/* * Copyright (c) 1983-2023 Trevor Wishart and Composers Desktop Project Ltd * http://www.trevorwishart.co.uk * http://www.composersdesktop.com * This file is part of the CDP System. The CDP System is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The CDP System is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the CDP System; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#ifdef unix #define round(x) lround((x)) //#endif #ifndef HUGE #define HUGE 3.40282347e+38F #endif char errstr[2400]; int anal_infiles = 1; int sloom = 0; int sloombatch = 0; const char* cdp_version = "7.1.0"; //CDP LIB REPLACEMENTS static int check_the_param_validity_and_consistency(dataptr dz); static int setup_envnu_application(dataptr dz); static int parse_sloom_data(int argc,char *argv[],char ***cmdline,int *cmdlinecnt,dataptr dz); static int parse_infile_and_check_type(char **cmdline,dataptr dz); static int setup_envnu_param_ranges_and_defaults(dataptr dz); static int handle_the_outfile(int *cmdlinecnt,char ***cmdline,dataptr dz); static int setup_and_init_input_param_activity(dataptr dz,int tipc); static int setup_input_param_defaultval_stores(int tipc,aplptr ap); static int establish_application(dataptr dz); static int initialise_vflags(dataptr dz); static int setup_parameter_storage_and_constants(int storage_cnt,dataptr dz); static int initialise_is_int_and_no_brk_constants(int storage_cnt,dataptr dz); static int mark_parameter_types(dataptr dz,aplptr ap); static int assign_file_data_storage(int infilecnt,dataptr dz); static int get_tk_cmdline_word(int *cmdlinecnt,char ***cmdline,char *q); static int get_the_process_no(char *prog_identifier_from_cmdline,dataptr dz); static int setup_and_init_input_brktable_constants(dataptr dz,int brkcnt); static int expdecay(dataptr dz); static void getenv_of_buffer(int samps_to_process,int envwindow_sampsize,double convertor,double time_convertor,float **envptr,float *buffer,dataptr dz); static int windows_in_sndfile(dataptr dz); static int buffers_in_sndfile(int buffer_size,dataptr dz); static int peakchop(dataptr dz); static int extract_env_from_sndfile(int *envcnt,dataptr dz); static void extract_peaks_from_envelope(int *envcnt,dataptr dz); static int eliminate_too_low_peaks(int *envcnt,dataptr dz); static int find_exact_peaktimes(int envcnt,dataptr dz); static int calculate_event_outtimes(int envcnt,int *outcnt,dataptr dz); static int generate_enveloped_output(int envcnt,int outcnt,dataptr dz); static double getmaxsamp(int startsamp, int sampcnt,float *buffer); static int create_peakchop_sndbufs(dataptr dz); static int peakchop_param_preprocess(dataptr dz); static int generate_envelope_as_output(int envcnt,dataptr dz); static int get_the_mode_from_cmdline(char *str,dataptr dz); static int beyond_endtime(char **cmdline,int cmdlinecnt,dataptr dz); static int this_value_is_numeric(char *str); /**************************************** MAIN *********************************************/ int main(int argc,char *argv[]) { int exit_status; dataptr dz = NULL; char **cmdline; int cmdlinecnt; int n; //aplptr ap; int is_launched = FALSE; if(argc==2 && (strcmp(argv[1],"--version") == 0)) { fprintf(stdout,"%s\n",cdp_version); fflush(stdout); return 0; } /* CHECK FOR SOUNDLOOM */ if((sloom = sound_loom_in_use(&argc,&argv)) > 1) { sloom = 0; sloombatch = 1; } if(sflinit("cdp")){ sfperror("cdp: initialisation\n"); return(FAILED); } /* SET UP THE PRINCIPLE DATASTRUCTURE */ if((exit_status = establish_datastructure(&dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if(!sloom) { if(argc == 1) { usage1(); return(FAILED); } else if(argc == 2) { usage2(argv[1]); return(FAILED); } } if(!sloom) { if((exit_status = make_initial_cmdline_check(&argc,&argv))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } cmdline = argv; cmdlinecnt = argc; if((get_the_process_no(argv[0],dz))<0) return(FAILED); cmdline++; cmdlinecnt--; if(dz->process == PEAKCHOP) { dz->maxmode = 2; if((exit_status = get_the_mode_from_cmdline(cmdline[0],dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } cmdline++; cmdlinecnt--; } else dz->maxmode = 0; // setup_particular_application = if((exit_status = setup_envnu_application(dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = count_and_allocate_for_infiles(cmdlinecnt,cmdline,dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } } else { //parse_TK_data() = if((exit_status = parse_sloom_data(argc,argv,&cmdline,&cmdlinecnt,dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(exit_status); } } //ap = dz->application; // parse_infile_and_hone_type() = if((exit_status = parse_infile_and_check_type(cmdline,dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // setup_param_ranges_and_defaults() = if((exit_status = setup_envnu_param_ranges_and_defaults(dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // open_first_infile CDP LIB if((exit_status = open_first_infile(cmdline[0],dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } cmdlinecnt--; cmdline++; // handle_extra_infiles() : redundant // handle_outfile() = if((exit_status = handle_the_outfile(&cmdlinecnt,&cmdline,dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // handle_formants() redundant // handle_formant_quiksearch() redundant // handle_special_data() redundant is_launched = TRUE; switch(dz->process) { case(EXPDECAY): dz->bufcnt = 1; break; case(PEAKCHOP): if(dz->mode == 0) dz->bufcnt = 3; else dz->bufcnt = 1; break; } if((dz->sampbuf = (float **)malloc(sizeof(float *) * (dz->bufcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing sample buffers.\n"); return(MEMORY_ERROR); } if((dz->sbufptr = (float **)malloc(sizeof(float *) * dz->bufcnt))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing sample buffer pointers.\n"); return(MEMORY_ERROR); } for(n = 0;n bufcnt; n++) dz->sampbuf[n] = dz->sbufptr[n] = (float *)0; dz->sampbuf[n] = (float *)0; if(!sloom && (dz->process == EXPDECAY)) { if(beyond_endtime(cmdline,cmdlinecnt,dz)) // In cmdline version, endtime vals beyond end of file are trapped sprintf(cmdline[1],"%f",0.0); // and (temporarily) set to 0 here } if((exit_status = read_parameters_and_flags(&cmdline,&cmdlinecnt,dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = check_the_param_validity_and_consistency(dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } switch(dz->process) { case(EXPDECAY): if((exit_status = create_sndbufs(dz)) < 0) return(exit_status); break; case(PEAKCHOP): if(dz->mode == 0) { if((exit_status = create_peakchop_sndbufs(dz)) < 0) return(exit_status); } else { if((exit_status = create_sndbufs(dz)) < 0) return(exit_status); } if((exit_status = peakchop_param_preprocess(dz)) < 0) return(exit_status); break; } switch(dz->process) { case(EXPDECAY): if((exit_status = expdecay(dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } break; case(PEAKCHOP): if((exit_status = peakchop(dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } break; } if((exit_status = complete_output(dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } exit_status = print_messages_and_close_sndfiles(FINISHED,is_launched,dz); // CDP LIB free(dz); return(SUCCEEDED); } /********************************************** REPLACED CDP LIB FUNCTIONS **********************************************/ /****************************** SET_PARAM_DATA *********************************/ int set_param_data(aplptr ap, int special_data,int maxparamcnt,int paramcnt,char *paramlist) { ap->special_data = (char)special_data; ap->param_cnt = (char)paramcnt; ap->max_param_cnt = (char)maxparamcnt; if(ap->max_param_cnt>0) { if((ap->param_list = (char *)malloc((size_t)(ap->max_param_cnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for param_list\n"); return(MEMORY_ERROR); } strcpy(ap->param_list,paramlist); } return(FINISHED); } /****************************** SET_VFLGS *********************************/ int set_vflgs (aplptr ap,char *optflags,int optcnt,char *optlist,char *varflags,int vflagcnt, int vparamcnt,char *varlist) { ap->option_cnt = (char) optcnt; /*RWD added cast */ if(optcnt) { if((ap->option_list = (char *)malloc((size_t)(optcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for option_list\n"); return(MEMORY_ERROR); } strcpy(ap->option_list,optlist); if((ap->option_flags = (char *)malloc((size_t)(optcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for option_flags\n"); return(MEMORY_ERROR); } strcpy(ap->option_flags,optflags); } ap->vflag_cnt = (char) vflagcnt; ap->variant_param_cnt = (char) vparamcnt; if(vflagcnt) { if((ap->variant_list = (char *)malloc((size_t)(vflagcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for variant_list\n"); return(MEMORY_ERROR); } strcpy(ap->variant_list,varlist); if((ap->variant_flags = (char *)malloc((size_t)(vflagcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for variant_flags\n"); return(MEMORY_ERROR); } strcpy(ap->variant_flags,varflags); } return(FINISHED); } /***************************** APPLICATION_INIT **************************/ int application_init(dataptr dz) { int exit_status; int storage_cnt; int tipc, brkcnt; aplptr ap = dz->application; if(ap->vflag_cnt>0) initialise_vflags(dz); tipc = ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt; ap->total_input_param_cnt = (char)tipc; if(tipc>0) { if((exit_status = setup_input_param_range_stores(tipc,ap))<0) return(exit_status); if((exit_status = setup_input_param_defaultval_stores(tipc,ap))<0) return(exit_status); if((exit_status = setup_and_init_input_param_activity(dz,tipc))<0) return(exit_status); } brkcnt = tipc; //THERE ARE NO INPUTFILE brktables USED IN THIS PROCESS if(brkcnt>0) { if((exit_status = setup_and_init_input_brktable_constants(dz,brkcnt))<0) return(exit_status); } if((storage_cnt = tipc + ap->internal_param_cnt)>0) { if((exit_status = setup_parameter_storage_and_constants(storage_cnt,dz))<0) return(exit_status); if((exit_status = initialise_is_int_and_no_brk_constants(storage_cnt,dz))<0) return(exit_status); } if((exit_status = mark_parameter_types(dz,ap))<0) return(exit_status); // establish_infile_constants() replaced by dz->infilecnt = 1; //establish_bufptrs_and_extra_buffers(): if(dz->process == PEAKCHOP) { if((exit_status = setup_internal_arrays_and_array_pointers(dz))<0) return(exit_status); } return(FINISHED); } /********************** SETUP_PARAMETER_STORAGE_AND_CONSTANTS ********************/ /* RWD mallo changed to calloc; helps debug verison run as release! */ int setup_parameter_storage_and_constants(int storage_cnt,dataptr dz) { if((dz->param = (double *)calloc(storage_cnt, sizeof(double)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 1\n"); return(MEMORY_ERROR); } if((dz->iparam = (int *)calloc(storage_cnt, sizeof(int) ))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 2\n"); return(MEMORY_ERROR); } if((dz->is_int = (char *)calloc(storage_cnt, sizeof(char)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 3\n"); return(MEMORY_ERROR); } if((dz->no_brk = (char *)calloc(storage_cnt, sizeof(char)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 5\n"); return(MEMORY_ERROR); } return(FINISHED); } /************** INITIALISE_IS_INT_AND_NO_BRK_CONSTANTS *****************/ int initialise_is_int_and_no_brk_constants(int storage_cnt,dataptr dz) { int n; for(n=0;nis_int[n] = (char)0; dz->no_brk[n] = (char)0; } return(FINISHED); } /***************************** MARK_PARAMETER_TYPES **************************/ int mark_parameter_types(dataptr dz,aplptr ap) { int n, m; /* PARAMS */ for(n=0;nmax_param_cnt;n++) { switch(ap->param_list[n]) { case('0'): break; /* dz->is_active[n] = 0 is default */ case('i'): dz->is_active[n] = (char)1; dz->is_int[n] = (char)1;dz->no_brk[n] = (char)1; break; case('I'): dz->is_active[n] = (char)1; dz->is_int[n] = (char)1; break; case('d'): dz->is_active[n] = (char)1; dz->no_brk[n] = (char)1; break; case('D'): dz->is_active[n] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid parameter type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* OPTIONS */ for(n=0,m=ap->max_param_cnt;noption_cnt;n++,m++) { switch(ap->option_list[n]) { case('i'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('I'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; break; case('d'): dz->is_active[m] = (char)1; dz->no_brk[m] = (char)1; break; case('D'): dz->is_active[m] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid option type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* VARIANTS */ for(n=0,m=ap->max_param_cnt + ap->option_cnt;n < ap->variant_param_cnt; n++, m++) { switch(ap->variant_list[n]) { case('0'): break; case('i'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('I'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; break; case('d'): dz->is_active[m] = (char)1; dz->no_brk[m] = (char)1; break; case('D'): dz->is_active[m] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid variant type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* INTERNAL */ for(n=0, m=ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt; ninternal_param_cnt; n++,m++) { switch(ap->internal_param_list[n]) { case('0'): break; /* dummy variables: variables not used: but important for internal paream numbering!! */ case('i'): dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('d'): dz->no_brk[m] = (char)1; break; default: sprintf(errstr,"Programming error: invalid internal param type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } return(FINISHED); } /************************ HANDLE_THE_OUTFILE *********************/ int handle_the_outfile(int *cmdlinecnt,char ***cmdline,dataptr dz) { int exit_status; char *filename = (*cmdline)[0], *p; if(filename[0]=='-' && filename[1]=='f') { dz->floatsam_output = 1; dz->true_outfile_stype = SAMP_FLOAT; filename+= 2; } if(!sloom) { if(file_has_invalid_startchar(filename) || value_is_numeric(filename)) { sprintf(errstr,"Outfile name %s has invalid start character(s) or looks too much like a number.\n",filename); return(DATA_ERROR); } } if(sloom) { p = filename + strlen(filename); p--; while(*p != '.') { p--; if(p < filename) break; } if(p >= filename) *p = ENDOFSTR; } if(dz->process != PEAKCHOP || dz->mode != 1) strcpy(dz->outfilename,filename); if((exit_status = create_sized_outfile(filename,dz))<0) return(exit_status); (*cmdline)++; (*cmdlinecnt)--; return(FINISHED); } /***************************** ESTABLISH_APPLICATION **************************/ int establish_application(dataptr dz) { aplptr ap; if((dz->application = (aplptr)malloc(sizeof (struct applic)))==NULL) { sprintf(errstr,"establish_application()\n"); return(MEMORY_ERROR); } ap = dz->application; memset((char *)ap,0,sizeof(struct applic)); return(FINISHED); } /************************* INITIALISE_VFLAGS *************************/ int initialise_vflags(dataptr dz) { int n; if((dz->vflag = (char *)malloc(dz->application->vflag_cnt * sizeof(char)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: vflag store,\n"); return(MEMORY_ERROR); } for(n=0;napplication->vflag_cnt;n++) dz->vflag[n] = FALSE; return FINISHED; } /************************* SETUP_INPUT_PARAM_DEFAULTVALS *************************/ int setup_input_param_defaultval_stores(int tipc,aplptr ap) { int n; if((ap->default_val = (double *)malloc(tipc * sizeof(double)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for application default values store\n"); return(MEMORY_ERROR); } for(n=0;ndefault_val[n] = 0.0; return(FINISHED); } /***************************** SETUP_AND_INIT_INPUT_PARAM_ACTIVITY **************************/ int setup_and_init_input_param_activity(dataptr dz,int tipc) { int n; if((dz->is_active = (char *)malloc((size_t)tipc))==NULL) { sprintf(errstr,"setup_and_init_input_param_activity()\n"); return(MEMORY_ERROR); } for(n=0;nis_active[n] = (char)0; return(FINISHED); } /************************* SETUP_ENVU_APPLICATION *******************/ int setup_envnu_application(dataptr dz) { int exit_status; aplptr ap; if((exit_status = establish_application(dz))<0) // GLOBAL return(FAILED); ap = dz->application; // SEE parstruct FOR EXPLANATION of next 2 functions switch(dz->process) { case(EXPDECAY): if((exit_status = set_param_data(ap,0 ,2,2,"dd"))<0) return(FAILED); if((exit_status = set_vflgs(ap,"",0,"","",0,0,""))<0) return(FAILED); // set_legal_infile_structure --> dz->has_otherfile = FALSE; // assign_process_logic --> dz->input_data_type = SNDFILES_ONLY; dz->process_type = UNEQUAL_SNDFILE; dz->outfiletype = SNDFILE_OUT; dz->array_cnt = 0; break; case(PEAKCHOP): if(dz->mode == 0) { if((exit_status = set_param_data(ap,0 ,5,5,"dDDDD"))<0) return(FAILED); if((exit_status = set_vflgs(ap,"",0,"","gqsnrm",6,6,"ddDDII"))<0) return(FAILED); // assign_process_logic --> dz->input_data_type = SNDFILES_ONLY; dz->process_type = UNEQUAL_SNDFILE; dz->outfiletype = SNDFILE_OUT; dz->array_cnt = 1; } else { if((exit_status = set_param_data(ap,0 ,5,3,"dDD00"))<0) return(FAILED); if((exit_status = set_vflgs(ap,"",0,"","gq",2,2,"dd"))<0) return(FAILED); // assign_process_logic --> dz->input_data_type = SNDFILES_ONLY; dz->process_type = TO_TEXTFILE; dz->outfiletype = TEXTFILE_OUT; dz->array_cnt = 0; } break; } // set_legal_infile_structure --> dz->has_otherfile = FALSE; dz->iarray_cnt = 0; dz->larray_cnt = 0; dz->ptr_cnt = 0; dz->fptr_cnt = 0; return application_init(dz); //GLOBAL } /************************* PARSE_INFILE_AND_CHECK_TYPE *******************/ int parse_infile_and_check_type(char **cmdline,dataptr dz) { int exit_status; infileptr infile_info; if(!sloom) { if((infile_info = (infileptr)malloc(sizeof(struct filedata)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for infile structure to test file data."); return(MEMORY_ERROR); } else if((exit_status = cdparse(cmdline[0],infile_info))<0) { sprintf(errstr,"Failed to parse input file %s\n",cmdline[0]); return(PROGRAM_ERROR); } else if(infile_info->filetype != SNDFILE) { sprintf(errstr,"File %s is not of correct type\n",cmdline[0]); return(DATA_ERROR); } else if((exit_status = copy_parse_info_to_main_structure(infile_info,dz))<0) { sprintf(errstr,"Failed to copy file parsing information\n"); return(PROGRAM_ERROR); } free(infile_info); } return(FINISHED); } /************************* SETUP_ENVNU_PARAM_RANGES_AND_DEFAULTS *******************/ int setup_envnu_param_ranges_and_defaults(dataptr dz) { int exit_status; aplptr ap = dz->application; // set_param_ranges() ap->total_input_param_cnt = (char)(ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt); // NB total_input_param_cnt is > 0 !!! if((exit_status = setup_input_param_range_stores(ap->total_input_param_cnt,ap))<0) return(FAILED); // get_param_ranges() switch(dz->process) { case(EXPDECAY): ap->lo[0] = 0.0; ap->hi[0] = dz->duration; ap->default_val[0] = 0.0; ap->lo[1] = 0.0; ap->hi[1] = dz->duration; ap->default_val[1] = dz->duration; break; case(PEAKCHOP): ap->lo[PKCH_WSIZE] = 1.0; //wsize for envelope extraction ap->hi[PKCH_WSIZE] = min(dz->duration,1.0) * SECS_TO_MS; ap->default_val[PKCH_WSIZE] = 50.0; ap->lo[PKCH_WIDTH] = 0.0; // peakwidth (mS) ap->hi[PKCH_WIDTH] = 1000.0; ap->default_val[PKCH_WIDTH] = 2.0; ap->lo[PKCH_SPLICE] = 1.0; // risetime (mS) ap->hi[PKCH_SPLICE] = 200; ap->default_val[PKCH_SPLICE] = 10.0; ap->lo[PKCH_GATE] = 0.0; // gate (0-1) ap->hi[PKCH_GATE] = 1.0; ap->default_val[PKCH_GATE] = 0.0; ap->lo[PKCH_SKEW] = 0.0; // skew (0-1) ap->hi[PKCH_SKEW] = 1.0; ap->default_val[PKCH_SKEW] = 0.25; if(dz->mode == 0) { ap->lo[PKCH_TEMPO] = 20; // tempo (MM) ap->hi[PKCH_TEMPO] = 3000; ap->default_val[PKCH_TEMPO] = 120; ap->lo[PKCH_GAIN] = 0.0; // overall gain ap->hi[PKCH_GAIN] = 1.0; ap->default_val[PKCH_GAIN] = 1.0; ap->lo[PKCH_SCAT] = 0.0; // scatter (0-1) ap->hi[PKCH_SCAT] = 1.0; ap->default_val[PKCH_SCAT] = 0.0; ap->lo[PKCH_NORM] = 0.0; // normalise (0-1) ap->hi[PKCH_NORM] = 1.0; ap->default_val[PKCH_NORM] = 0.0; ap->lo[PKCH_REPET] = 0; // repeat attacks ap->hi[PKCH_REPET] = 256; ap->default_val[PKCH_REPET] = 0; ap->lo[PKCH_MISS] = 0; // skip attacks (i.e. take every n+1th attack only) ap->hi[PKCH_MISS] = 64; ap->default_val[PKCH_MISS] = 0; } break; } if(!sloom) put_default_vals_in_all_params(dz); dz->maxmode = 0; return(FINISHED); } /********************************* PARSE_SLOOM_DATA *********************************/ int parse_sloom_data(int argc,char *argv[],char ***cmdline,int *cmdlinecnt,dataptr dz) { int exit_status; int cnt = 1, infilecnt; int filesize, insams, inbrksize; double dummy; int true_cnt = 0; //aplptr ap; while(cnt<=PRE_CMDLINE_DATACNT) { if(cnt > argc) { sprintf(errstr,"Insufficient data sent from TK\n"); return(DATA_ERROR); } switch(cnt) { case(1): if(sscanf(argv[cnt],"%d",&dz->process)!=1) { sprintf(errstr,"Cannot read process no. sent from TK\n"); return(DATA_ERROR); } break; case(2): if(sscanf(argv[cnt],"%d",&dz->mode)!=1) { sprintf(errstr,"Cannot read mode no. sent from TK\n"); return(DATA_ERROR); } if(dz->mode > 0) dz->mode--; //setup_particular_application() = if((exit_status = setup_envnu_application(dz))<0) return(exit_status); //ap = dz->application; break; case(3): if(sscanf(argv[cnt],"%d",&infilecnt)!=1) { sprintf(errstr,"Cannot read infilecnt sent from TK\n"); return(DATA_ERROR); } if(infilecnt < 1) { true_cnt = cnt + 1; cnt = PRE_CMDLINE_DATACNT; /* force exit from loop after assign_file_data_storage */ } if((exit_status = assign_file_data_storage(infilecnt,dz))<0) return(exit_status); break; case(INPUT_FILETYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->filetype)!=1) { sprintf(errstr,"Cannot read filetype sent from TK (%s)\n",argv[cnt]); return(DATA_ERROR); } break; case(INPUT_FILESIZE+4): if(sscanf(argv[cnt],"%d",&filesize)!=1) { sprintf(errstr,"Cannot read infilesize sent from TK\n"); return(DATA_ERROR); } dz->insams[0] = filesize; break; case(INPUT_INSAMS+4): if(sscanf(argv[cnt],"%d",&insams)!=1) { sprintf(errstr,"Cannot read insams sent from TK\n"); return(DATA_ERROR); } dz->insams[0] = insams; break; case(INPUT_SRATE+4): if(sscanf(argv[cnt],"%d",&dz->infile->srate)!=1) { sprintf(errstr,"Cannot read srate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_CHANNELS+4): if(sscanf(argv[cnt],"%d",&dz->infile->channels)!=1) { sprintf(errstr,"Cannot read channels sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_STYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->stype)!=1) { sprintf(errstr,"Cannot read stype sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGSTYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->origstype)!=1) { sprintf(errstr,"Cannot read origstype sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGRATE+4): if(sscanf(argv[cnt],"%d",&dz->infile->origrate)!=1) { sprintf(errstr,"Cannot read origrate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MLEN+4): if(sscanf(argv[cnt],"%d",&dz->infile->Mlen)!=1) { sprintf(errstr,"Cannot read Mlen sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DFAC+4): if(sscanf(argv[cnt],"%d",&dz->infile->Dfac)!=1) { sprintf(errstr,"Cannot read Dfac sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGCHANS+4): if(sscanf(argv[cnt],"%d",&dz->infile->origchans)!=1) { sprintf(errstr,"Cannot read origchans sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_SPECENVCNT+4): if(sscanf(argv[cnt],"%d",&dz->infile->specenvcnt)!=1) { sprintf(errstr,"Cannot read specenvcnt sent from TK\n"); return(DATA_ERROR); } dz->specenvcnt = dz->infile->specenvcnt; break; case(INPUT_WANTED+4): if(sscanf(argv[cnt],"%d",&dz->wanted)!=1) { sprintf(errstr,"Cannot read wanted sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_WLENGTH+4): if(sscanf(argv[cnt],"%d",&dz->wlength)!=1) { sprintf(errstr,"Cannot read wlength sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_OUT_CHANS+4): if(sscanf(argv[cnt],"%d",&dz->out_chans)!=1) { sprintf(errstr,"Cannot read out_chans sent from TK\n"); return(DATA_ERROR); } break; /* RWD these chanegs to samps - tk will have to deal with that! */ case(INPUT_DESCRIPTOR_BYTES+4): if(sscanf(argv[cnt],"%d",&dz->descriptor_samps)!=1) { sprintf(errstr,"Cannot read descriptor_samps sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_IS_TRANSPOS+4): if(sscanf(argv[cnt],"%d",&dz->is_transpos)!=1) { sprintf(errstr,"Cannot read is_transpos sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_COULD_BE_TRANSPOS+4): if(sscanf(argv[cnt],"%d",&dz->could_be_transpos)!=1) { sprintf(errstr,"Cannot read could_be_transpos sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_COULD_BE_PITCH+4): if(sscanf(argv[cnt],"%d",&dz->could_be_pitch)!=1) { sprintf(errstr,"Cannot read could_be_pitch sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DIFFERENT_SRATES+4): if(sscanf(argv[cnt],"%d",&dz->different_srates)!=1) { sprintf(errstr,"Cannot read different_srates sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DUPLICATE_SNDS+4): if(sscanf(argv[cnt],"%d",&dz->duplicate_snds)!=1) { sprintf(errstr,"Cannot read duplicate_snds sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_BRKSIZE+4): if(sscanf(argv[cnt],"%d",&inbrksize)!=1) { sprintf(errstr,"Cannot read brksize sent from TK\n"); return(DATA_ERROR); } if(inbrksize > 0) { switch(dz->input_data_type) { case(WORDLIST_ONLY): break; case(PITCH_AND_PITCH): case(PITCH_AND_TRANSPOS): case(TRANSPOS_AND_TRANSPOS): dz->tempsize = inbrksize; break; case(BRKFILES_ONLY): case(UNRANGED_BRKFILE_ONLY): case(DB_BRKFILES_ONLY): case(ALL_FILES): case(ANY_NUMBER_OF_ANY_FILES): if(dz->extrabrkno < 0) { sprintf(errstr,"Storage location number for brktable not established by CDP.\n"); return(DATA_ERROR); } if(dz->brksize == NULL) { sprintf(errstr,"CDP has not established storage space for input brktable.\n"); return(PROGRAM_ERROR); } dz->brksize[dz->extrabrkno] = inbrksize; break; default: sprintf(errstr,"TK sent brktablesize > 0 for input_data_type [%d] not using brktables.\n", dz->input_data_type); return(PROGRAM_ERROR); } break; } break; case(INPUT_NUMSIZE+4): if(sscanf(argv[cnt],"%d",&dz->numsize)!=1) { sprintf(errstr,"Cannot read numsize sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_LINECNT+4): if(sscanf(argv[cnt],"%d",&dz->linecnt)!=1) { sprintf(errstr,"Cannot read linecnt sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ALL_WORDS+4): if(sscanf(argv[cnt],"%d",&dz->all_words)!=1) { sprintf(errstr,"Cannot read all_words sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ARATE+4): if(sscanf(argv[cnt],"%f",&dz->infile->arate)!=1) { sprintf(errstr,"Cannot read arate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_FRAMETIME+4): if(sscanf(argv[cnt],"%lf",&dummy)!=1) { sprintf(errstr,"Cannot read frametime sent from TK\n"); return(DATA_ERROR); } dz->frametime = (float)dummy; break; case(INPUT_WINDOW_SIZE+4): if(sscanf(argv[cnt],"%f",&dz->infile->window_size)!=1) { sprintf(errstr,"Cannot read window_size sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_NYQUIST+4): if(sscanf(argv[cnt],"%lf",&dz->nyquist)!=1) { sprintf(errstr,"Cannot read nyquist sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DURATION+4): if(sscanf(argv[cnt],"%lf",&dz->duration)!=1) { sprintf(errstr,"Cannot read duration sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MINBRK+4): if(sscanf(argv[cnt],"%lf",&dz->minbrk)!=1) { sprintf(errstr,"Cannot read minbrk sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MAXBRK+4): if(sscanf(argv[cnt],"%lf",&dz->maxbrk)!=1) { sprintf(errstr,"Cannot read maxbrk sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MINNUM+4): if(sscanf(argv[cnt],"%lf",&dz->minnum)!=1) { sprintf(errstr,"Cannot read minnum sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MAXNUM+4): if(sscanf(argv[cnt],"%lf",&dz->maxnum)!=1) { sprintf(errstr,"Cannot read maxnum sent from TK\n"); return(DATA_ERROR); } break; default: sprintf(errstr,"case switch item missing: parse_sloom_data()\n"); return(PROGRAM_ERROR); } cnt++; } if(cnt!=PRE_CMDLINE_DATACNT+1) { sprintf(errstr,"Insufficient pre-cmdline params sent from TK\n"); return(DATA_ERROR); } if(true_cnt) cnt = true_cnt; *cmdlinecnt = 0; while(cnt < argc) { if((exit_status = get_tk_cmdline_word(cmdlinecnt,cmdline,argv[cnt]))<0) return(exit_status); cnt++; } return(FINISHED); } /********************************* GET_TK_CMDLINE_WORD *********************************/ int get_tk_cmdline_word(int *cmdlinecnt,char ***cmdline,char *q) { if(*cmdlinecnt==0) { if((*cmdline = (char **)malloc(sizeof(char *)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline array.\n"); return(MEMORY_ERROR); } } else { if((*cmdline = (char **)realloc(*cmdline,((*cmdlinecnt)+1) * sizeof(char *)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline array.\n"); return(MEMORY_ERROR); } } if(((*cmdline)[*cmdlinecnt] = (char *)malloc((strlen(q) + 1) * sizeof(char)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline item %d.\n",(*cmdlinecnt)+1); return(MEMORY_ERROR); } strcpy((*cmdline)[*cmdlinecnt],q); (*cmdlinecnt)++; return(FINISHED); } /****************************** ASSIGN_FILE_DATA_STORAGE *********************************/ int assign_file_data_storage(int infilecnt,dataptr dz) { int exit_status; int no_sndfile_system_files = FALSE; dz->infilecnt = infilecnt; if((exit_status = allocate_filespace(dz))<0) return(exit_status); if(no_sndfile_system_files) dz->infilecnt = 0; return(FINISHED); } /************************* SETUP_INTERNAL_ARRAYS_AND_ARRAY_POINTERS *******************/ int setup_internal_arrays_and_array_pointers(dataptr dz) { int n; if(dz->array_cnt > 0) { if((dz->parray = (double **)malloc(dz->array_cnt * sizeof(double *)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for internal double arrays.\n"); return(MEMORY_ERROR); } for(n=0;narray_cnt;n++) dz->parray[n] = NULL; } return(FINISHED); } /************************* redundant functions: to ensure libs compile OK *******************/ int assign_process_logic(dataptr dz) { return(FINISHED); } void set_legal_infile_structure(dataptr dz) {} int set_legal_internalparam_structure(int process,int mode,aplptr ap) { return(FINISHED); } int establish_bufptrs_and_extra_buffers(dataptr dz) { return(FINISHED); } int read_special_data(char *str,dataptr dz) { return(FINISHED); } int inner_loop (int *peakscore,int *descnt,int *in_start_portion,int *least,int *pitchcnt,int windows_in_buf,dataptr dz) { return(FINISHED); } int get_process_no(char *prog_identifier_from_cmdline,dataptr dz) { return(FINISHED); } /********************************************************************************************/ int get_the_process_no(char *prog_identifier_from_cmdline,dataptr dz) { if (!strcmp(prog_identifier_from_cmdline,"expdecay")) dz->process = EXPDECAY; else if(!strcmp(prog_identifier_from_cmdline,"peakchop")) dz->process = PEAKCHOP; else { sprintf(errstr,"Unknown program identification string '%s'\n",prog_identifier_from_cmdline); return(USAGE_ONLY); } return(FINISHED); } /****************************** GET_MODE *********************************/ int get_the_mode_from_cmdline(char *str,dataptr dz) { char temp[200], *p; if(sscanf(str,"%s",temp)!=1) { sprintf(errstr,"Cannot read mode of program.\n"); return(USAGE_ONLY); } p = temp + strlen(temp) - 1; while(p >= temp) { if(!isdigit(*p)) { sprintf(errstr,"Invalid mode of program entered.\n"); return(USAGE_ONLY); } p--; } if(sscanf(str,"%d",&dz->mode)!=1) { sprintf(errstr,"Cannot read mode of program.\n"); return(USAGE_ONLY); } if(dz->mode <= 0 || dz->mode > dz->maxmode) { sprintf(errstr,"Program mode value [%d] is out of range [1 - %d].\n",dz->mode,dz->maxmode); return(USAGE_ONLY); } dz->mode--; /* CHANGE TO INTERNAL REPRESENTATION OF MODE NO */ return(FINISHED); } /******************************** SETUP_AND_INIT_INPUT_BRKTABLE_CONSTANTS ********************************/ int setup_and_init_input_brktable_constants(dataptr dz,int brkcnt) { int n; if((dz->brk = (double **)malloc(brkcnt * sizeof(double *)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 1\n"); return(MEMORY_ERROR); } if((dz->brkptr = (double **)malloc(brkcnt * sizeof(double *)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 6\n"); return(MEMORY_ERROR); } if((dz->brksize = (int *)malloc(brkcnt * sizeof(int)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 2\n"); return(MEMORY_ERROR); } if((dz->firstval = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 3\n"); return(MEMORY_ERROR); } if((dz->lastind = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 4\n"); return(MEMORY_ERROR); } if((dz->lastval = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 5\n"); return(MEMORY_ERROR); } if((dz->brkinit = (int *)malloc(brkcnt * sizeof(int)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 7\n"); return(MEMORY_ERROR); } for(n=0;nbrk[n] = NULL; dz->brkptr[n] = NULL; dz->brkinit[n] = 0; dz->brksize[n] = 0; } return(FINISHED); } /******************************** USAGE1 ********************************/ int usage1(void) { fprintf(stderr, "\nNEW ENVELOPING OPERATIONS\n\n" "USAGE: envnu NAME (mode) infile outfile parameters: \n" "\n" "where NAME can be any one of\n" "\n" "expdecay peakchop\n" "Type 'envnu expdecay' for more info on envnu expdecay..ETC.\n"); return(USAGE_ONLY); } /******************************** USAGE2 ********************************/ int usage2(char *str) { if(!strcmp(str,"expdecay")) { fprintf(stderr, "USAGE:\n" "envnu expdecay infile outfile starttime endtime\n" "\n" "Impose exponential decay (to zero) on a sound, from starttime to endtime.\n" "\n" "To force decay-end to be at end of file,\n" "enter an endtime at OR beyond file duration.\n"); } else if(!strcmp(str,"peakchop")) { fprintf(stderr, "USAGE:\n" "envnu peakchop 1 infil outfil wsize pkwidth risetime tempo gain\n" " [-ggate -qskew -sscatter -norm -rrepeat -mmiss]\n" "OR:\n" "envnu peakchop 2 infil outfil wsize pkwidth risetime [-ggate -qskew]\n" "\n" "Isolate peaks in source, and (Mode 1) play back at specified tempo,\n" "or (Mode 2) output peak-isolating envelope.\n" "\n" "WSIZE windowsize (in mS) for extracting envelope (1-64 dflt 50)\n" "PKWIDTH width of retained peaks (in mS) (dflt 20mS).\n" " (Must be less than minimum distance between data peaks).\n" "RISETIME risetime from zero to peak (in mS) (dflt 10mS)\n" "TEMPO tempo of resulting output, MM = events per minute.\n" "GAIN lower this if rapid tempo causes peaks to overlap (0-1, dflt 1)\n" "GATE level (relative to max) below which peaks ignored (0-1 dflt 0)\n" "SKEW envelope centring on peak (0 to 1: dflt 0.25). 0.5 = centred,\n" " 0 = peak at envelope start, 1 = peak at envelope end.\n" "SCATTER randomisation of output times (0-1 dflt 0)\n" "NORM force peakevent levels towards that of loudest (0-1 dflt 0)\n" "REPEAT number of times peakevents are repeated (0-256 dflt 0)\n" "MISS use peakevent, skip next 'miss' peakevents (0-64 default 0).\n" "\n" "\nAll parameters may vary in time, EXCEPT wsize, gate and skew.\n" "\nTimes in breakpoint files are times in the output.\n" "\n"); } else fprintf(stdout,"Unknown option '%s'\n",str); return(USAGE_ONLY); } int usage3(char *str1,char *str2) { fprintf(stderr,"Insufficient parameters on command line.\n"); return(USAGE_ONLY); } /******************************** EXPDECAY ********************************/ int expdecay(dataptr dz) { int exit_status; double b, val, nextval, div; double incr, mlt, srate; int chans,j, k; int local_frames, local_frame_cnt = 0; float *buf = dz->sampbuf[0]; int startframe, endframe, decayframes, frame_cnt; srate = (double)dz->infile->srate; //dur = (double)dz->duration; chans = dz->infile->channels; startframe = (int)round(dz->param[0] * srate); endframe = (int)round(dz->param[1] * srate); decayframes = endframe - startframe; val = 1.0; b = 0.00001; div = 1.0/(double)decayframes; mlt = pow(b,div); dz->ssampsread = 1; frame_cnt = 0; while(frame_cnt < endframe) { if((exit_status = read_samps(buf,dz))<0) return(exit_status); local_frames = dz->ssampsread / chans; local_frame_cnt = 0; while (local_frame_cnt < local_frames) { if(frame_cnt >= startframe) { if(frame_cnt >= endframe) { if(local_frame_cnt > 0) { if((exit_status = write_samps(buf,local_frame_cnt * chans,dz))<0) return(exit_status); } return FINISHED; } for(j = 0;j < chans;j++) { k = (local_frame_cnt * chans) + j; buf[k] = (float)(buf[k] * val); } nextval = val * mlt; incr = nextval - val; val += incr; } local_frame_cnt++; frame_cnt++; } if(local_frame_cnt > 0) { if((exit_status = write_samps(buf,local_frame_cnt * chans,dz))<0) return(exit_status); } } return FINISHED; } /*********************** CHECK_THE_PARAM_VALIDITY_AND_CONSISTENCY *********************/ int check_the_param_validity_and_consistency(dataptr dz) { int channels = dz->infile->channels; int srate = dz->infile->srate; switch(dz->process) { case(EXPDECAY): if(!sloom && (dz->param[1] == 0.0)) // In cmdline case, endtime vals beyond end of file are p[reviously trapped and set to 0 dz->param[1] = dz->duration; // Then readjusted to file-duration here if(dz->param[0] >= dz->param[1]) { sprintf(errstr,"Endtime of decay must be greater than starttime. %lf %lf",dz->param[0],dz->param[1]); return(USER_ERROR); } break; case(PEAKCHOP): // Convert time parameters to samples if(dz->brksize[PKCH_WIDTH] == 0) dz->iparam[PKCH_WIDTH] = round(dz->param[PKCH_WIDTH] * MS_TO_SECS * (double)srate) * channels; if(dz->brksize[PKCH_SPLICE] == 0) dz->iparam[PKCH_SPLICE] = round(dz->param[PKCH_SPLICE] * MS_TO_SECS * (double)srate) * channels; // Convert tempo parameter to event-distance if(dz->mode == 0) { if(dz->brksize[PKCH_TEMPO] == 0) dz->param[PKCH_TEMPO] = 60.0 / dz->param[PKCH_TEMPO]; // Convert miss to step (miss 0 = step 1, miss 1 = step 2 etc. if(dz->brksize[PKCH_MISS] == 0) dz->iparam[PKCH_MISS]++; } break; } return FINISHED; } /*********************** PEAKCHOP_PARAM_PREPROCESS *********************/ int peakchop_param_preprocess(dataptr dz) { int exit_status, chans = dz->infile->channels; int n, j, k, unadjusted_envwindow_sampsize; float *buf; double maxsamp, thisval, srate = (double)dz->infile->srate; // Trim envelopesize to fit exactly into buffers (which are a pow of two in length) unadjusted_envwindow_sampsize = round(dz->param[PKCH_WSIZE] * MS_TO_SECS * srate) * chans; if(unadjusted_envwindow_sampsize < dz->buflen) { k = dz->buflen; while(unadjusted_envwindow_sampsize unadjusted_envwindow_sampsize - k) dz->iparam[PKCH_WSIZE] = (int)k; else dz->iparam[PKCH_WSIZE] = (int)j; } else { k = round((double)unadjusted_envwindow_sampsize/(double)dz->buflen); dz->iparam[PKCH_WSIZE] = (int)(dz->buflen * k); } // Get and store maximum source sample, if required if(dz->param[PKCH_GATE] > 0.0 || (dz->mode == 0 && (dz->brksize[PKCH_NORM] > 0 || dz->param[PKCH_NORM] > 0.0))) { if(dz->param[PKCH_GATE] > 0.0) fprintf(stdout,"INFO: Finding maximum sample, for gating.\n"); else fprintf(stdout,"INFO: Finding maximum sample, for normalisation.\n"); fflush(stdout); buf = dz->sampbuf[0]; if((exit_status = read_samps(buf,dz))<0) return(exit_status); maxsamp = 0.0; while(dz->ssampsread > 0) { n = 0; while(n < dz->ssampsread) { thisval = fabs(buf[n]); if(thisval > maxsamp) maxsamp = thisval; n++; } if((exit_status = read_samps(buf,dz))<0) return(exit_status); } if(maxsamp <= 0.0) { sprintf(errstr,"NO SIGNIFICANT SIGNAL FOUND IN SOURCE\n"); return(DATA_ERROR); } if(dz->param[PKCH_GATE] > 0.0) dz->param[PKCH_GATE] *= maxsamp; dz->scalefact = maxsamp; if((sndseekEx(dz->ifd[0],0,0)) < 0) { sprintf(errstr,"sndseek() 1 failed.\n"); return(SYSTEM_ERROR); } reset_filedata_counters(dz); if(sloom) display_virtual_time(dz->total_samps_read,dz); } return FINISHED; } /********************************************** PEAKCHOP ********************************************/ int peakchop(dataptr dz) { int exit_status; int envcnt,outcnt; if((exit_status = extract_env_from_sndfile(&envcnt,dz))<0) return(exit_status); extract_peaks_from_envelope(&envcnt,dz); // ENVELOPE to 'env' as time-val pairs if(envcnt == 0) { sprintf(errstr,"No peaks found. Silent file.\n"); return(DATA_ERROR); } if(dz->param[PKCH_GATE] > 0.0) { if((exit_status = eliminate_too_low_peaks(&envcnt,dz))<0) return(exit_status); } if((sndseekEx(dz->ifd[0],0,0)) < 0) { sprintf(errstr,"sndseek() 2 failed\n"); return(SYSTEM_ERROR); } reset_filedata_counters(dz); if(sloom) display_virtual_time(dz->total_samps_read,dz); if((exit_status = find_exact_peaktimes(envcnt,dz))<0) return(exit_status); switch(dz->mode) { case(0): if((exit_status = calculate_event_outtimes(envcnt,&outcnt,dz))<0) return(exit_status); if((sndseekEx(dz->ifd[0],0,0)) < 0) { sprintf(errstr,"sndseek() 4 failed\n"); return(SYSTEM_ERROR); } reset_filedata_counters(dz); if(sloom) display_virtual_time(dz->total_samps_read,dz); if((exit_status = generate_enveloped_output(envcnt,outcnt,dz))<0) return(exit_status); break; case(1): if((exit_status = generate_envelope_as_output(envcnt,dz))<0) return(exit_status); break; } return FINISHED; } /****************************** EXTRACT_ENV_FROM_SNDFILE ******************************/ int extract_env_from_sndfile(int *envcnt,dataptr dz) { int exit_status, safety = 100; int n, bufcnt, totmem; double convertor = 1.0/F_ABSMAXSAMP; double time_convertor = 1.0/(dz->infile->channels * dz->infile->srate); float *envptr; float *buffer = dz->sampbuf[0]; fprintf(stdout,"INFO: Finding envelope of source.\n"); fflush(stdout); bufcnt = buffers_in_sndfile(dz->buflen,dz); *envcnt = windows_in_sndfile(dz); totmem = (*envcnt * 2) + safety; if((dz->env=(float *)calloc(totmem,sizeof(float)))==NULL) { // *2 -> accomodates time,val PAIRS sprintf(errstr,"INSUFFICIENT MEMORY for envelope array.\n"); return(MEMORY_ERROR); } envptr = dz->env; for(n = 0; n < bufcnt; n++) { if((exit_status = read_samps(dz->sampbuf[0],dz))<0) return(exit_status); if(sloom) display_virtual_time(dz->total_samps_read,dz); getenv_of_buffer(dz->ssampsread,dz->iparam[PKCH_WSIZE],convertor,time_convertor,&envptr,buffer,dz); } return(FINISHED); } /****************************** BUFFERS_IN_SNDFILE ******************************/ int buffers_in_sndfile(int buffer_size,dataptr dz) { int bufcnt; if(((bufcnt = dz->insams[0]/buffer_size)*buffer_size)!=dz->insams[0]) bufcnt++; return(bufcnt); } /****************************** WINDOWS_IN_SNDFILE [GET_ENVSIZE] ******************************/ int windows_in_sndfile(dataptr dz) { int envsize, winsize = dz->iparam[PKCH_WSIZE]; if(((envsize = dz->insams[0]/winsize) * winsize)!=dz->insams[0]) envsize++; return(envsize); } /************************* GETENV_OF_BUFFER *******************************/ void getenv_of_buffer(int samps_to_process,int envwindow_sampsize,double convertor,double time_convertor,float **envptr,float *buffer,dataptr dz) { int start_samp = 0; int bufstart = dz->total_samps_read - dz->ssampsread; float *env = *envptr; while(samps_to_process >= envwindow_sampsize) { *env++ = (float)((start_samp + bufstart) * time_convertor); *env++ = (float)(getmaxsamp(start_samp,envwindow_sampsize,buffer) * convertor); start_samp += envwindow_sampsize; samps_to_process -= envwindow_sampsize; } if(samps_to_process) { /* Handle any final short buffer */ *env++ = (float)((start_samp + bufstart) * time_convertor); *env++ = (float)(getmaxsamp(start_samp,samps_to_process,buffer) * convertor); } *envptr = env; } /************************* EXTRACT_PEAKS_FROM_ENVELOPE *******************************/ void extract_peaks_from_envelope(int *envcnt,dataptr dz) { int orig_env_size = *envcnt, n, j=0, k=0; int islocalmax = 0; float lastenv = 0.0; int envloc = 0; float *env = dz->env; fprintf(stdout,"INFO: Finding peaks.\n"); fflush(stdout); for(n=1;n < orig_env_size; n++) { j = n * 2; // indexes time k = j + 1; // indexes value if(env[k] <= lastenv) { if(islocalmax) { env[envloc] = env[j-2]; // overwrites original envelope, with env peaks envloc++; env[envloc] = env[k-2]; // overwrites original envelope, with env peaks envloc++; } islocalmax = 0; } else islocalmax = 1; lastenv = env[k]; } if(islocalmax) { // Capture last peak, if a max env[envloc] = env[j-2]; envloc++; env[envloc] = env[k-2]; envloc++; } *envcnt = envloc/2; } /************************* ELIMINATE_TOO_LOW_PEAKS *******************************/ int eliminate_too_low_peaks(int *envcnt,dataptr dz) { int new_envcnt = *envcnt; int tabend = new_envcnt * 2; int n = 0, j, k, jj, gated; fprintf(stdout,"INFO: Gating low-level peaks.\n"); fflush(stdout); while(n < new_envcnt) { j = n * 2; k = j + 1; if(dz->env[k] < dz->param[PKCH_GATE]) { new_envcnt--; tabend = new_envcnt * 2; jj = j; while(jj < tabend) { dz->env[jj] = dz->env[jj + 2]; jj++; } } else { n++; } } if(new_envcnt == 0) { sprintf(errstr,"No peaks retained at this gate level.\n"); return(DATA_ERROR); } if((gated = *envcnt - new_envcnt) > 0) { fprintf(stdout,"INFO: %d peaks removed by gate: %d peaks remain\n",gated,new_envcnt); fflush(stdout); *envcnt = new_envcnt; } return FINISHED; } /************************* FIND_EXACT_PEAKTIMES *******************************/ int find_exact_peaktimes(int envcnt,dataptr dz) { int exit_status; double inv_srate = 1.0 / dz->infile->srate, maxsamp, val; int n, j, maxtime, samptime, searchend, ibufstart_in_file; float *env = dz->env; float *buf = dz->sampbuf[0]; if((exit_status = read_samps(buf,dz))<0) return(exit_status); ibufstart_in_file = 0; for(n=0;n < envcnt; n++) { j = n * 2; // indexes time //k = j + 1; // indexes value samptime = (int)round(env[j] * (double)dz->infile->srate) * dz->infile->channels; if((searchend = samptime + dz->iparam[PKCH_WSIZE]) >= dz->total_samps_read) { if(dz->ssampsread < dz->buflen) { samptime -= ibufstart_in_file; searchend = dz->ssampsread; } else { ibufstart_in_file = (samptime/F_SECSIZE) * F_SECSIZE; if((sndseekEx(dz->ifd[0],ibufstart_in_file,0)) < 0) { sprintf(errstr,"sndseek() 3 failed\n"); return(SYSTEM_ERROR); } dz->total_samps_read = ibufstart_in_file; if((exit_status = read_samps(buf,dz))<0) return(exit_status); if(dz->ssampsread == 0) break; if(sloom) display_virtual_time(dz->total_samps_read,dz); samptime -= ibufstart_in_file; searchend = min(samptime + dz->iparam[PKCH_WSIZE],dz->ssampsread); } } else { samptime -= ibufstart_in_file; searchend -= ibufstart_in_file; } maxtime = 0; maxsamp = fabs(buf[samptime++]); while(samptime < searchend) { val = fabs(buf[samptime]); if(val > maxsamp) { maxtime = samptime; maxsamp = val; } samptime++; } maxtime += ibufstart_in_file; maxtime /= dz->infile->channels; env[j] = (float)((double)maxtime * inv_srate); } return FINISHED; } /**************************** CALCULATE_EVENT_OUTTIMES *****************************/ int calculate_event_outtimes(int envcnt,int *outcnt,dataptr dz) { int exit_status; double *outtime; int n; double lastnewpos, newpos, lastgap, nextgap, scatter; double rpet; int rpetmax; if(dz->brksize[PKCH_REPET] > 0) { if((exit_status = get_maxvalue_in_brktable(&rpet,PKCH_REPET,dz)) < 0) return(exit_status); rpetmax = (int)ceil(rpet); rpetmax++; } else rpetmax = dz->iparam[PKCH_REPET] + 1; *outcnt = envcnt * rpetmax; if((dz->parray[0] = (double *)malloc(sizeof(double) * *outcnt))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing peak-outtimes array.\n"); return(MEMORY_ERROR); } fprintf(stdout,"INFO: Generating output event times.\n"); fflush(stdout); outtime = dz->parray[0]; outtime[0] = 0.0; n = 1; if(dz->brksize[PKCH_TEMPO] == 0) { while(n < *outcnt) { outtime[n] = outtime[n-1] + dz->param[PKCH_TEMPO]; n++; } } else { while(n < *outcnt) { read_value_from_brktable(outtime[n-1],PKCH_TEMPO,dz); dz->param[PKCH_TEMPO] = 60.0 / dz->param[PKCH_TEMPO]; outtime[n] = outtime[n-1] + dz->param[PKCH_TEMPO]; n++; } } if(dz->brksize[PKCH_SCAT] > 0 || dz->param[PKCH_SCAT] > 0.0) { newpos = outtime[0]; for(n=2;n<*outcnt;n++) { // scatter events about there exact positions lastnewpos = newpos; lastgap = outtime[n-1] - outtime[n-2]; nextgap = outtime[n] - outtime[n-1]; scatter = (drand48() * 2.0) - 1.0; if(dz->brksize[PKCH_SCAT] > 0) read_value_from_brktable(outtime[n-1],PKCH_SCAT,dz); scatter *= dz->param[PKCH_SCAT]; if(scatter > 0.0) { nextgap *= scatter; newpos = outtime[n-1] + nextgap; } else { lastgap *= scatter; newpos = outtime[n-1] - lastgap; } outtime[n-2] = lastnewpos; } } return FINISHED; } /**************************** GENERATE_ENVELOPED_OUTPUT *****************************/ int generate_enveloped_output(int envcnt,int outcnt,dataptr dz) { int exit_status, j, k, kk, finished = 0, mstep; float *ibuf = dz->sampbuf[0], *obuf1 = dz->sampbuf[1], *obuf2 = dz->sampbuf[2]; int obufpos = 0, /*obufstart_in_file,*/ obufend_in_file, n, m, outsamptime, seekback, chwidth, halfchwidth, centring, peakadj = 0; int startupsplice, endupsplice, startdownsplice, enddownsplice, splice_steps, envlen; int ibufpos, ibufstart_in_file, insamptime, readend_of_file, readlen; double srate = (double)dz->infile->srate; int chans = dz->infile->channels, repeater = 0; double *outtimes = dz->parray[0], outtime, splice_incr, spliceval; double this_norm, thisamp, normalisation, normalisation_incr, thisgain_incr, outmax = 0.0; fprintf(stdout,"INFO: Generating output sound.\n"); fflush(stdout); memset((char *)obuf1,0,2 * dz->buflen * sizeof(float)); // Set double buffer to zero if((exit_status = read_samps(ibuf,dz))<0) return(exit_status); ibufstart_in_file = 0; // obufstart_in_file = 0; obufend_in_file = dz->buflen; envlen = envcnt * 2; if(dz->brksize[PKCH_MISS] > 0) { read_value_from_brktable(outtimes[0],PKCH_MISS,dz); dz->iparam[PKCH_MISS]++; } if(dz->brksize[PKCH_WIDTH] == 0) { chwidth = dz->iparam[PKCH_WIDTH]/chans; halfchwidth = chwidth/2; centring = (int)round(dz->param[PKCH_SKEW] * chwidth); peakadj = (centring - halfchwidth) * chans; } mstep = dz->iparam[PKCH_MISS] * 2; for(n=0,m = 0;m= outcnt) // SAFETY break; outtime = outtimes[n]; if(dz->brksize[PKCH_GAIN] > 0) read_value_from_brktable(outtime,PKCH_GAIN,dz); if(dz->brksize[PKCH_WIDTH] > 0) { read_value_from_brktable(outtime,PKCH_WIDTH,dz); dz->iparam[PKCH_WIDTH] = (int)round(dz->param[PKCH_WIDTH] * MS_TO_SECS * srate) * chans; chwidth = dz->iparam[PKCH_WIDTH]/chans; halfchwidth = chwidth/2; centring = (int)round(dz->param[PKCH_SKEW] * chwidth); peakadj = (centring - halfchwidth) * chans; } if(dz->brksize[PKCH_SPLICE] > 0) { read_value_from_brktable(outtime,PKCH_SPLICE,dz); dz->iparam[PKCH_SPLICE] = (int)round(dz->param[PKCH_SPLICE] * MS_TO_SECS * srate) * chans; } if(dz->brksize[PKCH_MISS] > 0) { read_value_from_brktable(outtime,PKCH_MISS,dz); dz->iparam[PKCH_MISS]++; mstep = dz->iparam[PKCH_MISS] * 2; } if(dz->brksize[PKCH_REPET] > 0) read_value_from_brktable(outtime,PKCH_REPET,dz); if(dz->brksize[PKCH_NORM] > 0) read_value_from_brktable(outtime,PKCH_NORM,dz); if(dz->param[PKCH_NORM] > 0.0) { thisamp = dz->env[m+1]; normalisation = min(dz->scalefact/thisamp,100.0); // scalefact stores maxamplitude of source normalisation_incr = normalisation - 1.0; thisgain_incr = normalisation_incr * dz->param[PKCH_NORM]; this_norm = 1.0 + thisgain_incr; } else this_norm = 1.0; outsamptime = (int)round(outtime * (double)dz->infile->srate) * chans; while(outsamptime >= obufend_in_file) { for(kk=0;kkbuflen;kk++) outmax = max(outmax,fabs((double)obuf1[kk])); if((exit_status = write_samps(obuf1,dz->buflen,dz))<0) return(exit_status); memcpy((char *)obuf1,(char *)obuf2,dz->buflen * sizeof(float)); memset((char *)obuf2,0,dz->buflen * sizeof(float)); obufend_in_file += dz->buflen; // obufstart_in_file += dz->buflen; } obufpos = outsamptime % dz->buflen; if((insamptime = (int)round(dz->env[m] * srate) * chans) >= dz->insams[0]) { break; } insamptime += peakadj; startupsplice = max(insamptime - dz->iparam[PKCH_SPLICE],0); endupsplice = insamptime; startdownsplice = endupsplice + dz->iparam[PKCH_WIDTH]; readend_of_file = 0; if((enddownsplice = startdownsplice + dz->iparam[PKCH_SPLICE]) >= dz->insams[0]) readend_of_file = dz->insams[0] - insamptime; if(startupsplice < ibufstart_in_file) { // Possible if segments are repeated, and they cross a buffer boundary seekback = dz->total_samps_read - dz->ssampsread - dz->buflen; if(seekback < 0) { sprintf(errstr,"BAD SEEK\n"); return(PROGRAM_ERROR); } if((sndseekEx(dz->ifd[0],seekback,0)< 0)){ sprintf(errstr,"sndseek() 5 failed\n"); return SYSTEM_ERROR; } dz->total_samps_read = seekback; if((exit_status = read_samps(ibuf,dz))<0) return(exit_status); ibufstart_in_file -= dz->buflen; } while(startupsplice > dz->total_samps_read) { ibufstart_in_file += dz->ssampsread; if((exit_status = read_samps(ibuf,dz))<0) return(exit_status); if(dz->ssampsread == 0) { break; } } ibufpos = startupsplice - ibufstart_in_file; splice_steps = dz->iparam[PKCH_SPLICE]/chans; splice_incr = this_norm/(double)splice_steps; spliceval = 0.0; for(k = 0; k < splice_steps; k++) { for(j=0;jparam[PKCH_GAIN]); obufpos++; ibufpos++; } spliceval += splice_incr; if(ibufpos >= dz->ssampsread) { if(dz->ssampsread < dz->buflen) { finished = 1; break; } ibufstart_in_file += dz->buflen; ibufpos -= dz->buflen; if((exit_status = read_samps(ibuf,dz))<0) return(exit_status); if(dz->ssampsread == 0) { finished = 1; break; } } if(obufpos >= dz->buflen * 2) { sprintf(errstr,"AAA Peak-event length too large for buffer dblbuflen = %d eventlen = %d\n",dz->buflen * 2,(dz->iparam[PKCH_SPLICE] * 2) + dz->iparam[PKCH_WIDTH]); return(DATA_ERROR); } } if(finished) break; if(readend_of_file) readlen = readend_of_file; else readlen = dz->iparam[PKCH_WIDTH]; for(k = 0; k < readlen; k++) { obuf1[obufpos] = (float)((obuf1[obufpos] + (this_norm * ibuf[ibufpos])) * dz->param[PKCH_GAIN]); ibufpos++; obufpos++; if(ibufpos >= dz->ssampsread) { if(dz->ssampsread < dz->buflen) { finished = 1; break; } ibufstart_in_file += dz->buflen; ibufpos -= dz->buflen; if((exit_status = read_samps(ibuf,dz))<0) return(exit_status); if(dz->ssampsread == 0) { finished = 1; break; } } if(obufpos >= dz->buflen * 2) { sprintf(errstr,"BBB Peak-event length too large for buffer dblbuflen = %d eventlen = %d\n",dz->buflen * 2,(dz->iparam[PKCH_SPLICE] * 2) + dz->iparam[PKCH_WIDTH]); return(DATA_ERROR); } } if(finished || readend_of_file) break; spliceval = this_norm; for(k = 0; k < splice_steps; k++) { for(j=0;jparam[PKCH_GAIN]); obufpos++; ibufpos++; } spliceval -= splice_incr; if(ibufpos >= dz->ssampsread) { if(dz->ssampsread < dz->buflen) { finished = 1; break; } ibufstart_in_file += dz->buflen; ibufpos -= dz->buflen; if((exit_status = read_samps(ibuf,dz))<0) return(exit_status); if(dz->ssampsread == 0) { finished = 1; break; } } if(obufpos >= dz->buflen * 2) { sprintf(errstr,"CCC Peak-event length too large for buffer dblbuflen = %d eventlen = %d\n",dz->buflen * 2,(dz->iparam[PKCH_SPLICE] * 2) + dz->iparam[PKCH_WIDTH]); return(DATA_ERROR); } } if(finished) break; if(repeater < dz->iparam[PKCH_REPET]) { // rep;eater checked against current val of PKCH_REPET param, which amy change through time m -= mstep; // if not done enough repetitions, prevent advance along input peaks table repeater++; } else // once PKCH_REPET repetitions done, allows advance along peak table repeater = 0; } if(obufpos > 0) { for(kk=0;kk= 1.0) { fprintf(stdout,"ERROR: clipping! reduce level\n"); fflush(stdout); } return FINISHED; } /**************************** GENERATE_ENVELOPE_AS_OUTPUT *****************************/ int generate_envelope_as_output(int envcnt,dataptr dz) { int exit_status; float *ibuf = dz->sampbuf[0]; double lasttime = 0.0, thistime; int m, chwidth, halfchwidth, centring, peakadj = 0; int startupsplice, endupsplice, startdownsplice, enddownsplice = 0, envlen; int insamptime; double srate = (double)dz->infile->srate, invsrate = 1.0/srate; int chans = dz->infile->channels; fflush(stdout); endupsplice = -1; if((exit_status = read_samps(ibuf,dz))<0) return(exit_status); //ibufstart_in_file = 0; envlen = envcnt * 2; if(dz->brksize[PKCH_WIDTH] == 0) { chwidth = dz->iparam[PKCH_WIDTH]/chans; halfchwidth = chwidth/2; centring = (int)round(dz->param[PKCH_SKEW] * chwidth); peakadj = (centring - halfchwidth) * chans; } for(m = 0;mbrksize[PKCH_WIDTH] > 0) { read_value_from_brktable(dz->env[m],PKCH_WIDTH,dz); dz->iparam[PKCH_WIDTH] = (int)round(dz->param[PKCH_WIDTH] * MS_TO_SECS * srate) * chans; chwidth = dz->iparam[PKCH_WIDTH]/chans; halfchwidth = chwidth/2; centring = (int)round(dz->param[PKCH_SKEW] * chwidth); peakadj = (centring - halfchwidth) * chans; } if(dz->brksize[PKCH_SPLICE] > 0) { read_value_from_brktable(dz->env[m],PKCH_SPLICE,dz); dz->iparam[PKCH_SPLICE] = (int)round(dz->param[PKCH_SPLICE] * MS_TO_SECS * srate) * chans; } if((insamptime = (int)round(dz->env[m] * srate) * chans) >= dz->insams[0]) break; insamptime += peakadj; startupsplice = max(insamptime - dz->iparam[PKCH_SPLICE],0); if(startupsplice < endupsplice) { sprintf(errstr,"Peak envelopes overlap at time %lf\n",dz->env[m]); return(DATA_ERROR); } endupsplice = insamptime; startdownsplice = endupsplice + dz->iparam[PKCH_WIDTH]; enddownsplice = startdownsplice + dz->iparam[PKCH_SPLICE]; if((thistime = (startupsplice/chans) * invsrate) < lasttime) { sprintf(errstr,"New peakwidth too wide for the input data.\n"); return(DATA_ERROR); } lasttime = thistime; if((thistime = (endupsplice/chans) * invsrate) < lasttime) { sprintf(errstr,"New peakwidth too wide for the input data.\n"); return(DATA_ERROR); } lasttime = thistime; if((thistime = (startdownsplice/chans) * invsrate) < lasttime) { sprintf(errstr,"New peakwidth too wide for the input data.\n"); return(DATA_ERROR); } lasttime = thistime; if((thistime = (enddownsplice/chans) * invsrate) < lasttime || thistime <= 0.0) { sprintf(errstr,"New peakwidth too wide for the input data.\n"); return(DATA_ERROR); } lasttime = thistime; } fprintf(stdout,"INFO: Generating output envelope.\n"); for(m = 0;mbrksize[PKCH_WIDTH] > 0) { read_value_from_brktable(dz->env[m],PKCH_WIDTH,dz); dz->iparam[PKCH_WIDTH] = (int)round(dz->param[PKCH_WIDTH] * MS_TO_SECS * srate) * chans; chwidth = dz->iparam[PKCH_WIDTH]/chans; halfchwidth = chwidth/2; centring = (int)round(dz->param[PKCH_SKEW] * chwidth); peakadj = (centring - halfchwidth) * chans; } if(dz->brksize[PKCH_SPLICE] > 0) { read_value_from_brktable(dz->env[m],PKCH_SPLICE,dz); dz->iparam[PKCH_SPLICE] = (int)round(dz->param[PKCH_SPLICE] * MS_TO_SECS * srate) * chans; } if((insamptime = (int)round(dz->env[m] * srate) * chans) >= dz->insams[0]) break; insamptime += peakadj; startupsplice = max(insamptime - dz->iparam[PKCH_SPLICE],0); // e.g. At start of file, if peak is at zero, startupsplice -> 0 endupsplice = insamptime; startdownsplice = endupsplice + dz->iparam[PKCH_WIDTH]; enddownsplice = startdownsplice + dz->iparam[PKCH_SPLICE]; if(m == 0 && startupsplice != 0) fprintf(dz->fp,"%lf\t%lf\n",0.0,0.0); // Splices are always > 0.0, except where peak is at start of file // When startsplice can be 0.0. In this case endupsplice = startupsplice if(endupsplice > startupsplice) // So we must avoid time-duplication in the env file fprintf(dz->fp,"%lf\t%lf\n",(startupsplice/chans) * invsrate,0.0); fprintf(dz->fp,"%lf\t%lf\n",(endupsplice/chans) * invsrate,1.0); if(dz->iparam[PKCH_WIDTH] > 0) // Avoid duplication of time-point for zero-width peaks fprintf(dz->fp,"%lf\t%lf\n",(startdownsplice/chans) * invsrate,1.0); fprintf(dz->fp,"%lf\t%lf\n",(enddownsplice/chans) * invsrate,0.0); } if(enddownsplice < dz->insams[0]) fprintf(dz->fp,"%lf\t%lf\n",(dz->insams[0]) * invsrate,0.0); return FINISHED; } /*************************** GETMAXSAMP *******************************/ double getmaxsamp(int startsamp, int sampcnt,float *buffer) { int i, endsamp = startsamp + sampcnt; double thisval, thismaxsamp = 0.0; for(i = startsamp; ithismaxsamp) thismaxsamp = thisval; } return thismaxsamp; } /*************************** CREATE_PEAKCHOP_SNDBUFS ************************** * * Buffer size is a power of two, and more than big enough to take max number of repeats at minimum tempo */ int create_peakchop_sndbufs(dataptr dz) { int exit_status, n; int bigbufsize, twopow; double rpet, tempo, mindur, pkwidth, splice; int rpetmax; if(dz->sbufptr == 0 || dz->sampbuf==0) { sprintf(errstr,"buffer pointers not allocated: create_sndbufs()\n"); return(PROGRAM_ERROR); } if(dz->brksize[PKCH_REPET] > 0) { if((exit_status = get_maxvalue_in_brktable(&rpet,PKCH_REPET,dz)) < 0) return(exit_status); rpetmax = (int)ceil(rpet); rpetmax++; } else rpetmax = dz->iparam[PKCH_REPET] + 1; if(dz->brksize[PKCH_TEMPO] > 0) { if((exit_status = get_minvalue_in_brktable(&tempo,PKCH_TEMPO,dz)) < 0) return(exit_status); tempo = 60.0 / tempo; } else tempo = dz->param[PKCH_TEMPO]; mindur = tempo * rpetmax * 4.0; if(dz->brksize[PKCH_WIDTH] > 0) { if((exit_status = get_maxvalue_in_brktable(&pkwidth,PKCH_WIDTH,dz)) < 0) return(exit_status); pkwidth *= MS_TO_SECS; } else pkwidth = dz->param[PKCH_WIDTH] * MS_TO_SECS; if(dz->brksize[PKCH_SPLICE] > 0) { if((exit_status = get_maxvalue_in_brktable(&splice,PKCH_SPLICE,dz)) < 0) return(exit_status); splice *= MS_TO_SECS; } else splice = dz->param[PKCH_SPLICE] * MS_TO_SECS; pkwidth += (2 * splice); mindur = max(mindur,pkwidth * 4); bigbufsize = (int)ceil(mindur * (double)dz->infile->srate) * dz->infile->channels; twopow = 2; while(twopow < bigbufsize) twopow *= 2; bigbufsize = twopow; dz->buflen = bigbufsize; if((dz->bigbuf = (float *)calloc(dz->buflen * dz->bufcnt,sizeof(float))) == NULL) { sprintf(errstr,"INSUFFICIENT MEMORY to create sound buffers.\n"); return(PROGRAM_ERROR); } for(n=0;nbufcnt;n++) dz->sbufptr[n] = dz->sampbuf[n] = dz->bigbuf + (dz->buflen * n); dz->sampbuf[n] = dz->bigbuf + (dz->buflen * n); return(FINISHED); } /********************* BEYOND_ENDTIME *********************/ int beyond_endtime(char **cmdline,int cmdlinecnt,dataptr dz) { float endtime; if(cmdlinecnt < 2) return 0; if(!this_value_is_numeric(cmdline[1])) return 0; if(sscanf(cmdline[1],"%f",&endtime)<1) return 0; if(endtime > dz->duration) return 1; return 0; } /********************* THIS_VALUE_IS_NUMERIC *********************/ int this_value_is_numeric(char *str) { char *p, *q, *end; int point, valid; for(;;) { point = 0; p = str; while(isspace(*p)) p++; q = p; if(!isdigit(*p) && *p != '.' && *p!='-') return(0); if(*p == '.'|| *p == '-') { if(*p == '-') { p++; } else { point++; p++; } } for(;;) { if(*p == '.') { if(point) return(0); else { point++; p++; continue; } } if(isdigit(*p)) { p++; continue; } else { if(!isspace(*p) && *p!=ENDOFSTR) return(0); else { end = p; p = q; valid = 0; while(p!=end) { if(isdigit(*p)) valid++; p++; } if(valid) return(1); return(0); } } } } return(0); /* NOTREACHED */ }