/2; double *loudness = dz->parray[1]; // (relative) loudness array, in window order: size wlength double *scaling = dz->parray[2]; // Loudness scaling applied to windows in final output order int *winorder = dz->lparray[0]; // Final order of windows: size wlength int *loudorder = dz->lparray[1]; // List of windows when arranged in decreasing loudnewss order: size wlength int *winused = dz->lparray[2]; // List of windows already self-sim set fprintf(stdout,"INFO: Reconstructing self-similarity data.\n"); fflush(stdout); for(n = 0; n < dz->wlength;n++) { thiswindow = loudorder[n]; // Get next loudest window if(winused[thiswindow]) // If this window has already been self-similared, jj = winorder[thiswindow]; // use the self-similar window again, else // else use this window jj = thiswindow; for(k = 0; k < selfsim_cnt;k++) { thisclose = thiswindow * dz->wlength; // Find matrix row entry gives first dissimilarity value in array minval = HUGE; // Set this as LEAST dissimilar = most similar closest = 0; // SAFETY arrayclosest = thisclose; // SAFETY for(m = 0;m < dz->wlength;m++) { // Find the most similar if(m==n) continue; // No self-comparison if(dissarray[thisclose] < minval) { closest = m; minval = dissarray[thisclose]; arrayclosest = thisclose; } thisclose++; } winorder[closest] = jj; // In the output window order, replace window "closest" by window "jj" scaling[closest] = loudness[closest]/loudness[jj]; // Scale to an appropriate amplitude winused[closest] = 1; // Mark window as already having being assigned dissarray[arrayclosest] = HUGE; // Avoid it being used again when looking for next most selfsim window windowsset++; // Count number of windows set if(windowsset >= dz->wlength) break; } winused[n] = 1; windowsset++; if(windowsset >= dz->wlength) break; } lastwindow = -1; fprintf(stdout,"INFO: Creating self-similar output.\n"); fflush(stdout); for(n = 0; n < dz->wlength;n++) { thiswindow = winorder[n]; if(thiswindow != lastwindow) { sndseekEx(dz->ifd[0],thiswindow * dz->wanted,0); // Seek to next window, and read it if((samps_read = fgetfbufEx(ibuf,dz->wanted,dz->ifd[0],0))<0) { sprintf(errstr,"Sound read error 3: %s\n",sferrstr()); return(SYSTEM_ERROR); } } for(cc=0,vc = 0;cc < dz->clength;cc++,vc+=2) ibuf[AMPP] = (float)(ibuf[AMPP] * scaling[n]); if((exit_status = write_samps(ibuf,dz->wanted,dz))<0) return(exit_status); lastwindow = thiswindow; } return FINISHED; }