/* * Copyright (c) 1983-2023 Trevor Wishart and Composers Desktop Project Ltd * http://www.trevorwishart.co.uk * http://www.composersdesktop.com * This file is part of the CDP System. The CDP System is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The CDP System is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the CDP System; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* * PROCESS TO EXTRACT PEAKS IN SPECTRUM * * Based on Bill Sethares idea of using the median as a reference level * described verbally at CCMIX session in Paris. * * M_WINSIZE = parameter for size of peak-search subwindow, in semitones * M_PEAKING = How much louder than median must a peak be (Range 1 ->) * M_AMPFLOOR = (relative) level below which peaks are ignored * M_INTUNE = parameter for in-tune-ness of harmonics, in semitones * M_LOFRQ = min frq to keep * M_HIFRQ = max frq to keep * MODES 0 pitch(amp) data: 1 data in streams: 2 data streamed after statistical check * dz->vflag[0] = lose the amplitude information * dz->vflag[1] = mark_zeros, where no peaks found * * Output goes to a textfile of * (1) Time, Pitch and amplitude data OR * (2) Time and Pitch data only where ... * (1) Areas free of peaks may be ignored, or marked with zeros * (2) Data may be streamed. The number of streams = maximum number peaks found. * Where there are insufficient peaks in a window to fill all streams, * (zero amplitude) best-fit virtual frqs are added to the streams for those windows. * Streaming may be slow, as assiging peaks to streams uses a combinatorial optimisation scheme. * (3) A statistical survey of the data may be attempted, to extract more streams * This assumes that the source has a relatively steady spectrum * Currently NO data reduction. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#ifdef unix #define round(x) lround((x)) //#endif #ifndef HUGE #define HUGE 3.40282347e+38F #endif char errstr[2400]; int anal_infiles = 1; int sloom = 0; int sloombatch = 0; const char* cdp_version = "7.1.0"; static int check_the_param_validity_and_consistency(dataptr dz); static int setup_the_application(dataptr dz); static int parse_sloom_data(int argc,char *argv[],char ***cmdline,int *cmdlinecnt,dataptr dz); static int parse_infile_and_check_type(char **cmdline,dataptr dz); static int setup_the_param_ranges_and_defaults(dataptr dz); static int handle_the_outfile(int *cmdlinecnt,char ***cmdline,dataptr dz); static int setup_and_init_input_param_activity(dataptr dz,int tipc); static int setup_input_param_defaultval_stores(int tipc,aplptr ap); static int establish_application(dataptr dz); static int initialise_vflags(dataptr dz); static int setup_parameter_storage_and_constants(int storage_cnt,dataptr dz); static int initialise_is_int_and_no_brk_constants(int storage_cnt,dataptr dz); static int mark_parameter_types(dataptr dz,aplptr ap); static int assign_file_data_storage(int infilecnt,dataptr dz); static int get_tk_cmdline_word(int *cmdlinecnt,char ***cmdline,char *q); static int get_the_process_no(char *prog_identifier_from_cmdline,dataptr dz); static int get_the_mode_no(char *str, dataptr dz); static int setup_and_init_input_brktable_constants(dataptr dz,int brkcnt); static int allocate_buffer(dataptr dz); static void displaytime(double time,dataptr dz); static int is_a_harmonic(double frq1,double frq2,double intune_ratio); static void eliminate_harmonics(float *peakfrq,float *peakamp,int *len,double intune_ratio); static void eliminate_duplicated_frqs(float *peakfrq,float *peakamp,int *len); static void sortfrqs(float *peakfrq,float *peakamp,int len); static void sortamps(float *medianarray,int * chanarray,int len); static int locate_peaks_in_subwindow(double lofrq,double hifrq,float *medianarray,int *chanarray,char *peakchan,float * peakfrq,float * peakamp,int peakcnt,dataptr dz); static int locate_peaks(float *medianarray,int *chanarray,char *peakchan,float *peakfrq,float *peakamp,double frqratio,dataptr dz); static void combinations(int *combo,int k,int i, int j,int peakcnt,int maxpeakcnt,double *minratiosum,int *instream, float *peakfrq,float *maxpeakfrq,float *streamfrq,int more); static void find_best_fit(int *combo,int peakcnt,double *minratiosum,int *instream,float *peakfrq,float *streamfrq); static int stream_peaks(float *peakfrq,float *peakamp,float *maxpeakfrq,float *lastmaxpeakfrq,float *streamfrq, int wcnt,int lastmax,int firstmax,int maxpeakcnt,int peakcnt,int *instream, float *streampeakfrq,float *streampeakamp,dataptr dz); static int get_next_window_with_max_number_of_peaks(int *peakcnt,int maxpeakcnt,float *lastmaxpeakfrq,float *maxpeakfrq, int *firstmax,int *lastmax,int wcnt,double frqratio, int *peaknos,float *medianarray,int *chanarray,char *peakchan,float *peakfrq,float *peakamp,dataptr dz); static int get_initial_data(float *maxwinamp,int *peakcnt,int *maxpeakcnt,int *firstmax,float *medianarray,int *chanarray,char *peakchan, float *peakfrq,float *peakamp,int *peaknos,float *maxpeakfrq,float *lastmaxpeakfrq,double frqratio, int bincnt,float *binlofrq,int *pitchbin,float *bintrof,float *streamfrq,dataptr dz); static int extract_peaks(dataptr dz); #define lose_amps dz->vflag[0] #define as_midi dz->vflag[1] #define quantised dz->vflag[2] #define mark_zeros dz->vflag[3] #define filt_format dz->vflag[4] /**************************************** MAIN *********************************************/ int main(int argc,char *argv[]) { int exit_status; dataptr dz = NULL; char **cmdline; int cmdlinecnt; //aplptr ap; int is_launched = FALSE; if(argc==2 && (strcmp(argv[1],"--version") == 0)) { fprintf(stdout,"%s\n",cdp_version); fflush(stdout); return 0; } /* CHECK FOR SOUNDLOOM */ if((sloom = sound_loom_in_use(&argc,&argv)) > 1) { sloom = 0; sloombatch = 1; } if(sflinit("cdp")){ sfperror("cdp: initialisation\n"); return(FAILED); } /* SET UP THE PRINCIPLE DATASTRUCTURE */ if((exit_status = establish_datastructure(&dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if(!sloom) { if(argc == 1) { usage1(); return(FAILED); } else if(argc == 2) { usage2(argv[1]); return(FAILED); } if((exit_status = make_initial_cmdline_check(&argc,&argv))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } cmdline = argv; cmdlinecnt = argc; if((get_the_process_no(argv[0],dz))<0) return(FAILED); cmdline++; cmdlinecnt--; dz->maxmode = 4; if((get_the_mode_no(cmdline[0],dz))<0) return(FAILED); cmdline++; cmdlinecnt--; if((exit_status = setup_the_application(dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = count_and_allocate_for_infiles(cmdlinecnt,cmdline,dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } } else { //parse_TK_data() = if((exit_status = parse_sloom_data(argc,argv,&cmdline,&cmdlinecnt,dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(exit_status); } } //ap = dz->application; // parse_infile_and_hone_type() = if((exit_status = parse_infile_and_check_type(cmdline,dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // setup_param_ranges_and_defaults() = if((exit_status = setup_the_param_ranges_and_defaults(dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // open_first_infile CDP LIB if((exit_status = open_first_infile(cmdline[0],dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } cmdlinecnt--; cmdline++; // handle_extra_infiles(): redundant // handle_outfile() = if((exit_status = handle_the_outfile(&cmdlinecnt,&cmdline,dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // handle_formants() redundant // handle_formant_quiksearch() redundant // handle_special_data() redundant except if((exit_status = read_parameters_and_flags(&cmdline,&cmdlinecnt,dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } //check_param_validity_and_consistency .... if((exit_status = check_the_param_validity_and_consistency(dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } is_launched = TRUE; //allocate_large_buffers() ... replaced by CDP LIB dz->extra_bufcnt = 0; dz->bptrcnt = 1; if((exit_status = establish_spec_bufptrs_and_extra_buffers(dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = allocate_buffer(dz)) < 0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = extract_peaks(dz))< 0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = complete_output(dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } exit_status = print_messages_and_close_sndfiles(FINISHED,is_launched,dz); // CDP LIB free(dz); return(SUCCEEDED); } /********************************************** REPLACED CDP LIB FUNCTIONS **********************************************/ /************************ GET_THE_MODE_NO *********************/ int get_the_mode_no(char *str, dataptr dz) { if(sscanf(str,"%d",&dz->mode)!=1) { sprintf(errstr,"Cannot read mode of program.\n"); return(USAGE_ONLY); } if(dz->mode <= 0 || dz->mode > dz->maxmode) { sprintf(errstr,"Program mode value [%d] is out of range [1 - %d].\n",dz->mode,dz->maxmode); return(USAGE_ONLY); } dz->mode--; /* CHANGE TO INTERNAL REPRESENTATION OF MODE NO */ return(FINISHED); } /****************************** SET_PARAM_DATA *********************************/ int set_param_data(aplptr ap, int special_data,int maxparamcnt,int paramcnt,char *paramlist) { ap->special_data = (char)special_data; ap->param_cnt = (char)paramcnt; ap->max_param_cnt = (char)maxparamcnt; if(ap->max_param_cnt>0) { if((ap->param_list = (char *)malloc((size_t)(ap->max_param_cnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for param_list\n"); return(MEMORY_ERROR); } strcpy(ap->param_list,paramlist); } return(FINISHED); } /****************************** SET_VFLGS *********************************/ int set_vflgs (aplptr ap,char *optflags,int optcnt,char *optlist,char *varflags,int vflagcnt, int vparamcnt,char *varlist) { ap->option_cnt = (char) optcnt; /*RWD added cast */ if(optcnt) { if((ap->option_list = (char *)malloc((size_t)(optcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for option_list\n"); return(MEMORY_ERROR); } strcpy(ap->option_list,optlist); if((ap->option_flags = (char *)malloc((size_t)(optcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for option_flags\n"); return(MEMORY_ERROR); } strcpy(ap->option_flags,optflags); } ap->vflag_cnt = (char) vflagcnt; ap->variant_param_cnt = (char) vparamcnt; if(vflagcnt) { if((ap->variant_list = (char *)malloc((size_t)(vflagcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for variant_list\n"); return(MEMORY_ERROR); } strcpy(ap->variant_list,varlist); if((ap->variant_flags = (char *)malloc((size_t)(vflagcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for variant_flags\n"); return(MEMORY_ERROR); } strcpy(ap->variant_flags,varflags); } return(FINISHED); } /***************************** APPLICATION_INIT **************************/ int application_init(dataptr dz) { int exit_status; int storage_cnt; int tipc, brkcnt; aplptr ap = dz->application; if(ap->vflag_cnt>0) initialise_vflags(dz); tipc = ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt; ap->total_input_param_cnt = (char)tipc; if(tipc>0) { if((exit_status = setup_input_param_range_stores(tipc,ap))<0) return(exit_status); if((exit_status = setup_input_param_defaultval_stores(tipc,ap))<0) return(exit_status); if((exit_status = setup_and_init_input_param_activity(dz,tipc))<0) return(exit_status); } brkcnt = tipc; if(brkcnt>0) { if((exit_status = setup_and_init_input_brktable_constants(dz,brkcnt))<0) return(exit_status); } if((storage_cnt = tipc + ap->internal_param_cnt)>0) { if((exit_status = setup_parameter_storage_and_constants(storage_cnt,dz))<0) return(exit_status); if((exit_status = initialise_is_int_and_no_brk_constants(storage_cnt,dz))<0) return(exit_status); } if((exit_status = mark_parameter_types(dz,ap))<0) return(exit_status); // establish_infile_constants() replaced by dz->infilecnt = ONE_NONSND_FILE; //establish_bufptrs_and_extra_buffers(): return(FINISHED); } /******************************** SETUP_AND_INIT_INPUT_BRKTABLE_CONSTANTS ********************************/ int setup_and_init_input_brktable_constants(dataptr dz,int brkcnt) { int n; if((dz->brk = (double **)malloc(brkcnt * sizeof(double *)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 1\n"); return(MEMORY_ERROR); } if((dz->brkptr = (double **)malloc(brkcnt * sizeof(double *)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 6\n"); return(MEMORY_ERROR); } if((dz->brksize = (int *)malloc(brkcnt * sizeof(int)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 2\n"); return(MEMORY_ERROR); } if((dz->firstval = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 3\n"); return(MEMORY_ERROR); } if((dz->lastind = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 4\n"); return(MEMORY_ERROR); } if((dz->lastval = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 5\n"); return(MEMORY_ERROR); } if((dz->brkinit = (int *)malloc(brkcnt * sizeof(int)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 7\n"); return(MEMORY_ERROR); } for(n=0;nbrk[n] = NULL; dz->brkptr[n] = NULL; dz->brkinit[n] = 0; dz->brksize[n] = 0; } return(FINISHED); } /********************** SETUP_PARAMETER_STORAGE_AND_CONSTANTS ********************/ /* RWD mallo changed to calloc; helps debug verison run as release! */ int setup_parameter_storage_and_constants(int storage_cnt,dataptr dz) { if((dz->param = (double *)calloc(storage_cnt, sizeof(double)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 1\n"); return(MEMORY_ERROR); } if((dz->iparam = (int *)calloc(storage_cnt, sizeof(int) ))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 2\n"); return(MEMORY_ERROR); } if((dz->is_int = (char *)calloc(storage_cnt, sizeof(char)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 3\n"); return(MEMORY_ERROR); } if((dz->no_brk = (char *)calloc(storage_cnt, sizeof(char)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 5\n"); return(MEMORY_ERROR); } return(FINISHED); } /************** INITIALISE_IS_INT_AND_NO_BRK_CONSTANTS *****************/ int initialise_is_int_and_no_brk_constants(int storage_cnt,dataptr dz) { int n; for(n=0;nis_int[n] = (char)0; dz->no_brk[n] = (char)0; } return(FINISHED); } /***************************** MARK_PARAMETER_TYPES **************************/ int mark_parameter_types(dataptr dz,aplptr ap) { int n, m; /* PARAMS */ for(n=0;nmax_param_cnt;n++) { switch(ap->param_list[n]) { case('0'): break; /* dz->is_active[n] = 0 is default */ case('i'): dz->is_active[n] = (char)1; dz->is_int[n] = (char)1;dz->no_brk[n] = (char)1; break; case('I'): dz->is_active[n] = (char)1; dz->is_int[n] = (char)1; break; case('d'): dz->is_active[n] = (char)1; dz->no_brk[n] = (char)1; break; case('D'): dz->is_active[n] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid parameter type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* OPTIONS */ for(n=0,m=ap->max_param_cnt;noption_cnt;n++,m++) { switch(ap->option_list[n]) { case('i'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('I'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; break; case('d'): dz->is_active[m] = (char)1; dz->no_brk[m] = (char)1; break; case('D'): dz->is_active[m] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid option type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* VARIANTS */ for(n=0,m=ap->max_param_cnt + ap->option_cnt;n < ap->variant_param_cnt; n++, m++) { switch(ap->variant_list[n]) { case('0'): break; case('i'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('I'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; break; case('d'): dz->is_active[m] = (char)1; dz->no_brk[m] = (char)1; break; case('D'): dz->is_active[m] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid variant type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* INTERNAL */ for(n=0, m=ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt; ninternal_param_cnt; n++,m++) { switch(ap->internal_param_list[n]) { case('0'): break; /* dummy variables: variables not used: but important for internal paream numbering!! */ case('i'): dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('d'): dz->no_brk[m] = (char)1; break; default: sprintf(errstr,"Programming error: invalid internal param type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } return(FINISHED); } /***************************** HANDLE_THE_OUTFILE **************************/ int handle_the_outfile(int *cmdlinecnt,char ***cmdline,dataptr dz) { int exit_status; char *filename = NULL; filename = (*cmdline)[0]; strcpy(dz->outfilename,filename); if((exit_status = create_sized_outfile(filename,dz))<0) return(exit_status); (*cmdline)++; (*cmdlinecnt)--; return(FINISHED); } /***************************** ESTABLISH_APPLICATION **************************/ int establish_application(dataptr dz) { aplptr ap; if((dz->application = (aplptr)malloc(sizeof (struct applic)))==NULL) { sprintf(errstr,"establish_application()\n"); return(MEMORY_ERROR); } ap = dz->application; memset((char *)ap,0,sizeof(struct applic)); return(FINISHED); } /************************* INITIALISE_VFLAGS *************************/ int initialise_vflags(dataptr dz) { int n; if((dz->vflag = (char *)malloc(dz->application->vflag_cnt * sizeof(char)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: vflag store,\n"); return(MEMORY_ERROR); } for(n=0;napplication->vflag_cnt;n++) dz->vflag[n] = FALSE; return FINISHED; } /************************* SETUP_INPUT_PARAM_DEFAULTVALS *************************/ int setup_input_param_defaultval_stores(int tipc,aplptr ap) { int n; if((ap->default_val = (double *)malloc(tipc * sizeof(double)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for application default values store\n"); return(MEMORY_ERROR); } for(n=0;ndefault_val[n] = 0.0; return(FINISHED); } /***************************** SETUP_AND_INIT_INPUT_PARAM_ACTIVITY **************************/ int setup_and_init_input_param_activity(dataptr dz,int tipc) { int n; if((dz->is_active = (char *)malloc((size_t)tipc))==NULL) { sprintf(errstr,"setup_and_init_input_param_activity()\n"); return(MEMORY_ERROR); } for(n=0;nis_active[n] = (char)0; return(FINISHED); } /************************* SETUP_THE_APPLICATION *******************/ int setup_the_application(dataptr dz) { int exit_status; aplptr ap; if((exit_status = establish_application(dz))<0) // GLOBAL return(FAILED); ap = dz->application; // SEE parstruct FOR EXPLANATION of next 2 functions exit_status = set_param_data(ap,0 ,5,5,"ddddd"); if(exit_status <0) return(FAILED); switch(dz->mode) { case(0): exit_status = set_vflgs(ap,"h",1,"d","amqz",4,0,"0000"); break; case(1): case(2): case(3): exit_status = set_vflgs(ap,"h",1,"d","amqzf",5,0,"00000"); break; } if(exit_status<0) return(FAILED); dz->has_otherfile = FALSE; dz->input_data_type = ANALFILE_ONLY; dz->process_type = TO_TEXTFILE; dz->outfiletype = TEXTFILE_OUT; return application_init(dz); //GLOBAL } /************************* PARSE_INFILE_AND_CHECK_TYPE *******************/ int parse_infile_and_check_type(char **cmdline,dataptr dz) { int exit_status; infileptr infile_info; if(!sloom) { if((infile_info = (infileptr)malloc(sizeof(struct filedata)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for infile structure to test file data."); return(MEMORY_ERROR); } else if((exit_status = cdparse(cmdline[0],infile_info))<0) { sprintf(errstr,"Failed tp parse input file %s\n",cmdline[0]); return(PROGRAM_ERROR); } else if(infile_info->filetype != ANALFILE) { sprintf(errstr,"File %s is not of correct type\n",cmdline[0]); return(DATA_ERROR); } else if((exit_status = copy_parse_info_to_main_structure(infile_info,dz))<0) { sprintf(errstr,"Failed to copy file parsing information\n"); return(PROGRAM_ERROR); } free(infile_info); } dz->clength = dz->wanted / 2; dz->chwidth = dz->nyquist/(double)(dz->clength-1); dz->halfchwidth = dz->chwidth/2.0; return(FINISHED); } /************************* SETUP_THE_PARAM_RANGES_AND_DEFAULTS *******************/ int setup_the_param_ranges_and_defaults(dataptr dz) { int exit_status; aplptr ap = dz->application; // set_param_ranges() ap->total_input_param_cnt = (char)(ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt); // NB total_input_param_cnt is > 0 !!!s if((exit_status = setup_input_param_range_stores(ap->total_input_param_cnt,ap))<0) return(FAILED); // get_param_ranges() ap->lo[0] = 1; // winsize: semitones ap->hi[0] = 96; ap->default_val[0] = 12; ap->lo[1] = 1; // peaking: ratio to median ap->hi[1] = 1000; ap->default_val[1] = 1.5; ap->lo[2] = .0001; // floor: ratio to max window in entire file ap->hi[2] = 1; ap->default_val[2] = .001; ap->lo[3] = dz->chwidth; // min frq to find ap->hi[3] = dz->nyquist; ap->default_val[3] = dz->chwidth; ap->lo[4] = dz->chwidth; // max frq to find ap->hi[4] = dz->nyquist; ap->default_val[4] = dz->nyquist; ap->lo[5] = 0.0; // intunenuess of harmonics, semitones ap->hi[5] = 6.0; ap->default_val[5] = 1.0; dz->maxmode = 4; if(!sloom) put_default_vals_in_all_params(dz); return(FINISHED); } /********************************* PARSE_SLOOM_DATA *********************************/ int parse_sloom_data(int argc,char *argv[],char ***cmdline,int *cmdlinecnt,dataptr dz) { int exit_status; int cnt = 1, infilecnt; int filesize, insams, inbrksize; double dummy; int true_cnt = 0; //aplptr ap; while(cnt<=PRE_CMDLINE_DATACNT) { if(cnt > argc) { sprintf(errstr,"Insufficient data sent from TK\n"); return(DATA_ERROR); } switch(cnt) { case(1): if(sscanf(argv[cnt],"%d",&dz->process)!=1) { sprintf(errstr,"Cannot read process no. sent from TK\n"); return(DATA_ERROR); } break; case(2): if(sscanf(argv[cnt],"%d",&dz->mode)!=1) { sprintf(errstr,"Cannot read mode no. sent from TK\n"); return(DATA_ERROR); } if(dz->mode > 0) dz->mode--; //setup_particular_application() = if((exit_status = setup_the_application(dz))<0) return(exit_status); //ap = dz->application; break; case(3): if(sscanf(argv[cnt],"%d",&infilecnt)!=1) { sprintf(errstr,"Cannot read infilecnt sent from TK\n"); return(DATA_ERROR); } if(infilecnt < 1) { true_cnt = cnt + 1; cnt = PRE_CMDLINE_DATACNT; /* force exit from loop after assign_file_data_storage */ } if((exit_status = assign_file_data_storage(infilecnt,dz))<0) return(exit_status); break; case(INPUT_FILETYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->filetype)!=1) { sprintf(errstr,"Cannot read filetype sent from TK (%s)\n",argv[cnt]); return(DATA_ERROR); } break; case(INPUT_FILESIZE+4): if(sscanf(argv[cnt],"%d",&filesize)!=1) { sprintf(errstr,"Cannot read infilesize sent from TK\n"); return(DATA_ERROR); } dz->insams[0] = filesize; break; case(INPUT_INSAMS+4): if(sscanf(argv[cnt],"%d",&insams)!=1) { sprintf(errstr,"Cannot read insams sent from TK\n"); return(DATA_ERROR); } dz->insams[0] = insams; break; case(INPUT_SRATE+4): if(sscanf(argv[cnt],"%d",&dz->infile->srate)!=1) { sprintf(errstr,"Cannot read srate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_CHANNELS+4): if(sscanf(argv[cnt],"%d",&dz->infile->channels)!=1) { sprintf(errstr,"Cannot read channels sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_STYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->stype)!=1) { sprintf(errstr,"Cannot read stype sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGSTYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->origstype)!=1) { sprintf(errstr,"Cannot read origstype sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGRATE+4): if(sscanf(argv[cnt],"%d",&dz->infile->origrate)!=1) { sprintf(errstr,"Cannot read origrate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MLEN+4): if(sscanf(argv[cnt],"%d",&dz->infile->Mlen)!=1) { sprintf(errstr,"Cannot read Mlen sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DFAC+4): if(sscanf(argv[cnt],"%d",&dz->infile->Dfac)!=1) { sprintf(errstr,"Cannot read Dfac sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGCHANS+4): if(sscanf(argv[cnt],"%d",&dz->infile->origchans)!=1) { sprintf(errstr,"Cannot read origchans sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_SPECENVCNT+4): if(sscanf(argv[cnt],"%d",&dz->infile->specenvcnt)!=1) { sprintf(errstr,"Cannot read specenvcnt sent from TK\n"); return(DATA_ERROR); } dz->specenvcnt = dz->infile->specenvcnt; break; case(INPUT_WANTED+4): if(sscanf(argv[cnt],"%d",&dz->wanted)!=1) { sprintf(errstr,"Cannot read wanted sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_WLENGTH+4): if(sscanf(argv[cnt],"%d",&dz->wlength)!=1) { sprintf(errstr,"Cannot read wlength sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_OUT_CHANS+4): if(sscanf(argv[cnt],"%d",&dz->out_chans)!=1) { sprintf(errstr,"Cannot read out_chans sent from TK\n"); return(DATA_ERROR); } break; /* RWD these chanegs to samps - tk will have to deal with that! */ case(INPUT_DESCRIPTOR_BYTES+4): if(sscanf(argv[cnt],"%d",&dz->descriptor_samps)!=1) { sprintf(errstr,"Cannot read descriptor_samps sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_IS_TRANSPOS+4): if(sscanf(argv[cnt],"%d",&dz->is_transpos)!=1) { sprintf(errstr,"Cannot read is_transpos sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_COULD_BE_TRANSPOS+4): if(sscanf(argv[cnt],"%d",&dz->could_be_transpos)!=1) { sprintf(errstr,"Cannot read could_be_transpos sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_COULD_BE_PITCH+4): if(sscanf(argv[cnt],"%d",&dz->could_be_pitch)!=1) { sprintf(errstr,"Cannot read could_be_pitch sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DIFFERENT_SRATES+4): if(sscanf(argv[cnt],"%d",&dz->different_srates)!=1) { sprintf(errstr,"Cannot read different_srates sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DUPLICATE_SNDS+4): if(sscanf(argv[cnt],"%d",&dz->duplicate_snds)!=1) { sprintf(errstr,"Cannot read duplicate_snds sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_BRKSIZE+4): if(sscanf(argv[cnt],"%d",&inbrksize)!=1) { sprintf(errstr,"Cannot read brksize sent from TK\n"); return(DATA_ERROR); } if(inbrksize > 0) { switch(dz->input_data_type) { case(WORDLIST_ONLY): break; case(PITCH_AND_PITCH): case(PITCH_AND_TRANSPOS): case(TRANSPOS_AND_TRANSPOS): dz->tempsize = inbrksize; break; case(BRKFILES_ONLY): case(UNRANGED_BRKFILE_ONLY): case(DB_BRKFILES_ONLY): case(ALL_FILES): case(ANY_NUMBER_OF_ANY_FILES): if(dz->extrabrkno < 0) { sprintf(errstr,"Storage location number for brktable not established by CDP.\n"); return(DATA_ERROR); } if(dz->brksize == NULL) { sprintf(errstr,"CDP has not established storage space for input brktable.\n"); return(PROGRAM_ERROR); } dz->brksize[dz->extrabrkno] = inbrksize; break; default: sprintf(errstr,"TK sent brktablesize > 0 for input_data_type [%d] not using brktables.\n", dz->input_data_type); return(PROGRAM_ERROR); } break; } break; case(INPUT_NUMSIZE+4): if(sscanf(argv[cnt],"%d",&dz->numsize)!=1) { sprintf(errstr,"Cannot read numsize sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_LINECNT+4): if(sscanf(argv[cnt],"%d",&dz->linecnt)!=1) { sprintf(errstr,"Cannot read linecnt sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ALL_WORDS+4): if(sscanf(argv[cnt],"%d",&dz->all_words)!=1) { sprintf(errstr,"Cannot read all_words sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ARATE+4): if(sscanf(argv[cnt],"%f",&dz->infile->arate)!=1) { sprintf(errstr,"Cannot read arate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_FRAMETIME+4): if(sscanf(argv[cnt],"%lf",&dummy)!=1) { sprintf(errstr,"Cannot read frametime sent from TK\n"); return(DATA_ERROR); } dz->frametime = (float)dummy; break; case(INPUT_WINDOW_SIZE+4): if(sscanf(argv[cnt],"%f",&dz->infile->window_size)!=1) { sprintf(errstr,"Cannot read window_size sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_NYQUIST+4): if(sscanf(argv[cnt],"%lf",&dz->nyquist)!=1) { sprintf(errstr,"Cannot read nyquist sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DURATION+4): if(sscanf(argv[cnt],"%lf",&dz->duration)!=1) { sprintf(errstr,"Cannot read duration sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MINBRK+4): if(sscanf(argv[cnt],"%lf",&dz->minbrk)!=1) { sprintf(errstr,"Cannot read minbrk sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MAXBRK+4): if(sscanf(argv[cnt],"%lf",&dz->maxbrk)!=1) { sprintf(errstr,"Cannot read maxbrk sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MINNUM+4): if(sscanf(argv[cnt],"%lf",&dz->minnum)!=1) { sprintf(errstr,"Cannot read minnum sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MAXNUM+4): if(sscanf(argv[cnt],"%lf",&dz->maxnum)!=1) { sprintf(errstr,"Cannot read maxnum sent from TK\n"); return(DATA_ERROR); } break; default: sprintf(errstr,"case switch item missing: parse_sloom_data()\n"); return(PROGRAM_ERROR); } cnt++; } if(cnt!=PRE_CMDLINE_DATACNT+1) { sprintf(errstr,"Insufficient pre-cmdline params sent from TK\n"); return(DATA_ERROR); } if(true_cnt) cnt = true_cnt; *cmdlinecnt = 0; while(cnt < argc) { if((exit_status = get_tk_cmdline_word(cmdlinecnt,cmdline,argv[cnt]))<0) return(exit_status); cnt++; } return(FINISHED); } /********************************* GET_TK_CMDLINE_WORD *********************************/ int get_tk_cmdline_word(int *cmdlinecnt,char ***cmdline,char *q) { if(*cmdlinecnt==0) { if((*cmdline = (char **)malloc(sizeof(char *)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline array.\n"); return(MEMORY_ERROR); } } else { if((*cmdline = (char **)realloc(*cmdline,((*cmdlinecnt)+1) * sizeof(char *)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline array.\n"); return(MEMORY_ERROR); } } if(((*cmdline)[*cmdlinecnt] = (char *)malloc((strlen(q) + 1) * sizeof(char)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline item %d.\n",(*cmdlinecnt)+1); return(MEMORY_ERROR); } strcpy((*cmdline)[*cmdlinecnt],q); (*cmdlinecnt)++; return(FINISHED); } /****************************** ASSIGN_FILE_DATA_STORAGE *********************************/ int assign_file_data_storage(int infilecnt,dataptr dz) { int exit_status; int no_sndfile_system_files = FALSE; dz->infilecnt = infilecnt; if((exit_status = allocate_filespace(dz))<0) return(exit_status); if(no_sndfile_system_files) dz->infilecnt = 0; return(FINISHED); } /************************************ CHECK_THE_PARAM_VALIDITY_AND_CONSISTENCY **************************************/ int check_the_param_validity_and_consistency(dataptr dz) { if(dz->param[M_LOFRQ] >= dz->param[M_HIFRQ]) { sprintf(errstr,"Low frequency limit (%lf) equal to, or greater than high frequency limit (%lf).\n",dz->param[M_LOFRQ],dz->param[M_HIFRQ]); return(USER_ERROR); } if(dz->mode > 1) { if(filt_format) { if(mark_zeros) { mark_zeros = 0; fprintf(stdout,"WARNING: filter format output overrides marking no-peak areas.\n"); fflush(stdout); } } } return FINISHED; } /************************* redundant functions: to ensure libs compile OK *******************/ int assign_process_logic(dataptr dz) { return(FINISHED); } void set_legal_infile_structure(dataptr dz) {} int set_legal_internalparam_structure(int process,int mode,aplptr ap) { return(FINISHED); } int setup_internal_arrays_and_array_pointers(dataptr dz) { return(FINISHED); } int establish_bufptrs_and_extra_buffers(dataptr dz) { return(FINISHED); } int get_process_no(char *prog_identifier_from_cmdline,dataptr dz) { return(FINISHED); } int read_special_data(char *str,dataptr dz) { return(FINISHED); } int inner_loop (int *peakscore,int *descnt,int *in_start_portion,int *least,int *pitchcnt,int windows_in_buf,dataptr dz) { return FINISHED; } /********************************************************************************************/ int get_the_process_no(char *prog_identifier_from_cmdline,dataptr dz) { if (!strcmp(prog_identifier_from_cmdline,"extract")) dz->process = SETHARES; else { sprintf(errstr,"Unknown program identification string '%s'\n",prog_identifier_from_cmdline); return(USAGE_ONLY); } return(FINISHED); } /******************************** USAGE1 ********************************/ int usage1(void) { usage2("extract"); return(USAGE_ONLY); } /******************************** USAGE2 ********************************/ int usage2(char *str) { if(!strcmp(str,"extract")) { fprintf(stderr, "USAGE: peak extract\n" "1 analfile outf winsiz peak floor lo hi [-htune] [-a] [-m] [-q] [-z]\n" "2-4 analfile outf winsiz peak floor lo hi [-htune] [-a] [-m] [-q] [-z] [-f]\n" "\n" "MODE 1 Output time and frq:amp for peaks in each window.\n" " Number of peaks may vary from window to window.\n" "MODE 2 Assign peaks to max number of pitch-streams.\n" " Number of streams = max number of peaks found in any of windows.\n" " Where windows have too few peaks to fit all these streams,\n" " frq vals (at zero amplitude) at the (current) best-fit frq \n" " are set in the stream. All peaks will lie in some stream.\n" "MODE 3 Assign peaks to most prominent pitch-streams.\n" " This mode assumes spectrum is relatively constant.\n" " It parses entire file, counting peaks in every semitone interval.\n" " Then uses most visited semitones as stream centres.\n" " Time-varying pitch(amp) data then assigned to those streams.\n" " Peaks may be discarded where insufficient streams available.\n" "MODE 4 Find streams as mode 3, then get average pitch + relative amp\n" " of each stream. Output does not vary through time.\n" "\n" "winsiz semitone width of window used to search for peaks in spectrum.\n" " (Range 1 - 96)\n" "peak To retain as peak, channel amp must be 'peak' times louder than\n" " median amp of all channels in window (Range 1 - 1000)\n" "floor Peaks must exceed a floor amplitude to be retained (Range 0.0001 - 1).\n" " Entered val is multiplied by max channel amp found anywhere in file.\n" "lo Minimum frq to accept as a peak (Range analchanwidth - nyquist)\n" "hi Maximum frq to accept as a peak (Range analchanwidth - nyquist)\n" "tune If non-zero, any peak which is a harmonic of another peak\n" " (to within 'tune' semitones accuracy) is discarded (Range 0 - 6).\n" " If set to zero, all peaks are retained.\n" "-a Lose the amplitude information:\n" " If set, amps information discarded.\n" "-m Output frq information as midi:\n" "-q Output frq quantised to tempered scale (in quarter-tones):\n" "-z Mark peak-free segments:\n" " start/end of peak-free areas marked by (timed) zeros in output.\n" "-f Output in filter varibank format: This flag cancels the -z flag.\n" " If -a flag also set, all outputs amps are set to 1.0.\n" "\n"); } else fprintf(stdout,"Unknown option '%s'\n",str); return(USAGE_ONLY); } int usage3(char *str1,char *str2) { fprintf(stderr,"Insufficient parameters on command line.\n"); return(USAGE_ONLY); } /**************************** ALLOCATE_BUFFER ******************************/ int allocate_buffer(dataptr dz) { dz->buflen = dz->wanted; if((dz->bigfbuf = (float*) malloc(dz->buflen * sizeof(float)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for sound buffers.\n"); return(MEMORY_ERROR); } dz->flbufptr[0] = dz->bigfbuf; return(FINISHED); } /**************************** EXTRACT_PEAKS ******************************/ int extract_peaks(dataptr dz) { int exit_status; char temp2[20000]; char temp[20000]; char *peakchan; float *peakfrq, *peakamp, *medianarray; int *chanarray, *peaknos, *instream; float *maxpeakfrq, *lastmaxpeakfrq, *streamfrq, *streampeakfrq, *streampeakamp, *binlofrq, *bintrof; double frqratio, lasttime = 0.0, lastholetime = 0.0, maxamp, ampratio, normaliser; int firstmax = 0, lastmax = 0, wcnt, samps_read, *pitchbin, val; int maxpeakcnt = -1, peakcnt=0, inhole, k; float maxwinamp = 0.0; double time; int bincnt; double frq; double *avamp, *avfrq; if(dz->param[M_INTUNE] > 0.0) dz->param[M_INTUNE] = pow(SEMITONE_INTERVAL,fabs(dz->param[M_INTUNE])); dz->total_samps_read = 0; frqratio = pow(SEMITONE_INTERVAL,fabs(dz->param[M_WINSIZE])); if((peakchan = (char *)malloc(dz->clength * sizeof(char))) == NULL) { sprintf(errstr,"Insufficient memory for peakchan arrays.\n"); return(MEMORY_ERROR); } if((peakfrq = (float *)malloc(dz->clength * sizeof(float))) == NULL) { sprintf(errstr,"Insufficient memory for peak frq arrays.\n"); return(MEMORY_ERROR); } if((peakamp = (float *)malloc(dz->clength * sizeof(float))) == NULL) { sprintf(errstr,"Insufficient memory for peak amp arrays.\n"); return(MEMORY_ERROR); } if((medianarray = (float *)malloc(dz->clength * sizeof(float))) == NULL) { sprintf(errstr,"Insufficient memory for meanval arrays.\n"); return(MEMORY_ERROR); } if((chanarray = (int *)malloc(dz->clength * sizeof(int))) == NULL) { sprintf(errstr,"Insufficient memory for meanchannel arrays.\n"); return(MEMORY_ERROR); } if((peaknos = (int *)malloc(dz->wlength * sizeof(int))) == NULL) { sprintf(errstr,"Insufficient memory for peakchan arrays.\n"); return(MEMORY_ERROR); } if((maxpeakfrq = (float *)malloc(dz->clength * sizeof(float))) == NULL) { sprintf(errstr,"Insufficient memory for peak frq arrays.\n"); return(MEMORY_ERROR); } if((lastmaxpeakfrq = (float *)malloc(dz->clength * sizeof(float))) == NULL) { sprintf(errstr,"Insufficient memory for peak frq arrays.\n"); return(MEMORY_ERROR); } if((streamfrq = (float *)malloc(dz->clength * sizeof(float))) == NULL) { sprintf(errstr,"Insufficient memory for peak amp arrays.\n"); return(MEMORY_ERROR); } if((instream = (int *)malloc(dz->clength * sizeof(int))) == NULL) { sprintf(errstr,"Insufficient memory for peak amp arrays.\n"); return(MEMORY_ERROR); } if((streampeakfrq = (float *)malloc(dz->clength * sizeof(float))) == NULL) { sprintf(errstr,"Insufficient memory for orig peak frq arrays.\n"); return(MEMORY_ERROR); } if((streampeakamp = (float *)malloc(dz->clength * sizeof(float))) == NULL) { sprintf(errstr,"Insufficient memory for orig peak amp arrays.\n"); return(MEMORY_ERROR); } if((avamp = (double *)malloc(dz->clength * sizeof(double))) == NULL) { sprintf(errstr,"Insufficient memory for orig peak amp arrays.\n"); return(MEMORY_ERROR); } if((avfrq = (double *)malloc(dz->clength * sizeof(double))) == NULL) { sprintf(errstr,"Insufficient memory for orig peak amp arrays.\n"); return(MEMORY_ERROR); } //range = dz->nyquist/dz->halfchwidth; frq = dz->halfchwidth; bincnt = 0; while(frq <= dz->nyquist) { bincnt++; frq *= SEMITONE_INTERVAL; } bincnt++; if((binlofrq = (float *)malloc(bincnt * sizeof(float))) == NULL) { sprintf(errstr,"Insufficient memory for peakchan arrays.\n"); return(MEMORY_ERROR); } if((pitchbin = (int *)malloc(bincnt * sizeof(int))) == NULL) { sprintf(errstr,"Insufficient memory for peakchan arrays.\n"); return(MEMORY_ERROR); } if((bintrof = (float *)malloc(dz->clength * sizeof(float))) == NULL) { sprintf(errstr,"Insufficient memory for peakchan arrays.\n"); return(MEMORY_ERROR); } memset((char *)pitchbin,0,bincnt * sizeof(int)); k = 0; binlofrq[k++] = (float)dz->halfchwidth; while(k < bincnt) { binlofrq[k] = (float)(binlofrq[k-1] * SEMITONE_INTERVAL); k++; } if((exit_status = get_initial_data(&maxwinamp,&peakcnt,&maxpeakcnt,&firstmax,medianarray,chanarray, peakchan,peakfrq,peakamp,peaknos,maxpeakfrq,lastmaxpeakfrq,frqratio,bincnt,binlofrq,pitchbin,bintrof,streamfrq,dz))<0) return exit_status; dz->param[M_AMPFLOOR] *= maxwinamp; // Set ampfloor relative to loudest window found normaliser = 1.0/maxwinamp; time = 0.0; inhole = 0; wcnt = 0; dz->total_samps_read = 0; while((samps_read = fgetfbufEx(dz->bigfbuf,dz->buflen,dz->ifd[0],0)) > 0) { peakcnt = locate_peaks(medianarray,chanarray,peakchan,peakfrq,peakamp,frqratio,dz); if(dz->mode > 0) { if(dz->mode == 1) { if(wcnt == firstmax) { if((exit_status = get_next_window_with_max_number_of_peaks(&peakcnt,maxpeakcnt,lastmaxpeakfrq,maxpeakfrq,&firstmax,&lastmax,wcnt,frqratio, peaknos,medianarray,chanarray,peakchan,peakfrq,peakamp,dz))<0) return exit_status; } } if(peakcnt != maxpeakcnt) { stream_peaks(peakfrq,peakamp,maxpeakfrq,lastmaxpeakfrq,streamfrq,wcnt,lastmax,firstmax,maxpeakcnt,peakcnt, instream,streampeakfrq,streampeakamp,dz); peakcnt = maxpeakcnt; } } if((dz->mode == 2) && filt_format) { for(k=0;kmode == 3) { if(peakcnt > 0) { for(k=0;k 0) { if(mark_zeros && inhole) { // If not interpolating and at end of peakless time-period if(!flteq(lasttime,lastholetime)) sprintf(temp,"%lf\t0 0",lasttime); // Mark end of peakless time, if necessary inhole = 0; } sprintf(temp,"%lf",time); // Write peaks (frq+amp) found at current time for(k=0;kmode > 0) && filt_format) { sprintf(temp2," 1.0"); strcat(temp,temp2); } } if((exit_status = fprintf(dz->fp,"%s\n",temp))<0) return exit_status; } else if(mark_zeros && !inhole) { // If no peaks found + not interpolating + not already in peakless time-period sprintf(temp,"%lf\t0 0",time); // Mark start of peakless-time if((exit_status = fprintf(dz->fp,"%s\n",temp))<0) return exit_status; lastholetime = time; inhole = 1; } } lasttime = time; time += dz->frametime; dz->total_samps_read += samps_read; displaytime(time,dz); } if(samps_read < 0) { sprintf(errstr,"Sample Read Failed After %d Samples\n",dz->total_samps_read); return(SYSTEM_ERROR); } if(dz->mode == 3) { maxamp = 0.0; for(k=0;kwlength; maxamp = max(avamp[k],maxamp); } if(maxamp <= 0.0) { sprintf(errstr,"No significant peak level found.\n"); return(DATA_ERROR); } ampratio = 1.0/maxamp; if(filt_format) { temp2[0] = ENDOFSTR; for(k=0;kfp,"%s\n",temp))<0) return exit_status; sprintf(temp,"1000"); strcat(temp,temp2); if((exit_status = fprintf(dz->fp,"%s\n",temp))<0) return exit_status; } else { for(k=0;kfp,"%s\n",temp))<0) return exit_status; } } } return(FINISHED); } /****************************** LOCATE_PEAKS *********************************** * * Locate peaks in pvoc window */ int locate_peaks(float *medianarray,int *chanarray,char *peakchan,float *peakfrq,float *peakamp,double frqratio,dataptr dz) { int peakcnt = 0; double lofrq = 0.0; double hifrq = dz->chwidth; double overlap_lofrq, overlap_hifrq; memset((char *)peakchan,0,dz->clength * sizeof(char)); // Initialise peakchan array to NO peaks while(hifrq < dz->param[M_HIFRQ]) { // Find peaks in (next disjuct) subwindow if(lofrq < dz->param[M_LOFRQ]) { lofrq = hifrq; // Advance frqs to next disjunct window hifrq = lofrq * frqratio; continue; } peakcnt = locate_peaks_in_subwindow (lofrq,hifrq,medianarray,chanarray,peakchan,peakfrq,peakamp,peakcnt,dz); overlap_lofrq = ((lofrq + hifrq)/2.0); // Set lofrq for overlapping window lofrq = hifrq; // Advance frqs to next disjunct window hifrq = lofrq * frqratio; overlap_hifrq = ((lofrq + hifrq)/2.0); // Set hifrq for overlapping window if(overlap_hifrq < dz->nyquist) // Do peak search in overlapping window peakcnt = locate_peaks_in_subwindow (overlap_lofrq,overlap_hifrq,medianarray,chanarray,peakchan,peakfrq,peakamp,peakcnt,dz); } if(peakcnt > 0) { eliminate_duplicated_frqs(peakfrq,peakamp,&peakcnt); sortfrqs(peakfrq,peakamp,peakcnt); if(dz->param[M_INTUNE] > 0.0) eliminate_harmonics(peakfrq,peakamp,&peakcnt,dz->param[M_INTUNE]); } return peakcnt; } /**************************** LOCATE_PEAKS_IN_SUBWINDOW ************************* * * Find peak within a frequency-rahe (subwindow) within the analysis-window. * As search uses overlapping subwindows, ensure peak is not already stored before storing it. */ int locate_peaks_in_subwindow(double lofrq,double hifrq,float *medianarray,int *chanarray,char *peakchan,float * peakfrq,float * peakamp,int peakcnt,dataptr dz) { int vc, cc, j, k; int medianarraycnt = 0; double medianval, peakfloor, minfrq = max(lofrq,dz->halfchwidth); // Eliminate frequencies too close to zero for( vc = 0,cc= 0; vc < dz->wanted; vc += 2,cc++) { if(dz->flbufptr[0][FREQ] >= minfrq) { if (dz->flbufptr[0][FREQ] < hifrq) { // Collect amplitude in all channels within window-range medianarray[medianarraycnt] = dz->flbufptr[0][AMPP]; chanarray[medianarraycnt] = cc; medianarraycnt++; } else break; } } sortamps(medianarray,chanarray,medianarraycnt); // Sort collected amps into ascending order j = medianarraycnt/2; if(ODD(medianarraycnt)) // Find the median medianval = (medianarray[j] + medianarray[j+1])/2.0; else medianval = medianarray[medianarraycnt/2]; peakfloor = medianval * dz->param[M_PEAKING]; // Establish min level for a peak "peaking" is >= 1 if(peakfloor > dz->param[M_AMPFLOOR]) { for(k=j; k < medianarraycnt;k++) { // Locate peaks in this window if((medianarray[k] >= peakfloor) && (medianarray[k] > dz->param[M_AMPFLOOR])) { cc = chanarray[k]; vc = cc * 2; if(!peakchan[cc]) { // If peak is not already marked as being in peak-list peakchan[cc] = 1; // Add it to the list peakamp[peakcnt] = dz->flbufptr[0][AMPP]; peakfrq[peakcnt] = dz->flbufptr[0][FREQ]; peakcnt++; } } // k++; } } return peakcnt; } /****************************** SORTAMPS *********************************** * * Sort channel amplitudes into ascending order, in order to find median */ void sortamps(float *medianarray,int * chanarray,int len) { int m, n, chan; float temp; if(len<=1) return; for(n = 0;n < len-1;n++) { m = n+1; while(m < len) { if(medianarray[n] > medianarray[m]) { temp = medianarray[n]; medianarray[n] = medianarray[m]; medianarray[m] = temp; chan = chanarray[n]; chanarray[n] = chanarray[m]; chanarray[m] = chan; } m++; } } } /****************************** SORTFRQS *********************************** * * Sort peak frequencies into ascending order */ void sortfrqs(float *peakfrq,float *peakamp,int len) { int m, n; float temp; if(len<=1) return; for(n = 0;n < len-1;n++) { m = n+1; while(m < len) { if(peakfrq[n] > peakfrq[m]) { temp = peakfrq[n]; peakfrq[n] = peakfrq[m]; peakfrq[m] = temp; temp = peakamp[n]; peakamp[n] = peakamp[m]; peakamp[m] = temp; } m++; } } } /****************************** ELIMINATE_DUPLICATED_FRQS ***********************************/ void eliminate_duplicated_frqs(float *peakfrq,float *peakamp,int *len) { int m, n, j, len_less_one; if(*len<=1) return; len_less_one = *len - 1; for(n = 0;n < len_less_one;n++) { m = n+1; while(m < *len) { if(flteq(peakfrq[n],peakfrq[m])) { peakamp[n] = max(peakamp[n],peakamp[m]); // Keep loudest peak channel j = m+1; while(j < *len) { // Eliminate duplicated peak, by shuflback peakfrq[j-1] = peakfrq[j]; peakamp[j-1] = peakamp[j]; j++; } (*len)--; len_less_one--; } else m++; } // n++; } } /****************************** ELIMINATE_HARMONICS ***********************************/ void eliminate_harmonics(float *peakfrq,float *peakamp,int *len,double intune_ratio) { int m, n, j, len_less_one; if(*len<=1) return; len_less_one = *len - 1; for(n = 0;n < len_less_one;n++) { m = n+1; while(m < *len) { if(is_a_harmonic(peakfrq[m],peakfrq[n],intune_ratio)) { j = m+1; while(j < *len) { // Eliminate harmonic, by shuflback peakfrq[j-1] = peakfrq[j]; peakamp[j-1] = peakamp[j]; j++; } (*len)--; len_less_one--; } else m++; } } } /**************************** IS_A_HARMONIC *************************/ int is_a_harmonic(double frq1,double frq2,double intune_ratio) { double ratio; int iratio; double intvl; ratio = frq1/frq2; iratio = round(ratio); if(ratio > iratio) intvl = ratio/(double)iratio; else intvl = (double)iratio/ratio; if(intvl > intune_ratio) return(FALSE); return(TRUE); } /**************************** STREAM_PEAKS ************************* * * If there are LESS peaks Than there are peak-streams. * * if instream[k] = n * peak k has been assigned to stream n * * If there are MORE peaks Than there are peak-streams. * * if instream[k] = n * peak n has been assigned to stream k * * Attempt to place found peaks within the pitch-streams whose (putative frqs) are defined by interpolation between * last window with max number of peaks and * next window with max number of peaks */ int stream_peaks(float *peakfrq,float *peakamp,float *maxpeakfrq,float *lastmaxpeakfrq,float *streamfrq, int wcnt,int lastmax,int firstmax,int maxpeakcnt,int peakcnt,int *instream, float *streampeakfrq,float *streampeakamp,dataptr dz) { int *combo; int k, n, combo_cnt, morepeaksthanstreams; // combo_cnt is number of items (peaks) for which we must find double minratiosum = HUGE, thisfrq; // all possible combinations..... e.g. int step, loc; // Either: Number of ways to assign 5 peaks to 8 streams double ratio; // Or: Number of ways to select 5 peaks from 8 peaks, to assign to 5 streams if(dz->mode ==1) { step = firstmax - lastmax; // Window-count gap between previous and next windows having full (max) set of peaks. loc = wcnt - lastmax; // Window-count distance from previous full-peak-set to current window. ratio = (double)loc/(double)step; // Find proportion of the gap this represents. for(k=0;k < maxpeakcnt;k++) { thisfrq = maxpeakfrq[k] - lastmaxpeakfrq[k]; thisfrq *= ratio; // Establish where each stream frq "should" lie, by interpolation thisfrq += lastmaxpeakfrq[k]; // between preceding and following windows containing MAX number of peaks streamfrq[k] = (float)thisfrq; } } // NB for MODE2 streamfrqs are already set if (peakcnt < maxpeakcnt) { combo_cnt = peakcnt; // e.g. 5(peakcnt) peaks are to be assigned to 8(maxpeakcnt) streams morepeaksthanstreams = 0; } else { // e.g. 5(maxpeakcnt) of 8 peaks are to be assigned to 5(peakcnt) streams combo_cnt = maxpeakcnt; morepeaksthanstreams = 1; // In either case we need to find all ways to distrib 5 objects among 8 locations } if((combo = (int *)malloc(combo_cnt * sizeof(int)))==NULL) { sprintf(errstr,"No memory for combinations array\n"); return(MEMORY_ERROR); } // Assign peaks to streams in all possible combinations combinations(combo,0,0,maxpeakcnt - peakcnt,peakcnt,maxpeakcnt,&minratiosum,instream,peakfrq,maxpeakfrq,streamfrq,morepeaksthanstreams); // And calculate best fit - // i.e. least deviation of frqs-of-peaks from frqs-of-streams to which they are assigned if(peakcnt < maxpeakcnt) { k = 0; // from the predicted frq of the peak-stream for(n=0;n= peakcnt) { // Once all active-peaks have been assigned to streams, streampeakfrq[n] = streamfrq[n]; // force remaining streams to zero amp streampeakamp[n] = 0.0f; } else if(instream[k] == n) { // If this active-peak(k) has been assigned to current stream(n) streampeakfrq[n] = peakfrq[k]; // assign active-peak frq and amp to that stream streampeakamp[n] = peakamp[k]; k++; // and get next active peak; } else { streampeakfrq[n] = streamfrq[n];// Otherwise, force stream to zero amp streampeakamp[n] = 0.0f; } } for(n=0;n= maxpeakcnt) // and get next stream break; } } for(n=0;n= peakcnt) { if(morepeaksthanstreams) // If more peaks than streams find_best_fit(combo,maxpeakcnt,minratiosum,instream,maxpeakfrq,peakfrq); else // If less peaks than streams find_best_fit(combo,peakcnt,minratiosum,instream,peakfrq,streamfrq); return; } for(n = i;n <= j;n++) { combo[k] = n; combinations(combo,k+1,n+1,j+1,peakcnt,maxpeakcnt,minratiosum,instream,peakfrq,maxpeakfrq,streamfrq,morepeaksthanstreams); } } /************************************ FIND_BEST_FIT_LESS ************************************** * * Here we try a smaller number of peaks in a larger number of streams * * Find deviation of actual peak frqs from predicted frqs of streams assigned. * If it is lower than previous deviation, remember the assigned-streams. */ void find_best_fit(int *combo,int smallsetcnt,double *minratiosum,int *instream,float *smallset,float *largeset) { int n = 0; double ratiosum = 0.0, ratio; while(n < smallsetcnt) { if(smallset[n] > largeset[combo[n]]) // Compare peak frq with predited frequency of stream ratio = smallset[n]/largeset[combo[n]]; // to which it is assigned in THIS combination else ratio = largeset[combo[n]]/smallset[n]; ratiosum += ratio; // Sum frq ratios for all peaks n++; } if(ratiosum < *minratiosum) { // Compare with existing minimum ratio sum *minratiosum = ratiosum; // and if less (better fit) for(n=0;nmode > 0) fprintf(stdout,"INFO: Searching for maximum number of peaks, and maximum window amplitude.\n"); else fprintf(stdout,"INFO: Searching for maximum window amplitude.\n"); fflush(stdout); while((samps_read = fgetfbufEx(dz->bigfbuf,dz->buflen,dz->ifd[0],0)) > 0) { for( vc = 0; vc < dz->wanted; vc += 2) { if(dz->flbufptr[0][AMPP] > *maxwinamp) *maxwinamp = dz->flbufptr[0][AMPP]; } *peakcnt = locate_peaks(medianarray,chanarray,peakchan,peakfrq,peakamp,frqratio,dz); switch(dz->mode) { case(1): // SET UP NORMAL STREAMING peaknos[wcnt] = *peakcnt; // Store number of peaks in each window if(*peakcnt > *maxpeakcnt) { *maxpeakcnt = *peakcnt; *firstmax = wcnt; for(k=0;k<*peakcnt;k++) { // Stores frqs of peaks in (1st) window with max no. of peaks maxpeakfrq[k] = peakfrq[k]; lastmaxpeakfrq[k] = peakfrq[k]; } } break; case(2): // DO STATISTICS ON PEAKS case(3): for(k=0;k<*peakcnt;k++) { done = 0; for(j = 1; j < bincnt; j++) { if(peakfrq[k] < binlofrq[j]) { (pitchbin[j-1])++; done = 1; break; } } if(!done) (pitchbin[j-1])++; } } wcnt++; dz->total_samps_read += samps_read; time += dz->frametime; displaytime(time,dz); } if(samps_read < 0) { sprintf(errstr,"Failed to read samples after sample %d\n",dz->total_samps_read); return(SYSTEM_ERROR); } if(sndseekEx(dz->ifd[0],0,0)< 0) { sprintf(errstr,"Failed to seek to start of file, after initial read\n"); return(SYSTEM_ERROR); } if(dz->mode == 2 || dz->mode == 3) { // Find peaks among semitonal pitch-bins j = 0; lastval = -1; gotmin = 0; for(k=0;k lastval) gotmin = 1; lastval = pitchbin[k]; } *maxpeakcnt = j; } dz->total_samps_read = 0; return FINISHED; } /************************************ GET_NEXT_WINDOW_WITH_MAX_NUMBER_OF_PEAKS ************************************** * * Seek to next window which has the max number of peaks, and remember these peaks. * These peaks, and peaks in previous window with max number of peaks, * are used to calculate the effective frq of the pitch-streams in any intervening windows * which do not have the same number of peaks (MODE2 = internal mode 1). */ int get_next_window_with_max_number_of_peaks(int *peakcnt,int maxpeakcnt,float *lastmaxpeakfrq,float *maxpeakfrq, int *firstmax,int *lastmax,int wcnt,double frqratio, int *peaknos,float *medianarray,int *chanarray,char *peakchan,float *peakfrq,float *peakamp,dataptr dz) { int k,j,samps_read; for(k=0;k<*peakcnt;k++) lastmaxpeakfrq[k] = maxpeakfrq[k]; *lastmax = *firstmax; j = wcnt + 1; while(j < dz->wlength) { if(peaknos[j] == maxpeakcnt) { // Find next window that has all the maximum number of peaks if((sndseekEx(dz->ifd[0],j * dz->buflen,0)) < 0) { sprintf(errstr,"File seek to find next maxpeak window, failed.\n"); return(SYSTEM_ERROR); } // Get the peaks in that window if((samps_read = fgetfbufEx(dz->bigfbuf,dz->buflen,dz->ifd[0],0)) < 0) { sprintf(errstr,"Sample Read Failed After Seeking for next maximum peakcnt window\n"); return(SYSTEM_ERROR); } // Get the peaks in that window *peakcnt = locate_peaks(medianarray,chanarray,peakchan,peakfrq,peakamp,frqratio,dz); for(k=0;k<*peakcnt;k++) // Update the maxpeak array maxpeakfrq[k] = peakfrq[k]; if(sndseekEx(dz->ifd[0],wcnt * dz->buflen,0)<0) { sprintf(errstr,"File seek AFTER finding next maxpeak window, failed.\n"); return(SYSTEM_ERROR); } break; // Seek back to original window position } j++; } // If no further window is found with max no. of peaks, maxpeakfrq does not change *firstmax = j; // and processing continues to end of file return FINISHED; } /************************************ DISPLAYTIME **************************************/ void displaytime(double secs,dataptr dz) { double float_time; int display_time,mins; if(sloom) { float_time = min(1.0,(double)dz->total_samps_read/(double)dz->insams[0]); display_time = round(float_time * PBAR_LENGTH); fprintf(stdout,"TIME: %d\n",display_time); fflush(stdout); } else { mins = (int)(secs/60.0); /* TRUNCATE */ secs -= (double)(mins * 60); fprintf(stdout,"\r%d min %5.2lf sec", mins, secs); } }