/* * Copyright (c) 1983-2023 Trevor Wishart and Composers Desktop Project Ltd * http://www.trevorwishart.co.uk * http://www.composersdesktop.com * This file is part of the CDP System. The CDP System is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The CDP System is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the CDP System; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* GO TO HEREH * * The write procedure not quite correct when there is offset. * Need to write to obuf UP to the "maxoffset" * BUT advance the obufotr only up to end of "towrite" WITHOUT the offset. * and ONLY WRITE TO FILE when obfptr is AT or BEYOND buflen AT ~START~ OF THE WRITE * (not simply when the write itself will overflow the buflen) * * Probably also need to extend obuf by another buflen. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef unix #define round(x) lround((x)) #endif char errstr[2400]; #define ibuflen itemcnt int anal_infiles = 1; int sloom = 0; int sloombatch = 0; const char* cdp_version = "6.1.0"; #define MAXOUTLEVEL (0.95) #define WRAP (16) // wraparound extension of input buffer to allow for interpolated reading of last sample #define SAFETY (64) // Avoid overwriting end of arrays #define SIGNAL_TO_LEFT (0) #define SIGNAL_TO_RIGHT (1) #define ROOT2 (1.4142136) #define maxoffset total_windows // max time-offset of streams #define outchinfo is_mapping // lowest array number holding output-channel-info for each stream //CDP LIB REPLACEMENTS static int check_phasor_param_validity_and_consistency(double *maxoffset,dataptr dz); static int setup_phasor_application(dataptr dz); static int parse_sloom_data(int argc,char *argv[],char ***cmdline,int *cmdlinecnt,dataptr dz); static int parse_infile_and_check_type(char **cmdline,dataptr dz); static int setup_phasor_param_ranges_and_defaults(dataptr dz); static int handle_the_outfile(int *cmdlinecnt,char ***cmdline,dataptr dz); static int open_the_outfile(dataptr dz); static int setup_and_init_input_param_activity(dataptr dz,int tipc); static int setup_input_param_defaultval_stores(int tipc,aplptr ap); static int establish_application(dataptr dz); static int initialise_vflags(dataptr dz); static int setup_parameter_storage_and_constants(int storage_cnt,dataptr dz); static int initialise_is_int_and_no_brk_constants(int storage_cnt,dataptr dz); static int mark_parameter_types(dataptr dz,aplptr ap); static int assign_file_data_storage(int infilecnt,dataptr dz); static int get_tk_cmdline_word(int *cmdlinecnt,char ***cmdline,char *q); static int get_the_process_no(char *prog_identifier_from_cmdline,dataptr dz); //static int get_the_mode_from_cmdline(char *str,dataptr dz); static int setup_and_init_input_brktable_constants(dataptr dz,int brkcnt); static int create_phasor_sndbufs(int maxshiftslen,double maxoffset,int *offsetwrap,dataptr dz); static int create_phaseshift_and_outchan_data_arrays(int *maxshiftslen, dataptr dz); static int calculate_phase_shifts(double time, int *phaseshiftcnt, dataptr dz); static int calculate_streams(double time,int phaseshiftcnt, int *obufpos, int *ibufpos, int passno, double normaliser, double *maxsamp,int offsetwrap,int * absolute_endofwrite,dataptr dz); static void pancalc(double position,double *leftgain,double *rightgain); static int phasor(int offsetwrap,dataptr dz); /**************************************** MAIN *********************************************/ int main(int argc,char *argv[]) { int exit_status; dataptr dz = NULL; char **cmdline; int cmdlinecnt; int n, maxshiftslen = 0, offsetwrap = 0; double maxoffset = 0.0; // aplptr ap; int is_launched = FALSE; if(argc==2 && (strcmp(argv[1],"--version") == 0)) { fprintf(stdout,"%s\n",cdp_version); fflush(stdout); return 0; } /* CHECK FOR SOUNDLOOM */ if((sloom = sound_loom_in_use(&argc,&argv)) > 1) { sloom = 0; sloombatch = 1; } if(sflinit("cdp")){ sfperror("cdp: initialisation\n"); return(FAILED); } /* SET UP THE PRINCIPLE DATASTRUCTURE */ if((exit_status = establish_datastructure(&dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if(!sloom) { if(argc == 1) { usage1(); return(FAILED); } else if(argc == 2) { usage2(argv[1]); return(FAILED); } } if(!sloom) { if((exit_status = make_initial_cmdline_check(&argc,&argv))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } cmdline = argv; cmdlinecnt = argc; if((get_the_process_no(argv[0],dz))<0) return(FAILED); cmdline++; cmdlinecnt--; dz->maxmode = 0; // setup_particular_application = if((exit_status = setup_phasor_application(dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = count_and_allocate_for_infiles(cmdlinecnt,cmdline,dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } } else { //parse_TK_data() = if((exit_status = parse_sloom_data(argc,argv,&cmdline,&cmdlinecnt,dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(exit_status); } } // ap = dz->application; // parse_infile_and_hone_type() = if((exit_status = parse_infile_and_check_type(cmdline,dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // setup_param_ranges_and_defaults() = if((exit_status = setup_phasor_param_ranges_and_defaults(dz))<0) { exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // open_first_infile CDP LIB if((exit_status = open_first_infile(cmdline[0],dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } cmdlinecnt--; cmdline++; dz->duration = (double)dz->insams[0]/(double)dz->infile->srate; // handle_extra_infiles() : redundant // handle_outfile() = if((exit_status = handle_the_outfile(&cmdlinecnt,&cmdline,dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // handle_formants() redundant // handle_formant_quiksearch() redundant // handle_special_data() redundant if((exit_status = read_parameters_and_flags(&cmdline,&cmdlinecnt,dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } // check_param_validity_and_consistency.... if((exit_status = check_phasor_param_validity_and_consistency(&maxoffset,dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = open_the_outfile(dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = create_phaseshift_and_outchan_data_arrays(&maxshiftslen,dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } is_launched = TRUE; dz->bufcnt = 3; if((dz->sampbuf = (float **)malloc(sizeof(float *) * (dz->bufcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing sample buffers.\n"); return(MEMORY_ERROR); } if((dz->sbufptr = (float **)malloc(sizeof(float *) * dz->bufcnt))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY establishing sample buffer pointers.\n"); return(MEMORY_ERROR); } for(n = 0;n bufcnt; n++) dz->sampbuf[n] = dz->sbufptr[n] = (float *)0; dz->sampbuf[n] = (float *)0; if((exit_status = create_phasor_sndbufs(maxshiftslen,maxoffset,&offsetwrap,dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } //param_preprocess() redundant //spec_process_file = if((exit_status = phasor(offsetwrap,dz))<0) { print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } if((exit_status = complete_output(dz))<0) { // CDP LIB print_messages_and_close_sndfiles(exit_status,is_launched,dz); return(FAILED); } exit_status = print_messages_and_close_sndfiles(FINISHED,is_launched,dz); // CDP LIB free(dz); return(SUCCEEDED); } /********************************************** REPLACED CDP LIB FUNCTIONS **********************************************/ /****************************** SET_PARAM_DATA *********************************/ int set_param_data(aplptr ap, int special_data,int maxparamcnt,int paramcnt,char *paramlist) { ap->special_data = (char)special_data; ap->param_cnt = (char)paramcnt; ap->max_param_cnt = (char)maxparamcnt; if(ap->max_param_cnt>0) { if((ap->param_list = (char *)malloc((size_t)(ap->max_param_cnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for param_list\n"); return(MEMORY_ERROR); } strcpy(ap->param_list,paramlist); } return(FINISHED); } /****************************** SET_VFLGS *********************************/ int set_vflgs (aplptr ap,char *optflags,int optcnt,char *optlist,char *varflags,int vflagcnt, int vparamcnt,char *varlist) { ap->option_cnt = (char) optcnt; /*RWD added cast */ if(optcnt) { if((ap->option_list = (char *)malloc((size_t)(optcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for option_list\n"); return(MEMORY_ERROR); } strcpy(ap->option_list,optlist); if((ap->option_flags = (char *)malloc((size_t)(optcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for option_flags\n"); return(MEMORY_ERROR); } strcpy(ap->option_flags,optflags); } ap->vflag_cnt = (char) vflagcnt; ap->variant_param_cnt = (char) vparamcnt; if(vflagcnt) { if((ap->variant_list = (char *)malloc((size_t)(vflagcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for variant_list\n"); return(MEMORY_ERROR); } strcpy(ap->variant_list,varlist); if((ap->variant_flags = (char *)malloc((size_t)(vflagcnt+1)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: for variant_flags\n"); return(MEMORY_ERROR); } strcpy(ap->variant_flags,varflags); } return(FINISHED); } /***************************** APPLICATION_INIT **************************/ int application_init(dataptr dz) { int exit_status; int storage_cnt; int tipc, brkcnt; aplptr ap = dz->application; if(ap->vflag_cnt>0) initialise_vflags(dz); tipc = ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt; ap->total_input_param_cnt = (char)tipc; if(tipc>0) { if((exit_status = setup_input_param_range_stores(tipc,ap))<0) return(exit_status); if((exit_status = setup_input_param_defaultval_stores(tipc,ap))<0) return(exit_status); if((exit_status = setup_and_init_input_param_activity(dz,tipc))<0) return(exit_status); } brkcnt = tipc; //THERE ARE NO INPUTFILE brktables USED IN THIS PROCESS if(brkcnt>0) { if((exit_status = setup_and_init_input_brktable_constants(dz,brkcnt))<0) return(exit_status); } if((storage_cnt = tipc + ap->internal_param_cnt)>0) { if((exit_status = setup_parameter_storage_and_constants(storage_cnt,dz))<0) return(exit_status); if((exit_status = initialise_is_int_and_no_brk_constants(storage_cnt,dz))<0) return(exit_status); } if((exit_status = mark_parameter_types(dz,ap))<0) return(exit_status); // establish_infile_constants() replaced by dz->infilecnt = 1; //establish_bufptrs_and_extra_buffers(): return(FINISHED); } /********************** SETUP_PARAMETER_STORAGE_AND_CONSTANTS ********************/ /* RWD mallo changed to calloc; helps debug verison run as release! */ int setup_parameter_storage_and_constants(int storage_cnt,dataptr dz) { if((dz->param = (double *)calloc(storage_cnt, sizeof(double)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 1\n"); return(MEMORY_ERROR); } if((dz->iparam = (int *)calloc(storage_cnt, sizeof(int) ))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 2\n"); return(MEMORY_ERROR); } if((dz->is_int = (char *)calloc(storage_cnt, sizeof(char)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 3\n"); return(MEMORY_ERROR); } if((dz->no_brk = (char *)calloc(storage_cnt, sizeof(char)))==NULL) { sprintf(errstr,"setup_parameter_storage_and_constants(): 5\n"); return(MEMORY_ERROR); } return(FINISHED); } /************** INITIALISE_IS_INT_AND_NO_BRK_CONSTANTS *****************/ int initialise_is_int_and_no_brk_constants(int storage_cnt,dataptr dz) { int n; for(n=0;nis_int[n] = (char)0; dz->no_brk[n] = (char)0; } return(FINISHED); } /***************************** MARK_PARAMETER_TYPES **************************/ int mark_parameter_types(dataptr dz,aplptr ap) { int n, m; /* PARAMS */ for(n=0;nmax_param_cnt;n++) { switch(ap->param_list[n]) { case('0'): break; /* dz->is_active[n] = 0 is default */ case('i'): dz->is_active[n] = (char)1; dz->is_int[n] = (char)1;dz->no_brk[n] = (char)1; break; case('I'): dz->is_active[n] = (char)1; dz->is_int[n] = (char)1; break; case('d'): dz->is_active[n] = (char)1; dz->no_brk[n] = (char)1; break; case('D'): dz->is_active[n] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid parameter type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* OPTIONS */ for(n=0,m=ap->max_param_cnt;noption_cnt;n++,m++) { switch(ap->option_list[n]) { case('i'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('I'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; break; case('d'): dz->is_active[m] = (char)1; dz->no_brk[m] = (char)1; break; case('D'): dz->is_active[m] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid option type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* VARIANTS */ for(n=0,m=ap->max_param_cnt + ap->option_cnt;n < ap->variant_param_cnt; n++, m++) { switch(ap->variant_list[n]) { case('0'): break; case('i'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('I'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; break; case('d'): dz->is_active[m] = (char)1; dz->no_brk[m] = (char)1; break; case('D'): dz->is_active[m] = (char)1; /* normal case: double val or brkpnt file */ break; default: sprintf(errstr,"Programming error: invalid variant type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } /* INTERNAL */ for(n=0, m=ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt; ninternal_param_cnt; n++,m++) { switch(ap->internal_param_list[n]) { case('0'): break; /* dummy variables: variables not used: but important for internal paream numbering!! */ case('i'): dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break; case('d'): dz->no_brk[m] = (char)1; break; default: sprintf(errstr,"Programming error: invalid internal param type in mark_parameter_types()\n"); return(PROGRAM_ERROR); } } return(FINISHED); } /************************ HANDLE_THE_OUTFILE *********************/ int handle_the_outfile(int *cmdlinecnt,char ***cmdline,dataptr dz) { char *filename = (*cmdline)[0]; if(filename[0]=='-' && filename[1]=='f') { dz->floatsam_output = 1; dz->true_outfile_stype = SAMP_FLOAT; filename+= 2; } if(!sloom) { if(file_has_invalid_startchar(filename) || value_is_numeric(filename)) { sprintf(errstr,"Outfile name %s has invalid start character(s) or looks too much like a number.\n",filename); return(DATA_ERROR); } } strcpy(dz->outfilename,filename); (*cmdline)++; (*cmdlinecnt)--; return(FINISHED); } /************************ OPEN_THE_OUTFILE *********************/ int open_the_outfile(dataptr dz) { int exit_status, origchans; origchans = dz->infile->channels; dz->infile->channels = dz->iparam[PHASOR_OCHANS]; if((exit_status = create_sized_outfile(dz->outfilename,dz))<0) return(exit_status); dz->infile->channels = origchans; dz->outfile->channels = dz->iparam[PHASOR_OCHANS]; return(FINISHED); } /***************************** ESTABLISH_APPLICATION **************************/ int establish_application(dataptr dz) { aplptr ap; if((dz->application = (aplptr)malloc(sizeof (struct applic)))==NULL) { sprintf(errstr,"establish_application()\n"); return(MEMORY_ERROR); } ap = dz->application; memset((char *)ap,0,sizeof(struct applic)); return(FINISHED); } /************************* INITIALISE_VFLAGS *************************/ int initialise_vflags(dataptr dz) { int n; if((dz->vflag = (char *)malloc(dz->application->vflag_cnt * sizeof(char)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY: vflag store,\n"); return(MEMORY_ERROR); } for(n=0;napplication->vflag_cnt;n++) dz->vflag[n] = FALSE; return FINISHED; } /************************* SETUP_INPUT_PARAM_DEFAULTVALS *************************/ int setup_input_param_defaultval_stores(int tipc,aplptr ap) { int n; if((ap->default_val = (double *)malloc(tipc * sizeof(double)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for application default values store\n"); return(MEMORY_ERROR); } for(n=0;ndefault_val[n] = 0.0; return(FINISHED); } /***************************** SETUP_AND_INIT_INPUT_PARAM_ACTIVITY **************************/ int setup_and_init_input_param_activity(dataptr dz,int tipc) { int n; if((dz->is_active = (char *)malloc((size_t)tipc))==NULL) { sprintf(errstr,"setup_and_init_input_param_activity()\n"); return(MEMORY_ERROR); } for(n=0;nis_active[n] = (char)0; return(FINISHED); } /************************* SETUP_PHASOR_APPLICATION *******************/ int setup_phasor_application(dataptr dz) { int exit_status; aplptr ap; if((exit_status = establish_application(dz))<0) // GLOBAL return(FAILED); ap = dz->application; // SEE parstruct FOR EXPLANATION of next 2 functions if((exit_status = set_param_data(ap,0 ,4,4,"iDDi"))<0) return(FAILED); if((exit_status = set_vflgs(ap,"o",1,"d","se",2,0,"00"))<0) return(FAILED); // set_legal_infile_structure --> dz->has_otherfile = FALSE; // assign_process_logic --> dz->input_data_type = SNDFILES_ONLY; dz->process_type = UNEQUAL_SNDFILE; dz->outfiletype = SNDFILE_OUT; return application_init(dz); //GLOBAL } /************************* PARSE_INFILE_AND_CHECK_TYPE *******************/ int parse_infile_and_check_type(char **cmdline,dataptr dz) { int exit_status; infileptr infile_info; if(!sloom) { if((infile_info = (infileptr)malloc(sizeof(struct filedata)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for infile structure to test file data."); return(MEMORY_ERROR); } else if((exit_status = cdparse(cmdline[0],infile_info))<0) { sprintf(errstr,"Failed to parse input file %s\n",cmdline[0]); return(PROGRAM_ERROR); } else if(infile_info->filetype != SNDFILE) { sprintf(errstr,"File %s is not of correct type\n",cmdline[0]); return(DATA_ERROR); } else if(infile_info->channels != 1) { sprintf(errstr,"File %s is not of correct type (must be mono)\n",cmdline[0]); return(DATA_ERROR); } else if((exit_status = copy_parse_info_to_main_structure(infile_info,dz))<0) { sprintf(errstr,"Failed to copy file parsing information\n"); return(PROGRAM_ERROR); } free(infile_info); } return(FINISHED); } /************************* SETUP_GATE_PARAM_RANGES_AND_DEFAULTS *******************/ int setup_phasor_param_ranges_and_defaults(dataptr dz) { int exit_status; aplptr ap = dz->application; // set_param_ranges() ap->total_input_param_cnt = (char)(ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt); // NB total_input_param_cnt is > 0 !!! if((exit_status = setup_input_param_range_stores(ap->total_input_param_cnt,ap))<0) return(FAILED); // get_param_ranges() ap->lo[PHASOR_STREAMS] = 2; ap->hi[PHASOR_STREAMS] = 8; ap->default_val[PHASOR_STREAMS] = 2; ap->lo[PHASOR_FRQ] = .01; ap->hi[PHASOR_FRQ] = 100; ap->default_val[PHASOR_FRQ] = 1; ap->lo[PHASOR_SHIFT] = 0; ap->hi[PHASOR_SHIFT] = 12; ap->default_val[PHASOR_SHIFT] = .5; ap->lo[PHASOR_OCHANS] = 1; ap->hi[PHASOR_OCHANS] = 8; ap->default_val[PHASOR_OCHANS] = 1; ap->lo[PHASOR_OFFSET] = 0; ap->hi[PHASOR_OFFSET] = 500; ap->default_val[PHASOR_OFFSET] = 0; dz->maxmode = 0; if(!sloom) put_default_vals_in_all_params(dz); return(FINISHED); } /********************************* PARSE_SLOOM_DATA *********************************/ int parse_sloom_data(int argc,char *argv[],char ***cmdline,int *cmdlinecnt,dataptr dz) { int exit_status; int cnt = 1, infilecnt; int filesize, insams, inbrksize; double dummy; int true_cnt = 0; // aplptr ap; while(cnt<=PRE_CMDLINE_DATACNT) { if(cnt > argc) { sprintf(errstr,"Insufficient data sent from TK\n"); return(DATA_ERROR); } switch(cnt) { case(1): if(sscanf(argv[cnt],"%d",&dz->process)!=1) { sprintf(errstr,"Cannot read process no. sent from TK\n"); return(DATA_ERROR); } break; case(2): if(sscanf(argv[cnt],"%d",&dz->mode)!=1) { sprintf(errstr,"Cannot read mode no. sent from TK\n"); return(DATA_ERROR); } if(dz->mode > 0) dz->mode--; //setup_particular_application() = if((exit_status = setup_phasor_application(dz))<0) return(exit_status); // ap = dz->application; break; case(3): if(sscanf(argv[cnt],"%d",&infilecnt)!=1) { sprintf(errstr,"Cannot read infilecnt sent from TK\n"); return(DATA_ERROR); } if(infilecnt < 1) { true_cnt = cnt + 1; cnt = PRE_CMDLINE_DATACNT; /* force exit from loop after assign_file_data_storage */ } if((exit_status = assign_file_data_storage(infilecnt,dz))<0) return(exit_status); break; case(INPUT_FILETYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->filetype)!=1) { sprintf(errstr,"Cannot read filetype sent from TK (%s)\n",argv[cnt]); return(DATA_ERROR); } break; case(INPUT_FILESIZE+4): if(sscanf(argv[cnt],"%d",&filesize)!=1) { sprintf(errstr,"Cannot read infilesize sent from TK\n"); return(DATA_ERROR); } dz->insams[0] = filesize; break; case(INPUT_INSAMS+4): if(sscanf(argv[cnt],"%d",&insams)!=1) { sprintf(errstr,"Cannot read insams sent from TK\n"); return(DATA_ERROR); } dz->insams[0] = insams; break; case(INPUT_SRATE+4): if(sscanf(argv[cnt],"%d",&dz->infile->srate)!=1) { sprintf(errstr,"Cannot read srate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_CHANNELS+4): if(sscanf(argv[cnt],"%d",&dz->infile->channels)!=1) { sprintf(errstr,"Cannot read channels sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_STYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->stype)!=1) { sprintf(errstr,"Cannot read stype sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGSTYPE+4): if(sscanf(argv[cnt],"%d",&dz->infile->origstype)!=1) { sprintf(errstr,"Cannot read origstype sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGRATE+4): if(sscanf(argv[cnt],"%d",&dz->infile->origrate)!=1) { sprintf(errstr,"Cannot read origrate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MLEN+4): if(sscanf(argv[cnt],"%d",&dz->infile->Mlen)!=1) { sprintf(errstr,"Cannot read Mlen sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DFAC+4): if(sscanf(argv[cnt],"%d",&dz->infile->Dfac)!=1) { sprintf(errstr,"Cannot read Dfac sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ORIGCHANS+4): if(sscanf(argv[cnt],"%d",&dz->infile->origchans)!=1) { sprintf(errstr,"Cannot read origchans sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_SPECENVCNT+4): if(sscanf(argv[cnt],"%d",&dz->infile->specenvcnt)!=1) { sprintf(errstr,"Cannot read specenvcnt sent from TK\n"); return(DATA_ERROR); } dz->specenvcnt = dz->infile->specenvcnt; break; case(INPUT_WANTED+4): if(sscanf(argv[cnt],"%d",&dz->wanted)!=1) { sprintf(errstr,"Cannot read wanted sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_WLENGTH+4): if(sscanf(argv[cnt],"%d",&dz->wlength)!=1) { sprintf(errstr,"Cannot read wlength sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_OUT_CHANS+4): if(sscanf(argv[cnt],"%d",&dz->out_chans)!=1) { sprintf(errstr,"Cannot read out_chans sent from TK\n"); return(DATA_ERROR); } break; /* RWD these chanegs to samps - tk will have to deal with that! */ case(INPUT_DESCRIPTOR_BYTES+4): if(sscanf(argv[cnt],"%d",&dz->descriptor_samps)!=1) { sprintf(errstr,"Cannot read descriptor_samps sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_IS_TRANSPOS+4): if(sscanf(argv[cnt],"%d",&dz->is_transpos)!=1) { sprintf(errstr,"Cannot read is_transpos sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_COULD_BE_TRANSPOS+4): if(sscanf(argv[cnt],"%d",&dz->could_be_transpos)!=1) { sprintf(errstr,"Cannot read could_be_transpos sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_COULD_BE_PITCH+4): if(sscanf(argv[cnt],"%d",&dz->could_be_pitch)!=1) { sprintf(errstr,"Cannot read could_be_pitch sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DIFFERENT_SRATES+4): if(sscanf(argv[cnt],"%d",&dz->different_srates)!=1) { sprintf(errstr,"Cannot read different_srates sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DUPLICATE_SNDS+4): if(sscanf(argv[cnt],"%d",&dz->duplicate_snds)!=1) { sprintf(errstr,"Cannot read duplicate_snds sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_BRKSIZE+4): if(sscanf(argv[cnt],"%d",&inbrksize)!=1) { sprintf(errstr,"Cannot read brksize sent from TK\n"); return(DATA_ERROR); } if(inbrksize > 0) { switch(dz->input_data_type) { case(WORDLIST_ONLY): break; case(PITCH_AND_PITCH): case(PITCH_AND_TRANSPOS): case(TRANSPOS_AND_TRANSPOS): dz->tempsize = inbrksize; break; case(BRKFILES_ONLY): case(UNRANGED_BRKFILE_ONLY): case(DB_BRKFILES_ONLY): case(ALL_FILES): case(ANY_NUMBER_OF_ANY_FILES): if(dz->extrabrkno < 0) { sprintf(errstr,"Storage location number for brktable not established by CDP.\n"); return(DATA_ERROR); } if(dz->brksize == NULL) { sprintf(errstr,"CDP has not established storage space for input brktable.\n"); return(PROGRAM_ERROR); } dz->brksize[dz->extrabrkno] = inbrksize; break; default: sprintf(errstr,"TK sent brktablesize > 0 for input_data_type [%d] not using brktables.\n", dz->input_data_type); return(PROGRAM_ERROR); } break; } break; case(INPUT_NUMSIZE+4): if(sscanf(argv[cnt],"%d",&dz->numsize)!=1) { sprintf(errstr,"Cannot read numsize sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_LINECNT+4): if(sscanf(argv[cnt],"%d",&dz->linecnt)!=1) { sprintf(errstr,"Cannot read linecnt sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ALL_WORDS+4): if(sscanf(argv[cnt],"%d",&dz->all_words)!=1) { sprintf(errstr,"Cannot read all_words sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_ARATE+4): if(sscanf(argv[cnt],"%f",&dz->infile->arate)!=1) { sprintf(errstr,"Cannot read arate sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_FRAMETIME+4): if(sscanf(argv[cnt],"%lf",&dummy)!=1) { sprintf(errstr,"Cannot read frametime sent from TK\n"); return(DATA_ERROR); } dz->frametime = (float)dummy; break; case(INPUT_WINDOW_SIZE+4): if(sscanf(argv[cnt],"%f",&dz->infile->window_size)!=1) { sprintf(errstr,"Cannot read window_size sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_NYQUIST+4): if(sscanf(argv[cnt],"%lf",&dz->nyquist)!=1) { sprintf(errstr,"Cannot read nyquist sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_DURATION+4): if(sscanf(argv[cnt],"%lf",&dz->duration)!=1) { sprintf(errstr,"Cannot read duration sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MINBRK+4): if(sscanf(argv[cnt],"%lf",&dz->minbrk)!=1) { sprintf(errstr,"Cannot read minbrk sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MAXBRK+4): if(sscanf(argv[cnt],"%lf",&dz->maxbrk)!=1) { sprintf(errstr,"Cannot read maxbrk sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MINNUM+4): if(sscanf(argv[cnt],"%lf",&dz->minnum)!=1) { sprintf(errstr,"Cannot read minnum sent from TK\n"); return(DATA_ERROR); } break; case(INPUT_MAXNUM+4): if(sscanf(argv[cnt],"%lf",&dz->maxnum)!=1) { sprintf(errstr,"Cannot read maxnum sent from TK\n"); return(DATA_ERROR); } break; default: sprintf(errstr,"case switch item missing: parse_sloom_data()\n"); return(PROGRAM_ERROR); } cnt++; } if(cnt!=PRE_CMDLINE_DATACNT+1) { sprintf(errstr,"Insufficient pre-cmdline params sent from TK\n"); return(DATA_ERROR); } if(true_cnt) cnt = true_cnt; *cmdlinecnt = 0; while(cnt < argc) { if((exit_status = get_tk_cmdline_word(cmdlinecnt,cmdline,argv[cnt]))<0) return(exit_status); cnt++; } return(FINISHED); } /********************************* GET_TK_CMDLINE_WORD *********************************/ int get_tk_cmdline_word(int *cmdlinecnt,char ***cmdline,char *q) { if(*cmdlinecnt==0) { if((*cmdline = (char **)malloc(sizeof(char *)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline array.\n"); return(MEMORY_ERROR); } } else { if((*cmdline = (char **)realloc(*cmdline,((*cmdlinecnt)+1) * sizeof(char *)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline array.\n"); return(MEMORY_ERROR); } } if(((*cmdline)[*cmdlinecnt] = (char *)malloc((strlen(q) + 1) * sizeof(char)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline item %d.\n",(*cmdlinecnt)+1); return(MEMORY_ERROR); } strcpy((*cmdline)[*cmdlinecnt],q); (*cmdlinecnt)++; return(FINISHED); } /****************************** ASSIGN_FILE_DATA_STORAGE *********************************/ int assign_file_data_storage(int infilecnt,dataptr dz) { int exit_status; int no_sndfile_system_files = FALSE; dz->infilecnt = infilecnt; if((exit_status = allocate_filespace(dz))<0) return(exit_status); if(no_sndfile_system_files) dz->infilecnt = 0; return(FINISHED); } /************************* redundant functions: to ensure libs compile OK *******************/ int assign_process_logic(dataptr dz) { return(FINISHED); } void set_legal_infile_structure(dataptr dz) {} int set_legal_internalparam_structure(int process,int mode,aplptr ap) { return(FINISHED); } int setup_internal_arrays_and_array_pointers(dataptr dz) { return(FINISHED); } int establish_bufptrs_and_extra_buffers(dataptr dz) { return(FINISHED); } int read_special_data(char *str,dataptr dz) { return(FINISHED); } int inner_loop (int *peakscore,int *descnt,int *in_start_portion,int *least,int *pitchcnt,int windows_in_buf,dataptr dz) { return(FINISHED); } int get_process_no(char *prog_identifier_from_cmdline,dataptr dz) { return(FINISHED); } /******************************** USAGE1 ********************************/ int usage1(void) { usage2("phasor"); return(USAGE_ONLY); } /**************************** CHECK_GATE_PARAM_VALIDITY_AND_CONSISTENCY *****************************/ int check_phasor_param_validity_and_consistency(double *maxoffset,dataptr dz) { int exit_status; if(dz->iparam[PHASOR_OCHANS] > dz->iparam[PHASOR_STREAMS]) { sprintf(errstr,"Number of output channels exceeds number of streams.\n"); return(DATA_ERROR); } if(dz->brksize[PHASOR_OFFSET]) { if((exit_status = get_maxvalue_in_brktable(maxoffset,PHASOR_OFFSET,dz))<0) return exit_status; } else *maxoffset = dz->param[PHASOR_OFFSET]; if(dz->vflag[0] && (dz->iparam[PHASOR_OCHANS] <= 2)) { sprintf(errstr,"NO SOUND-SURROUND POSSIBLE WITH %d OUTPUT CHANNELS\n",dz->iparam[PHASOR_OCHANS]); return DATA_ERROR; } return FINISHED; } /********************************************************************************************/ int get_the_process_no(char *prog_identifier_from_cmdline,dataptr dz) { if(!strcmp(prog_identifier_from_cmdline,"phasor")) dz->process = PHASOR; else { fprintf(stderr,"Unknown program identification string '%s'\n",prog_identifier_from_cmdline); return(USAGE_ONLY); } return(FINISHED); } /******************************** SETUP_AND_INIT_INPUT_BRKTABLE_CONSTANTS ********************************/ int setup_and_init_input_brktable_constants(dataptr dz,int brkcnt) { int n; if((dz->brk = (double **)malloc(brkcnt * sizeof(double *)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 1\n"); return(MEMORY_ERROR); } if((dz->brkptr = (double **)malloc(brkcnt * sizeof(double *)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 6\n"); return(MEMORY_ERROR); } if((dz->brksize = (int *)malloc(brkcnt * sizeof(int)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 2\n"); return(MEMORY_ERROR); } if((dz->firstval = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 3\n"); return(MEMORY_ERROR); } if((dz->lastind = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 4\n"); return(MEMORY_ERROR); } if((dz->lastval = (double *)malloc(brkcnt * sizeof(double)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 5\n"); return(MEMORY_ERROR); } if((dz->brkinit = (int *)malloc(brkcnt * sizeof(int)))==NULL) { sprintf(errstr,"setup_and_init_input_brktable_constants(): 7\n"); return(MEMORY_ERROR); } for(n=0;nbrk[n] = NULL; dz->brkptr[n] = NULL; dz->brkinit[n] = 0; dz->brksize[n] = 0; } return(FINISHED); } /******************************** USAGE2 ********************************/ int usage2(char *str) { if(!strcmp(str,"phasor")) { fprintf(stderr, "USAGE:\n" "phasor phasor infile outfile streams phasfrq shift ochans [-ooffset] [-s] [-e]\n" "\n" "Introduce phasing into signal : Takes a MONO input file.\n" "\n" "STREAMS Number of output streams that phase-interact (Range 2 - 8)\n" "PHASFRQ Frequency of packets (phase shifts forward then back in a single packet).\n" "SHIFT Maximum phaseshift with packet: (Range 0 - 12 semitones).\n" "OCHANS Number of output channels (not greater than number of streams).\n" "OFFSET The streams may be time-offset from one another..\n" " \"Offset\" is time-offset of the most-offset stream (Range 0 - 500 mS).\n" " The other streams are offset by intermediate amounts.\n" "\n" "-s Output chans (lspkrs) encircle audience : only with more than 2 ochans.\n" "-e Prints warnings re rounding-errors in calculating time-shifted streams.\n" "\n" "\"shift\" and \"phasfrq\" can vary through time,\n" "but extreme phasfrq changes or reversals will produce anomalous output.\n" "\n"); } else fprintf(stdout,"Unknown option '%s'\n",str); return(USAGE_ONLY); } int usage3(char *str1,char *str2) { fprintf(stderr,"Insufficient parameters on command line.\n"); return(USAGE_ONLY); } /******************************** CREATE_PHASESHIFT_AND_OUTCHAN_DATA_ARRAYS ********************************/ int create_phaseshift_and_outchan_data_arrays(int *maxshiftslen, dataptr dz) { int exit_status, n, m, chan; double time = 0, srate = (double)dz->infile->srate, leftgain = 0.0, rightgain = 0.0, chanpos, pos; *maxshiftslen = 0; while(time < dz->duration) { if((exit_status = read_values_from_all_existing_brktables(time,dz))<0) return exit_status; *maxshiftslen = max(*maxshiftslen,(int)ceil(srate/dz->param[PHASOR_FRQ])); time += 1.0/dz->param[PHASOR_FRQ]; } while(((*maxshiftslen)/4) * 4 != *maxshiftslen) (*maxshiftslen)++; // phaseshift arrays must have a multiple-of-4 entries *maxshiftslen += WRAP; // Allow for wraparound point and accumulation (of samp-pointer position) errors dz->outchinfo = dz->iparam[PHASOR_STREAMS] - 1; if((dz->parray = (double **)malloc((dz->outchinfo + dz->iparam[PHASOR_STREAMS]) * sizeof(double *)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY to store phaseshift data arrays.\n"); return(MEMORY_ERROR); } for(n = 0; n < dz->outchinfo; n++) { if((dz->parray[n] = (double *)malloc(((*maxshiftslen) + SAFETY) * sizeof(double)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY to store phaseshift data, stream %d.\n",n+1); return(MEMORY_ERROR); } } for(n = dz->outchinfo; n < dz->outchinfo + dz->iparam[PHASOR_STREAMS]; n++) { if((dz->parray[n] = (double *)malloc(4 * sizeof(double)))==NULL) { sprintf(errstr,"INSUFFICIENT MEMORY to store phaseshift data, stream %d.\n",n+1); return(MEMORY_ERROR); } } if(dz->iparam[PHASOR_STREAMS] == dz->iparam[PHASOR_OCHANS]) { for(n=0,m = dz->outchinfo;n < dz->iparam[PHASOR_OCHANS]; n++,m++) { dz->parray[m][0] = (double)n; dz->parray[m][1] = 1.0; dz->parray[m][2] = (double)((n+1)%dz->iparam[PHASOR_OCHANS]); dz->parray[m][3] = 0.0; } } else { if(dz->vflag[0]) { /* Sound surround, 5 streams on 4 chans are positioned at 0 4/5 1+3/5 2+2/5 3+1/5 */ for(n=0,m = dz->outchinfo;n < dz->iparam[PHASOR_STREAMS]; n++,m++) { chanpos = ((double)n/(double)dz->iparam[PHASOR_STREAMS]) * (double)dz->iparam[PHASOR_OCHANS]; // e.g. 3.7 chan = (int)floor(chanpos); // 3 pos = chanpos - (double)chan; // 0.7 in range 0 to 1 pos = (2.0 * pos) - 1.0; // 0.4 in range -1 to 0 pancalc(pos,&leftgain,&rightgain); dz->parray[m][0] = (double)chan; dz->parray[m][1] = leftgain; dz->parray[m][2] = (double)((chan+1)%dz->iparam[PHASOR_OCHANS]); dz->parray[m][3] = rightgain; } } else { /* Linear array, 5 streams on 4 chans are positioned at 0 3/4 1+1/2 2+3/4 3 */ for(n=0,m = dz->outchinfo;n < dz->iparam[PHASOR_STREAMS]; n++,m++) { chanpos = (double)n/(double)(dz->iparam[PHASOR_STREAMS] - 1) * (double)(dz->iparam[PHASOR_OCHANS] - 1); chan = (int)floor(chanpos); pos = chanpos - (double)chan; pos = (2.0 * pos) - 1.0; pancalc(pos,&leftgain,&rightgain); dz->parray[m][0] = (double)chan; dz->parray[m][1] = leftgain; dz->parray[m][2] = (double)((chan+1)%dz->iparam[PHASOR_OCHANS]); dz->parray[m][3] = rightgain; } } } return FINISHED; } /******************************** CREATE_PHASOR_SNDBUFS ********************************/ int create_phasor_sndbufs(int maxshiftslen,double maxoffset,int *offsetwrap,dataptr dz) { int bigbufsize, seccnt; int framesize = F_SECSIZE; double srate = (double)dz->infile->srate; if(maxoffset > 0.0) { // Additional buffer space, if streams are offset from one another dz->maxoffset = (int)ceil(maxoffset * MS_TO_SECS * srate); *offsetwrap = dz->maxoffset * dz->iparam[PHASOR_OCHANS]; *offsetwrap += WRAP; seccnt = (*offsetwrap)/framesize; if(seccnt * framesize < *offsetwrap) seccnt++; *offsetwrap = seccnt * framesize; } seccnt = maxshiftslen/framesize; if(seccnt * framesize < maxshiftslen) seccnt++; bigbufsize = seccnt * framesize; dz->buflen = bigbufsize; dz->ibuflen = dz->buflen; // Input buffer size bigbufsize *= (1 + (3 * dz->iparam[PHASOR_OCHANS])); // 1 mono and 1 multichan (pbuf), + 1 dopuble-size outbuf if(maxoffset > 0.0) bigbufsize += 2 * *offsetwrap; // once for pbuf, and once for overflowbuf if((dz->bigbuf = (float *)malloc(bigbufsize * sizeof(float))) == NULL) { sprintf(errstr,"INSUFFICIENT MEMORY to create sound buffers.\n"); return(PROGRAM_ERROR); } dz->sbufptr[0] = dz->sampbuf[0] = dz->bigbuf; dz->sbufptr[1] = dz->sampbuf[1] = dz->bigbuf + dz->buflen; // Input buffer (mono) dz->buflen *= dz->iparam[PHASOR_OCHANS]; // Buflen used in calculation is size of multichan buffers dz->sbufptr[2] = dz->sampbuf[2] = dz->sampbuf[1] + dz->buflen + *offsetwrap; // Packet buffer (multichan) + its possible overflow + offset-extension dz->sampbuf[3] = dz->sampbuf[2] + dz->buflen + dz->buflen + *offsetwrap;// Output buffer (multichan) + overflow buffer + offset-extension to overflow return FINISHED; } /******************************** PHASOR ********************************/ int phasor(int offsetwrap,dataptr dz) { int exit_status, passno; double time, normaliser = 1.0, maxsamp = 0.0; float *ibuf = dz->sampbuf[0], *obuf = dz->sampbuf[2]; int phaseshiftcnt, ibufpos, obufpos, n, origbuflen = 0, absolute_endofwrite = 0; for(passno = 0; passno < 2; passno++) { dz->total_samps_read = 0; dz->samps_left = dz->insams[0]; time = 0.0; ibufpos = 0; obufpos = 0; memset((char *)ibuf,0,dz->ibuflen * sizeof(float)); memset((char *)obuf,0,((dz->buflen * 2) + offsetwrap) * sizeof(float)); sndseekEx(dz->ifd[0],0,0); origbuflen = dz->buflen; dz->buflen = dz->ibuflen; if((exit_status = read_samps(ibuf,dz))<0) return(exit_status); dz->buflen = origbuflen; while(time < dz->duration) { if((exit_status = calculate_phase_shifts(time,&phaseshiftcnt,dz))<0) return exit_status; if((exit_status = calculate_streams(time,phaseshiftcnt,&obufpos,&ibufpos,passno,normaliser,&maxsamp,offsetwrap,&absolute_endofwrite,dz))<0) return exit_status; if(exit_status == FINISHED) break; time += 1.0/dz->param[PHASOR_FRQ]; } if(passno == 0) { if(absolute_endofwrite > 0) { for(n=0;n MAXOUTLEVEL) normaliser = MAXOUTLEVEL/maxsamp; } else { if(absolute_endofwrite > 0) { for(n=0;ninfile->srate, maxphaseshift, minphaseshift, thismax, posoffset, sum, error; double *sampincr; int midway, quartway,/* threequartway,*/ n, k, j; if((exit_status = read_values_from_all_existing_brktables(time,dz))<0) return exit_status; maxphaseshift = dz->param[PHASOR_SHIFT]; minphaseshift = maxphaseshift/(dz->iparam[PHASOR_STREAMS] - 1); *phaseshiftcnt = (int)floor(srate/dz->param[PHASOR_FRQ]); while((*phaseshiftcnt/4) * 4 != *phaseshiftcnt) (*phaseshiftcnt)++; // phaseshift arrays must have a multiple-of-4 entries midway = (*phaseshiftcnt)/2; // midpoint of arrays quartway = midway/2; // threequartway = midway + quartway; for(n = 0; n < dz->iparam[PHASOR_STREAMS]-1;n++) { // Set max-shift for this stream sum = 0.0; thismax = min(maxphaseshift,(n+1) * minphaseshift); thismax = thismax/SEMITONES_PER_OCTAVE; // Convert to octaves posoffset = thismax/(double)quartway; // semitone-displacement per sample. /* If 8 samps to midway, midway = 8, quartway = 4 : midway-2 = 6 */ sampincr = dz->parray[n]; /* */ for(k = 0; k < quartway; k++) /* Rising A/\B e.g. k=0 1 2 3 */ sampincr[k] = min((k+1) * posoffset,thismax); /* portion A / \ +1 +2 +3 +4 */ /* \C D/ j=6 5 4 */ for(k = 0,j = midway - 2; k < quartway-1; k++,j--) /* Falling \/ j=7 gets 0 */ sampincr[j] = sampincr[k]; /* portion B */ sampincr[midway-1] = 0.0; for(k = 0,j = midway; k < midway; k++,j++) /* Falling & Rising portions C & D */ sampincr[j] = -sampincr[k]; /* Every +ve sampincr in A+B */ /* compensated for by equal -ve sampincr */ /* in C+D, so signals should resync! */ for(k=0;k < *phaseshiftcnt;k++) sampincr[k] = pow(2.0,sampincr[k]); /* semitones-->frqratio = sampincr */ sum = 0.0; for(k=0;k < *phaseshiftcnt;k++) /* check error in summing all increments */ sum += sampincr[k]; error = (sum - (double)*phaseshiftcnt)/(double)(*phaseshiftcnt); for(k=0;k < *phaseshiftcnt;k++) /* adjust increments to eliminate error */ sampincr[k] -= error; } return FINISHED; } /******************************** CALCULATE_STREAMS ********************************/ int calculate_streams(double time,int phaseshiftcnt, int *obufpos, int *ibufpos, int passno, double normaliser, double *maxsamp, int offsetwrap, int *absolute_endofwrite, dataptr dz) { int exit_status; float *ibuf = dz->sampbuf[0]; float *pbuf = dz->sampbuf[1]; float *obuf = dz->sampbuf[2]; double ibufposd, srate = (double)dz->infile->srate, ch1lev = 0.0, ch2lev = 0.0; double loval, valdiff, timefrac, val, val1, val2; double *outchan_info, *sampincr; int n, origbuflen, offset[8], bufadjust, thisoffset, k, ibufpos_for_each_stream = 0, lopos, hipos, ovflow; int pbufpos = 0, advance_to_next_write = 0, pbufpos1 = 0, pbufpos2 = 0, endibufpos = 0, xmaxoffset, position_of_next_write, samps_to_write, xobufpos; int warning = 0, streamcnt = dz->iparam[PHASOR_STREAMS], ochan1, ochan2; memset((char *)pbuf,0, (dz->buflen + offsetwrap) * sizeof(float)); if(*ibufpos + phaseshiftcnt + 1 >= dz->ibuflen) { // Ensure all of read will go into the input buffer bufadjust = dz->ssampsread - *ibufpos; sndseekEx(dz->ifd[0],dz->total_samps_read - bufadjust,0); dz->total_samps_read -= bufadjust; memset((char *)ibuf,0,dz->ibuflen * sizeof(float)); origbuflen = dz->buflen; dz->buflen = dz->ibuflen; // input buffer size if((exit_status = read_samps(ibuf,dz))<0) return(exit_status); dz->buflen = origbuflen; // Restore dz->buflen for calcs in output buffer if(dz->ssampsread <= 0) return FINISHED; *ibufpos = 0; } /* CALCULATE ANY STREAM TIME-OFFSETS */ thisoffset = (int)round(dz->param[PHASOR_OFFSET] * MS_TO_SECS * srate); // With 4 streams, offsets go ... offset[0] = 0; // xmaxoffset = 0; // |---------------------------- for(k = 1; k < streamcnt-1;k++) { // | |---------------------------- offset[k] = (int)round(((double)k/(double)(streamcnt - 1)) * (double)thisoffset); // | | |---------------------------- xmaxoffset = max(xmaxoffset,offset[k]); // | | | |---------------------------- } // 0 1/3 2/3 thisoffset offset[k] = thisoffset; xmaxoffset = max(xmaxoffset,offset[k]); for(k = 0; k < streamcnt; k++) { if(k==0) ibufpos_for_each_stream = *ibufpos; // Current read-position in input else if(k==1) { endibufpos = ibufpos_for_each_stream; // ibufpos_for_each_stream has advanced from initial ibufpos , while writing stream 0 : // and now tells us where we've reached in the input buffer. advance_to_next_write = pbufpos; // pbufpos has advanced from zero, while writing stream 0 : // It now tells us how many samples to advance, in output-buf, for next set-of-streams to be written to output } pbufpos = offset[k] * dz->iparam[PHASOR_OCHANS]; // Initial time-offset of this stream (as a whole number of channel-groups), default is zero ibufposd = (double)(*ibufpos); // Ditto as a floatval which can be fractionally incremented outchan_info = dz->parray[dz->outchinfo + k]; // Output channel information for this stream ochan1 = (int)round(outchan_info[0]); ch1lev = outchan_info[1]; ochan2 = (int)round(outchan_info[2]); ch2lev = outchan_info[3]; pbufpos1 = pbufpos + ochan1; // Actual start sample for this particular stream feeding particular output channel pbufpos2 = pbufpos + ochan2; // Actual start sample for this particular stream feeding adjacent output channel for(n = 0; n < phaseshiftcnt; n++) { if(k==0) { pbuf[pbufpos] = (float)(pbuf[pbufpos] + ibuf[ibufpos_for_each_stream]); // Stream 0 always goes entirely to channel 0 pbufpos += dz->iparam[PHASOR_OCHANS]; // Step to next output-channel-group ibufpos_for_each_stream++; // Advance at normal rate in input } else { sampincr = dz->parray[k-1]; ibufposd += sampincr[n]; // Advance in input by timewarp value stored in array lopos = (int)round(ibufposd); if(lopos >= phaseshiftcnt) { warning++; lopos = phaseshiftcnt; } hipos = lopos + 1; loval = ibuf[lopos]; valdiff = ibuf[hipos] - loval; timefrac = ibufposd - (double)lopos; val = loval + (valdiff * timefrac); // Value obtained by interpolating in input sound val1 = val * ch1lev; // Distribute this between the 2 appropriate output channels pbuf[pbufpos1] = (float)(pbuf[pbufpos1] + val1); val2 = val * ch2lev; pbuf[pbufpos2] = (float)(pbuf[pbufpos2] + val2); pbufpos1 += dz->iparam[PHASOR_OCHANS]; // Step to appropriate-chan-positions in next output-channel-group pbufpos2 += dz->iparam[PHASOR_OCHANS]; } } } *ibufpos = endibufpos; // Reset final ibufpos - at end of loop through input samps. position_of_next_write = *obufpos + advance_to_next_write; // Calculate position of NEXT write, from outbuf // Calculate absolute end of current write, in outbuf *absolute_endofwrite = position_of_next_write + (dz->iparam[PHASOR_OCHANS] * xmaxoffset); ovflow = *absolute_endofwrite - dz->buflen; if(ovflow >= dz->buflen + offsetwrap) { // check that any overflow of principal output buffer does not exceed length of overflow-buffer sprintf(errstr,"Buffer size underestimated,\n"); return PROGRAM_ERROR; } // Write samples into the output buffer (even if they overflow), as far as absolute end of write samps_to_write = *absolute_endofwrite - *obufpos; xobufpos = *obufpos; for(n = 0; n < samps_to_write; n++) { obuf[xobufpos] = (float)(obuf[xobufpos] + pbuf[n]); xobufpos++; } *obufpos = position_of_next_write; // Reset output buffer write position, ready for next pass if(position_of_next_write >= dz->buflen) { // If no further samples will be added to the current buffer (because next write is beyond its end) if(passno == 0) { // We can process-or-write the complete current buffer for(n=0;nbuflen;n++) *maxsamp = max(*maxsamp,fabs(obuf[n])); } else { for(n=0;nbuflen;n++) obuf[n] = (float)(obuf[n] * normaliser); if((exit_status = write_samps(obuf,dz->buflen,dz))<0) return(exit_status); } memset((char *)obuf,0,dz->buflen * sizeof(float)); memcpy((char *)obuf,(char *)(obuf + dz->buflen), dz->buflen * sizeof(float)); // Wrap-around any overflow in output buffer. memset((char *)(obuf + dz->buflen),0,dz->buflen * sizeof(float)); // re-zero the overflow buffer. if(offsetwrap > 0) { // Wrap around any data in the offsetwrap extension of the overflow buffer memcpy((char *)(obuf + dz->buflen),(char *)(obuf + (dz->buflen * 2)), offsetwrap * sizeof(float)); memset((char *)(obuf + (dz->buflen * 2)),0,offsetwrap * sizeof(float)); // re-zero the offsetwrap buffer. } *obufpos -= dz->buflen; // Reset outbuf pointer. *absolute_endofwrite -= dz->buflen; } if(dz->vflag[1] && warning) { fprintf(stdout,"WARNING: %d rounding errors at time %lf\n",warning,time); fflush(stdout); } return CONTINUE; } /************************************ PANCALC *******************************/ void pancalc(double position,double *leftgain,double *rightgain) { int dirflag; double temp; double relpos; double reldist, invsquare; if(position < 0.0) dirflag = SIGNAL_TO_LEFT; /* signal on left */ else dirflag = SIGNAL_TO_RIGHT; if(position < 0) relpos = -position; else relpos = position; if(relpos <= 1.0){ /* between the speakers */ temp = 1.0 + (relpos * relpos); reldist = ROOT2 / sqrt(temp); temp = (position + 1.0) / 2.0; *rightgain = temp * reldist; *leftgain = (1.0 - temp ) * reldist; } else { /* outside the speakers */ temp = (relpos * relpos) + 1.0; reldist = sqrt(temp) / ROOT2; /* relative distance to source */ invsquare = 1.0 / (reldist * reldist); if(dirflag == SIGNAL_TO_LEFT){ *leftgain = invsquare; *rightgain = 0.0; } else { /* SIGNAL_TO_RIGHT */ *rightgain = invsquare; *leftgain = 0; } } }