columns6.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709
  1. /*
  2. * Copyright (c) 1983-2013 Trevor Wishart and Composers Desktop Project Ltd
  3. * http://www.trevorwishart.co.uk
  4. * http://www.composersdesktop.com
  5. *
  6. This file is part of the CDP System.
  7. The CDP System is free software; you can redistribute it
  8. and/or modify it under the terms of the GNU Lesser General Public
  9. License as published by the Free Software Foundation; either
  10. version 2.1 of the License, or (at your option) any later version.
  11. The CDP System is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU Lesser General Public License for more details.
  15. You should have received a copy of the GNU Lesser General Public
  16. License along with the CDP System; if not, write to the Free Software
  17. Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  18. 02111-1307 USA
  19. *
  20. */
  21. #include <columns.h>
  22. #include <cdplib.h>
  23. #include <time.h>
  24. static void sort_set(double *set,int setcnt);
  25. static void do_search(double thisval,double error,int **adjusted);
  26. static void adjust_all_vals(double thisval,double gap,int n,int m);
  27. /************************************** COMPRESS_SEQUENCE ****************************************
  28. *
  29. * parameter is interval compression multiplier.
  30. */
  31. void compress_sequence(int multi)
  32. {
  33. int n;
  34. int m, hdcnt = ifactor;
  35. char temp[200];
  36. double interval, nunote;
  37. if(multi) {
  38. sprintf(errstr,"%lf",number[0]);
  39. for(n=1;n< hdcnt;n++) {
  40. sprintf(temp," %lf",number[n]);
  41. strcat(errstr,temp);
  42. }
  43. strcat(errstr,"\n");
  44. fprintf(stdout,"INFO: %s\n",errstr);
  45. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  46. number[n] = number[m];
  47. cnt -= hdcnt;
  48. }
  49. if(multi) {
  50. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[0],number[1],number[2],number[3],number[4]);
  51. nunote = number[2];
  52. for(n=5;n<cnt;n+=5) {
  53. interval = (number[n+2] - number[n-3]) * factor;
  54. nunote += interval;
  55. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],number[n+1],nunote,number[n+3],number[n+4]);
  56. }
  57. } else {
  58. for(n=0;n<cnt;n+=3)
  59. fprintf(stdout,"INFO: %lf %lf %lf\n",number[n],number[n+1] * factor,number[n+2]);
  60. }
  61. fflush(stdout);
  62. }
  63. /************************************** TRANSPOSE_SEQUENCE ****************************************
  64. *
  65. * parameter is transposition in semitones.
  66. */
  67. void transpose_sequence(int multi)
  68. {
  69. int n;
  70. int m, hdcnt = ifactor;
  71. char temp[200];
  72. if(multi) {
  73. sprintf(errstr,"%lf",number[0]);
  74. for(n=1;n< hdcnt;n++) {
  75. sprintf(temp," %lf",number[n]);
  76. strcat(errstr,temp);
  77. }
  78. strcat(errstr,"\n");
  79. fprintf(stdout,"INFO: %s\n",errstr);
  80. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  81. number[n] = number[m];
  82. cnt -= hdcnt;
  83. }
  84. if(multi) {
  85. for(n=0;n<cnt;n+=5)
  86. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],number[n+1],number[n+2] + factor,number[n+3],number[n+4]);
  87. } else {
  88. for(n=0;n<cnt;n+=3)
  89. fprintf(stdout,"INFO: %lf %lf %lf\n",number[n],number[n+1] + factor,number[n+2]);
  90. }
  91. fflush(stdout);
  92. }
  93. /************************************** P_INVERTSET_SEQUENCE *****************************************/
  94. void p_invertset_sequence(int multi)
  95. {
  96. double *set;
  97. int setcnt, n, gotit, q;
  98. int m, hdcnt = ifactor;
  99. char temp[200];
  100. if(multi) {
  101. sprintf(errstr,"%lf",number[0]);
  102. for(n=1;n< hdcnt;n++) {
  103. sprintf(temp," %lf",number[n]);
  104. strcat(errstr,temp);
  105. }
  106. strcat(errstr,"\n");
  107. fprintf(stdout,"INFO: %s\n",errstr);
  108. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  109. number[n] = number[m];
  110. cnt -= hdcnt;
  111. }
  112. if((set = (double *)malloc(cnt * sizeof(double)))==NULL) {
  113. fprintf(stdout,"ERROR: Insufficient memory to store pitch set.\n");
  114. fflush(stdout);
  115. exit(1);
  116. }
  117. setcnt = 0;
  118. if(multi) {
  119. for(n=2;n<cnt;n+=5) {
  120. gotit = 0;
  121. for(q = 0; q < setcnt; q++) {
  122. if(flteq(number[n],set[q])) {
  123. gotit = 1;
  124. break;
  125. }
  126. }
  127. if(!gotit)
  128. set[setcnt++] = number[n];
  129. }
  130. sort_set(set,setcnt);
  131. for(n=2;n<cnt;n+=5) {
  132. for(q=0;q<setcnt;q++) {
  133. if(flteq(number[n],set[q])) {
  134. number[n] = set[setcnt - 1 - q];
  135. break;
  136. }
  137. }
  138. }
  139. for(n=0;n<cnt;n+=5)
  140. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],number[n+1],number[n+2],number[n+3],number[n+4]);
  141. } else {
  142. for(n=1;n<cnt;n+=3) {
  143. gotit = 0;
  144. for(q = 0; q < setcnt; q++) {
  145. if(flteq(number[n],set[q])) {
  146. gotit = 1;
  147. break;
  148. }
  149. }
  150. if(!gotit)
  151. set[setcnt++] = number[n];
  152. }
  153. sort_set(set,setcnt);
  154. for(n=1;n<cnt;n+=3) {
  155. for(q=0;q<setcnt;q++) {
  156. if(flteq(number[n],set[q])) {
  157. number[n] = set[setcnt - 1 - q];
  158. break;
  159. }
  160. }
  161. }
  162. for(n=0;n<cnt;n+=3)
  163. fprintf(stdout,"INFO: %lf %lf %lf\n",number[n],number[n+1],number[n+2]);
  164. }
  165. fflush(stdout);
  166. }
  167. /************************************** P_EXPANDSET_SEQUENCE *****************************************
  168. *
  169. * parameter is set expansion multiplier.
  170. */
  171. void p_expandset_sequence(int multi)
  172. {
  173. double *set=NULL, transpos;
  174. int setcnt, n, gotit, q, qn, qq, qoct;
  175. int m, hdcnt = ifactor;
  176. int lastsetpos=0, lastnusetpos=0, thissetpos, setstep;
  177. char temp[200];
  178. if(multi) {
  179. sprintf(errstr,"%lf",number[0]);
  180. for(n=1;n< hdcnt;n++) {
  181. sprintf(temp," %lf",number[n]);
  182. strcat(errstr,temp);
  183. }
  184. strcat(errstr,"\n");
  185. fprintf(stdout,"INFO: %s\n",errstr);
  186. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  187. number[n] = number[m];
  188. cnt -= hdcnt;
  189. }
  190. if(factor <= 1.0) {
  191. fprintf(stdout,"ERROR: Set expansion must be > 1\n");
  192. fflush(stdout);
  193. exit(1);
  194. }
  195. ifactor = (int)round(factor + 0.5);
  196. if((set = (double *)malloc((cnt * ifactor) * sizeof(double)))==NULL) {
  197. fprintf(stdout,"ERROR: Insufficient memory to store pitch set.\n");
  198. fflush(stdout);
  199. exit(1);
  200. }
  201. setcnt = 0;
  202. if(multi) {
  203. for(n=2;n<cnt;n+=5) {
  204. gotit = 0;
  205. for(q = 0; q < setcnt; q++) {
  206. if(flteq(number[n],set[q])) {
  207. gotit = 1;
  208. break;
  209. }
  210. }
  211. if(!gotit)
  212. set[setcnt++] = number[n];
  213. }
  214. sort_set(set,setcnt);
  215. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[0],number[1],number[2],number[3],number[4]);
  216. for(q=0;q<setcnt;q++) {
  217. if(flteq(number[2],set[q])) { /* find which set-member this is */
  218. lastsetpos = q;
  219. lastnusetpos = q;
  220. break;
  221. }
  222. }
  223. for(n=7;n<cnt;n+=5) {
  224. for(q=0;q<setcnt;q++) {
  225. if(flteq(number[n],set[q])) { /* find which set-member this is */
  226. thissetpos = q;
  227. setstep = thissetpos - lastsetpos;
  228. setstep = (int)round(setstep * factor);
  229. qn = lastnusetpos + setstep;
  230. lastsetpos = thissetpos;
  231. lastnusetpos = qn;
  232. if(qn >= setcnt) { /* if beyond existing set */
  233. qq = qn%setcnt; /* cyclically find appropriate set member */
  234. qoct = qn/setcnt;
  235. transpos = 12.0 * qoct;
  236. number[n] = set[qq] + transpos;
  237. } else if(qn < 0) { /* if below existing set */
  238. qoct = 0; /* simil */
  239. while(qn < 0) {
  240. qn += setcnt;
  241. qoct++;
  242. }
  243. transpos = -(12.0 * qoct);
  244. number[n] = set[qn] + transpos;
  245. } else
  246. number[n] = set[qn];
  247. break;
  248. }
  249. }
  250. }
  251. for(n=5;n<cnt;n+=5)
  252. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],number[n+1],number[n+2],number[n+3],number[n+4]);
  253. } else {
  254. for(n=1;n<cnt;n+=3) {
  255. gotit = 0;
  256. for(q = 0; q < setcnt; q++) {
  257. if(flteq(number[n],set[q])) {
  258. gotit = 1;
  259. break;
  260. }
  261. }
  262. if(!gotit)
  263. set[setcnt++] = number[n];
  264. }
  265. sort_set(set,setcnt);
  266. for(n=1;n<cnt;n+=3) {
  267. for(q=0;q<setcnt;q++) {
  268. if(flteq(number[n],set[q])) { /* find which set-member this is */
  269. qn = (int)round((q+1) * factor) - 1; /* expand set-position */
  270. if(qn >= setcnt) { /* if beyond existing set */
  271. qq = qn%setcnt; /* cyclically find appropriate set member */
  272. qoct = qn/setcnt;
  273. transpos = 12.0 * qoct;
  274. number[n] = set[qq] + transpos;
  275. } else
  276. number[n] = set[qn];
  277. break;
  278. }
  279. }
  280. }
  281. for(n=0;n<cnt;n+=3)
  282. fprintf(stdout,"INFO: %lf %lf %lf\n",number[n],number[n+1],number[n+2]);
  283. }
  284. fflush(stdout);
  285. }
  286. /************************************** P_INVERT_SEQUENCE *****************************************/
  287. void p_invert_sequence(int multi)
  288. {
  289. int n;
  290. double adjust;
  291. int m, hdcnt = ifactor;
  292. char temp[200];
  293. if(multi) {
  294. sprintf(errstr,"%lf",number[0]);
  295. for(n=1;n< hdcnt;n++) {
  296. sprintf(temp," %lf",number[n]);
  297. strcat(errstr,temp);
  298. }
  299. strcat(errstr,"\n");
  300. fprintf(stdout,"INFO: %s\n",errstr);
  301. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  302. number[n] = number[m];
  303. cnt -= hdcnt;
  304. }
  305. if(multi) {
  306. adjust = 2 * number[2];
  307. for(n=0;n<cnt;n+=5)
  308. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],number[n+1],adjust - number[n+2],number[n+3],number[n+4]);
  309. } else {
  310. adjust = 2 * number[1];
  311. for(n=0;n<cnt;n+=3)
  312. fprintf(stdout,"INFO: %lf %lf %lf\n",number[n],adjust - number[n+1],number[n+2]);
  313. }
  314. fflush(stdout);
  315. }
  316. /************************************** T_REVERSE_SEQUENCE ****************************************/
  317. void t_reverse_sequence(int multi)
  318. {
  319. double totaldur;
  320. int tend, n, te;
  321. int m, hdcnt = ifactor;
  322. char temp[200];
  323. if(multi) {
  324. sprintf(errstr,"%lf",number[0]);
  325. for(n=1;n< hdcnt;n++) {
  326. sprintf(temp," %lf",number[n]);
  327. strcat(errstr,temp);
  328. }
  329. strcat(errstr,"\n");
  330. fprintf(stdout,"INFO: %s\n",errstr);
  331. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  332. number[n] = number[m];
  333. cnt -= hdcnt;
  334. }
  335. totaldur = 0.0;
  336. tend = cnt - 4;
  337. if(multi) {
  338. for(n=0,te = tend;n<cnt;n+=5, te-=5) {
  339. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],totaldur,number[n+2],number[n+3],number[n+4]);
  340. totaldur += number[te] - number[te - 5];
  341. }
  342. } else {
  343. for(n=0,te = tend;n<cnt;n+=3, te-=3) {
  344. fprintf(stdout,"INFO: %lf %lf %lf\n",totaldur,number[n+1],number[n+2]);
  345. totaldur += number[te] - number[te - 3];
  346. }
  347. }
  348. fflush(stdout);
  349. }
  350. /************************************** P_REVERSE_SEQUENCE ****************************************/
  351. void p_reverse_sequence(int multi)
  352. {
  353. int n, pe;
  354. int pend;
  355. int m, hdcnt = ifactor;
  356. char temp[200];
  357. if(multi) {
  358. sprintf(errstr,"%lf",number[0]);
  359. for(n=1;n< hdcnt;n++) {
  360. sprintf(temp," %lf",number[n]);
  361. strcat(errstr,temp);
  362. }
  363. strcat(errstr,"\n");
  364. fprintf(stdout,"INFO: %s\n",errstr);
  365. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  366. number[n] = number[m];
  367. cnt -= hdcnt;
  368. }
  369. pend = cnt-3;
  370. if(multi) {
  371. for(n=0, pe = pend;n<cnt;n+=5, pe -= 5)
  372. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],number[n+1],number[pe],number[n+3],number[n+4]);
  373. } else {
  374. for(n=0, pe = pend;n<cnt;n+=3, pe -= 3)
  375. fprintf(stdout,"INFO: %lf %lf %lf\n",number[n],number[pe],number[n+2]);
  376. }
  377. fflush(stdout);
  378. }
  379. /************************************** A_REVERSE_SEQUENCE ****************************************/
  380. void a_reverse_sequence(int multi)
  381. {
  382. int n, ae;
  383. int m, hdcnt = ifactor;
  384. int aend = cnt - 2;
  385. char temp[200];
  386. if(multi) {
  387. sprintf(errstr,"%lf",number[0]);
  388. for(n=1;n< hdcnt;n++) {
  389. sprintf(temp," %lf",number[n]);
  390. strcat(errstr,temp);
  391. }
  392. strcat(errstr,"\n");
  393. fprintf(stdout,"INFO: %s\n",errstr);
  394. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  395. number[n] = number[m];
  396. cnt -= hdcnt;
  397. }
  398. if(multi) {
  399. for(n=0, ae = aend;n<cnt;n+=5, ae -= 5)
  400. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],number[n+1],number[n+2],number[ae],number[n+4]);
  401. } else {
  402. for(n=0, ae = cnt-1;n<cnt;n+=3, ae -= 3)
  403. fprintf(stdout,"INFO: %lf %lf %lf\n",number[n],number[n+1],number[ae]);
  404. }
  405. fflush(stdout);
  406. }
  407. /************************************** PA_REVERSE_SEQUENCE ***************************************/
  408. void pa_reverse_sequence(int multi)
  409. {
  410. int n, pe;
  411. int pend;
  412. int m, hdcnt = ifactor;
  413. char temp[200];
  414. if(multi) {
  415. sprintf(errstr,"%lf",number[0]);
  416. for(n=1;n< hdcnt;n++) {
  417. sprintf(temp," %lf",number[n]);
  418. strcat(errstr,temp);
  419. }
  420. strcat(errstr,"\n");
  421. fprintf(stdout,"INFO: %s\n",errstr);
  422. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  423. number[n] = number[m];
  424. cnt -= hdcnt;
  425. }
  426. pend = cnt-3;
  427. if(multi) {
  428. for(n=0, pe = pend;n<cnt;n+=5, pe -= 5)
  429. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],number[n+1],number[pe],number[pe+1],number[n+4]);
  430. } else {
  431. for(n=0, pe = pend;n<cnt;n+=3, pe -= 3)
  432. fprintf(stdout,"INFO: %lf %lf %lf\n",number[n],number[pe],number[pe+1]);
  433. }
  434. fflush(stdout);
  435. }
  436. /************************************** TP_REVERSE_SEQUENCE ***************************************/
  437. void tp_reverse_sequence(int multi)
  438. {
  439. double totaldur;
  440. int tend, n, te;
  441. int m, hdcnt = ifactor;
  442. char temp[200];
  443. if(multi) {
  444. sprintf(errstr,"%lf",number[0]);
  445. for(n=1;n< hdcnt;n++) {
  446. sprintf(temp," %lf",number[n]);
  447. strcat(errstr,temp);
  448. }
  449. strcat(errstr,"\n");
  450. fprintf(stdout,"INFO: %s\n",errstr);
  451. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  452. number[n] = number[m];
  453. cnt -= hdcnt;
  454. }
  455. totaldur = 0.0;
  456. tend = cnt-4;
  457. if(multi) {
  458. for(n=0,te = tend;n<cnt;n+=5, te-=5) {
  459. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],totaldur,number[te+1],number[n+3],number[n+4]);
  460. totaldur += number[te] - number[te - 5];
  461. }
  462. } else {
  463. for(n=0,te = tend;n<cnt;n+=3, te-=3) {
  464. fprintf(stdout,"INFO: %lf %lf %lf\n",totaldur,number[te+1],number[n+2]);
  465. totaldur += number[te] - number[te - 3];
  466. }
  467. }
  468. fflush(stdout);
  469. }
  470. /************************************** TA_REVERSE_SEQUENCE ***************************************/
  471. void ta_reverse_sequence(int multi)
  472. {
  473. double totaldur;
  474. int tend, n, te;
  475. int m, hdcnt = ifactor;
  476. char temp[200];
  477. if(multi) {
  478. sprintf(errstr,"%lf",number[0]);
  479. for(n=1;n< hdcnt;n++) {
  480. sprintf(temp," %lf",number[n]);
  481. strcat(errstr,temp);
  482. }
  483. strcat(errstr,"\n");
  484. fprintf(stdout,"INFO: %s\n",errstr);
  485. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  486. number[n] = number[m];
  487. cnt -= hdcnt;
  488. }
  489. totaldur = 0.0;
  490. tend = cnt-4;
  491. if(multi) {
  492. for(n=0,te = tend;n<cnt;n+=5, te-=5) {
  493. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],totaldur,number[n+2],number[te+2],number[n+4]);
  494. totaldur += number[te] - number[te - 5];
  495. }
  496. } else {
  497. for(n=0,te = tend;n<cnt;n+=3, te-=3) {
  498. fprintf(stdout,"INFO: %lf %lf %lf\n",totaldur,number[n+1],number[te+2]);
  499. totaldur += number[te] - number[te - 3];
  500. }
  501. }
  502. fflush(stdout);
  503. }
  504. /************************************** TPA_REVERSE_SEQUENCE **************************************/
  505. void tpa_reverse_sequence(int multi)
  506. {
  507. double totaldur;
  508. int tend, te, n;
  509. int m, hdcnt = ifactor;
  510. char temp[200];
  511. if(multi) {
  512. sprintf(errstr,"%lf",number[0]);
  513. for(n=1;n< hdcnt;n++) {
  514. sprintf(temp," %lf",number[n]);
  515. strcat(errstr,temp);
  516. }
  517. strcat(errstr,"\n");
  518. fprintf(stdout,"INFO: %s\n",errstr);
  519. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  520. number[n] = number[m];
  521. cnt -= hdcnt;
  522. }
  523. totaldur = 0.0;
  524. tend = cnt-4;
  525. if(multi) {
  526. for(n = 0,te = tend;te >= 0;te-=5,n+=5) {
  527. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],totaldur,number[te+1],number[te+2],number[n+4]);
  528. totaldur += number[te] - number[te - 5];
  529. }
  530. } else {
  531. for(te = tend;te >= 0;te-=3) {
  532. fprintf(stdout,"INFO: %lf %lf %lf\n",totaldur,number[te+1],number[te+2]);
  533. totaldur += number[te] - number[te - 3];
  534. }
  535. }
  536. fflush(stdout);
  537. }
  538. /************************************** LOOP_SEQUENCE **************************************
  539. *
  540. * params are loopcnt and lastdur.
  541. */
  542. void loop_sequence(int multi)
  543. {
  544. int n, m, loopcnt = (int)factor;
  545. double lastdur = thresh, totaldur, basetime;
  546. int hdcnt = ifactor;
  547. char temp[200];
  548. if(multi) {
  549. sprintf(errstr,"%lf",number[0]);
  550. for(n=1;n< hdcnt;n++) {
  551. sprintf(temp," %lf",number[n]);
  552. strcat(errstr,temp);
  553. }
  554. strcat(errstr,"\n");
  555. fprintf(stdout,"INFO: %s\n",errstr);
  556. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  557. number[n] = number[m];
  558. cnt -= hdcnt;
  559. totaldur = number[cnt-4] + lastdur;
  560. } else {
  561. totaldur = number[cnt-3] + lastdur;
  562. }
  563. if(lastdur <= 0.0) {
  564. fprintf(stdout,"ERROR: final event duration is <= zero\n");
  565. fflush(stdout);
  566. exit(1);
  567. }
  568. if(loopcnt < 2) {
  569. fprintf(stdout,"ERROR: Loopcnt is <= 1\n");
  570. fflush(stdout);
  571. exit(1);
  572. }
  573. basetime = 0.0;
  574. for(n = 0; n<loopcnt; n++) {
  575. if(multi) {
  576. for(m=0;m < cnt; m+=5)
  577. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[m],number[m+1] + basetime,number[m+2],number[m+3],number[m+4]);
  578. } else {
  579. for(m=0;m < cnt; m+=3)
  580. fprintf(stdout,"INFO: %lf %lf %lf\n",number[m] + basetime,number[m+1],number[m+2]);
  581. }
  582. basetime += totaldur;
  583. }
  584. fflush(stdout);
  585. }
  586. /************************************** ABUT_SEQUENCES **************************************
  587. *
  588. * Read two tables, as strings, like 'jj'
  589. */
  590. void abut_sequences(int multi)
  591. {
  592. int n, m, hdcnt;
  593. double lasttime, time;
  594. char temp[264];
  595. if(factor <= 0.0) {
  596. fprintf(stdout,"ERROR: final event duration is less than or equal to zero\n");
  597. fflush(stdout);
  598. exit(1);
  599. }
  600. if(multi) {
  601. hdcnt = ifactor;
  602. sprintf(errstr,"%lf",number[0]);
  603. for(n=1;n< hdcnt;n++) {
  604. sprintf(temp," %lf",number[n]);
  605. strcat(errstr,temp);
  606. }
  607. strcat(errstr,"\n");
  608. fprintf(stdout,"INFO: %s\n",errstr);
  609. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  610. number[n] = number[m];
  611. cnt -= hdcnt;
  612. firstcnt -= hdcnt;
  613. for(n = 0; n < firstcnt; n+= 5)
  614. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],number[n+1],number[n+2],number[n+3],number[n+4]);
  615. lasttime = number[n-4];
  616. lasttime += factor;
  617. for(n = firstcnt + hdcnt; n < cnt; n+= 5) {
  618. time = number[n+1] + lasttime;
  619. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],time,number[n+2],number[n+3],number[n+4]);
  620. }
  621. } else {
  622. for(n = 0; n < cnt; n+= 3)
  623. fprintf(stdout,"INFO: %s %s %s\n",strings[n],strings[n+1],strings[n+2]);
  624. lasttime = atof(strings[n-3]);
  625. lasttime += factor;
  626. for(n = cnt; n < stringscnt; n+= 3) {
  627. time = atof(strings[n]) + lasttime;
  628. sprintf(temp,"%lf",time);
  629. fprintf(stdout,"INFO: %s %s %s\n",temp,strings[n+1],strings[n+2]);
  630. }
  631. }
  632. fflush(stdout);
  633. }
  634. /************************************** SORT_SET **************************************/
  635. void sort_set(double *set,int setcnt)
  636. {
  637. int n, m;
  638. double temp;
  639. for(n=0;n<setcnt-1;n++) {
  640. for(m = n; m<setcnt; m++) {
  641. if(set[m] < set[n]) {
  642. temp = set[n];
  643. set[n] = set[m];
  644. set[m] = temp;
  645. }
  646. }
  647. }
  648. }
  649. /************************************** uptempo_sequence ****************************************
  650. *
  651. * parameter is tempo multiplier.
  652. */
  653. void uptempo_sequence(int multi)
  654. {
  655. int n;
  656. int m, hdcnt = ifactor;
  657. char temp[200];
  658. if(multi) {
  659. sprintf(errstr,"%lf",number[0]);
  660. for(n=1;n< hdcnt;n++) {
  661. sprintf(temp," %lf",number[n]);
  662. strcat(errstr,temp);
  663. }
  664. strcat(errstr,"\n");
  665. fprintf(stdout,"INFO: %s\n",errstr);
  666. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  667. number[n] = number[m];
  668. cnt -= hdcnt;
  669. }
  670. if(multi) {
  671. for(n=0;n<cnt;n+=5)
  672. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],number[n+1] * factor,number[n+2],number[n+3],number[n+4]);
  673. } else {
  674. for(n=0;n<cnt;n+=3)
  675. fprintf(stdout,"INFO: %lf %lf %lf\n",number[n] * factor,number[n+1],number[n+2]);
  676. }
  677. fflush(stdout);
  678. }
  679. /************************************** ACCEL_SEQUENCE ****************************************
  680. *
  681. * parameter is multiplier of final event-time, thresh is curve of accel.
  682. */
  683. void accel_sequence(int multi)
  684. {
  685. int n;
  686. double accel_step = (1.0/factor) - 1.0, lasttime;
  687. double convertor, frac, accel, time, dur;
  688. int m, hdcnt = ifactor;
  689. char temp[200];
  690. if(multi) {
  691. sprintf(errstr,"%lf",number[0]);
  692. for(n=1;n< hdcnt;n++) {lasttime = number[cnt-3];
  693. sprintf(temp," %lf",number[n]);
  694. strcat(errstr,temp);
  695. }
  696. strcat(errstr,"\n");
  697. fprintf(stdout,"INFO: %s\n",errstr);
  698. for(n = 0,m = hdcnt;m < cnt;n++, m++)
  699. number[n] = number[m];
  700. cnt -= hdcnt;
  701. lasttime = number[cnt-4];
  702. } else {
  703. lasttime = number[cnt-3];
  704. }
  705. convertor = 1.0/lasttime;
  706. if(multi) {
  707. for(n=0;n<cnt;n+=5) {
  708. frac = pow(number[n+1] * convertor,thresh);
  709. accel = 1.0 + (accel_step * frac);
  710. time = number[n+1] * accel;
  711. dur = number[n+4] * accel;
  712. fprintf(stdout,"INFO: %d %lf %lf %lf %lf\n",(int)number[n],time,number[n+2],number[n+3],dur);
  713. }
  714. } else {
  715. for(n=0;n<cnt;n+=3) {
  716. frac = pow(number[n] * convertor,thresh);
  717. accel = 1.0 + (accel_step * frac);
  718. time = number[n] * accel;
  719. fprintf(stdout,"INFO: %lf %lf %lf\n",time,number[n+1],number[n+2]);
  720. }
  721. }
  722. fflush(stdout);
  723. }
  724. /************************************** MEAN_TEMPO *****************************************/
  725. void mean_tempo()
  726. {
  727. factor = (double)(60 * (cnt-1))/(number[cnt-1] - number[0]);
  728. factor = (round(factor * 100.0))/100.0;
  729. fprintf(stdout,"WARNING: Mean Tempo is %.2lf (assuming times are approx evenly spaced)\n",factor);
  730. fflush(stdout);
  731. }
  732. /************************************** TIME_TO_CROTCHETS *****************************************/
  733. void time_to_crotchets(int beatvals) {
  734. double crotchet = factor;
  735. double semibrev = 4 * crotchet;
  736. double minim = 2 * crotchet;
  737. double quaver = crotchet / 2;
  738. double semiquav = crotchet / 4;
  739. double tripquav = crotchet / 3;
  740. double tripsemiquav = crotchet / 6;
  741. double demisemiquav = crotchet / 8;
  742. double trip = minim / 3;
  743. int n, m;
  744. int **adjusted;
  745. if ((adjusted = (int **)malloc(cnt * sizeof(int *)))==NULL) {
  746. fprintf(stdout,"ERROR: Insufficient memory\n");
  747. fflush(stdout);
  748. exit(1);
  749. }
  750. for(n=0;n<cnt;n++) {
  751. if ((adjusted[n] = (int *)malloc(cnt * sizeof(int)))==NULL) {
  752. fprintf(stdout,"ERROR: Insufficient memory\n");
  753. fflush(stdout);
  754. exit(1);
  755. }
  756. for(m=0;m<cnt;m++)
  757. adjusted[n][m] = 0;
  758. }
  759. do_search(semibrev,tripsemiquav,adjusted);
  760. do_search(minim,tripsemiquav,adjusted);
  761. do_search(crotchet,tripsemiquav,adjusted);
  762. do_search(tripquav,tripsemiquav/2,adjusted);
  763. do_search(trip,tripsemiquav/2,adjusted);
  764. do_search(quaver,demisemiquav,adjusted);
  765. do_search(semiquav,tripsemiquav/2,adjusted);
  766. if(beatvals) {
  767. for(n=1;n<cnt; n++)
  768. number[n-1] = number[n] - number[n-1];
  769. cnt--;
  770. }
  771. for(n=0;n<cnt;n++) {
  772. number[n] /= crotchet;
  773. number[n] = (round(number[n] * 1000))/1000.0;
  774. }
  775. for(n=0;n<cnt;n++)
  776. fprintf(stdout,"INFO: %lf\n",number[n]);
  777. fflush(stdout);
  778. }
  779. void do_search(double thisval,double error,int **adjusted) {
  780. int n, m;
  781. double up = thisval + error;
  782. double dn = thisval - error;
  783. double gap;
  784. for(n=0; n<cnt-1; n++) {
  785. for(m=n+1; m<cnt; m++) {
  786. if(adjusted[n][m])
  787. continue;
  788. gap = number[m] - number[n];
  789. if(gap > dn) {
  790. if(gap < up) {
  791. adjust_all_vals(thisval,gap,n,m);
  792. adjusted[n][m] = 1;
  793. } else
  794. break;
  795. }
  796. }
  797. }
  798. }
  799. void adjust_all_vals(double thisval,double gap,int n,int m) {
  800. int k;
  801. double thisgap;
  802. double adjust_within = thisval/gap;
  803. double discrep_beyond = thisval - gap;
  804. number[m] = number[n] + thisval;
  805. for(k = m+1; k < cnt; k++)
  806. number[k] += discrep_beyond;
  807. for(k = n+1; k < m; k++) {
  808. thisgap = number[k] - number[n];
  809. number[k] = number[n] + (thisgap * adjust_within);
  810. }
  811. }
  812. /************************************** ROTATE_LIST *****************************************/
  813. void rotate_list(int reversed)
  814. {
  815. int n;
  816. if(reversed) {
  817. for(n=1;n < stringscnt; n++)
  818. fprintf(stdout,"INFO: %s\n",strings[n]);
  819. fprintf(stdout,"INFO: %s\n",strings[0]);
  820. } else {
  821. fprintf(stdout,"INFO: %s\n",strings[stringscnt - 1]);
  822. for(n=0;n < stringscnt-1; n++)
  823. fprintf(stdout,"INFO: %s\n",strings[n]);
  824. }
  825. fflush(stdout);
  826. }
  827. /************************************** SPLICE_POS *****************************************/
  828. #define SHSECSIZE 256
  829. void splice_pos(void)
  830. {
  831. double splicelen = (number[cnt]+ .5)/1000.0;
  832. int srate = round(number[cnt+1]);
  833. int chans = round(number[cnt+2]);
  834. int chcnt = round(number[cnt+3]);
  835. int splen = round(splicelen * srate) * chans;
  836. int seccnt, k1, k2;
  837. int n;
  838. if(((seccnt = splen / SHSECSIZE) * SHSECSIZE) < splen)
  839. seccnt++;
  840. splen = seccnt * SHSECSIZE;
  841. splen /= chcnt;
  842. for(n=0;n<cnt;n++) {
  843. if((k1 = round(number[n]) - splen) < 0) {
  844. fprintf(stdout,"ERROR: Splice falls before zero.\n");
  845. exit(1);
  846. }
  847. }
  848. for(n=0;n<cnt;n++) {
  849. k1 = round(number[n]) - splen;
  850. k2 = round(number[n]) + splen;
  851. fprintf(stdout,"INFO: %d %d\n",k1,k2);
  852. }
  853. fflush(stdout);
  854. }
  855. /************************************** WARP_TIMES *****************************************/
  856. void time_warp()
  857. {
  858. int m, n;
  859. double thistime, nexttime, lasttime = 0.0, thisval, nextval, step, frac, val, sum, gap;
  860. m = firstcnt;
  861. for(n=0;n<firstcnt;n++) {
  862. if(n==0) {
  863. if(!(flteq(number[n],0.0))) {
  864. fprintf(stdout,"ERROR: Invalid 1st value %lf in list of times (must be ZERO)\n",number[n]);
  865. exit(1);
  866. }
  867. number[n] = 0.0;
  868. lasttime = number[n];
  869. } else if(number[n] <= lasttime) {
  870. fprintf(stdout,"ERROR: Times, in list of times, must be in increasing order\n");
  871. exit(1);
  872. }
  873. }
  874. for(m=firstcnt+1;m<cnt;m+=2) {
  875. if(number[m] < FLTERR) {
  876. fprintf(stdout,"ERROR: Invalid value %lf in warping file (must be > 0)\n",number[m]);
  877. exit(1);
  878. }
  879. }
  880. fprintf(stdout,"INFO: %lf\n",0.0);
  881. sum = 0.0;
  882. m = firstcnt;
  883. for(n=1;n<firstcnt;n++) {
  884. while(number[m] <= number[n]) {
  885. if((m += 2) >= cnt)
  886. break;
  887. }
  888. if(m < cnt) {
  889. nexttime = number[m];
  890. nextval = number[m+1];
  891. thistime = number[m-2];
  892. thisval = number[m-1];
  893. step = nexttime - thistime;
  894. frac = (number[n] - thistime)/step;
  895. val = ((nextval - thisval) * frac) + thisval;
  896. } else {
  897. val = number[cnt-1];
  898. }
  899. gap = number[n] - number[n-1];
  900. val *= gap;
  901. sum += val;
  902. fprintf(stdout,"INFO: %lf\n",sum);
  903. }
  904. fflush(stdout);
  905. }
  906. /************************************** LIST_WARP *****************************************/
  907. void list_warp()
  908. {
  909. int m, n;
  910. int sizz = firstcnt-1;
  911. double index, thistime, nexttime, lasttime, thisval, nextval, step, frac, val;
  912. m = firstcnt;
  913. if(!flteq(number[firstcnt],0.0)) {
  914. fprintf(stdout,"ERROR: First time in warping file must be ZERO\n");
  915. exit(1);
  916. }
  917. number[firstcnt] = 0.0;
  918. lasttime = number[cnt-2];
  919. for(m=firstcnt;m<cnt;m+=2)
  920. number[m] /= lasttime;
  921. m = firstcnt;
  922. for(n=0;n<firstcnt;n++) {
  923. index = (double)n/(double)sizz;
  924. while(number[m] <= index) {
  925. if((m += 2) >= cnt)
  926. break;
  927. }
  928. if(m < cnt) {
  929. nexttime = number[m];
  930. nextval = number[m+1];
  931. thistime = number[m-2];
  932. thisval = number[m-1];
  933. step = nexttime - thistime;
  934. frac = (index - thistime)/step;
  935. val = ((nextval - thisval) * frac) + thisval;
  936. } else
  937. val = number[cnt-1];
  938. fprintf(stdout,"INFO: %lf\n",number[n] * val);
  939. }
  940. fflush(stdout);
  941. }
  942. /************************************** BRKWARP_TIMES *****************************************/
  943. void brktime_warp()
  944. {
  945. int m, n;
  946. double thistime, nexttime, thisval, nextval, step, frac, val, gap, sum;
  947. for(m=firstcnt+1;m<cnt;m+=2) {
  948. if(number[m] < FLTERR) {
  949. fprintf(stdout,"ERROR: Invalid value %lf in warping file (must be > 0)\n",number[m]);
  950. exit(1);
  951. }
  952. }
  953. if(!flteq(number[0],0.0)) {
  954. fprintf(stdout,"ERROR: Breakpoint file to BE warped must begin at time ZERO\n");
  955. exit(1);
  956. }
  957. number[0] = 0.0;
  958. fprintf(stdout,"INFO: %lf %lf\n",number[0], number[1]);
  959. sum = 0.0;
  960. m = firstcnt;
  961. for(n=2;n<firstcnt;n+=2) {
  962. while(number[m] <= number[n]) {
  963. if((m += 2) >= cnt)
  964. break;
  965. }
  966. if(m < cnt) {
  967. nexttime = number[m];
  968. nextval = number[m+1];
  969. thistime = number[m-2];
  970. thisval = number[m-1];
  971. step = nexttime - thistime;
  972. frac = (number[n] - thistime)/step;
  973. val = ((nextval - thisval) * frac) + thisval;
  974. } else {
  975. val = number[cnt-1];
  976. }
  977. gap = number[n] - number[n-2];
  978. val *= gap;
  979. sum += val;
  980. fprintf(stdout,"INFO: %lf %lf\n",sum, number[n+1]);
  981. }
  982. fflush(stdout);
  983. }
  984. /************************************** SEQWARP_TIMES *****************************************/
  985. void seqtime_warp()
  986. {
  987. int m, n, OK = 1;
  988. double thistime, nexttime, thisval, nextval, step, frac, val, gap, sum, lasttime;
  989. if(((firstcnt/3) * 3) != firstcnt)
  990. OK = 0;
  991. else if(!flteq(number[0],0.0))
  992. OK = 0;
  993. else {
  994. number[0] = 0.0;
  995. lasttime = number[0];
  996. for(n=3;n<firstcnt;n+=3) {
  997. if(number[n] <= lasttime) {
  998. OK = 0;
  999. break;
  1000. }
  1001. lasttime = number[n];
  1002. }
  1003. }
  1004. if(!OK) {
  1005. fprintf(stdout,"ERROR: First file is not a valid sequnce file.\n");
  1006. exit(1);
  1007. }
  1008. m = firstcnt;
  1009. for(m=firstcnt+1;m<cnt;m+=2) {
  1010. if(number[m] < FLTERR) {
  1011. fprintf(stdout,"ERROR: Invalid value %lf in warping file (must be > 0)\n",number[m]);
  1012. exit(1);
  1013. }
  1014. }
  1015. if(!flteq(number[0],0.0)) {
  1016. fprintf(stdout,"ERROR: Breakpoint file to BE warped must begin at time ZERO\n");
  1017. exit(1);
  1018. }
  1019. number[0] = 0.0;
  1020. fprintf(stdout,"INFO: %lf %lf %lf\n",number[0],number[1],number[2]);
  1021. sum = 0.0;
  1022. m = firstcnt;
  1023. for(n=3;n<firstcnt;n+=3) {
  1024. while(number[m] <= number[n]) {
  1025. if((m += 2) >= cnt)
  1026. break;
  1027. }
  1028. if(m < cnt) {
  1029. nexttime = number[m];
  1030. nextval = number[m+1];
  1031. thistime = number[m-2];
  1032. thisval = number[m-1];
  1033. step = nexttime - thistime;
  1034. frac = (number[n] - thistime)/step;
  1035. val = ((nextval - thisval) * frac) + thisval;
  1036. } else {
  1037. val = number[cnt-1];
  1038. }
  1039. gap = number[n] - number[n-3];
  1040. val *= gap;
  1041. sum += val;
  1042. fprintf(stdout,"INFO: %lf %lf %lf\n",sum, number[n+1], number[n+2]);
  1043. }
  1044. fflush(stdout);
  1045. }
  1046. /************************************** BRKVAL_WARP *****************************************/
  1047. void brkval_warp()
  1048. {
  1049. int m, n;
  1050. double thistime, nexttime, thisval, nextval, step, frac, val;
  1051. if(!flteq(number[0],0.0)) {
  1052. fprintf(stdout,"ERROR: Breakpoint file to BE warped must begin at time ZERO\n");
  1053. exit(1);
  1054. }
  1055. if(!flteq(number[firstcnt],0.0)) {
  1056. fprintf(stdout,"ERROR: Warping file must begin at time ZERO\n");
  1057. exit(1);
  1058. }
  1059. m = firstcnt;
  1060. for(n=2;n<firstcnt;n+=2) {
  1061. while(number[m] <= number[n]) {
  1062. if((m += 2) >= cnt)
  1063. break;
  1064. }
  1065. if(m < cnt) {
  1066. nexttime = number[m];
  1067. nextval = number[m+1];
  1068. thistime = number[m-2];
  1069. thisval = number[m-1];
  1070. step = nexttime - thistime;
  1071. frac = (number[n] - thistime)/step;
  1072. val = ((nextval - thisval) * frac) + thisval;
  1073. } else
  1074. val = number[cnt-1];
  1075. fprintf(stdout,"INFO: %lf %lf\n",number[n], number[n+1] * val);
  1076. }
  1077. fflush(stdout);
  1078. }
  1079. /************************************** DUPLICATE_LIST_AT_STEP *****************************************/
  1080. void duplicate_list_at_step()
  1081. {
  1082. int n, m;
  1083. double base = 0.0;
  1084. double step = number[cnt+1];
  1085. ifactor = round(number[cnt]);
  1086. step = number[cnt-1] - number[0] + step;
  1087. for(m=0;m<ifactor;m++) {
  1088. for(n=0;n<cnt;n++)
  1089. fprintf(stdout,"INFO: %lf\n",number[n] + base);
  1090. base += step;
  1091. }
  1092. fflush(stdout);
  1093. }
  1094. /************************************ TW_PSEUDO_EXP ************************************/
  1095. void tw_pseudo_exp()
  1096. {
  1097. double bottime = number[0];
  1098. double toptime = number[1];
  1099. double botval = number[2];
  1100. double topval = number[3];
  1101. double timefrac = 0.5, valfrac = 0.333333333333, step;
  1102. int valbase = ifactor+1;
  1103. int div, n, index;
  1104. int mask = 1, span;
  1105. cnt = ifactor;
  1106. if(topval < botval)
  1107. valfrac *= 2.0;
  1108. while(mask < (cnt>>1)) {
  1109. if(cnt & mask) {
  1110. fprintf(stdout,"ERROR: Number of steps must be a multiple of 2.\n");
  1111. fflush(stdout);
  1112. exit(1);
  1113. }
  1114. mask <<= 1;
  1115. }
  1116. free(number);
  1117. if((number = (double *)malloc((cnt+1) * 2 * sizeof(double)))==NULL) {
  1118. fprintf(stdout,"ERROR: Insufficient memory to store interpolated values.\n");
  1119. fflush(stdout);
  1120. exit(1);
  1121. }
  1122. number[0] = bottime;
  1123. number[cnt] = toptime;
  1124. number[cnt+1] = botval;
  1125. number[(cnt*2)+1] = topval;
  1126. div = 2;
  1127. span = cnt/2;
  1128. while(div <= cnt) {
  1129. n = 1;
  1130. while(n < div) {
  1131. index = (cnt * n)/div; /* ODD denominators, factor of 2 numerators */
  1132. step = number[index+span] - number[index-span]; /* i.e. 1/2 : 1/4,3/4 : 1/8,3/8,5/8,7/8 etc */
  1133. step *= timefrac;
  1134. number[index] = number[index-span] + step;
  1135. step = number[valbase+index+span] - number[valbase+index-span];
  1136. step *= valfrac;
  1137. number[valbase+index] = number[valbase+index-span] + step;
  1138. n += 2;
  1139. }
  1140. div *= 2;
  1141. span /= 2;
  1142. }
  1143. for(n=0; n<= cnt;n++)
  1144. fprintf(stdout,"INFO: %lf %lf\n",number[n],number[valbase+n]);
  1145. fflush(stdout);
  1146. }
  1147. /****************************** REVERSE_TIME_INTERVALS2 ******************************/
  1148. void reverse_time_intervals2(void)
  1149. {
  1150. int n;
  1151. double k = number[0];
  1152. fprintf(stdout,"INFO: %lf\n",k);
  1153. for(n = cnt-1;n>=1;n--) {
  1154. k += (number[n] - number[n-1]);
  1155. fprintf(stdout,"INFO: %lf\n",k);
  1156. }
  1157. fflush(stdout);
  1158. }
  1159. /****************************** INTERP_N_VALS ******************************/
  1160. void interp_n_vals(void)
  1161. {
  1162. int n, m, subcnt = cnt - 1;
  1163. double k, difdiv, diff;
  1164. if(ifactor < 1) {
  1165. fprintf(stdout,"ERROR: Invalid number (%d) of interpolated values\n",ifactor);
  1166. fflush(stdout);
  1167. exit(1);
  1168. }
  1169. ifactor++;
  1170. difdiv = (double)ifactor;
  1171. for(n = 0;n< subcnt;n++) {
  1172. k = number[n];
  1173. diff = (number[n+1] - k)/difdiv;
  1174. for(m=0;m<ifactor;m++) {
  1175. fprintf(stdout,"INFO: %lf\n",k);
  1176. k += diff;
  1177. }
  1178. }
  1179. fprintf(stdout,"INFO: %lf\n",number[n]);
  1180. fflush(stdout);
  1181. }
  1182. /************************************** GENERAL *****************************************/
  1183. #ifdef NOTDEF
  1184. /*RWD May 2005 lets keepo to one definition in sfsys */
  1185. void
  1186. initrand48()
  1187. {
  1188. srand(time((time_t *)0));
  1189. }
  1190. double
  1191. drand48()
  1192. {
  1193. return (double)rand()/(double)RAND_MAX;
  1194. }
  1195. #endif
  1196. /**************************** WARPED_TIMES *****************************/
  1197. void warped_times(int isdiff)
  1198. {
  1199. int j, k, m, n, lastn, numcnt = cnt - firstcnt, itemp;
  1200. double endtime, endval, frac, val = 0.0, thistime, timediff=0.0, valdiff=0.0, sum, temp;
  1201. double timestep = (double)128/48000.0;
  1202. /* This is default window length for standard PVOC analysis under CDP, at srate 48000 (windows 1024 samps: decimation 8)*/
  1203. /* However, the timestep, so long as sufficiently small, is not critical, except for very long time stretches */
  1204. double *vals = (double *)exmalloc(numcnt*sizeof(double));
  1205. int *perm = (int *)exmalloc(numcnt*sizeof(int));
  1206. int *perm2 = (int *)exmalloc(numcnt*sizeof(int));
  1207. for(n = 0;n < numcnt;n++)
  1208. perm[n] = n;
  1209. for(k = 0,n = firstcnt; n < cnt-1; n++,k++) { /* SORT NUMBERS TO ASCending ORDER, AND NOTE PERMUTATION OF POSITIONS */
  1210. m = n+1;
  1211. j = k+1;
  1212. while(m < cnt) {
  1213. if(number[m] < number[n]) {
  1214. temp = number[m];
  1215. number[m] = number[n];
  1216. number[n] = temp;
  1217. itemp = perm[j];
  1218. perm[j] = perm[k];
  1219. perm[k] = itemp;
  1220. }
  1221. m++;
  1222. j++;
  1223. }
  1224. }
  1225. for(n=0;n<cnt;n++) { /* 'INVERT' THE POSITION PERM */
  1226. for(m=0;m<cnt;m++) {
  1227. if(perm[m] == n) {
  1228. perm2[n] = m;
  1229. break;
  1230. }
  1231. }
  1232. }
  1233. perm = perm2;
  1234. endtime = number[firstcnt-2];
  1235. endval = number[firstcnt-1];
  1236. thistime = 0.0;
  1237. sum = 0.0;
  1238. n = 0;
  1239. k = 0;
  1240. for(m=firstcnt;m<cnt;m++) {
  1241. while(thistime < number[m]) {
  1242. if(thistime >= endtime) {
  1243. val = endval;
  1244. } else if(thistime <= number[0]) {
  1245. val = number[1];
  1246. } else {
  1247. lastn = n;
  1248. while(thistime > number[n])
  1249. n += 2;
  1250. if(n != lastn) {
  1251. timediff = (number[n] - number[n-2]);
  1252. valdiff = (number[n+1] - number[n-1]);
  1253. }
  1254. frac = (thistime - number[n-2])/timediff;
  1255. val = (valdiff * frac) + number[n-1];
  1256. }
  1257. sum += val;
  1258. thistime += timestep;
  1259. }
  1260. val = sum * timestep;
  1261. if(isdiff)
  1262. vals[k++] = val - number[m];
  1263. else
  1264. vals[k++] = val;
  1265. }
  1266. for(n=0;n<numcnt;n++)
  1267. fprintf(stdout,"INFO: %lf\n",vals[perm[n]]);
  1268. fflush(stdout);
  1269. }
  1270. /**************************** CUMULADD *****************************/
  1271. void cumuladd(void)
  1272. {
  1273. int n;
  1274. double upstep = number[cnt];
  1275. fprintf(stdout,"INFO: %lf\n",number[0]);
  1276. for(n=1;n<cnt;n++) {
  1277. fprintf(stdout,"INFO: %lf\n",number[n] + upstep);
  1278. upstep += number[cnt];
  1279. }
  1280. fflush(stdout);
  1281. }
  1282. /**************************** TW_PSUEDOPAN *****************************/
  1283. void tw_psuedopan(void)
  1284. {
  1285. double inner_width = number[0], outer_width = number[1];
  1286. double startpos = number[2], time_propor = number[3];
  1287. double bakfrth_dur = number[4], duration = number[5];
  1288. int leftwards = round(number[6]);
  1289. double time = 0;
  1290. double *vals;
  1291. double large_tstep, small_tstep;
  1292. double left_pos, far_left_pos, right_pos, far_right_pos;
  1293. double dist_from_left, prop_dist;
  1294. double nexttimestep = -1.0;
  1295. int n, dostop = 0, cycle_point, valcnt = (int)floor(duration/bakfrth_dur) + 3;
  1296. valcnt *= 12;
  1297. if((vals = (double *)malloc(valcnt * sizeof(double)))==NULL) {
  1298. fprintf(stdout,"ERROR: Insufficient memory to store pan data.\n");
  1299. fflush(stdout);
  1300. exit(1);
  1301. }
  1302. small_tstep = bakfrth_dur * time_propor;
  1303. large_tstep = bakfrth_dur - small_tstep;
  1304. small_tstep /= 4.0;
  1305. large_tstep /= 2.0;
  1306. left_pos = -inner_width;
  1307. far_left_pos = -outer_width;
  1308. right_pos = inner_width;
  1309. far_right_pos = outer_width;
  1310. if(flteq(startpos,far_left_pos)) {
  1311. nexttimestep = small_tstep;
  1312. cycle_point = 0;
  1313. } else if(flteq(startpos,left_pos)) {
  1314. if(leftwards == 0) {
  1315. nexttimestep = large_tstep;
  1316. cycle_point = 1;
  1317. } else {
  1318. nexttimestep = small_tstep;
  1319. cycle_point = 5;
  1320. }
  1321. } else if(flteq(startpos,right_pos)) {
  1322. if(leftwards == 0) {
  1323. nexttimestep = small_tstep;
  1324. cycle_point = 2;
  1325. } else {
  1326. nexttimestep = large_tstep;
  1327. cycle_point = 4;
  1328. }
  1329. } else if(flteq(startpos,far_right_pos)) {
  1330. nexttimestep = small_tstep;
  1331. cycle_point = 3;
  1332. } else if(startpos < left_pos) {
  1333. dist_from_left = startpos - far_left_pos;
  1334. prop_dist = dist_from_left/(left_pos - far_left_pos);
  1335. if(leftwards == 0) {
  1336. cycle_point = 0;
  1337. nexttimestep = small_tstep * (1.0 - prop_dist);
  1338. } else {
  1339. cycle_point = 5;
  1340. nexttimestep = small_tstep * prop_dist;
  1341. }
  1342. } else if(startpos < right_pos) {
  1343. dist_from_left = startpos - left_pos;
  1344. prop_dist = dist_from_left/(right_pos - left_pos);
  1345. if(leftwards == 0) {
  1346. cycle_point = 1;
  1347. nexttimestep = large_tstep * (1.0 - prop_dist);
  1348. } else {
  1349. cycle_point = 4;
  1350. nexttimestep = large_tstep * prop_dist;
  1351. }
  1352. } else {
  1353. dist_from_left = startpos - right_pos;
  1354. prop_dist = dist_from_left/(far_right_pos - right_pos);
  1355. if(leftwards == 0) {
  1356. cycle_point = 2;
  1357. nexttimestep = small_tstep * (1.0 - prop_dist);
  1358. } else {
  1359. cycle_point = 3;
  1360. nexttimestep = small_tstep * prop_dist;
  1361. }
  1362. }
  1363. n = 0;
  1364. if(n + 12 >= valcnt) {
  1365. fprintf(stdout,"ERROR: Internal error calculating memory required.\n");
  1366. fflush(stdout);
  1367. exit(1);
  1368. }
  1369. switch(cycle_point) {
  1370. case(0):
  1371. vals[n++] = time;
  1372. vals[n++] = startpos;
  1373. time += nexttimestep;
  1374. nexttimestep = -1.0;
  1375. if(time >= duration)
  1376. dostop = 1;
  1377. /* fall thro */
  1378. case(1):
  1379. vals[n++] = time;
  1380. if(dostop) {
  1381. dostop++;
  1382. break;
  1383. }
  1384. if(nexttimestep > 0.0) {
  1385. vals[n++] = startpos;
  1386. time += nexttimestep;
  1387. nexttimestep = -1.0;
  1388. } else {
  1389. vals[n++] = left_pos;
  1390. time += large_tstep;
  1391. }
  1392. if(time >= duration)
  1393. dostop = 1;
  1394. /* fall thro */
  1395. case(2):
  1396. vals[n++] = time;
  1397. if(dostop) {
  1398. dostop++;
  1399. break;
  1400. }
  1401. if(nexttimestep > 0.0) {
  1402. vals[n++] = startpos;
  1403. time += nexttimestep;
  1404. nexttimestep = -1.0;
  1405. } else {
  1406. vals[n++] = right_pos;
  1407. time += small_tstep;
  1408. }
  1409. if(time >= duration)
  1410. dostop = 1;
  1411. /* fall thro */
  1412. case(3):
  1413. vals[n++] = time;
  1414. if(dostop) {
  1415. dostop++;
  1416. break;
  1417. }
  1418. if(nexttimestep > 0.0) {
  1419. vals[n++] = startpos;
  1420. time += nexttimestep;
  1421. nexttimestep = -1.0;
  1422. } else {
  1423. vals[n++] = far_right_pos;
  1424. time += small_tstep;
  1425. }
  1426. if(time >= duration)
  1427. dostop = 1;
  1428. /* fall thro */
  1429. case(4):
  1430. vals[n++] = time;
  1431. if(dostop) {
  1432. dostop++;
  1433. break;
  1434. }
  1435. if(nexttimestep > 0.0) {
  1436. vals[n++] = startpos;
  1437. time+= nexttimestep;
  1438. nexttimestep = -1.0;
  1439. } else {
  1440. vals[n++] = right_pos;
  1441. time += large_tstep;
  1442. }
  1443. if(time >= duration)
  1444. dostop = 1;
  1445. /* fall thro */
  1446. case(5):
  1447. vals[n++] = time;
  1448. if(dostop) {
  1449. dostop++;
  1450. break;
  1451. }
  1452. if(nexttimestep > 0.0) {
  1453. vals[n++] = startpos;
  1454. time+= nexttimestep;
  1455. nexttimestep = -1.0;
  1456. } else {
  1457. vals[n++] = left_pos;
  1458. time += small_tstep;
  1459. }
  1460. if(time >= duration)
  1461. dostop = 1;
  1462. break;
  1463. }
  1464. if(dostop < 2) {
  1465. for (;;) {
  1466. if(n + 12 >= valcnt) {
  1467. fprintf(stdout,"ERROR: Internal error calculating memory required.\n");
  1468. fflush(stdout);
  1469. exit(1);
  1470. }
  1471. vals[n++] = time;
  1472. vals[n++] = far_left_pos;
  1473. if(dostop)
  1474. break;
  1475. time += small_tstep;
  1476. if(time >= duration)
  1477. dostop = 1;
  1478. vals[n++] = time;
  1479. vals[n++] = left_pos;
  1480. if(dostop)
  1481. break;
  1482. time += large_tstep;
  1483. if(time >= duration)
  1484. dostop = 1;
  1485. vals[n++] = time;
  1486. vals[n++] = right_pos;
  1487. if(dostop)
  1488. break;
  1489. time += small_tstep;
  1490. if(time >= duration)
  1491. dostop = 1;
  1492. vals[n++] = time;
  1493. vals[n++] = far_right_pos;
  1494. if(dostop)
  1495. break;
  1496. time += small_tstep;
  1497. if(time >= duration)
  1498. dostop = 1;
  1499. vals[n++] = time;
  1500. vals[n++] = right_pos;
  1501. if(dostop)
  1502. break;
  1503. time += large_tstep;
  1504. if(time >= duration)
  1505. dostop = 1;
  1506. vals[n++] = time;
  1507. vals[n++] = left_pos;
  1508. if(dostop)
  1509. break;
  1510. time += small_tstep;
  1511. if(time >= duration)
  1512. dostop = 1;
  1513. }
  1514. }
  1515. valcnt = n;
  1516. for(n = 0;n < valcnt; n +=2) {
  1517. fprintf(stdout,"INFO: %lf %lf\n",vals[n],vals[n+1]);
  1518. }
  1519. fflush(stdout);
  1520. }
  1521. /**************************** SINJOIN *****************************/
  1522. void sinjoin(char c)
  1523. {
  1524. double startval = number[0], endval = number[1];
  1525. double starttime = number[2], endtime = number[3];
  1526. int n, pointcnt = (int)round(number[4]), inverse = 0;
  1527. double val = 0.0, valdiff = endval - startval;
  1528. double timediff = endtime - starttime;
  1529. double timestep = timediff/(double)pointcnt;
  1530. double startrad = 0.0;
  1531. double nstep_cosin = (PI/(double)pointcnt);
  1532. double nstep_sin = (PI/(2.0 * (double)pointcnt));
  1533. if((c == 'x' && valdiff < 0.0) || (c=='v' && valdiff > 0.0)) {
  1534. inverse = 1;
  1535. nstep_sin = -nstep_sin;
  1536. startrad = PI/2.0;
  1537. } else if(c=='c')
  1538. startrad = PI;
  1539. fprintf(stdout,"INFO: %lf %lf\n",starttime,startval);
  1540. for(n = 1; n< pointcnt;n++) {
  1541. switch(c) {
  1542. case('c'):
  1543. startrad += nstep_cosin;
  1544. val = (cos(startrad) + 1.0) / 2.0;
  1545. break;
  1546. case('v'):
  1547. case('x'):
  1548. startrad += nstep_sin;
  1549. val = sin(startrad);
  1550. if(inverse)
  1551. val = 1.0 - val;
  1552. break;
  1553. }
  1554. val *= valdiff;
  1555. val += startval;
  1556. starttime += timestep;
  1557. fprintf(stdout,"INFO: %lf %lf\n",starttime,val);
  1558. }
  1559. fprintf(stdout,"INFO: %lf %lf\n",endtime,endval);
  1560. fflush(stdout);
  1561. }
  1562. /************************************** BRKTIME_OWARP *****************************************/
  1563. void brktime_owarp()
  1564. {
  1565. int m, n;
  1566. double thistime, nexttime, thisval, nextval, step, frac, val, gap, sum;
  1567. for(m=firstcnt+1;m<cnt;m+=2) {
  1568. if(number[m] < FLTERR) {
  1569. fprintf(stdout,"ERROR: Invalid value %lf in warping file (must be > 0)\n",number[m]);
  1570. exit(1);
  1571. }
  1572. }
  1573. if(!flteq(number[0],0.0)) {
  1574. fprintf(stdout,"ERROR: Breakpoint file to BE warped must begin at time ZERO\n");
  1575. exit(1);
  1576. }
  1577. number[0] = 0.0;
  1578. fprintf(stdout,"INFO: %lf %lf\n",number[0], number[1]);
  1579. sum = 0.0;
  1580. n = 2;
  1581. m = firstcnt;
  1582. for(;;) {
  1583. while(number[m] <= sum) {
  1584. if((m += 2) >= cnt)
  1585. break;
  1586. }
  1587. if(m >= cnt)
  1588. val = number[cnt-1];
  1589. else {
  1590. nexttime = number[m];
  1591. nextval = number[m+1];
  1592. thistime = number[m-2];
  1593. thisval = number[m-1];
  1594. step = nexttime - thistime;
  1595. frac = (sum - thistime)/step;
  1596. val = ((nextval - thisval) * frac) + thisval;
  1597. }
  1598. gap = number[n] - number[n-2];
  1599. val *= gap;
  1600. sum += val;
  1601. fprintf(stdout,"INFO: %lf %lf\n",sum, number[n+1]);
  1602. if((n += 2) >= firstcnt)
  1603. break;
  1604. }
  1605. fflush(stdout);
  1606. }