|
@@ -98,86 +98,6 @@ bool ProcessPolyloop(const IfcPolyLoop& loop, TempMesh& meshout, ConversionData&
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-void ComputePolygonNormals(const TempMesh& meshout, std::vector<IfcVector3>& normals, bool normalize = true, size_t ofs = 0)
|
|
|
-{
|
|
|
- size_t max_vcount = 0;
|
|
|
- std::vector<unsigned int>::const_iterator begin=meshout.vertcnt.begin()+ofs, end=meshout.vertcnt.end(), iit;
|
|
|
- for(iit = begin; iit != end; ++iit) {
|
|
|
- max_vcount = std::max(max_vcount,static_cast<size_t>(*iit));
|
|
|
- }
|
|
|
-
|
|
|
- std::vector<IfcFloat> temp((max_vcount+2)*4);
|
|
|
- normals.reserve( normals.size() + meshout.vertcnt.size()-ofs );
|
|
|
-
|
|
|
- // `NewellNormal()` currently has a relatively strange interface and need to
|
|
|
- // re-structure things a bit to meet them.
|
|
|
- size_t vidx = std::accumulate(meshout.vertcnt.begin(),begin,0);
|
|
|
- for(iit = begin; iit != end; vidx += *iit++) {
|
|
|
- if (!*iit) {
|
|
|
- normals.push_back(IfcVector3());
|
|
|
- continue;
|
|
|
- }
|
|
|
- for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
|
|
|
- const IfcVector3& v = meshout.verts[vidx+vofs];
|
|
|
- temp[cnt++] = v.x;
|
|
|
- temp[cnt++] = v.y;
|
|
|
- temp[cnt++] = v.z;
|
|
|
-#ifdef _DEBUG
|
|
|
- temp[cnt] = std::numeric_limits<IfcFloat>::quiet_NaN();
|
|
|
-#endif
|
|
|
- ++cnt;
|
|
|
- }
|
|
|
-
|
|
|
- normals.push_back(IfcVector3());
|
|
|
- NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]);
|
|
|
- }
|
|
|
-
|
|
|
- if(normalize) {
|
|
|
- BOOST_FOREACH(IfcVector3& n, normals) {
|
|
|
- n.Normalize();
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-// Compute the normal of the last polygon in the given mesh
|
|
|
-IfcVector3 ComputePolygonNormal(const TempMesh& inmesh, bool normalize = true)
|
|
|
-{
|
|
|
- size_t total = inmesh.vertcnt.back(), vidx = inmesh.verts.size() - total;
|
|
|
- std::vector<IfcFloat> temp((total+2)*3);
|
|
|
- for(size_t vofs = 0, cnt = 0; vofs < total; ++vofs) {
|
|
|
- const IfcVector3& v = inmesh.verts[vidx+vofs];
|
|
|
- temp[cnt++] = v.x;
|
|
|
- temp[cnt++] = v.y;
|
|
|
- temp[cnt++] = v.z;
|
|
|
- }
|
|
|
- IfcVector3 nor;
|
|
|
- NewellNormal<3,3,3>(nor,total,&temp[0],&temp[1],&temp[2]);
|
|
|
- return normalize ? nor.Normalize() : nor;
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-void FixupFaceOrientation(TempMesh& result)
|
|
|
-{
|
|
|
- const IfcVector3 vavg = result.Center();
|
|
|
-
|
|
|
- std::vector<IfcVector3> normals;
|
|
|
- ComputePolygonNormals(result,normals);
|
|
|
-
|
|
|
- size_t c = 0, ofs = 0;
|
|
|
- BOOST_FOREACH(unsigned int cnt, result.vertcnt) {
|
|
|
- if (cnt>2){
|
|
|
- const IfcVector3& thisvert = result.verts[c];
|
|
|
- if (normals[ofs]*(thisvert-vavg) < 0) {
|
|
|
- std::reverse(result.verts.begin()+c,result.verts.begin()+cnt+c);
|
|
|
- }
|
|
|
- }
|
|
|
- c += cnt;
|
|
|
- ++ofs;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
void ProcessPolygonBoundaries(TempMesh& result, const TempMesh& inmesh, size_t master_bounds = (size_t)-1)
|
|
|
{
|
|
@@ -206,7 +126,7 @@ void ProcessPolygonBoundaries(TempMesh& result, const TempMesh& inmesh, size_t m
|
|
|
// first compute newell normals for all polygons
|
|
|
// do not normalize 'normals', we need the original length for computing the polygon area
|
|
|
std::vector<IfcVector3> normals;
|
|
|
- ComputePolygonNormals(inmesh,normals,false);
|
|
|
+ inmesh.ComputePolygonNormals(normals,false);
|
|
|
|
|
|
// One of the polygons might be a IfcFaceOuterBound (in which case `master_bounds`
|
|
|
// is its index). Sadly we can't rely on it, the docs say 'At most one of the bounds
|
|
@@ -1931,7 +1851,7 @@ void ProcessBooleanExtrudedAreaSolidDifference(const IfcExtrudedAreaSolid* as, T
|
|
|
|
|
|
// ComputePolygonNormal returns the Newell normal, so the
|
|
|
// length of the normal is the area of the polygon.
|
|
|
- const IfcVector3& normal = ComputePolygonNormal(temp, false);
|
|
|
+ const IfcVector3& normal = temp.ComputeLastPolygonNormal(false);
|
|
|
if (normal.SquareLength() < static_cast<IfcFloat>(1e-5)) {
|
|
|
continue;
|
|
|
}
|
|
@@ -2048,7 +1968,7 @@ bool ProcessGeometricItem(const IfcRepresentationItem& geo, std::vector<unsigned
|
|
|
meshtmp.RemoveAdjacentDuplicates();
|
|
|
|
|
|
if(fix_orientation) {
|
|
|
- FixupFaceOrientation(meshtmp);
|
|
|
+ meshtmp.FixupFaceOrientation();
|
|
|
}
|
|
|
|
|
|
aiMesh* const mesh = meshtmp.ToMesh();
|