sorter.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181
  1. // _cdprogs\sorter sorter 1 alan_bellydancefbn.wav test.wav alan_bellydancefbn_pich.brk -p128 -o128 -f
  2. // WRITE BUFFER OVER AND OVER, WHY???
  3. #include <stdio.h>
  4. #include <stdlib.h>
  5. #include <structures.h>
  6. #include <tkglobals.h>
  7. #include <pnames.h>
  8. #include <filetype.h>
  9. #include <processno.h>
  10. #include <modeno.h>
  11. #include <logic.h>
  12. #include <globcon.h>
  13. #include <cdpmain.h>
  14. #include <math.h>
  15. #include <mixxcon.h>
  16. #include <osbind.h>
  17. #include <standalone.h>
  18. #include <ctype.h>
  19. #include <sfsys.h>
  20. #include <string.h>
  21. #include <srates.h>
  22. #define CRESC 0
  23. #define DECRESC 1
  24. #define ACCEL 2
  25. #define RIT 3
  26. #define RAND 4
  27. #define MAXLEV 0.95
  28. // parrays
  29. #define PEAKS 0
  30. #define MINIMA 0
  31. #define LEVELS 1
  32. #define INCRS 2
  33. #define ORIGINCRS 3
  34. // lparrays
  35. #define POS 0
  36. #define LEN 1
  37. #define ORIGPOS 2
  38. #define SORTER_MIN_DUR (0.001)
  39. #define SORTER_MAX_DUR (10.0)
  40. #define TWO_THIRDS 0.6666
  41. #ifdef unix
  42. #define round(x) lround((x))
  43. #endif
  44. char errstr[2400];
  45. int anal_infiles = 1;
  46. int sloom = 0;
  47. int sloombatch = 0;
  48. const char* cdp_version = "6.1.0";
  49. //CDP LIB REPLACEMENTS
  50. static int check_sorter_param_validity_and_consistency(dataptr dz);
  51. static int setup_sorter_application(dataptr dz);
  52. static int parse_sloom_data(int argc,char *argv[],char ***cmdline,int *cmdlinecnt,dataptr dz);
  53. static int parse_infile_and_check_type(char **cmdline,dataptr dz);
  54. static int setup_sorter_param_ranges_and_defaults(dataptr dz);
  55. static int handle_the_outfile(int *cmdlinecnt,char ***cmdline,dataptr dz);
  56. static int setup_and_init_input_param_activity(dataptr dz,int tipc);
  57. static int setup_input_param_defaultval_stores(int tipc,aplptr ap);
  58. static int establish_application(dataptr dz);
  59. static int initialise_vflags(dataptr dz);
  60. static int setup_parameter_storage_and_constants(int storage_cnt,dataptr dz);
  61. static int initialise_is_int_and_no_brk_constants(int storage_cnt,dataptr dz);
  62. static int mark_parameter_types(dataptr dz,aplptr ap);
  63. static int assign_file_data_storage(int infilecnt,dataptr dz);
  64. static int get_tk_cmdline_word(int *cmdlinecnt,char ***cmdline,char *q);
  65. static int get_the_process_no(char *prog_identifier_from_cmdline,dataptr dz);
  66. static int get_the_mode_from_cmdline(char *str,dataptr dz);
  67. static int setup_and_init_input_brktable_constants(dataptr dz,int brkcnt);
  68. static double dbtolevel(double val);
  69. static int do_sorter(dataptr dz);
  70. static int find_all_positive_peaks(int *peakcnt,dataptr dz);
  71. static int find_all_local_minima(int peakcnt,int *local_minima_cnt,dataptr dz);
  72. static int group_local_minima(int local_minima_cnt,int *group_cnt,int *ostep,dataptr dz);
  73. static int locate_zero_crossings(int group_cnt,dataptr dz);
  74. static int find_levels(int group_cnt,dataptr dz);
  75. static int do_sorted_output(int group_cnt,int ostep,dataptr dz);
  76. static void rndpermm(int permlen,int *permm);
  77. static void insert(int m,int t,int permlen,int *permm);
  78. static void prefix(int m,int permlen,int *permm);
  79. static void shuflup(int k,int permlen, int *permm);
  80. static int get_median_pitch(double midi,double *medianfrq,dataptr dz);
  81. static int larger_grouping(int *group_cnt,dataptr dz);
  82. /**************************************** MAIN *********************************************/
  83. int main(int argc,char *argv[])
  84. {
  85. int exit_status;
  86. dataptr dz = NULL;
  87. char **cmdline;
  88. int cmdlinecnt;
  89. int n;
  90. aplptr ap;
  91. int is_launched = FALSE;
  92. if(argc==2 && (strcmp(argv[1],"--version") == 0)) {
  93. fprintf(stdout,"%s\n",cdp_version);
  94. fflush(stdout);
  95. return 0;
  96. }
  97. /* CHECK FOR SOUNDLOOM */
  98. if((sloom = sound_loom_in_use(&argc,&argv)) > 1) {
  99. sloom = 0;
  100. sloombatch = 1;
  101. }
  102. if(sflinit("cdp")){
  103. sfperror("cdp: initialisation\n");
  104. return(FAILED);
  105. }
  106. /* SET UP THE PRINCIPLE DATASTRUCTURE */
  107. if((exit_status = establish_datastructure(&dz))<0) { // CDP LIB
  108. print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  109. return(FAILED);
  110. }
  111. if(!sloom) {
  112. if(argc == 1) {
  113. usage1();
  114. return(FAILED);
  115. } else if(argc == 2) {
  116. usage2(argv[1]);
  117. return(FAILED);
  118. }
  119. }
  120. if(!sloom) {
  121. if((exit_status = make_initial_cmdline_check(&argc,&argv))<0) { // CDP LIB
  122. print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  123. return(FAILED);
  124. }
  125. cmdline = argv;
  126. cmdlinecnt = argc;
  127. if((get_the_process_no(argv[0],dz))<0)
  128. return(FAILED);
  129. cmdline++;
  130. cmdlinecnt--;
  131. dz->maxmode = 5;
  132. if((exit_status = get_the_mode_from_cmdline(cmdline[0],dz))<0) {
  133. print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  134. return(exit_status);
  135. }
  136. cmdline++;
  137. cmdlinecnt--;
  138. // setup_particular_application =
  139. if((exit_status = setup_sorter_application(dz))<0) {
  140. print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  141. return(FAILED);
  142. }
  143. if((exit_status = count_and_allocate_for_infiles(cmdlinecnt,cmdline,dz))<0) { // CDP LIB
  144. print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  145. return(FAILED);
  146. }
  147. } else {
  148. //parse_TK_data() =
  149. if((exit_status = parse_sloom_data(argc,argv,&cmdline,&cmdlinecnt,dz))<0) {
  150. exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  151. return(exit_status);
  152. }
  153. }
  154. ap = dz->application;
  155. // parse_infile_and_hone_type() =
  156. if((exit_status = parse_infile_and_check_type(cmdline,dz))<0) {
  157. exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  158. return(FAILED);
  159. }
  160. // setup_param_ranges_and_defaults() =
  161. if((exit_status = setup_sorter_param_ranges_and_defaults(dz))<0) {
  162. exit_status = print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  163. return(FAILED);
  164. }
  165. // open_first_infile CDP LIB
  166. if((exit_status = open_first_infile(cmdline[0],dz))<0) {
  167. print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  168. return(FAILED);
  169. }
  170. cmdlinecnt--;
  171. cmdline++;
  172. // handle_extra_infiles() : redundant
  173. // handle_outfile() =
  174. if((exit_status = handle_the_outfile(&cmdlinecnt,&cmdline,dz))<0) {
  175. print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  176. return(FAILED);
  177. }
  178. // handle_formants() redundant
  179. // handle_formant_quiksearch() redundant
  180. // handle_special_data() redundant
  181. if((exit_status = read_parameters_and_flags(&cmdline,&cmdlinecnt,dz))<0) { // CDP LIB
  182. print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  183. return(FAILED);
  184. }
  185. // check_param_validity_and_consistency....
  186. if((exit_status = check_sorter_param_validity_and_consistency(dz))<0) {
  187. print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  188. return(FAILED);
  189. }
  190. is_launched = TRUE;
  191. // dz->bufcnt = 3;
  192. dz->bufcnt = 4;
  193. if((dz->sampbuf = (float **)malloc(sizeof(float *) * (dz->bufcnt+1)))==NULL) {
  194. sprintf(errstr,"INSUFFICIENT MEMORY establishing sample buffers.\n");
  195. return(MEMORY_ERROR);
  196. }
  197. if((dz->sbufptr = (float **)malloc(sizeof(float *) * dz->bufcnt))==NULL) {
  198. sprintf(errstr,"INSUFFICIENT MEMORY establishing sample buffer pointers.\n");
  199. return(MEMORY_ERROR);
  200. }
  201. for(n = 0;n <dz->bufcnt; n++)
  202. dz->sampbuf[n] = dz->sbufptr[n] = (float *)0;
  203. dz->sampbuf[n] = (float *)0;
  204. dz->bufcnt = 2; // Initially, just make the input buffers
  205. if((exit_status = create_sndbufs(dz))<0) { // CDP LIB
  206. print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  207. return(FAILED);
  208. }
  209. dz->bufcnt = 4;
  210. //param_preprocess() redundant
  211. //spec_process_file =
  212. if((exit_status = do_sorter(dz))<0) {
  213. print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  214. return(FAILED);
  215. }
  216. if((exit_status = complete_output(dz))<0) { // CDP LIB
  217. print_messages_and_close_sndfiles(exit_status,is_launched,dz);
  218. return(FAILED);
  219. }
  220. exit_status = print_messages_and_close_sndfiles(FINISHED,is_launched,dz); // CDP LIB
  221. free(dz);
  222. return(SUCCEEDED);
  223. }
  224. /**********************************************
  225. REPLACED CDP LIB FUNCTIONS
  226. **********************************************/
  227. /****************************** SET_PARAM_DATA *********************************/
  228. int set_param_data(aplptr ap, int special_data,int maxparamcnt,int paramcnt,char *paramlist)
  229. {
  230. ap->special_data = (char)special_data;
  231. ap->param_cnt = (char)paramcnt;
  232. ap->max_param_cnt = (char)maxparamcnt;
  233. if(ap->max_param_cnt>0) {
  234. if((ap->param_list = (char *)malloc((size_t)(ap->max_param_cnt+1)))==NULL) {
  235. sprintf(errstr,"INSUFFICIENT MEMORY: for param_list\n");
  236. return(MEMORY_ERROR);
  237. }
  238. strcpy(ap->param_list,paramlist);
  239. }
  240. return(FINISHED);
  241. }
  242. /****************************** SET_VFLGS *********************************/
  243. int set_vflgs
  244. (aplptr ap,char *optflags,int optcnt,char *optlist,char *varflags,int vflagcnt, int vparamcnt,char *varlist)
  245. {
  246. ap->option_cnt = (char) optcnt; /*RWD added cast */
  247. if(optcnt) {
  248. if((ap->option_list = (char *)malloc((size_t)(optcnt+1)))==NULL) {
  249. sprintf(errstr,"INSUFFICIENT MEMORY: for option_list\n");
  250. return(MEMORY_ERROR);
  251. }
  252. strcpy(ap->option_list,optlist);
  253. if((ap->option_flags = (char *)malloc((size_t)(optcnt+1)))==NULL) {
  254. sprintf(errstr,"INSUFFICIENT MEMORY: for option_flags\n");
  255. return(MEMORY_ERROR);
  256. }
  257. strcpy(ap->option_flags,optflags);
  258. }
  259. ap->vflag_cnt = (char) vflagcnt;
  260. ap->variant_param_cnt = (char) vparamcnt;
  261. if(vflagcnt) {
  262. if((ap->variant_list = (char *)malloc((size_t)(vflagcnt+1)))==NULL) {
  263. sprintf(errstr,"INSUFFICIENT MEMORY: for variant_list\n");
  264. return(MEMORY_ERROR);
  265. }
  266. strcpy(ap->variant_list,varlist);
  267. if((ap->variant_flags = (char *)malloc((size_t)(vflagcnt+1)))==NULL) {
  268. sprintf(errstr,"INSUFFICIENT MEMORY: for variant_flags\n");
  269. return(MEMORY_ERROR);
  270. }
  271. strcpy(ap->variant_flags,varflags);
  272. }
  273. return(FINISHED);
  274. }
  275. /***************************** APPLICATION_INIT **************************/
  276. int application_init(dataptr dz)
  277. {
  278. int exit_status;
  279. int storage_cnt;
  280. int tipc, brkcnt;
  281. aplptr ap = dz->application;
  282. if(ap->vflag_cnt>0)
  283. initialise_vflags(dz);
  284. tipc = ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt;
  285. ap->total_input_param_cnt = (char)tipc;
  286. if(tipc>0) {
  287. if((exit_status = setup_input_param_range_stores(tipc,ap))<0)
  288. return(exit_status);
  289. if((exit_status = setup_input_param_defaultval_stores(tipc,ap))<0)
  290. return(exit_status);
  291. if((exit_status = setup_and_init_input_param_activity(dz,tipc))<0)
  292. return(exit_status);
  293. }
  294. brkcnt = tipc;
  295. if(brkcnt>0) {
  296. if((exit_status = setup_and_init_input_brktable_constants(dz,brkcnt))<0)
  297. return(exit_status);
  298. }
  299. if((storage_cnt = tipc + ap->internal_param_cnt)>0) {
  300. if((exit_status = setup_parameter_storage_and_constants(storage_cnt,dz))<0)
  301. return(exit_status);
  302. if((exit_status = initialise_is_int_and_no_brk_constants(storage_cnt,dz))<0)
  303. return(exit_status);
  304. }
  305. if((exit_status = mark_parameter_types(dz,ap))<0)
  306. return(exit_status);
  307. // establish_infile_constants() replaced by
  308. dz->infilecnt = 1;
  309. //establish_bufptrs_and_extra_buffers():
  310. return(FINISHED);
  311. }
  312. /********************** SETUP_PARAMETER_STORAGE_AND_CONSTANTS ********************/
  313. /* RWD mallo changed to calloc; helps debug verison run as release! */
  314. int setup_parameter_storage_and_constants(int storage_cnt,dataptr dz)
  315. {
  316. if((dz->param = (double *)calloc(storage_cnt, sizeof(double)))==NULL) {
  317. sprintf(errstr,"setup_parameter_storage_and_constants(): 1\n");
  318. return(MEMORY_ERROR);
  319. }
  320. if((dz->iparam = (int *)calloc(storage_cnt, sizeof(int) ))==NULL) {
  321. sprintf(errstr,"setup_parameter_storage_and_constants(): 2\n");
  322. return(MEMORY_ERROR);
  323. }
  324. if((dz->is_int = (char *)calloc(storage_cnt, sizeof(char)))==NULL) {
  325. sprintf(errstr,"setup_parameter_storage_and_constants(): 3\n");
  326. return(MEMORY_ERROR);
  327. }
  328. if((dz->no_brk = (char *)calloc(storage_cnt, sizeof(char)))==NULL) {
  329. sprintf(errstr,"setup_parameter_storage_and_constants(): 5\n");
  330. return(MEMORY_ERROR);
  331. }
  332. return(FINISHED);
  333. }
  334. /************** INITIALISE_IS_INT_AND_NO_BRK_CONSTANTS *****************/
  335. int initialise_is_int_and_no_brk_constants(int storage_cnt,dataptr dz)
  336. {
  337. int n;
  338. for(n=0;n<storage_cnt;n++) {
  339. dz->is_int[n] = (char)0;
  340. dz->no_brk[n] = (char)0;
  341. }
  342. return(FINISHED);
  343. }
  344. /***************************** MARK_PARAMETER_TYPES **************************/
  345. int mark_parameter_types(dataptr dz,aplptr ap)
  346. {
  347. int n, m; /* PARAMS */
  348. for(n=0;n<ap->max_param_cnt;n++) {
  349. switch(ap->param_list[n]) {
  350. case('0'): break; /* dz->is_active[n] = 0 is default */
  351. case('i'): dz->is_active[n] = (char)1; dz->is_int[n] = (char)1;dz->no_brk[n] = (char)1; break;
  352. case('I'): dz->is_active[n] = (char)1; dz->is_int[n] = (char)1; break;
  353. case('d'): dz->is_active[n] = (char)1; dz->no_brk[n] = (char)1; break;
  354. case('D'): dz->is_active[n] = (char)1; /* normal case: double val or brkpnt file */ break;
  355. default:
  356. sprintf(errstr,"Programming error: invalid parameter type in mark_parameter_types()\n");
  357. return(PROGRAM_ERROR);
  358. }
  359. } /* OPTIONS */
  360. for(n=0,m=ap->max_param_cnt;n<ap->option_cnt;n++,m++) {
  361. switch(ap->option_list[n]) {
  362. case('i'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break;
  363. case('I'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; break;
  364. case('d'): dz->is_active[m] = (char)1; dz->no_brk[m] = (char)1; break;
  365. case('D'): dz->is_active[m] = (char)1; /* normal case: double val or brkpnt file */ break;
  366. default:
  367. sprintf(errstr,"Programming error: invalid option type in mark_parameter_types()\n");
  368. return(PROGRAM_ERROR);
  369. }
  370. } /* VARIANTS */
  371. for(n=0,m=ap->max_param_cnt + ap->option_cnt;n < ap->variant_param_cnt; n++, m++) {
  372. switch(ap->variant_list[n]) {
  373. case('0'): break;
  374. case('i'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break;
  375. case('I'): dz->is_active[m] = (char)1; dz->is_int[m] = (char)1; break;
  376. case('d'): dz->is_active[m] = (char)1; dz->no_brk[m] = (char)1; break;
  377. case('D'): dz->is_active[m] = (char)1; /* normal case: double val or brkpnt file */ break;
  378. default:
  379. sprintf(errstr,"Programming error: invalid variant type in mark_parameter_types()\n");
  380. return(PROGRAM_ERROR);
  381. }
  382. } /* INTERNAL */
  383. for(n=0,
  384. m=ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt; n<ap->internal_param_cnt; n++,m++) {
  385. switch(ap->internal_param_list[n]) {
  386. case('0'): break; /* dummy variables: variables not used: but important for internal paream numbering!! */
  387. case('i'): dz->is_int[m] = (char)1; dz->no_brk[m] = (char)1; break;
  388. case('d'): dz->no_brk[m] = (char)1; break;
  389. default:
  390. sprintf(errstr,"Programming error: invalid internal param type in mark_parameter_types()\n");
  391. return(PROGRAM_ERROR);
  392. }
  393. }
  394. return(FINISHED);
  395. }
  396. /************************ HANDLE_THE_OUTFILE *********************/
  397. int handle_the_outfile(int *cmdlinecnt,char ***cmdline,dataptr dz)
  398. {
  399. int exit_status;
  400. char *filename = (*cmdline)[0];
  401. if(filename[0]=='-' && filename[1]=='f') {
  402. dz->floatsam_output = 1;
  403. dz->true_outfile_stype = SAMP_FLOAT;
  404. filename+= 2;
  405. }
  406. if(!sloom) {
  407. if(file_has_invalid_startchar(filename) || value_is_numeric(filename)) {
  408. sprintf(errstr,"Outfile name %s has invalid start character(s) or looks too much like a number.\n",filename);
  409. return(DATA_ERROR);
  410. }
  411. }
  412. strcpy(dz->outfilename,filename);
  413. if((exit_status = create_sized_outfile(filename,dz))<0)
  414. return(exit_status);
  415. (*cmdline)++;
  416. (*cmdlinecnt)--;
  417. return(FINISHED);
  418. }
  419. /***************************** ESTABLISH_APPLICATION **************************/
  420. int establish_application(dataptr dz)
  421. {
  422. aplptr ap;
  423. if((dz->application = (aplptr)malloc(sizeof (struct applic)))==NULL) {
  424. sprintf(errstr,"establish_application()\n");
  425. return(MEMORY_ERROR);
  426. }
  427. ap = dz->application;
  428. memset((char *)ap,0,sizeof(struct applic));
  429. return(FINISHED);
  430. }
  431. /************************* INITIALISE_VFLAGS *************************/
  432. int initialise_vflags(dataptr dz)
  433. {
  434. int n;
  435. if((dz->vflag = (char *)malloc(dz->application->vflag_cnt * sizeof(char)))==NULL) {
  436. sprintf(errstr,"INSUFFICIENT MEMORY: vflag store,\n");
  437. return(MEMORY_ERROR);
  438. }
  439. for(n=0;n<dz->application->vflag_cnt;n++)
  440. dz->vflag[n] = FALSE;
  441. return FINISHED;
  442. }
  443. /************************* SETUP_INPUT_PARAM_DEFAULTVALS *************************/
  444. int setup_input_param_defaultval_stores(int tipc,aplptr ap)
  445. {
  446. int n;
  447. if((ap->default_val = (double *)malloc(tipc * sizeof(double)))==NULL) {
  448. sprintf(errstr,"INSUFFICIENT MEMORY for application default values store\n");
  449. return(MEMORY_ERROR);
  450. }
  451. for(n=0;n<tipc;n++)
  452. ap->default_val[n] = 0.0;
  453. return(FINISHED);
  454. }
  455. /***************************** SETUP_AND_INIT_INPUT_PARAM_ACTIVITY **************************/
  456. int setup_and_init_input_param_activity(dataptr dz,int tipc)
  457. {
  458. int n;
  459. if((dz->is_active = (char *)malloc((size_t)tipc))==NULL) {
  460. sprintf(errstr,"setup_and_init_input_param_activity()\n");
  461. return(MEMORY_ERROR);
  462. }
  463. for(n=0;n<tipc;n++)
  464. dz->is_active[n] = (char)0;
  465. return(FINISHED);
  466. }
  467. /************************* SETUP_SORTER_APPLICATION *******************/
  468. int setup_sorter_application(dataptr dz)
  469. {
  470. int exit_status;
  471. aplptr ap;
  472. if((exit_status = establish_application(dz))<0) // GLOBAL
  473. return(FAILED);
  474. ap = dz->application;
  475. // SEE parstruct FOR EXPLANATION of next 2 functions
  476. if(dz->mode == RAND)
  477. exit_status = set_param_data(ap,0 ,2,2,"Di");
  478. else
  479. exit_status = set_param_data(ap,0 ,2,1,"D0");
  480. if(exit_status < 0)
  481. return exit_status;
  482. if((exit_status = set_vflgs(ap,"sopm",4,"dDdd","f",1,0,"0")) < 0)
  483. return(FAILED);
  484. // set_legal_infile_structure -->
  485. dz->has_otherfile = FALSE;
  486. // assign_process_logic -->
  487. dz->input_data_type = SNDFILES_ONLY;
  488. dz->process_type = UNEQUAL_SNDFILE;
  489. dz->outfiletype = SNDFILE_OUT;
  490. return application_init(dz); //GLOBAL
  491. }
  492. /************************* PARSE_INFILE_AND_CHECK_TYPE *******************/
  493. int parse_infile_and_check_type(char **cmdline,dataptr dz)
  494. {
  495. int exit_status;
  496. infileptr infile_info;
  497. if(!sloom) {
  498. if((infile_info = (infileptr)malloc(sizeof(struct filedata)))==NULL) {
  499. sprintf(errstr,"INSUFFICIENT MEMORY for infile structure to test file data.");
  500. return(MEMORY_ERROR);
  501. } else if((exit_status = cdparse(cmdline[0],infile_info))<0) {
  502. sprintf(errstr,"Failed to parse input file %s\n",cmdline[0]);
  503. return(PROGRAM_ERROR);
  504. } else if(infile_info->filetype != SNDFILE) {
  505. sprintf(errstr,"File %s is not of correct type\n",cmdline[0]);
  506. return(DATA_ERROR);
  507. } else if(infile_info->channels != 1) {
  508. sprintf(errstr,"File %s is not of correct type (must be mono)\n",cmdline[0]);
  509. return(DATA_ERROR);
  510. } else if((exit_status = copy_parse_info_to_main_structure(infile_info,dz))<0) {
  511. sprintf(errstr,"Failed to copy file parsing information\n");
  512. return(PROGRAM_ERROR);
  513. }
  514. free(infile_info);
  515. }
  516. return(FINISHED);
  517. }
  518. /************************* SETUP_SORTER_PARAM_RANGES_AND_DEFAULTS *******************/
  519. int setup_sorter_param_ranges_and_defaults(dataptr dz)
  520. {
  521. int exit_status;
  522. aplptr ap = dz->application;
  523. // set_param_ranges()
  524. ap->total_input_param_cnt = (char)(ap->max_param_cnt + ap->option_cnt + ap->variant_param_cnt);
  525. // NB total_input_param_cnt is > 0 !!!
  526. if((exit_status = setup_input_param_range_stores(ap->total_input_param_cnt,ap))<0)
  527. return(FAILED);
  528. // get_param_ranges()
  529. ap->lo[SORTER_SIZE] = 0.0;
  530. ap->hi[SORTER_SIZE] = 2000;
  531. ap->default_val[SORTER_SIZE] = 0;
  532. if(dz->mode == RAND) {
  533. ap->lo[SORTER_SEED] = 0;
  534. ap->hi[SORTER_SEED] = 256;
  535. ap->default_val[SORTER_SEED] = 1;
  536. }
  537. ap->lo[SORTER_SMOOTH] = 0;
  538. ap->hi[SORTER_SMOOTH] = 50;
  539. ap->default_val[SORTER_SMOOTH] = 5;
  540. ap->lo[SORTER_OMIDI] = 0;
  541. ap->hi[SORTER_OMIDI] = 128;
  542. ap->default_val[SORTER_OMIDI] = 0;
  543. ap->lo[SORTER_IMIDI] = 0;
  544. ap->hi[SORTER_IMIDI] = 128;
  545. ap->default_val[SORTER_IMIDI] = 0;
  546. ap->lo[SORTER_META] = 0.0;
  547. ap->hi[SORTER_META] = dz->duration/3.0;
  548. ap->default_val[SORTER_META] = 0.0;
  549. dz->maxmode = 5;
  550. if(!sloom)
  551. put_default_vals_in_all_params(dz);
  552. return(FINISHED);
  553. }
  554. /********************************* PARSE_SLOOM_DATA *********************************/
  555. int parse_sloom_data(int argc,char *argv[],char ***cmdline,int *cmdlinecnt,dataptr dz)
  556. {
  557. int exit_status;
  558. int cnt = 1, infilecnt;
  559. int filesize, insams, inbrksize;
  560. double dummy;
  561. int true_cnt = 0;
  562. aplptr ap;
  563. while(cnt<=PRE_CMDLINE_DATACNT) {
  564. if(cnt > argc) {
  565. sprintf(errstr,"Insufficient data sent from TK\n");
  566. return(DATA_ERROR);
  567. }
  568. switch(cnt) {
  569. case(1):
  570. if(sscanf(argv[cnt],"%d",&dz->process)!=1) {
  571. sprintf(errstr,"Cannot read process no. sent from TK\n");
  572. return(DATA_ERROR);
  573. }
  574. break;
  575. case(2):
  576. if(sscanf(argv[cnt],"%d",&dz->mode)!=1) {
  577. sprintf(errstr,"Cannot read mode no. sent from TK\n");
  578. return(DATA_ERROR);
  579. }
  580. if(dz->mode > 0)
  581. dz->mode--;
  582. //setup_particular_application() =
  583. if((exit_status = setup_sorter_application(dz))<0)
  584. return(exit_status);
  585. ap = dz->application;
  586. break;
  587. case(3):
  588. if(sscanf(argv[cnt],"%d",&infilecnt)!=1) {
  589. sprintf(errstr,"Cannot read infilecnt sent from TK\n");
  590. return(DATA_ERROR);
  591. }
  592. if(infilecnt < 1) {
  593. true_cnt = cnt + 1;
  594. cnt = PRE_CMDLINE_DATACNT; /* force exit from loop after assign_file_data_storage */
  595. }
  596. if((exit_status = assign_file_data_storage(infilecnt,dz))<0)
  597. return(exit_status);
  598. break;
  599. case(INPUT_FILETYPE+4):
  600. if(sscanf(argv[cnt],"%d",&dz->infile->filetype)!=1) {
  601. sprintf(errstr,"Cannot read filetype sent from TK (%s)\n",argv[cnt]);
  602. return(DATA_ERROR);
  603. }
  604. break;
  605. case(INPUT_FILESIZE+4):
  606. if(sscanf(argv[cnt],"%d",&filesize)!=1) {
  607. sprintf(errstr,"Cannot read infilesize sent from TK\n");
  608. return(DATA_ERROR);
  609. }
  610. dz->insams[0] = filesize;
  611. break;
  612. case(INPUT_INSAMS+4):
  613. if(sscanf(argv[cnt],"%d",&insams)!=1) {
  614. sprintf(errstr,"Cannot read insams sent from TK\n");
  615. return(DATA_ERROR);
  616. }
  617. dz->insams[0] = insams;
  618. break;
  619. case(INPUT_SRATE+4):
  620. if(sscanf(argv[cnt],"%d",&dz->infile->srate)!=1) {
  621. sprintf(errstr,"Cannot read srate sent from TK\n");
  622. return(DATA_ERROR);
  623. }
  624. break;
  625. case(INPUT_CHANNELS+4):
  626. if(sscanf(argv[cnt],"%d",&dz->infile->channels)!=1) {
  627. sprintf(errstr,"Cannot read channels sent from TK\n");
  628. return(DATA_ERROR);
  629. }
  630. break;
  631. case(INPUT_STYPE+4):
  632. if(sscanf(argv[cnt],"%d",&dz->infile->stype)!=1) {
  633. sprintf(errstr,"Cannot read stype sent from TK\n");
  634. return(DATA_ERROR);
  635. }
  636. break;
  637. case(INPUT_ORIGSTYPE+4):
  638. if(sscanf(argv[cnt],"%d",&dz->infile->origstype)!=1) {
  639. sprintf(errstr,"Cannot read origstype sent from TK\n");
  640. return(DATA_ERROR);
  641. }
  642. break;
  643. case(INPUT_ORIGRATE+4):
  644. if(sscanf(argv[cnt],"%d",&dz->infile->origrate)!=1) {
  645. sprintf(errstr,"Cannot read origrate sent from TK\n");
  646. return(DATA_ERROR);
  647. }
  648. break;
  649. case(INPUT_MLEN+4):
  650. if(sscanf(argv[cnt],"%d",&dz->infile->Mlen)!=1) {
  651. sprintf(errstr,"Cannot read Mlen sent from TK\n");
  652. return(DATA_ERROR);
  653. }
  654. break;
  655. case(INPUT_DFAC+4):
  656. if(sscanf(argv[cnt],"%d",&dz->infile->Dfac)!=1) {
  657. sprintf(errstr,"Cannot read Dfac sent from TK\n");
  658. return(DATA_ERROR);
  659. }
  660. break;
  661. case(INPUT_ORIGCHANS+4):
  662. if(sscanf(argv[cnt],"%d",&dz->infile->origchans)!=1) {
  663. sprintf(errstr,"Cannot read origchans sent from TK\n");
  664. return(DATA_ERROR);
  665. }
  666. break;
  667. case(INPUT_SPECENVCNT+4):
  668. if(sscanf(argv[cnt],"%d",&dz->infile->specenvcnt)!=1) {
  669. sprintf(errstr,"Cannot read specenvcnt sent from TK\n");
  670. return(DATA_ERROR);
  671. }
  672. dz->specenvcnt = dz->infile->specenvcnt;
  673. break;
  674. case(INPUT_WANTED+4):
  675. if(sscanf(argv[cnt],"%d",&dz->wanted)!=1) {
  676. sprintf(errstr,"Cannot read wanted sent from TK\n");
  677. return(DATA_ERROR);
  678. }
  679. break;
  680. case(INPUT_WLENGTH+4):
  681. if(sscanf(argv[cnt],"%d",&dz->wlength)!=1) {
  682. sprintf(errstr,"Cannot read wlength sent from TK\n");
  683. return(DATA_ERROR);
  684. }
  685. break;
  686. case(INPUT_OUT_CHANS+4):
  687. if(sscanf(argv[cnt],"%d",&dz->out_chans)!=1) {
  688. sprintf(errstr,"Cannot read out_chans sent from TK\n");
  689. return(DATA_ERROR);
  690. }
  691. break;
  692. /* RWD these chanegs to samps - tk will have to deal with that! */
  693. case(INPUT_DESCRIPTOR_BYTES+4):
  694. if(sscanf(argv[cnt],"%d",&dz->descriptor_samps)!=1) {
  695. sprintf(errstr,"Cannot read descriptor_samps sent from TK\n");
  696. return(DATA_ERROR);
  697. }
  698. break;
  699. case(INPUT_IS_TRANSPOS+4):
  700. if(sscanf(argv[cnt],"%d",&dz->is_transpos)!=1) {
  701. sprintf(errstr,"Cannot read is_transpos sent from TK\n");
  702. return(DATA_ERROR);
  703. }
  704. break;
  705. case(INPUT_COULD_BE_TRANSPOS+4):
  706. if(sscanf(argv[cnt],"%d",&dz->could_be_transpos)!=1) {
  707. sprintf(errstr,"Cannot read could_be_transpos sent from TK\n");
  708. return(DATA_ERROR);
  709. }
  710. break;
  711. case(INPUT_COULD_BE_PITCH+4):
  712. if(sscanf(argv[cnt],"%d",&dz->could_be_pitch)!=1) {
  713. sprintf(errstr,"Cannot read could_be_pitch sent from TK\n");
  714. return(DATA_ERROR);
  715. }
  716. break;
  717. case(INPUT_DIFFERENT_SRATES+4):
  718. if(sscanf(argv[cnt],"%d",&dz->different_srates)!=1) {
  719. sprintf(errstr,"Cannot read different_srates sent from TK\n");
  720. return(DATA_ERROR);
  721. }
  722. break;
  723. case(INPUT_DUPLICATE_SNDS+4):
  724. if(sscanf(argv[cnt],"%d",&dz->duplicate_snds)!=1) {
  725. sprintf(errstr,"Cannot read duplicate_snds sent from TK\n");
  726. return(DATA_ERROR);
  727. }
  728. break;
  729. case(INPUT_BRKSIZE+4):
  730. if(sscanf(argv[cnt],"%d",&inbrksize)!=1) {
  731. sprintf(errstr,"Cannot read brksize sent from TK\n");
  732. return(DATA_ERROR);
  733. }
  734. if(inbrksize > 0) {
  735. switch(dz->input_data_type) {
  736. case(WORDLIST_ONLY):
  737. break;
  738. case(PITCH_AND_PITCH):
  739. case(PITCH_AND_TRANSPOS):
  740. case(TRANSPOS_AND_TRANSPOS):
  741. dz->tempsize = inbrksize;
  742. break;
  743. case(BRKFILES_ONLY):
  744. case(UNRANGED_BRKFILE_ONLY):
  745. case(DB_BRKFILES_ONLY):
  746. case(ALL_FILES):
  747. case(ANY_NUMBER_OF_ANY_FILES):
  748. if(dz->extrabrkno < 0) {
  749. sprintf(errstr,"Storage location number for brktable not established by CDP.\n");
  750. return(DATA_ERROR);
  751. }
  752. if(dz->brksize == NULL) {
  753. sprintf(errstr,"CDP has not established storage space for input brktable.\n");
  754. return(PROGRAM_ERROR);
  755. }
  756. dz->brksize[dz->extrabrkno] = inbrksize;
  757. break;
  758. default:
  759. sprintf(errstr,"TK sent brktablesize > 0 for input_data_type [%d] not using brktables.\n",
  760. dz->input_data_type);
  761. return(PROGRAM_ERROR);
  762. }
  763. break;
  764. }
  765. break;
  766. case(INPUT_NUMSIZE+4):
  767. if(sscanf(argv[cnt],"%d",&dz->numsize)!=1) {
  768. sprintf(errstr,"Cannot read numsize sent from TK\n");
  769. return(DATA_ERROR);
  770. }
  771. break;
  772. case(INPUT_LINECNT+4):
  773. if(sscanf(argv[cnt],"%d",&dz->linecnt)!=1) {
  774. sprintf(errstr,"Cannot read linecnt sent from TK\n");
  775. return(DATA_ERROR);
  776. }
  777. break;
  778. case(INPUT_ALL_WORDS+4):
  779. if(sscanf(argv[cnt],"%d",&dz->all_words)!=1) {
  780. sprintf(errstr,"Cannot read all_words sent from TK\n");
  781. return(DATA_ERROR);
  782. }
  783. break;
  784. case(INPUT_ARATE+4):
  785. if(sscanf(argv[cnt],"%f",&dz->infile->arate)!=1) {
  786. sprintf(errstr,"Cannot read arate sent from TK\n");
  787. return(DATA_ERROR);
  788. }
  789. break;
  790. case(INPUT_FRAMETIME+4):
  791. if(sscanf(argv[cnt],"%lf",&dummy)!=1) {
  792. sprintf(errstr,"Cannot read frametime sent from TK\n");
  793. return(DATA_ERROR);
  794. }
  795. dz->frametime = (float)dummy;
  796. break;
  797. case(INPUT_WINDOW_SIZE+4):
  798. if(sscanf(argv[cnt],"%f",&dz->infile->window_size)!=1) {
  799. sprintf(errstr,"Cannot read window_size sent from TK\n");
  800. return(DATA_ERROR);
  801. }
  802. break;
  803. case(INPUT_NYQUIST+4):
  804. if(sscanf(argv[cnt],"%lf",&dz->nyquist)!=1) {
  805. sprintf(errstr,"Cannot read nyquist sent from TK\n");
  806. return(DATA_ERROR);
  807. }
  808. break;
  809. case(INPUT_DURATION+4):
  810. if(sscanf(argv[cnt],"%lf",&dz->duration)!=1) {
  811. sprintf(errstr,"Cannot read duration sent from TK\n");
  812. return(DATA_ERROR);
  813. }
  814. break;
  815. case(INPUT_MINBRK+4):
  816. if(sscanf(argv[cnt],"%lf",&dz->minbrk)!=1) {
  817. sprintf(errstr,"Cannot read minbrk sent from TK\n");
  818. return(DATA_ERROR);
  819. }
  820. break;
  821. case(INPUT_MAXBRK+4):
  822. if(sscanf(argv[cnt],"%lf",&dz->maxbrk)!=1) {
  823. sprintf(errstr,"Cannot read maxbrk sent from TK\n");
  824. return(DATA_ERROR);
  825. }
  826. break;
  827. case(INPUT_MINNUM+4):
  828. if(sscanf(argv[cnt],"%lf",&dz->minnum)!=1) {
  829. sprintf(errstr,"Cannot read minnum sent from TK\n");
  830. return(DATA_ERROR);
  831. }
  832. break;
  833. case(INPUT_MAXNUM+4):
  834. if(sscanf(argv[cnt],"%lf",&dz->maxnum)!=1) {
  835. sprintf(errstr,"Cannot read maxnum sent from TK\n");
  836. return(DATA_ERROR);
  837. }
  838. break;
  839. default:
  840. sprintf(errstr,"case switch item missing: parse_sloom_data()\n");
  841. return(PROGRAM_ERROR);
  842. }
  843. cnt++;
  844. }
  845. if(cnt!=PRE_CMDLINE_DATACNT+1) {
  846. sprintf(errstr,"Insufficient pre-cmdline params sent from TK\n");
  847. return(DATA_ERROR);
  848. }
  849. if(true_cnt)
  850. cnt = true_cnt;
  851. *cmdlinecnt = 0;
  852. while(cnt < argc) {
  853. if((exit_status = get_tk_cmdline_word(cmdlinecnt,cmdline,argv[cnt]))<0)
  854. return(exit_status);
  855. cnt++;
  856. }
  857. return(FINISHED);
  858. }
  859. /********************************* GET_TK_CMDLINE_WORD *********************************/
  860. int get_tk_cmdline_word(int *cmdlinecnt,char ***cmdline,char *q)
  861. {
  862. if(*cmdlinecnt==0) {
  863. if((*cmdline = (char **)malloc(sizeof(char *)))==NULL) {
  864. sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline array.\n");
  865. return(MEMORY_ERROR);
  866. }
  867. } else {
  868. if((*cmdline = (char **)realloc(*cmdline,((*cmdlinecnt)+1) * sizeof(char *)))==NULL) {
  869. sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline array.\n");
  870. return(MEMORY_ERROR);
  871. }
  872. }
  873. if(((*cmdline)[*cmdlinecnt] = (char *)malloc((strlen(q) + 1) * sizeof(char)))==NULL) {
  874. sprintf(errstr,"INSUFFICIENT MEMORY for TK cmdline item %d.\n",(*cmdlinecnt)+1);
  875. return(MEMORY_ERROR);
  876. }
  877. strcpy((*cmdline)[*cmdlinecnt],q);
  878. (*cmdlinecnt)++;
  879. return(FINISHED);
  880. }
  881. /****************************** ASSIGN_FILE_DATA_STORAGE *********************************/
  882. int assign_file_data_storage(int infilecnt,dataptr dz)
  883. {
  884. int exit_status;
  885. int no_sndfile_system_files = FALSE;
  886. dz->infilecnt = infilecnt;
  887. if((exit_status = allocate_filespace(dz))<0)
  888. return(exit_status);
  889. if(no_sndfile_system_files)
  890. dz->infilecnt = 0;
  891. return(FINISHED);
  892. }
  893. /************************* redundant functions: to ensure libs compile OK *******************/
  894. int assign_process_logic(dataptr dz)
  895. {
  896. return(FINISHED);
  897. }
  898. void set_legal_infile_structure(dataptr dz)
  899. {}
  900. int set_legal_internalparam_structure(int process,int mode,aplptr ap)
  901. {
  902. return(FINISHED);
  903. }
  904. int setup_internal_arrays_and_array_pointers(dataptr dz)
  905. {
  906. return(FINISHED);
  907. }
  908. int establish_bufptrs_and_extra_buffers(dataptr dz)
  909. {
  910. return(FINISHED);
  911. }
  912. int read_special_data(char *str,dataptr dz)
  913. {
  914. return(FINISHED);
  915. }
  916. int inner_loop
  917. (int *peakscore,int *descnt,int *in_start_portion,int *least,int *pitchcnt,int windows_in_buf,dataptr dz)
  918. {
  919. return(FINISHED);
  920. }
  921. int get_process_no(char *prog_identifier_from_cmdline,dataptr dz)
  922. {
  923. return(FINISHED);
  924. }
  925. /******************************** USAGE1 ********************************/
  926. int usage1(void)
  927. {
  928. usage2("sorter");
  929. return(USAGE_ONLY);
  930. }
  931. /**************************** CHECK_SORTER_PARAM_VALIDITY_AND_CONSISTENCY *****************************/
  932. int check_sorter_param_validity_and_consistency(dataptr dz)
  933. {
  934. int exit_status;
  935. int n;
  936. double maxval, minval;
  937. double val, srate = (double)dz->infile->srate;
  938. if(dz->param[SORTER_IMIDI] > 0) {
  939. if(!(dz->vflag[0] && dz->brksize[SORTER_SIZE])) {
  940. sprintf(errstr,"Cannot transpose elements to a given pitch if sizedata is not time-varying frequency.\n");
  941. return DATA_ERROR;
  942. }
  943. }
  944. if(dz->param[SORTER_OMIDI] == 128) {
  945. if(!(dz->vflag[0] && dz->brksize[SORTER_SIZE])) {
  946. sprintf(errstr,"Cannot set output event-rate TO median pitch if sizedata is not time-varying frequency.\n");
  947. return DATA_ERROR;
  948. }
  949. }
  950. if(dz->brksize[SORTER_OMIDI]) {
  951. if((exit_status = get_maxvalue_in_brktable(&maxval,SORTER_OMIDI,dz))<0)
  952. return exit_status;
  953. if(maxval > 127) {
  954. sprintf(errstr,"MIDI values in a brkpnt file for the OUTPUT frequency cannot exceed 127\n");
  955. return DATA_ERROR;
  956. }
  957. for(n=1; n<dz->brksize[SORTER_OMIDI] * 2;n+=2) {// Convert, output MIDI values, to frq, to wavelen in samples
  958. val = miditohz(dz->brk[SORTER_OMIDI][n]); // We do not need the original pitch vales
  959. dz->brk[SORTER_OMIDI][n] = srate/val;
  960. }
  961. } else {
  962. if(dz->param[SORTER_OMIDI] > 127 && dz->param[SORTER_OMIDI] < 128) {
  963. sprintf(errstr,"MIDI values above 127 cannot be used (except 128.0)\n");
  964. return DATA_ERROR;
  965. } // But in this case, do NOT do the preconversion to wavelen
  966. } // as we need midi val when precalculating "ostep" in group_local_minima
  967. if(dz->brksize[SORTER_SIZE]) {
  968. if((exit_status = get_maxvalue_in_brktable(&maxval,SORTER_SIZE,dz))<0)
  969. return exit_status;
  970. if((exit_status = get_minvalue_in_brktable(&minval,SORTER_SIZE,dz))<0)
  971. return exit_status;
  972. if((dz->vflag[0] == 0 && maxval > dz->duration/2) || (dz->vflag[0] == 1 && minval < 2.0/dz->duration)) {
  973. sprintf(errstr,"Elementsize (%.1lf) too big for infile. (If data's frq, set flag).\n",maxval);
  974. return DATA_ERROR;
  975. }
  976. if(dz->vflag[0]) {
  977. if(minval < 2.0/dz->duration) {
  978. sprintf(errstr,"Min frequency (%lf) too low, given the duration of input file.\n",minval);
  979. return DATA_ERROR;
  980. }
  981. for(n=1;n<dz->brksize[SORTER_SIZE] * 2;n+=2)
  982. dz->brk[SORTER_SIZE][n] = 1.0/dz->brk[SORTER_SIZE][n];
  983. } else {
  984. if(maxval > dz->duration/2) {
  985. sprintf(errstr,"Max elementsize (%lf) too large, given the duration of input file.\n",maxval);
  986. return DATA_ERROR;
  987. }
  988. if(minval < 0.001 && minval > 0.0) {
  989. sprintf(errstr,"Min permitted duration for time-varying elementsize = %lf\n",SORTER_MIN_DUR);
  990. return DATA_ERROR;
  991. }
  992. }
  993. } else {
  994. if(dz->vflag[0]) {
  995. if(dz->param[SORTER_SIZE] < 2.0/dz->duration) {
  996. sprintf(errstr,"Freq too low for infile. (If data's duration, unset frq flag).\n");
  997. return DATA_ERROR;
  998. }
  999. dz->param[SORTER_SIZE] = 1.0/dz->param[SORTER_SIZE];
  1000. } else {
  1001. if(dz->param[SORTER_SIZE] < 0.001 && dz->param[SORTER_SIZE] > 0.0) {
  1002. sprintf(errstr,"Minimum (non-zero) duration for elementsize = %lf\n",SORTER_MIN_DUR);
  1003. return DATA_ERROR;
  1004. } else if(dz->param[SORTER_SIZE] > dz->duration/2) {
  1005. sprintf(errstr,"Elementsize too big for infile. (If meant to be frq, set flag).\n");
  1006. return DATA_ERROR;
  1007. }
  1008. }
  1009. }
  1010. if(dz->param[SORTER_META] > 0.0) {
  1011. if(!dz->vflag[0]) {
  1012. sprintf(errstr,"Cannot set meta-group size if Frequency Flag is not set.\n");
  1013. return DATA_ERROR;
  1014. }
  1015. if(dz->param[SORTER_IMIDI] == 0) {
  1016. sprintf(errstr,"No point in setting meta-group count if pitch is not to be altered.\n");
  1017. return DATA_ERROR;
  1018. }
  1019. for(n=1;n<dz->brksize[SORTER_SIZE] * 2;n+=2) {
  1020. if(dz->brk[SORTER_SIZE][n] >= dz->param[SORTER_META]) {
  1021. sprintf(errstr,"Larger gp (%.3lf) too small to accomodate element (%.3lf) from frq %.1lf\n",
  1022. dz->param[SORTER_META],dz->brk[SORTER_SIZE][n],1.0/dz->brk[SORTER_SIZE][n]);
  1023. return DATA_ERROR;
  1024. }
  1025. }
  1026. }
  1027. return FINISHED;
  1028. }
  1029. /********************************************************************************************/
  1030. int get_the_process_no(char *prog_identifier_from_cmdline,dataptr dz)
  1031. {
  1032. if(!strcmp(prog_identifier_from_cmdline,"sorter")) dz->process = SORTER;
  1033. else {
  1034. sprintf(errstr,"Unknown program identification string '%s'\n",prog_identifier_from_cmdline);
  1035. return(USAGE_ONLY);
  1036. }
  1037. return(FINISHED);
  1038. }
  1039. /******************************** SETUP_AND_INIT_INPUT_BRKTABLE_CONSTANTS ********************************/
  1040. int setup_and_init_input_brktable_constants(dataptr dz,int brkcnt)
  1041. {
  1042. int n;
  1043. if((dz->brk = (double **)malloc(brkcnt * sizeof(double *)))==NULL) {
  1044. sprintf(errstr,"setup_and_init_input_brktable_constants(): 1\n");
  1045. return(MEMORY_ERROR);
  1046. }
  1047. if((dz->brkptr = (double **)malloc(brkcnt * sizeof(double *)))==NULL) {
  1048. sprintf(errstr,"setup_and_init_input_brktable_constants(): 6\n");
  1049. return(MEMORY_ERROR);
  1050. }
  1051. if((dz->brksize = (int *)malloc(brkcnt * sizeof(int)))==NULL) {
  1052. sprintf(errstr,"setup_and_init_input_brktable_constants(): 2\n");
  1053. return(MEMORY_ERROR);
  1054. }
  1055. if((dz->firstval = (double *)malloc(brkcnt * sizeof(double)))==NULL) {
  1056. sprintf(errstr,"setup_and_init_input_brktable_constants(): 3\n");
  1057. return(MEMORY_ERROR);
  1058. }
  1059. if((dz->lastind = (double *)malloc(brkcnt * sizeof(double)))==NULL) {
  1060. sprintf(errstr,"setup_and_init_input_brktable_constants(): 4\n");
  1061. return(MEMORY_ERROR);
  1062. }
  1063. if((dz->lastval = (double *)malloc(brkcnt * sizeof(double)))==NULL) {
  1064. sprintf(errstr,"setup_and_init_input_brktable_constants(): 5\n");
  1065. return(MEMORY_ERROR);
  1066. }
  1067. if((dz->brkinit = (int *)malloc(brkcnt * sizeof(int)))==NULL) {
  1068. sprintf(errstr,"setup_and_init_input_brktable_constants(): 7\n");
  1069. return(MEMORY_ERROR);
  1070. }
  1071. for(n=0;n<brkcnt;n++) {
  1072. dz->brk[n] = NULL;
  1073. dz->brkptr[n] = NULL;
  1074. dz->brkinit[n] = 0;
  1075. dz->brksize[n] = 0;
  1076. }
  1077. return(FINISHED);
  1078. }
  1079. /******************************** USAGE2 ********************************/
  1080. int usage2(char *str)
  1081. {
  1082. if(!strcmp(str,"sorter")) {
  1083. fprintf(stderr,
  1084. "USAGE:\n"
  1085. "sorter sorter 1-4 inf outf esiz [-ssmooth] [-oopch] [-ppch] [-mmeta] [-f]\n"
  1086. "sorter sorter 5 inf outf esiz seed [-ssmooth] [-oopch] [-ppch] [-mmeta] [-f]\n"
  1087. "\n"
  1088. "Chops mono source into elements then reorganises by loudness, or duration.\n"
  1089. "\n"
  1090. "ESIZ Approximate size of elements to sort, in seconds.\n"
  1091. " If set to zero, individual wavesets are chosen as elements.\n"
  1092. "SMOOTH Fade in (and out) each segment, with a \"SMOOTH\" mS splice.\n"
  1093. " (If elementsize is zero, this is ignored).\n"
  1094. "SEED Mode 5 (\"Order at Random\"): Rerun with same non-zero seed value\n"
  1095. " outputs the SAME random ordering of elements.\n"
  1096. " (Zero seed-value gives different random ordering on each run).\n"
  1097. "OPCH Output elements with separation equivalent to MIDI pitch,\"OPCH\".\n"
  1098. " If \"-f\" flag used, value can be set to 128 to specify\n"
  1099. " the median pitch of the source.\n"
  1100. " If value is set to zero, parameter is ignored.\n"
  1101. "\n"
  1102. "-f Elementsize read as frq value (= 1.0/duration)\n"
  1103. " and could be a frequency-trace of the pitch of the source.\n"
  1104. "\n"
  1105. "The following parameters can only be used if \"-f\" flag is set.\n"
  1106. "\n"
  1107. "PCH Transpose input elements to MIDI pitch specified.\n"
  1108. " If value set to 128, the median pitch of the source is used.\n"
  1109. " If value is set to zero, parameter is ignored.\n"
  1110. "\n"
  1111. "The following parameter is only useful if \"PCH\" is set.\n"
  1112. "\n"
  1113. "METAGRP Size of meta-grouping, in seconds.\n"
  1114. " Allows larger units to be (approx) pitch-correlated.\n"
  1115. " Src 1st cut to pitch-wavelen-scale elements & transpositions calcd.\n"
  1116. " These elements are then further grouped to (approx) \"METAGRP\" size.\n"
  1117. " Must be larger than largest element (1/frq) from frq trace.\n"
  1118. " If \"METAGRP\" set to zero, it is ignored.\n"
  1119. "\n"
  1120. "If \"PCH\" is NOT set, larger groupings obtained by larger value of \"ESIZ\".\n"
  1121. "\n"
  1122. "Mode 1: Sort to Crescendo.\n"
  1123. "Mode 2: Sort to Decrescendo.\n"
  1124. "Mode 3: Sort to Accelerando. (With very small elements, may rise in pitch).\n"
  1125. "Mode 4: Sort to Ritardando. (With very small elements, may fall in pitch).\n"
  1126. "Mode 5: Order at Random.\n"
  1127. "\n");
  1128. } else
  1129. fprintf(stdout,"Unknown option '%s'\n",str);
  1130. return(USAGE_ONLY);
  1131. }
  1132. int usage3(char *str1,char *str2)
  1133. {
  1134. fprintf(stderr,"Insufficient parameters on command line.\n");
  1135. return(USAGE_ONLY);
  1136. }
  1137. /****************************** GET_MODE *********************************/
  1138. int get_the_mode_from_cmdline(char *str,dataptr dz)
  1139. {
  1140. char temp[200], *p;
  1141. if(sscanf(str,"%s",temp)!=1) {
  1142. sprintf(errstr,"Cannot read mode of program.\n");
  1143. return(USAGE_ONLY);
  1144. }
  1145. p = temp + strlen(temp) - 1;
  1146. while(p >= temp) {
  1147. if(!isdigit(*p)) {
  1148. fprintf(stderr,"Invalid mode of program entered.\n");
  1149. return(USAGE_ONLY);
  1150. }
  1151. p--;
  1152. }
  1153. if(sscanf(str,"%d",&dz->mode)!=1) {
  1154. fprintf(stderr,"Cannot read mode of program.\n");
  1155. return(USAGE_ONLY);
  1156. }
  1157. if(dz->mode <= 0 || dz->mode > dz->maxmode) {
  1158. fprintf(stderr,"Program mode value [%d] is out of range [1 - %d].\n",dz->mode,dz->maxmode);
  1159. return(USAGE_ONLY);
  1160. }
  1161. dz->mode--; /* CHANGE TO INTERNAL REPRESENTATION OF MODE NO */
  1162. return(FINISHED);
  1163. }
  1164. /****************************** DO_SORTER *********************************/
  1165. int do_sorter(dataptr dz)
  1166. {
  1167. int exit_status;
  1168. int peakcnt = 0, local_minima_cnt = 0, group_cnt = 0, ostep = 0;
  1169. int bigbufsize, bigbufsize2, maxlen, n, *len;
  1170. double *incr;
  1171. /* FIND ALL POSITIVE-GOING-HALF-CYCLE PEAKS */
  1172. if(dz->mode == RAND && dz->iparam[SORTER_SEED] > 0)
  1173. srand(dz->iparam[SORTER_SEED]); // Initialise randomisation
  1174. if((exit_status = find_all_positive_peaks(&peakcnt,dz)) < 0)
  1175. return(exit_status);
  1176. /* FIND MINIMA AMONGST POSITIVE-PEAKS : overwriting the arrays peak-vals & peak-position with minima-vals & minima-positions */
  1177. if(dz->brksize[SORTER_SIZE] || (dz->param[SORTER_SIZE] > 0.0)) {
  1178. local_minima_cnt = 0;
  1179. if((exit_status = find_all_local_minima(peakcnt,&local_minima_cnt,dz)) < 0)
  1180. return(exit_status);
  1181. /* GROUP THE MINIMA ACCORDING TO SPECIFIED WINDOW LENGTH */
  1182. if((exit_status = group_local_minima(local_minima_cnt,&group_cnt,&ostep,dz))<0)
  1183. return exit_status;
  1184. } else
  1185. group_cnt = peakcnt;
  1186. /* SEARCH FOR ZERO CROSSINGS AFTER MINIMA */
  1187. if((exit_status = locate_zero_crossings(group_cnt,dz)) < 0)
  1188. return (exit_status);
  1189. if(dz->param[SORTER_META] > 0.0) {
  1190. /* SAVE THE ORIGINAL SEGMENT POSITIONS AND INCREMENTS */
  1191. if((dz->parray[ORIGINCRS] = (double *)malloc((group_cnt+1) * sizeof(double)))==NULL) {
  1192. sprintf(errstr,"INSUFFICIENT MEMORY to bakup original input-read incrs.\n");
  1193. return(MEMORY_ERROR);
  1194. }
  1195. dz->parray[ORIGINCRS][group_cnt] = 0.0;
  1196. if((dz->lparray[ORIGPOS] = (int *)malloc((group_cnt+1) * sizeof(int)))==NULL) {
  1197. sprintf(errstr,"INSUFFICIENT MEMORY to bakup original segment positions.\n");
  1198. return(MEMORY_ERROR);
  1199. }
  1200. dz->lparray[ORIGPOS][group_cnt] = 0;
  1201. memcpy((char *)dz->parray[ORIGINCRS],(char *)dz->parray[INCRS],group_cnt * sizeof(double));
  1202. memcpy((char *)dz->lparray[ORIGPOS],(char *)dz->lparray[POS],group_cnt * sizeof(int));
  1203. /* FIND THE LARGER ELEMENT-GROUPINGS, AVERAGE THE INCR-VALS APPLYING TO THE ORIGINAL (SMALLER) ELEMENTS THEY CONTAIN */
  1204. if((exit_status = larger_grouping(&group_cnt,dz))<0)
  1205. return exit_status;
  1206. }
  1207. dz->buflen2 = dz->buflen; // If output segments are to be overlapped (in which case we need an overflow buffer to accomnodate largest poss seg)
  1208. // Check maximum size of output segments and IF NESS, make sound buffers bigger
  1209. if(dz->brksize[SORTER_OMIDI] || (dz->param[SORTER_OMIDI] > 0)) {
  1210. maxlen = 0;
  1211. len = dz->lparray[LEN];
  1212. if(dz->param[SORTER_IMIDI] > 0) {
  1213. incr = dz->parray[INCRS];
  1214. for(n=0;n<group_cnt;n++)
  1215. maxlen = max(maxlen,(int)ceil((double)len[n]/incr[n]));
  1216. } else {
  1217. for(n=0;n<group_cnt;n++)
  1218. maxlen = max(maxlen,len[n]);
  1219. }
  1220. maxlen += 64; // SAFETY
  1221. maxlen = ((maxlen/F_SECSIZE) + 1) * F_SECSIZE;
  1222. if(dz->buflen < maxlen)
  1223. dz->buflen2 = maxlen;
  1224. }
  1225. // MAKE THE OUTPUT SOUND BUFFERS
  1226. bigbufsize = dz->buflen * sizeof(float);
  1227. bigbufsize2 = dz->buflen2 * sizeof(float);
  1228. free(dz->bigbuf); // inbufs outbufs
  1229. if((dz->bigbuf = (float *)malloc((bigbufsize + bigbufsize2) * 2)) == NULL) {
  1230. sprintf(errstr,"INSUFFICIENT MEMORY to create larger sound buffers for output writes.\n");
  1231. return(PROGRAM_ERROR);
  1232. }
  1233. for(n=0;n<3;n++)
  1234. dz->sbufptr[n] = dz->sampbuf[n] = dz->bigbuf + (dz->buflen * n);
  1235. dz->sbufptr[3] = dz->sampbuf[3] = dz->sampbuf[2] + dz->buflen2;
  1236. if(dz->mode == CRESC || dz->mode == DECRESC) {
  1237. if((exit_status = find_levels(group_cnt,dz))<0)
  1238. return exit_status;
  1239. }
  1240. group_cnt--; /* There are N slicing points for groupsegs, and therefore N-1 groupsegs */
  1241. if((exit_status = do_sorted_output(group_cnt,ostep,dz))<0)
  1242. return exit_status;
  1243. return FINISHED;
  1244. }
  1245. /****************************** FIND_ALL_POSITIVE_PEAKS ***********************************/
  1246. int find_all_positive_peaks(int *peakcnt,dataptr dz)
  1247. {
  1248. int exit_status;
  1249. double *peak, thispeak;
  1250. int *pos, poscnt = 0;
  1251. float *ibuf = dz->sampbuf[0];
  1252. int thissamp = 0, thispos = 0, bufpos = 0;
  1253. fprintf(stdout,"INFO: Finding positive peaks.\n");
  1254. fflush(stdout);
  1255. if((exit_status = read_samps(ibuf,dz))<0)
  1256. return(exit_status);
  1257. while(ibuf[bufpos] <= 0) { /* skip values below zero */
  1258. if(++thissamp >= dz->insams[0]) {
  1259. sprintf(errstr,"Cannot locate any (+ve) peaks in the signal.\n");
  1260. return(DATA_ERROR);
  1261. }
  1262. if(++bufpos >= dz->buflen) {
  1263. if((exit_status = read_samps(ibuf,dz))<0)
  1264. return(exit_status);
  1265. bufpos = 0;
  1266. }
  1267. }
  1268. while(thissamp < dz->insams[0]) {
  1269. while(ibuf[bufpos] >= 0.0) {
  1270. if(++thissamp >= dz->insams[0])
  1271. break;
  1272. if(++bufpos >= dz->buflen) {
  1273. if((exit_status = read_samps(ibuf,dz))<0)
  1274. return(exit_status);
  1275. bufpos = 0;
  1276. }
  1277. }
  1278. poscnt++; // poscnt counts the number of positive 1/2 cycles in the signal
  1279. while(ibuf[bufpos] < 0) { // then skip over -ve part of signal
  1280. if(++thissamp >= dz->insams[0])
  1281. break;
  1282. if(++bufpos >= dz->buflen) {
  1283. if((exit_status = read_samps(ibuf,dz))<0)
  1284. return(exit_status);
  1285. bufpos = 0;
  1286. }
  1287. }
  1288. }
  1289. poscnt += 16; // SAFETY
  1290. if((dz->parray = (double **)malloc(4 * sizeof(double *)))==NULL) {
  1291. sprintf(errstr,"INSUFFICIENT MEMORY to create double data storage.\n");
  1292. return(MEMORY_ERROR);
  1293. }
  1294. if((dz->parray[PEAKS] = (double *)malloc((poscnt+1) * sizeof(double)))==NULL) {
  1295. sprintf(errstr,"INSUFFICIENT MEMORY to create peak-data storage.\n");
  1296. return(MEMORY_ERROR);
  1297. }
  1298. dz->parray[PEAKS][poscnt] = 0.0;
  1299. if((dz->lparray = (int **)malloc(3 * sizeof(int *)))==NULL) {
  1300. sprintf(errstr,"INSUFFICIENT MEMORY to create int storage.\n");
  1301. return(MEMORY_ERROR);
  1302. }
  1303. if((dz->lparray[POS] = (int *)malloc((poscnt+1) * sizeof(int)))==NULL) {
  1304. sprintf(errstr,"INSUFFICIENT MEMORY to create minima-time-data storage. (2)\n");
  1305. return(MEMORY_ERROR);
  1306. }
  1307. dz->lparray[POS][poscnt] = 0;
  1308. peak = dz->parray[PEAKS];
  1309. pos = dz->lparray[POS];
  1310. *peak++ = 0; /* Store a zero value at start of peaks */
  1311. *pos++ = 0; /* this becmoes the first local minimum */
  1312. sndseekEx(dz->ifd[0],0,0);
  1313. thissamp = 0;
  1314. bufpos = 0;
  1315. thispeak = -1.0;
  1316. while(ibuf[bufpos] <= 0) { /* skip values below zero */
  1317. thissamp++;
  1318. if(++bufpos >= dz->buflen) {
  1319. if((exit_status = read_samps(ibuf,dz))<0)
  1320. return(exit_status);
  1321. bufpos = 0;
  1322. }
  1323. }
  1324. while(thissamp < dz->insams[0]) {
  1325. if(ibuf[bufpos] >= 0.0) {
  1326. if(ibuf[bufpos] > thispeak) { /* search for (positive) peak val */
  1327. thispeak = ibuf[bufpos];
  1328. thispos = thissamp;
  1329. }
  1330. } else {
  1331. peak[*peakcnt] = thispeak; /* once signal becomes -ve, store last found peak */
  1332. pos[*peakcnt] = thispos;
  1333. (*peakcnt)++;
  1334. while(ibuf[bufpos] < 0) { /* then skip over -ve part of signal */
  1335. if(++thissamp >= dz->insams[0])
  1336. break;
  1337. if(++bufpos >= dz->buflen) {
  1338. if((exit_status = read_samps(ibuf,dz))<0)
  1339. return(exit_status);
  1340. bufpos = 0;
  1341. }
  1342. }
  1343. thispeak = ibuf[bufpos]; /* once signal is +ve again, set up an initial value for peak */
  1344. thispos = thissamp;
  1345. }
  1346. thissamp++;
  1347. if(++bufpos >= dz->buflen) {
  1348. if((exit_status = read_samps(ibuf,dz))<0)
  1349. return(exit_status);
  1350. bufpos = 0;
  1351. }
  1352. }
  1353. if(*peakcnt > 0) { /* check for peak found near end, before signal goes -ve once more */
  1354. if((thispos != pos[(*peakcnt)-1]) && (thispeak > 0.0)) {
  1355. peak[*peakcnt] = thispeak;
  1356. pos[*peakcnt] = thispos;
  1357. (*peakcnt)++;
  1358. }
  1359. }
  1360. if(*peakcnt < 4) {
  1361. sprintf(errstr,"Insufficient signal peaks found to search for loudness elements.\n");
  1362. return(DATA_ERROR);
  1363. }
  1364. return(FINISHED);
  1365. }
  1366. /****************************** FIND_ALL_LOCAL_MINIMA ***********************************/
  1367. int find_all_local_minima(int peakcnt,int *local_minima_cnt,dataptr dz)
  1368. {
  1369. int thispeak;
  1370. double *peak = dz->parray[PEAKS];
  1371. int *pos = dz->lparray[POS];
  1372. int finished = 0;
  1373. fprintf(stdout,"INFO: Finding local minima.\n");
  1374. fflush(stdout);
  1375. *local_minima_cnt = 1;
  1376. thispeak = 2;
  1377. while(thispeak < peakcnt) {
  1378. while(peak[thispeak] <= peak[thispeak-1]) { /* while peaks are falling, look for local peak minimum */
  1379. if(++thispeak >= peakcnt) {
  1380. finished = 1;
  1381. break;
  1382. }
  1383. }
  1384. if(finished)
  1385. break;
  1386. peak[*local_minima_cnt] = peak[thispeak-1]; /* store value and position of local mimimum */
  1387. pos[*local_minima_cnt] = pos[thispeak-1];
  1388. (*local_minima_cnt)++;
  1389. while(peak[thispeak] >= peak[thispeak-1]) { /* skip over rising sequence of peaks */
  1390. if(++thispeak >= peakcnt) {
  1391. break;
  1392. }
  1393. }
  1394. }
  1395. if(*local_minima_cnt < 3) {
  1396. sprintf(errstr,"Insufficient local minima found.\n");
  1397. return(DATA_ERROR);
  1398. }
  1399. return(FINISHED);
  1400. }
  1401. /****************************** GROUP_LOCAL_MINIMA ***********************************
  1402. *
  1403. * element_dur is average length of element searched for, in samples
  1404. */
  1405. int group_local_minima(int local_minima_cnt,int *group_cnt,int *ostep,dataptr dz)
  1406. {
  1407. int exit_status;
  1408. int thisminimum, element_dur, lo_element_dur, hi_element_dur, startpos, sampdur, minpos = 0;
  1409. double *minimum = dz->parray[MINIMA], *incr = NULL, median_frq = 0, minmin, thistime = 0.0, srate = (double)dz->infile->srate;
  1410. double o_median_frq = 0;
  1411. int *pos = dz->lparray[POS];
  1412. if(dz->param[SORTER_IMIDI] > 0) { // If transposing the elements, need to find median pitch & store their original pitches
  1413. if((exit_status = get_median_pitch(dz->param[SORTER_IMIDI],&median_frq,dz))<0)
  1414. return exit_status;
  1415. if((dz->parray[INCRS] = (double *)malloc((local_minima_cnt+1) * sizeof(double)))==NULL) {
  1416. sprintf(errstr,"INSUFFICIENT MEMORY to create peak-data storage.\n");
  1417. return(MEMORY_ERROR);
  1418. }
  1419. dz->parray[INCRS][local_minima_cnt] = 0.0;
  1420. incr = dz->parray[INCRS];
  1421. }
  1422. if(!dz->brksize[SORTER_OMIDI] && (dz->param[SORTER_OMIDI] > 0)) { // If setting repaet rate of output events to a single frq
  1423. if((dz->param[SORTER_OMIDI] == 128) && (dz->param[SORTER_OMIDI] == 128))
  1424. *ostep = (int)round(srate/median_frq); // If setting to input-median, and median frq already known, use it
  1425. else { // else, calculate median, or any other SINGLE pitch being used for output.
  1426. if((exit_status = get_median_pitch(dz->param[SORTER_OMIDI],&o_median_frq,dz))<0)
  1427. return exit_status;
  1428. *ostep = (int)round(srate/o_median_frq);
  1429. }
  1430. }
  1431. fprintf(stdout,"INFO: Grouping minima.\n");
  1432. fflush(stdout);
  1433. if(dz->brksize[SORTER_SIZE]) {
  1434. if((exit_status = read_value_from_brktable(0,SORTER_SIZE,dz))<0)
  1435. return exit_status;
  1436. if(dz->param[SORTER_IMIDI] > 0)
  1437. incr[0] = median_frq * dz->param[SORTER_SIZE]; // Transpostion = mew_frq/orig_frq = new_frq/(1.0/wavelen) = new_frq * wavelen
  1438. }
  1439. element_dur = (int)round(dz->param[SORTER_SIZE] * srate);
  1440. lo_element_dur = (int)round((double)element_dur * TWO_THIRDS);
  1441. hi_element_dur = element_dur + (element_dur/2);
  1442. *group_cnt = 1;
  1443. thisminimum = 1;
  1444. startpos = pos[0];
  1445. while(thisminimum < local_minima_cnt) { // Go through all the minima looking for a set of minima falling between the specified time-
  1446. minmin = 2.0; // Set an impossible value for the minum of these minima(!)
  1447. sampdur = pos[thisminimum] - startpos; // How far is the this minimum from start of group of minima?
  1448. if( sampdur <= lo_element_dur) // If below required range, ignore and go to next minimum
  1449. ;
  1450. else if (sampdur < hi_element_dur) { // If within range, is this lower than any other minimum found so far within range
  1451. if(minimum[thisminimum] < minmin) {
  1452. minmin = minimum[thisminimum];
  1453. minpos = pos[thisminimum]; // IF so remember its value and position
  1454. }
  1455. } else { // Otherwise we've exceeded the searchrange.
  1456. if(minmin == 2.0) { // If no minimum found within range: use minimum we're at now
  1457. minmin = minimum[thisminimum];
  1458. minpos = pos[thisminimum];
  1459. } // Write end of grouped-minima back into minima array (overwriting original values)
  1460. minimum[*group_cnt] = minmin;
  1461. pos[*group_cnt] = minpos; // and advance in count of gp-minima
  1462. startpos = minpos;
  1463. if(dz->brksize[SORTER_SIZE]) {
  1464. thistime = (double)startpos/srate;
  1465. if((exit_status = read_value_from_brktable(thistime,SORTER_SIZE,dz))<0)
  1466. return exit_status;
  1467. if(dz->param[SORTER_IMIDI] > 0)
  1468. incr[*group_cnt] = median_frq * dz->param[SORTER_SIZE];
  1469. element_dur = (int)round(dz->param[SORTER_SIZE] * srate);
  1470. lo_element_dur = (int)round((double)element_dur * TWO_THIRDS);
  1471. hi_element_dur = element_dur + (element_dur/2);
  1472. }
  1473. (*group_cnt)++;
  1474. }
  1475. thisminimum++;
  1476. }
  1477. if(*group_cnt < 1) {
  1478. sprintf(errstr,"Insufficient sortable elements found.\n");
  1479. return(DATA_ERROR);
  1480. }
  1481. return(FINISHED);
  1482. }
  1483. /****************************** LOCATE_ZERO_CROSSINGS ***********************************/
  1484. int locate_zero_crossings(int group_cnt,dataptr dz)
  1485. {
  1486. int exit_status, finished = 0, bufno, thisbuf, bufpos;
  1487. int n, *len;
  1488. float *ibuf = dz->sampbuf[0];
  1489. double *trof = dz->parray[MINIMA];
  1490. int *pos = dz->lparray[POS];
  1491. fprintf(stdout,"INFO: Finding zero-crossings.\n");
  1492. fflush(stdout);
  1493. sndseekEx(dz->ifd[0],0,0);
  1494. if((exit_status = read_samps(ibuf,dz))<0)
  1495. return(exit_status);
  1496. bufno = 0;
  1497. if((dz->lparray[LEN] = (int *)malloc((group_cnt+1) * sizeof(int)))==NULL) {
  1498. sprintf(errstr,"INSUFFICIENT MEMORY to create element level storage.\n");
  1499. return(MEMORY_ERROR);
  1500. }
  1501. dz->lparray[LEN][group_cnt] = 0;
  1502. len = dz->lparray[LEN];
  1503. for(n=1;n<group_cnt;n++) {
  1504. bufpos = pos[n];
  1505. thisbuf = bufpos/dz->buflen;
  1506. while(thisbuf > bufno) {
  1507. if((exit_status = read_samps(ibuf,dz))<0)
  1508. return(exit_status);
  1509. bufno++;
  1510. }
  1511. bufpos %= dz->buflen;
  1512. while (trof[n] >= 0.0) { /* advance position from minimum +ve peak until value crosses zero */
  1513. pos[n]++;
  1514. if(pos[n] >= dz->insams[0]) {
  1515. finished = 1;
  1516. if(trof[n] > 0.0) { /* if end of file does not go to zero, Warn */
  1517. fprintf(stdout,"WARNING: End_of_sound segment doesn't fall to zero level, & may cause clicks in output. (Dovetail end of sound?)\n");
  1518. fflush(stdout);
  1519. }
  1520. break;
  1521. }
  1522. bufpos++;
  1523. if(bufpos >= dz->buflen) {
  1524. if((exit_status = read_samps(ibuf,dz))<0)
  1525. return(exit_status);
  1526. bufno++;
  1527. bufpos -= dz->buflen;
  1528. }
  1529. trof[n] = ibuf[bufpos];
  1530. }
  1531. len[n-1] = pos[n] - pos[n-1]; /* Store lengths of cut segments */
  1532. if(finished)
  1533. break;
  1534. }
  1535. return(FINISHED);
  1536. }
  1537. /****************************** FIND_LEVELS ***********************************/
  1538. int find_levels(int group_cnt,dataptr dz)
  1539. {
  1540. int exit_status;
  1541. int n, samppos, bufpos;
  1542. float *ibuf = dz->sampbuf[0];
  1543. double *level, maxsamp;
  1544. int *pos = dz->lparray[POS];
  1545. fprintf(stdout,"INFO: Finding loudness of elements.\n");
  1546. fflush(stdout);
  1547. if((dz->parray[LEVELS] = (double *)malloc((group_cnt+1) * sizeof(double)))==NULL) {
  1548. sprintf(errstr,"INSUFFICIENT MEMORY to create element level storage.\n");
  1549. return(MEMORY_ERROR);
  1550. }
  1551. dz->parray[LEVELS][group_cnt] = 0.0;
  1552. level = dz->parray[LEVELS];
  1553. sndseekEx(dz->ifd[0],0,0);
  1554. if((exit_status = read_samps(ibuf,dz))<0)
  1555. return(exit_status);
  1556. samppos = pos[0];
  1557. bufpos = samppos;
  1558. while(bufpos >= dz->buflen) {
  1559. if((exit_status = read_samps(ibuf,dz))<0)
  1560. return(exit_status);
  1561. bufpos -= dz->buflen;
  1562. }
  1563. for(n=1;n<group_cnt;n++) {
  1564. maxsamp = -2.0;
  1565. while(samppos < pos[n]) {
  1566. if(fabs(ibuf[bufpos]) > maxsamp)
  1567. maxsamp = fabs(ibuf[bufpos]);
  1568. if(++samppos >= dz->insams[0]) {
  1569. sprintf(errstr,"ERROR IN READING BUFFERS.\n");
  1570. return PROGRAM_ERROR;
  1571. }
  1572. if(++bufpos >= dz->buflen) {
  1573. if((exit_status = read_samps(ibuf,dz))<0)
  1574. return(exit_status);
  1575. bufpos = 0;
  1576. }
  1577. }
  1578. *level = maxsamp;
  1579. level++;
  1580. }
  1581. return(FINISHED);
  1582. }
  1583. /****************************** DO_SORTED_OUTPUT ***********************************/
  1584. int do_sorted_output(int group_cnt,int ostep,dataptr dz)
  1585. {
  1586. int exit_status, *permm = NULL;
  1587. int outcontrol = 0, passno;
  1588. float *ibuf = dz->sampbuf[0], *i_readbuf = dz->sampbuf[0], *i_ovflwbuf = dz->sampbuf[1], *obuf = dz->sampbuf[2], *o_ovflwbuf = dz->sampbuf[3];
  1589. double *level = dz->parray[LEVELS];
  1590. int *pos = dz->lparray[POS];
  1591. int *len = dz->lparray[LEN];
  1592. double *incr = dz->parray[INCRS];
  1593. int n, m, k, kk, stemp, outcnt, outend, obufpos = 0, ibufpos = 0, smooth = 0, maxsplice, bufswritten;
  1594. int maxwrite = 0;
  1595. int obufstart;
  1596. double temp, minval, val, srate = (double)dz->infile->srate;
  1597. double dibufpos, dibufend, splval = 0.0, diff, frac;
  1598. double thistime;
  1599. double normaliser, maxsamp;
  1600. if(dz->brksize[SORTER_OMIDI]) // If brkpoint file controls outmidi pitch, flag that we must READ the "ostep" between output writes
  1601. outcontrol = 1; // (if ostep controlled byt a dingle param, it has already been set)
  1602. if((!dz->brksize[SORTER_SIZE] && (dz->param[SORTER_SIZE] == 0.0)) || flteq(dz->param[SORTER_SMOOTH],0.0))
  1603. smooth = 0; // No smoothing if using single waveset, or if no smoothing set as apram
  1604. else {
  1605. smooth = (int)round(dz->param[SORTER_SMOOTH] * MS_TO_SECS * srate);
  1606. if(dz->brksize[SORTER_SIZE]) {
  1607. if((exit_status = get_minvalue_in_brktable(&minval,SORTER_SIZE,dz))<0)
  1608. return exit_status;
  1609. } else
  1610. minval = dz->param[SORTER_SIZE]; // If using splice-smoothing on elements ...
  1611. minval *= TWO_THIRDS; // smoothing splice cannot be longer than
  1612. minval /= 2.0; // 1/2 length of smallest segment searched for
  1613. maxsplice = (int)floor(minval * srate);
  1614. smooth = min(smooth,maxsplice);
  1615. }
  1616. // SORT THE SEGMENTS
  1617. fprintf(stdout,"INFO: Processing sound.\n");
  1618. fflush(stdout);
  1619. switch(dz->mode) {
  1620. case(CRESC):
  1621. for(n = 0; n < group_cnt-1; n++) {
  1622. for(m = n+1; m < group_cnt; m++) {
  1623. if(level[n] > level[m]) {
  1624. temp = level[n];
  1625. level[n] = level[m];
  1626. level[m] = temp;
  1627. stemp = pos[n];
  1628. pos[n] = pos[m];
  1629. pos[m] = stemp;
  1630. stemp = len[n];
  1631. len[n] = len[m];
  1632. len[m] = stemp;
  1633. if(dz->param[SORTER_IMIDI] > 0) {
  1634. temp = incr[n];
  1635. incr[n] = incr[m];
  1636. incr[m] = temp;
  1637. }
  1638. }
  1639. }
  1640. }
  1641. break;
  1642. case(DECRESC):
  1643. for(n = 0; n < group_cnt-1; n++) {
  1644. for(m = n+1; m < group_cnt; m++) {
  1645. if(level[n] < level[m]) {
  1646. temp = level[n];
  1647. level[n] = level[m];
  1648. level[m] = temp;
  1649. stemp = pos[n];
  1650. pos[n] = pos[m];
  1651. pos[m] = stemp;
  1652. stemp = len[n];
  1653. len[n] = len[m];
  1654. len[m] = stemp;
  1655. if(dz->param[SORTER_IMIDI] > 0) {
  1656. temp = incr[n];
  1657. incr[n] = incr[m];
  1658. incr[m] = temp;
  1659. }
  1660. }
  1661. }
  1662. }
  1663. break;
  1664. case(ACCEL):
  1665. for(n = 0; n < group_cnt-1; n++) {
  1666. for(m = n+1; m < group_cnt; m++) {
  1667. if(len[n] < len[m]) {
  1668. stemp = pos[n];
  1669. pos[n] = pos[m];
  1670. pos[m] = stemp;
  1671. stemp = len[n];
  1672. len[n] = len[m];
  1673. len[m] = stemp;
  1674. if(dz->param[SORTER_IMIDI] > 0) {
  1675. temp = incr[n];
  1676. incr[n] = incr[m];
  1677. incr[m] = temp;
  1678. }
  1679. }
  1680. }
  1681. }
  1682. break;
  1683. case(RIT):
  1684. for(n = 0; n < group_cnt-1; n++) {
  1685. for(m = n+1; m < group_cnt; m++) {
  1686. if(len[n] > len[m]) {
  1687. stemp = pos[n];
  1688. pos[n] = pos[m];
  1689. pos[m] = stemp;
  1690. stemp = len[n];
  1691. len[n] = len[m];
  1692. len[m] = stemp;
  1693. if(dz->param[SORTER_IMIDI] > 0) {
  1694. temp = incr[n];
  1695. incr[n] = incr[m];
  1696. incr[m] = temp;
  1697. }
  1698. }
  1699. }
  1700. }
  1701. break;
  1702. case(RAND):
  1703. if((permm = (int *)malloc(group_cnt * sizeof(int)))==NULL) {
  1704. sprintf(errstr,"Insufficient memory to create segment-order permutation store.\n");
  1705. return(MEMORY_ERROR);
  1706. }
  1707. rndpermm(group_cnt,permm); // Permute order of segments
  1708. break;
  1709. }
  1710. // OUTPUT THE SOUND
  1711. maxsamp = 0.0; // maxsamp and normaliser preset. Used when output segments overlap one-another
  1712. normaliser = 1.0;
  1713. if(outcontrol || (ostep > 0)) // If output segs overlapped, need two passes, so output can be normalised
  1714. passno = 0; // Need to normalise
  1715. else
  1716. passno = 1;
  1717. while(passno < 2) {
  1718. bufswritten = 0;
  1719. memset((char *)obuf,0,dz->buflen2 * sizeof(float));
  1720. memset((char *)o_ovflwbuf,0,dz->buflen2 * sizeof(float));
  1721. maxwrite = 0; // If segments overlapped, maxwrite may be higher than end of last seg written
  1722. obufpos = 0;
  1723. if(passno == 0) {
  1724. fprintf(stdout,"INFO: Testing level.\n");
  1725. fflush(stdout);
  1726. } else {
  1727. fprintf(stdout,"INFO: Writing sound.\n");
  1728. fflush(stdout);
  1729. }
  1730. if(outcontrol) { // If output segment placement controlled by brktable, find current ostep
  1731. if((exit_status = read_value_from_brktable(0.0,SORTER_OMIDI,dz))<0)
  1732. return exit_status; // If controlled by simple fixed param this has already been set
  1733. ostep = (int)round(dz->param[SORTER_OMIDI]); // NB ostep > 0 also FLAGS that output is (possibly) OVERLAPPED segments
  1734. } // (with no output-placement control we simply write-out from where we last got to)
  1735. // FOR EVERY SEGMENT
  1736. for(n = 0; n < group_cnt; n++) {
  1737. // Where outsegs may overlap, and a step between written segs is given,
  1738. obufstart = obufpos; // obufstart marks where current write starts, and is used as mark to step FROM, for next write position.
  1739. if(dz->mode == RAND)
  1740. k = permm[n]; // Get the reordered segment to use
  1741. else // and seek to it in infile.
  1742. k = n;
  1743. sndseekEx(dz->ifd[0],pos[k],0);
  1744. if(dz->param[SORTER_IMIDI] > 0) // Where transposition to be done
  1745. dz->buflen *= 2; // Read to a double buffer, the 2nd buffer being an overflow buffer
  1746. ibuf = dz->sampbuf[0]; // Otherwize read to a single buffer
  1747. memset((char *)ibuf,0,dz->buflen * sizeof(float));
  1748. if((exit_status = read_samps(ibuf,dz))<0)
  1749. return(exit_status);
  1750. // IN CASE WHERE SEGMENTS ARE (POSSIBLY) TRANSPOSED (we have an input overflow buffer, for wraparound point).
  1751. if(dz->param[SORTER_IMIDI] > 0) { // Future reads (in this pass) will be to the (single) overflow buf (sampbuf1)
  1752. dz->buflen /= 2; // With previous ovflwbuf being copied back into sampbuf[0], now called i_readbuf
  1753. dibufpos = 0.0; // Set up the (fractionally incremented) pointer into input buffer.
  1754. dibufend = len[k] - 1; // and the reverse-counter from end of samps to write (this is for possible end-smothing splice).
  1755. while(dibufpos < len[k]) { // Read (by fractional increments) until we get to end of this segment.
  1756. if(ostep == 0) {
  1757. if(obufpos >= dz->buflen2) { // When using simple output buffer (no outseg overlaps), ALWAYS check for overflow
  1758. dz->process = GREV; // and write to output if (single) buffer overflows
  1759. if((exit_status = write_samps(obuf,dz->buflen2,dz))<0)
  1760. return(exit_status);
  1761. dz->process = SORTER;
  1762. memset((char *)obuf,0,dz->buflen2 * sizeof(float));
  1763. obufpos -= dz->buflen2;
  1764. maxwrite -= dz->buflen2;
  1765. bufswritten++;
  1766. }
  1767. } else if(dibufpos == 0) { // When using o_ovflwbuf, only check overflow at START of write
  1768. if(obufpos >= dz->buflen2) { // If outptr has stepped beyond end of obuf, do a write
  1769. // Further sample reads of this segment MAY overflow into the ovflbuf
  1770. // so buffer must be long enough to accomodate longest seg when maximally tstretched.
  1771. if(passno == 0) {
  1772. for(kk = 0; kk < dz->buflen2; kk++) // On 1st first pass, for overlapping segs, check the max output level
  1773. maxsamp = max(maxsamp,fabs(obuf[kk]));
  1774. } else { // On 2nd pass, normalise output level before writing to file.
  1775. for(kk = 0; kk < dz->buflen2; kk++)
  1776. obuf[kk] = (float)(obuf[kk] * normaliser);
  1777. dz->process = GREV;
  1778. if((exit_status = write_samps(obuf,dz->buflen2,dz))<0)
  1779. return(exit_status);
  1780. dz->process = SORTER;
  1781. } // Do copy-back of output-o_ovflwbuf into true obuf
  1782. memset((char *)obuf,0,dz->buflen2 * sizeof(float));
  1783. memcpy((char *)obuf,(char *)o_ovflwbuf,dz->buflen2 * sizeof(float));
  1784. memset((char *)o_ovflwbuf,0,dz->buflen2 * sizeof(float));
  1785. obufpos -= dz->buflen2;
  1786. obufstart -= dz->buflen2; // Readjust the marker for the start-place in buffer from which to measure step to next-write.
  1787. maxwrite -= dz->buflen2; // Readjust marker of maximum sample written in obuf
  1788. bufswritten++;
  1789. }
  1790. } // Due to interpolation we need a wrap-around sample at buf end (hence we have an i_ovflwbuf)
  1791. if(dibufpos >= dz->buflen) { // If input pointer runs beyond i_readbuf end
  1792. // Copy i_ovflwbuf into i_readbuf, and get samps into i_ovflwbuf
  1793. memcpy((char *)i_readbuf,(char *)i_ovflwbuf,dz->buflen * sizeof(float));
  1794. memset((char *)i_ovflwbuf,0,dz->buflen * sizeof(float));
  1795. if((exit_status = read_samps(i_ovflwbuf,dz))<0)
  1796. return(exit_status);
  1797. dibufpos -= dz->buflen;;
  1798. }
  1799. if(smooth) {
  1800. if(dibufpos < smooth)
  1801. splval = dibufpos/(double)smooth;
  1802. else if(dibufend< smooth)
  1803. splval = dibufend/(double)smooth;
  1804. else
  1805. splval = 1.0;
  1806. }
  1807. ibufpos = (int)floor(dibufpos);
  1808. val = i_readbuf[ibufpos];
  1809. diff = i_readbuf[ibufpos+1] - i_readbuf[ibufpos];
  1810. frac = dibufpos - (double)ibufpos;
  1811. val += diff * frac;
  1812. obuf[obufpos] = (float)(obuf[obufpos] + (val * splval));
  1813. obufpos++;
  1814. dibufpos += incr[k];
  1815. dibufend -= incr[k];
  1816. }
  1817. } else {
  1818. ibufpos = 0;
  1819. outcnt = 0;
  1820. outend = len[k] - 1;
  1821. while(outcnt < len[k]) {
  1822. if(ostep == 0) {
  1823. if(obufpos >= dz->buflen2) {
  1824. dz->process = GREV;
  1825. if((exit_status = write_samps(obuf,dz->buflen2,dz))<0)
  1826. return(exit_status);
  1827. dz->process = SORTER;
  1828. memset((char *)obuf,0,dz->buflen2 * sizeof(float));
  1829. obufpos -= dz->buflen2;
  1830. maxwrite -= dz->buflen2;
  1831. bufswritten++;
  1832. }
  1833. } else if(outcnt == 0) {
  1834. if(obufpos >= dz->buflen2) {
  1835. if(passno == 0) {
  1836. for(kk = 0; kk < dz->buflen2; kk++)
  1837. maxsamp = max(maxsamp,fabs(obuf[kk]));
  1838. } else {
  1839. for(kk = 0; kk < dz->buflen2; kk++)
  1840. obuf[kk] = (float)(obuf[kk] * normaliser);
  1841. dz->process = GREV;
  1842. if((exit_status = write_samps(obuf,dz->buflen2,dz))<0)
  1843. return(exit_status);
  1844. dz->process = SORTER;
  1845. }
  1846. memset((char *)obuf,0,dz->buflen2 * sizeof(float));
  1847. memcpy((char *)obuf,(char *)o_ovflwbuf,dz->buflen2 * sizeof(float));
  1848. memset((char *)o_ovflwbuf,0,dz->buflen2 * sizeof(float));
  1849. obufpos -= dz->buflen2;
  1850. obufstart -= dz->buflen2;
  1851. maxwrite -= dz->buflen2;
  1852. bufswritten++;
  1853. }
  1854. }
  1855. if(ibufpos >= dz->buflen) {
  1856. if((exit_status = read_samps(ibuf,dz))<0)
  1857. return(exit_status);
  1858. ibufpos = 0;
  1859. }
  1860. if(smooth) {
  1861. if(outcnt < smooth)
  1862. splval = (double)outcnt/(double)smooth;
  1863. else if(outend < smooth)
  1864. splval = (double)outend/(double)smooth;
  1865. ibuf[ibufpos] = (float)(ibuf[ibufpos] * splval);
  1866. }
  1867. obuf[obufpos] = (float)(obuf[obufpos] + ibuf[ibufpos]);
  1868. obufpos++;
  1869. ibufpos++;
  1870. outcnt++;
  1871. outend--;
  1872. }
  1873. }
  1874. maxwrite = max(obufpos,maxwrite);
  1875. if(outcontrol) { // If output segment placement controlled by brktable, find current ostep
  1876. thistime = (double)((bufswritten * dz->buflen) + obufstart + ostep)/srate;
  1877. if((exit_status = read_value_from_brktable(thistime,SORTER_OMIDI,dz))<0)
  1878. return exit_status;
  1879. ostep = (int)round(dz->param[SORTER_OMIDI]);
  1880. }
  1881. if(ostep > 0) // if ostep set by a simple parameter, it's already known
  1882. obufpos = obufstart + ostep;
  1883. // If ostep is 0, we just carry on writing in obuf from where we've got to
  1884. }
  1885. if(maxwrite > 0) {
  1886. if(passno == 0) {
  1887. for(kk = 0; kk < maxwrite; kk++)
  1888. maxsamp = max(maxsamp,fabs(obuf[kk]));
  1889. if(maxsamp > MAXLEV)
  1890. normaliser = MAXLEV/maxsamp;
  1891. } else {
  1892. if(ostep > 0) {
  1893. for(kk = 0; kk < maxwrite; kk++)
  1894. obuf[kk] = (float)(obuf[kk] * normaliser);
  1895. }
  1896. dz->process = GREV;
  1897. if((exit_status = write_samps(obuf,maxwrite,dz))<0)
  1898. return(exit_status);
  1899. dz->process = SORTER;
  1900. }
  1901. }
  1902. passno++;
  1903. }
  1904. return FINISHED;
  1905. }
  1906. /*************************** RNDPERMM ********************************/
  1907. void rndpermm(int permlen,int *permm)
  1908. {
  1909. int n, t;
  1910. for(n=0;n<permlen;n++) { /* 1 */
  1911. t = (int)(drand48() * (double)(n+1)); /* 2 */
  1912. if(t==n)
  1913. prefix(n,permlen,permm);
  1914. else
  1915. insert(n,t,permlen,permm);
  1916. }
  1917. }
  1918. /***************************** INSERT **********************************
  1919. *
  1920. * Insert the value m AFTER the T-th element in permm[pindex].
  1921. */
  1922. void insert(int m,int t,int permlen,int *permm)
  1923. {
  1924. shuflup(t+1,permlen,permm);
  1925. permm[t+1] = m;
  1926. }
  1927. /***************************** PREFIX ************************************
  1928. *
  1929. * Insert the value m at start of the permutation permm[pindex].
  1930. */
  1931. void prefix(int m,int permlen,int *permm)
  1932. {
  1933. shuflup(0,permlen,permm);
  1934. permm[0] = m;
  1935. }
  1936. /****************************** SHUFLUP ***********************************
  1937. *
  1938. * move set members in permm[pindex] upwards, starting from element k.
  1939. */
  1940. void shuflup(int k,int permlen, int *permm)
  1941. {
  1942. int n, *i;
  1943. int z = permlen - 1;
  1944. i = permm + z;
  1945. for(n = z;n > k;n--) {
  1946. *i = *(i-1);
  1947. i--;
  1948. }
  1949. }
  1950. /****************************** GET_MEDIAN_PITCH ***********************************/
  1951. int get_median_pitch(double midi,double *medianfrq,dataptr dz)
  1952. {
  1953. int n, pitch, midival[128], maxpcnt = 0, median = -1;
  1954. if(midi < 128)
  1955. *medianfrq = miditohz(midi);
  1956. else {
  1957. for(n=0;n<128;n++)
  1958. midival[n] = 0;
  1959. for(n=1;n<dz->brksize[SORTER_SIZE] * 2;n+=2) {
  1960. pitch = (int)round(unchecked_hztomidi(1.0/dz->brk[SORTER_SIZE][n]));
  1961. midival[pitch]++;
  1962. }
  1963. for(n=0;n<128;n++) {
  1964. if(midival[n] > maxpcnt) {
  1965. maxpcnt = midival[n];
  1966. median = n;
  1967. }
  1968. }
  1969. if(median < 0) {
  1970. sprintf(errstr,"Failed to find mediam pitch of source.\n");
  1971. return DATA_ERROR;
  1972. }
  1973. *medianfrq = miditohz(median);
  1974. }
  1975. return FINISHED;
  1976. }
  1977. /****************************** LARGER_GROUPING ***********************************
  1978. *
  1979. * element_dur is average length of element searched for, in samples
  1980. */
  1981. int larger_grouping(int *group_cnt,dataptr dz)
  1982. {
  1983. int incrcnt;
  1984. int thisminimum, element_dur, lo_element_dur, startpos, sampdur, origdatindx, startorigpos;
  1985. double *incr = dz->parray[INCRS], *origincr = dz->parray[ORIGINCRS], newincr, srate = (double)dz->infile->srate;
  1986. int *pos = dz->lparray[POS], *origpos = dz->lparray[ORIGPOS], *len = dz->lparray[LEN], new_group_cnt;
  1987. fprintf(stdout,"INFO: Re-grouping elements.\n");
  1988. fflush(stdout);
  1989. element_dur = (int)round(dz->param[SORTER_META] * srate);
  1990. lo_element_dur = (int)round((double)element_dur * TWO_THIRDS);
  1991. new_group_cnt = 1; // The firast position in the larger-group set is same as 1st in smaller group set
  1992. thisminimum = 1; // So we start our searching at index1 (not 0)
  1993. startpos = pos[0]; // setting the place we're measuring from as the start-position index zero
  1994. origdatindx = 1; // (and similarly in the original position and incr data)
  1995. startorigpos = origpos[origdatindx];
  1996. while(thisminimum < *group_cnt) { // Go through all the original (grouped)minima looking for a set of minima falling within new larger-grouplen
  1997. sampdur = pos[thisminimum] - startpos; // How far is the this minimum from start of larger-group of minima?
  1998. // If below required range, ignore and go to next orig minimum
  1999. if(sampdur > lo_element_dur) { // Once enough orig minima to span the larger-group..
  2000. newincr = 0.0; // find the average incr-value amongst the original small elements
  2001. incrcnt = 0;
  2002. while(startorigpos <= pos[thisminimum]) {
  2003. newincr += origincr[origdatindx-1];
  2004. incrcnt++;
  2005. origdatindx++;
  2006. startorigpos = origpos[origdatindx];
  2007. }
  2008. newincr /= (double)incrcnt; // Take the average.
  2009. pos[new_group_cnt] = pos[thisminimum]; // Set new larger-group position (overwriting originals)
  2010. incr[new_group_cnt-1] = newincr; // and new larger-group incr (overwriting originals)
  2011. len[new_group_cnt-1] = pos[new_group_cnt] - pos[new_group_cnt-1]; // and new larger group lengths (overwriting originals)
  2012. startpos = pos[thisminimum]; // Reset position for next search for larger groups
  2013. new_group_cnt++; // and advance in count of larger-groups
  2014. }
  2015. thisminimum++; // Advance in original group-positions
  2016. }
  2017. if(new_group_cnt < 1) {
  2018. sprintf(errstr,"Insufficient sortable grouped-elements found.\n");
  2019. return(DATA_ERROR);
  2020. }
  2021. *group_cnt = new_group_cnt;
  2022. return(FINISHED);
  2023. }