|
@@ -1,636 +0,0 @@
|
|
|
-/*
|
|
|
-Open Asset Import Library (ASSIMP)
|
|
|
-----------------------------------------------------------------------
|
|
|
-
|
|
|
-Copyright (c) 2006-2008, ASSIMP Development Team
|
|
|
-All rights reserved.
|
|
|
-
|
|
|
-Redistribution and use of this software in source and binary forms,
|
|
|
-with or without modification, are permitted provided that the
|
|
|
-following conditions are met:
|
|
|
-
|
|
|
-* Redistributions of source code must retain the above
|
|
|
- copyright notice, this list of conditions and the
|
|
|
- following disclaimer.
|
|
|
-
|
|
|
-* Redistributions in binary form must reproduce the above
|
|
|
- copyright notice, this list of conditions and the
|
|
|
- following disclaimer in the documentation and/or other
|
|
|
- materials provided with the distribution.
|
|
|
-
|
|
|
-* Neither the name of the ASSIMP team, nor the names of its
|
|
|
- contributors may be used to endorse or promote products
|
|
|
- derived from this software without specific prior
|
|
|
- written permission of the ASSIMP Development Team.
|
|
|
-
|
|
|
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
-"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
-LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
-A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
-OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
-SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
-LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
-THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
-OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
-
|
|
|
-----------------------------------------------------------------------
|
|
|
-*/
|
|
|
-
|
|
|
-/** Implementation of the OptimizeGraphProcess post-processing step*/
|
|
|
-
|
|
|
-#include "AssimpPCH.h"
|
|
|
-
|
|
|
-#include "OptimizeGraphProcess.h"
|
|
|
-#include "Hash.h"
|
|
|
-
|
|
|
-
|
|
|
-using namespace Assimp;
|
|
|
-
|
|
|
-// MSB for type unsigned int
|
|
|
-#define AI_OG_UINT_MSB (1u<<((sizeof(unsigned int)*8u)-1u))
|
|
|
-#define AI_OG_UINT_MSB_2 (AI_OG_UINT_MSB>>1)
|
|
|
-
|
|
|
-// check whether a node/a mesh is locked
|
|
|
-#define AI_OG_IS_NODE_LOCKED(nd) (nd->mNumChildren & AI_OG_UINT_MSB)
|
|
|
-#define AI_OG_IS_MESH_LOCKED(ms) (ms->mNumBones & AI_OG_UINT_MSB)
|
|
|
-
|
|
|
-// check whether a node has locked meshes in its list
|
|
|
-#define AI_OG_HAS_NODE_LOCKED_MESHES(nd) (nd->mNumChildren & AI_OG_UINT_MSB_2)
|
|
|
-
|
|
|
-// unmask the two upper bits of an unsigned int
|
|
|
-#define AI_OG_UNMASK(p) (p & (~(AI_OG_UINT_MSB|AI_OG_UINT_MSB_2)))
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-// Constructor to be privately used by Importer
|
|
|
-OptimizeGraphProcess::OptimizeGraphProcess()
|
|
|
-{
|
|
|
- configMinNumFaces = AI_OG_MIN_NUM_FACES;
|
|
|
- configJoinInequalTransforms = AI_OG_JOIN_INEQUAL_TRANSFORMS;
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-// Destructor, private as well
|
|
|
-OptimizeGraphProcess::~OptimizeGraphProcess()
|
|
|
-{
|
|
|
- // nothing to do here
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-// Returns whether the processing step is present in the given flag field.
|
|
|
-bool OptimizeGraphProcess::IsActive( unsigned int pFlags) const
|
|
|
-{
|
|
|
- return (pFlags & aiProcess_OptimizeGraph) != 0;
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-// Setup properties of the step
|
|
|
-void OptimizeGraphProcess::SetupProperties(const Importer* pImp)
|
|
|
-{
|
|
|
- // join nods with inequal transformations?
|
|
|
- configJoinInequalTransforms = pImp->GetPropertyInteger(AI_CONFIG_PP_OG_JOIN_INEQUAL_TRANSFORMS,
|
|
|
- AI_OG_JOIN_INEQUAL_TRANSFORMS) != 0 ? true : false;
|
|
|
-
|
|
|
- // minimum face number per node
|
|
|
- configMinNumFaces = pImp->GetPropertyInteger(AI_CONFIG_PP_OG_MIN_NUM_FACES,
|
|
|
- AI_OG_MIN_NUM_FACES);
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-void OptimizeGraphProcess::FindLockedNodes(aiNode* node)
|
|
|
-{
|
|
|
- ai_assert(NULL != node);
|
|
|
-
|
|
|
- // process animations
|
|
|
- for (unsigned int i = 0; i < pScene->mNumAnimations;++i)
|
|
|
- {
|
|
|
- aiAnimation* pani = pScene->mAnimations[i];
|
|
|
- for (unsigned int a = 0; a < pani->mNumChannels;++a)
|
|
|
- {
|
|
|
- aiNodeAnim* pba = pani->mChannels[a];
|
|
|
- if (pba->mNodeName == node->mName)
|
|
|
- {
|
|
|
- // this node is locked, it is referenced by an animation channel
|
|
|
- node->mNumChildren |= AI_OG_UINT_MSB;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // process cameras
|
|
|
- for (unsigned int i = 0; i < pScene->mNumCameras;++i)
|
|
|
- {
|
|
|
- aiCamera* p = pScene->mCameras[i];
|
|
|
- if (p->mName == node->mName)
|
|
|
- {
|
|
|
- // this node is locked, it is referenced by a camera
|
|
|
- node->mNumChildren |= AI_OG_UINT_MSB;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // process lights
|
|
|
- for (unsigned int i = 0; i < pScene->mNumLights;++i)
|
|
|
- {
|
|
|
- aiLight* p = pScene->mLights[i];
|
|
|
- if (p->mName == node->mName)
|
|
|
- {
|
|
|
- // this node is locked, it is referenced by a light
|
|
|
- node->mNumChildren |= AI_OG_UINT_MSB;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // call all children
|
|
|
- for (unsigned int i = 0; i < node->mNumChildren;++i)
|
|
|
- FindLockedNodes(node->mChildren[i]);
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-void OptimizeGraphProcess::FindLockedMeshes(aiNode* node, MeshRefCount* pRefCount)
|
|
|
-{
|
|
|
- ai_assert(NULL != node && NULL != pRefCount);
|
|
|
- for (unsigned int i = 0;i < node->mNumMeshes;++i)
|
|
|
- {
|
|
|
- unsigned int m = node->mMeshes[i];
|
|
|
- if (pRefCount[m].first)
|
|
|
- {
|
|
|
- // we have already one reference - lock the first node
|
|
|
- // that had a referenced to this mesh too if it has only
|
|
|
- // one mesh assigned. If there are multiple meshes,
|
|
|
- // the others could still be used for optimizations.
|
|
|
- if (pRefCount[m].second)
|
|
|
- {
|
|
|
- pRefCount[m].second->mNumChildren |= (pRefCount[m].second->mNumMeshes <= 1
|
|
|
- ? AI_OG_UINT_MSB : AI_OG_UINT_MSB_2);
|
|
|
-
|
|
|
- pRefCount[m].second = NULL;
|
|
|
- }
|
|
|
- pScene->mMeshes[m]->mNumBones |= AI_OG_UINT_MSB;
|
|
|
-
|
|
|
- // lock this node
|
|
|
- node->mNumChildren |= (node->mNumMeshes <= 1
|
|
|
- ? AI_OG_UINT_MSB : AI_OG_UINT_MSB_2);
|
|
|
- }
|
|
|
- else pRefCount[m].second = node;
|
|
|
- ++pRefCount[m].first;
|
|
|
- }
|
|
|
- // call all children
|
|
|
- for (unsigned int i = 0; i < node->mNumChildren;++i)
|
|
|
- FindLockedMeshes(node->mChildren[i],pRefCount);
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-void OptimizeGraphProcess::FindLockedMeshes(aiNode* node)
|
|
|
-{
|
|
|
- ai_assert(NULL != node);
|
|
|
- MeshRefCount* pRefCount = new MeshRefCount[pScene->mNumMeshes];
|
|
|
- for (unsigned int i = 0; i < pScene->mNumMeshes;++i)
|
|
|
- pRefCount[i] = MeshRefCount();
|
|
|
-
|
|
|
- // execute the algorithm
|
|
|
- FindLockedMeshes(node,pRefCount);
|
|
|
-
|
|
|
- delete[] pRefCount;
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-void OptimizeGraphProcess::UnlockNodes(aiNode* node)
|
|
|
-{
|
|
|
- ai_assert(NULL != node);
|
|
|
- node->mNumChildren &= ~(AI_OG_UINT_MSB|AI_OG_UINT_MSB_2);
|
|
|
-
|
|
|
- // call all children
|
|
|
- for (unsigned int i = 0; i < node->mNumChildren;++i)
|
|
|
- UnlockNodes(node->mChildren[i]);
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-void OptimizeGraphProcess::UnlockMeshes()
|
|
|
-{
|
|
|
- for (unsigned int i = 0; i < pScene->mNumMeshes;++i)
|
|
|
- pScene->mMeshes[i]->mNumBones &= ~AI_OG_UINT_MSB;
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-void OptimizeGraphProcess::ComputeMeshHashes()
|
|
|
-{
|
|
|
- mMeshHashes.resize(pScene->mNumMeshes);
|
|
|
- for (unsigned int i = 0; i < pScene->mNumMeshes;++i)
|
|
|
- {
|
|
|
- unsigned int iRet = 0;
|
|
|
- aiMesh* pcMesh = pScene->mMeshes[i];
|
|
|
-
|
|
|
- // normals
|
|
|
- if (pcMesh->HasNormals())iRet |= 0x1;
|
|
|
- // tangents and bitangents
|
|
|
- if (pcMesh->HasTangentsAndBitangents())iRet |= 0x2;
|
|
|
-
|
|
|
- // texture coordinates
|
|
|
- unsigned int p = 0;
|
|
|
- ai_assert(4 >= AI_MAX_NUMBER_OF_TEXTURECOORDS);
|
|
|
- while (pcMesh->HasTextureCoords(p))
|
|
|
- {
|
|
|
- iRet |= (0x100 << p++);
|
|
|
-
|
|
|
- // NOTE: meshes with numUVComp != 3 && != 2 aren't handled correctly here
|
|
|
- ai_assert(pcMesh->mNumUVComponents[p] == 3 || pcMesh->mNumUVComponents[p] == 2);
|
|
|
- if (3 == pcMesh->mNumUVComponents[p])
|
|
|
- iRet |= (0x1000 << p++);
|
|
|
- }
|
|
|
- // vertex colors
|
|
|
- p = 0;
|
|
|
- ai_assert(4 >= AI_MAX_NUMBER_OF_COLOR_SETS);
|
|
|
- while (pcMesh->HasVertexColors(p))iRet |= (0x10000 << p++);
|
|
|
- mMeshHashes[i] = iRet;
|
|
|
-
|
|
|
- // material index -store it in the upper 1 1/2 bytes, so
|
|
|
- // are able to encode 2^12 material indices.
|
|
|
-
|
|
|
- iRet |= (pcMesh->mMaterialIndex << 20u);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-inline unsigned int OptimizeGraphProcess::BinarySearch(NodeIndexList& sortedArray,
|
|
|
- unsigned int min, unsigned int& index, unsigned int iStart)
|
|
|
-{
|
|
|
- unsigned int first = iStart,last = (unsigned int)sortedArray.size()-1;
|
|
|
- while (first <= last)
|
|
|
- {
|
|
|
- unsigned int mid = (first + last) / 2;
|
|
|
- unsigned int id = sortedArray[mid].second;
|
|
|
-
|
|
|
- if (min > id)
|
|
|
- first = mid + 1;
|
|
|
- else if (min <= id)
|
|
|
- {
|
|
|
- last = mid - 1;
|
|
|
- if (!mid || min > sortedArray[last].second)
|
|
|
- {
|
|
|
- index = sortedArray[last].first;
|
|
|
- return mid;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return (unsigned int)sortedArray.size();
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-void OptimizeGraphProcess::ApplyNodeMeshesOptimization(aiNode* pNode)
|
|
|
-{
|
|
|
- ai_assert(NULL != pNode);
|
|
|
-
|
|
|
- // find all meshes which are compatible and could therefore be joined.
|
|
|
- // we can't join meshes that are locked
|
|
|
- std::vector<aiMesh*> apcMeshes(pNode->mNumMeshes);
|
|
|
- unsigned int iNumMeshes;
|
|
|
-
|
|
|
- for (unsigned int m = 0, ttt = 0; m < pNode->mNumMeshes;++m)
|
|
|
- {
|
|
|
- iNumMeshes = 0;
|
|
|
-
|
|
|
- unsigned int nm = pNode->mMeshes[m];
|
|
|
- if (0xffffffff == nm || AI_OG_IS_MESH_LOCKED(pScene->mMeshes[nm]))continue;
|
|
|
-
|
|
|
- for (unsigned int q = m+1; q < pNode->mNumMeshes;++q)
|
|
|
- {
|
|
|
- register unsigned int nq = pNode->mMeshes[q];
|
|
|
-
|
|
|
- // skip locked meshes
|
|
|
- if (AI_OG_IS_MESH_LOCKED(pScene->mMeshes[nq]))continue;
|
|
|
-
|
|
|
- // compare the mesh hashes
|
|
|
- if (mMeshHashes[nm] == mMeshHashes[nq])
|
|
|
- {
|
|
|
- apcMeshes[iNumMeshes++] = pScene->mMeshes[nq];
|
|
|
- pNode->mMeshes[q] = 0xffffffff;
|
|
|
- }
|
|
|
- }
|
|
|
- aiMesh* out;
|
|
|
- if (iNumMeshes > 0)
|
|
|
- {
|
|
|
- apcMeshes[iNumMeshes++] = pScene->mMeshes[nm];
|
|
|
-// JoinMeshes(apcMeshes,out,iNumMeshes);
|
|
|
- }
|
|
|
- else out = pScene->mMeshes[nm];
|
|
|
-
|
|
|
- pNode->mMeshes[ttt++] = (unsigned int)mOutputMeshes.size();
|
|
|
- mOutputMeshes.push_back(out);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-void OptimizeGraphProcess::TransformMeshes(aiNode* quak,aiNode* pNode)
|
|
|
-{
|
|
|
- for (unsigned int pl = 0; pl < quak->mNumMeshes;++pl)
|
|
|
- {
|
|
|
- aiMesh* mariusIsHot = pScene->mMeshes[quak->mMeshes[pl]];
|
|
|
- aiMatrix4x4 mMatTransform = pNode->mTransformation;
|
|
|
-
|
|
|
- // transformation: first back to the parent's local space,
|
|
|
- // later into the local space of the destination child node
|
|
|
- mMatTransform.Inverse();
|
|
|
- mMatTransform = quak->mTransformation * mMatTransform;
|
|
|
-
|
|
|
- // transform all vertices
|
|
|
- for (unsigned int oo =0; oo < mariusIsHot->mNumVertices;++oo)
|
|
|
- mariusIsHot->mVertices[oo] = mMatTransform * mariusIsHot->mVertices[oo];
|
|
|
-
|
|
|
- // transform all normal vectors
|
|
|
- if (mariusIsHot->HasNormals())
|
|
|
- {
|
|
|
- mMatTransform.Inverse().Transpose();
|
|
|
- for (unsigned int oo =0; oo < mariusIsHot->mNumVertices;++oo)
|
|
|
- mariusIsHot->mNormals[oo] = mMatTransform * mariusIsHot->mNormals[oo];
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-void OptimizeGraphProcess::ApplyOptimizations(aiNode* node)
|
|
|
-{
|
|
|
- ai_assert(NULL != node);
|
|
|
-
|
|
|
- unsigned int iJoinedIndex = 0;
|
|
|
-
|
|
|
- // first: node index; second: number of faces in node
|
|
|
- NodeIndexList aiBelowTreshold;
|
|
|
- aiBelowTreshold.reserve(node->mNumChildren);
|
|
|
-
|
|
|
- for (unsigned int i = 0; i < node->mNumChildren;++i)
|
|
|
- {
|
|
|
- aiNode* pChild = node->mChildren[i];
|
|
|
- if (AI_OG_IS_NODE_LOCKED(pChild) || !pChild->mNumMeshes)continue;
|
|
|
-
|
|
|
- // find out how many faces this node is referencing
|
|
|
- unsigned int iFaceCnt = 0;
|
|
|
- for (unsigned int a = 0; a < pChild->mNumMeshes;++a)
|
|
|
- iFaceCnt += pScene->mMeshes[pChild->mMeshes[a]]->mNumFaces;
|
|
|
-
|
|
|
- // are we below the treshold?
|
|
|
- if (iFaceCnt < configMinNumFaces)
|
|
|
- {
|
|
|
- aiBelowTreshold.push_back(NodeIndexEntry());
|
|
|
- NodeIndexEntry& p = aiBelowTreshold.back();
|
|
|
- p.first = i;
|
|
|
- p.second = iFaceCnt;
|
|
|
- p.pNode = pChild;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (!aiBelowTreshold.empty())
|
|
|
- {
|
|
|
- // some typedefs for the data structures we'll need
|
|
|
- typedef std::pair<unsigned int, unsigned int> JoinListEntry;
|
|
|
- std::vector<JoinListEntry> aiJoinList(aiBelowTreshold.size());
|
|
|
- std::vector<unsigned int> aiTempList(aiBelowTreshold.size());
|
|
|
-
|
|
|
- unsigned int iNumJoins, iNumTemp;
|
|
|
-
|
|
|
- // sort the list by size
|
|
|
- std::sort(aiBelowTreshold.begin(),aiBelowTreshold.end());
|
|
|
-
|
|
|
- unsigned int iStart = 0;
|
|
|
- for (NodeIndexList::const_iterator it = aiBelowTreshold.begin(),end = aiBelowTreshold.end();
|
|
|
- it != end; /*++it */++iStart)
|
|
|
- {
|
|
|
- aiNode* pNode = node->mChildren[(*it).first];
|
|
|
-
|
|
|
- // get the hash of the mesh
|
|
|
- const unsigned int iMeshVFormat = mMeshHashes[pNode->mMeshes[0]];
|
|
|
-
|
|
|
- // we search for a node with more faces than this ... find
|
|
|
- // the one that fits best and continue until we've reached
|
|
|
- // treshold size.
|
|
|
- int iDiff = configMinNumFaces-(*it).second;
|
|
|
- for (;;)
|
|
|
- {
|
|
|
- // do a binary search and start the iteration there
|
|
|
- unsigned int index;
|
|
|
- unsigned int start = BinarySearch(aiBelowTreshold,iDiff,index,iStart);
|
|
|
-
|
|
|
- if (index == (*it).first)start++;
|
|
|
-
|
|
|
- if (start >= aiBelowTreshold.size())
|
|
|
- {
|
|
|
- // there is no node with enough faces. take the first
|
|
|
- start = 0;
|
|
|
- }
|
|
|
-
|
|
|
- // todo: implement algorithm to find the best possible combination ...
|
|
|
- iNumTemp = 0;
|
|
|
-
|
|
|
- while( start < aiBelowTreshold.size())
|
|
|
- {
|
|
|
- // check whether the node has akready been processed before
|
|
|
- const NodeIndexEntry& entry = aiBelowTreshold[start];
|
|
|
- if (!entry.pNode)continue;
|
|
|
-
|
|
|
- const aiNode* pip = node->mChildren[entry.first];
|
|
|
- if (configJoinInequalTransforms )
|
|
|
- {
|
|
|
- // we need to check whether this node has locked meshes
|
|
|
- // in this case we can't add it here - the meshes will
|
|
|
- // be transformed from one to another coordinate space
|
|
|
-
|
|
|
- if (!AI_OG_HAS_NODE_LOCKED_MESHES(pip) || pip->mTransformation == pNode->mTransformation)
|
|
|
- aiTempList[iNumTemp++] = start;
|
|
|
- }
|
|
|
- else if (node->mChildren[entry.first]->mTransformation == pNode->mTransformation)
|
|
|
- {
|
|
|
- aiTempList[iNumTemp++] = start;
|
|
|
- break;
|
|
|
- }
|
|
|
- ++start;
|
|
|
- }
|
|
|
-
|
|
|
- if (iNumTemp)
|
|
|
- {
|
|
|
- // search for a node which has a mesh with
|
|
|
- // - the same material index
|
|
|
- // - the same vertex layout
|
|
|
- unsigned int d = iNumJoins = 0;
|
|
|
- for (unsigned int m = 0; m < iNumTemp;++m)
|
|
|
- {
|
|
|
- register unsigned int mn = aiTempList[m];
|
|
|
- aiNode* pip = aiBelowTreshold[mn].pNode;
|
|
|
-
|
|
|
- for (unsigned int tt = 0; tt < pip->mNumMeshes;++tt)
|
|
|
- {
|
|
|
- register unsigned int mm = pip->mMeshes[tt];
|
|
|
-
|
|
|
- if (mMeshHashes [ mm ] == iMeshVFormat)
|
|
|
- {
|
|
|
- d = mn;
|
|
|
- goto break_out;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-break_out:
|
|
|
- aiJoinList[iNumJoins++] = JoinListEntry( aiBelowTreshold[d].first, d );
|
|
|
- iDiff -= aiBelowTreshold[d].second;
|
|
|
- }
|
|
|
- // did we reach the target treshold?
|
|
|
- if (iDiff <= 0)break;
|
|
|
- }
|
|
|
-
|
|
|
- // did we found any nodes to be joined with *this* one?
|
|
|
- if (iNumJoins)
|
|
|
- {
|
|
|
- unsigned int iNumTotalChilds = pNode->mNumChildren;
|
|
|
- unsigned int iNumTotalMeshes = pNode->mNumMeshes;
|
|
|
- std::vector<JoinListEntry>::const_iterator wend = aiJoinList.begin()+iNumJoins;
|
|
|
-
|
|
|
- // get output array bounds
|
|
|
- for (std::vector<JoinListEntry>::const_iterator wit = aiJoinList.begin();
|
|
|
- wit != wend;++wit )
|
|
|
- {
|
|
|
- aiNode*& quak = node->mChildren[(*wit).first];
|
|
|
- iNumTotalChilds += AI_OG_UNMASK( quak->mNumChildren );
|
|
|
- iNumTotalMeshes += quak->mNumMeshes;
|
|
|
- }
|
|
|
-
|
|
|
- // build the output child list
|
|
|
- if (iNumTotalChilds != pNode->mNumChildren)
|
|
|
- {
|
|
|
- aiNode** ppc = pNode->mChildren;
|
|
|
- delete[] pNode->mChildren;
|
|
|
- pNode->mChildren = new aiNode*[iNumTotalChilds];
|
|
|
- ::memcpy(pNode->mChildren,ppc, sizeof(void*)* AI_OG_UNMASK( pNode->mNumChildren ));
|
|
|
-
|
|
|
- for (std::vector<JoinListEntry>::const_iterator wit = aiJoinList.begin();
|
|
|
- wit != wend;++wit )
|
|
|
- {
|
|
|
- aiNode*& quak = node->mChildren[(*wit).first];
|
|
|
- ::memcpy(pNode->mChildren+pNode->mNumChildren,
|
|
|
- quak->mChildren, sizeof(void*)*quak->mNumChildren);
|
|
|
-
|
|
|
- pNode->mNumChildren += AI_OG_UNMASK( quak->mNumChildren );
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // build the output mesh list
|
|
|
- unsigned int* ppc = pNode->mMeshes;
|
|
|
- delete[] pNode->mMeshes;
|
|
|
- pNode->mMeshes = new unsigned int[iNumTotalMeshes];
|
|
|
- ::memcpy(pNode->mMeshes,ppc, sizeof(void*)*pNode->mNumMeshes);
|
|
|
-
|
|
|
- for (std::vector<JoinListEntry>::const_iterator wit = aiJoinList.begin();
|
|
|
- wit != wend;++wit )
|
|
|
- {
|
|
|
- aiNode*& quak = node->mChildren[(*wit).first];
|
|
|
- ::memcpy(pNode->mMeshes+pNode->mNumMeshes,
|
|
|
- quak->mMeshes, sizeof(unsigned int)*quak->mNumMeshes);
|
|
|
-
|
|
|
- // if the node has a transformation matrix that is not equal to ours,
|
|
|
- // we'll need to transform all vertices of the mesh into our
|
|
|
- // local coordinate space.
|
|
|
- if (configJoinInequalTransforms && quak->mTransformation != pNode->mTransformation)
|
|
|
- TransformMeshes(quak,pNode);
|
|
|
-
|
|
|
- pNode->mNumMeshes += quak->mNumMeshes;
|
|
|
-
|
|
|
- // remove the joined nodes from all lists.
|
|
|
- aiBelowTreshold[(*wit).second].pNode = NULL;
|
|
|
- if ((*wit).second == iStart+1)++iStart;
|
|
|
- }
|
|
|
-
|
|
|
- // now generate an output name for the joined nodes
|
|
|
- if (1 == iNumTotalChilds)
|
|
|
- {
|
|
|
- pNode->mName.length = ::sprintf( pNode->mName.data, "<Joined_%i_%i>",
|
|
|
- iJoinedIndex++,iNumJoins+1);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // now optimize the meshes in this node
|
|
|
- ApplyNodeMeshesOptimization(pNode);
|
|
|
-
|
|
|
- // note - this has been optimized away. The search in the binary
|
|
|
- // list starts with iStart, which is incremented each iteration
|
|
|
- ++it; // = aiBelowTreshold.erase(it);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // call all children recursively
|
|
|
- for (unsigned int i = 0; i < node->mNumChildren;++i)
|
|
|
- ApplyOptimizations(node->mChildren[i]);
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-void OptimizeGraphProcess::BuildOutputMeshList()
|
|
|
-{
|
|
|
- // all meshes should have been deleted before if they are
|
|
|
- // not contained in the new mesh list
|
|
|
-
|
|
|
- if (pScene->mNumMeshes < mOutputMeshes.size())
|
|
|
- {
|
|
|
- delete[] pScene->mMeshes;
|
|
|
- pScene->mMeshes = new aiMesh*[mOutputMeshes.size()];
|
|
|
- }
|
|
|
- pScene->mNumMeshes = (unsigned int)mOutputMeshes.size();
|
|
|
- ::memcpy(pScene->mMeshes,&mOutputMeshes[0],pScene->mNumMeshes*sizeof(void*));
|
|
|
-}
|
|
|
-
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-// Executes the post processing step on the given imported data.
|
|
|
-void OptimizeGraphProcess::Execute( aiScene* pScene)
|
|
|
-{
|
|
|
- throw new ImportErrorException("This step is disabled in this beta");
|
|
|
- this->pScene = pScene;
|
|
|
- /*
|
|
|
-
|
|
|
- a) the term "mesh node" stands for a node with numMeshes > 0
|
|
|
- b) the term "animation node" stands for a node with numMeshes == 0,
|
|
|
- regardless whether the node is referenced by animation channels,
|
|
|
- lights or cameras
|
|
|
-
|
|
|
- Algorithm:
|
|
|
-
|
|
|
- 1. Compute hashes for all meshes that we're able to check whether
|
|
|
- two meshes are compatible.
|
|
|
- 3. Find out which nodes may not be moved, so to speak are "locked" - a
|
|
|
- locked node will never be joined with neighbors.
|
|
|
- - A node lock is indicated by a set MSB in the aiNode::mNumChildren member
|
|
|
- 4. Find out which meshes are locked - they are referenced by
|
|
|
- more than one node. They will never be joined. Mark all
|
|
|
- nodes referencing such a mesh as "locked", too.
|
|
|
- - A mesh lock is indicated by a set MSB in the aiMesh::mNumBones member
|
|
|
- 5. For each unlocked node count the face numbers of all assigned meshes
|
|
|
- - if it is below the pre-defined treshold add the node to a list.
|
|
|
- For each node in the list - try to find enough joinable nodes to
|
|
|
- have enough faces all together.
|
|
|
- Two nodes are joined if:
|
|
|
- - none of them is locked
|
|
|
- - (optional) their world matrices are identical
|
|
|
- - nodes whose meshes share the same material indices are prefered
|
|
|
- Two meshes in one node are joined if:
|
|
|
- - their material indices are identical
|
|
|
- - none of them is locked
|
|
|
- - they share the same vertex format
|
|
|
- 6. Build the final mesh list
|
|
|
- 7. For all meshes and all nodes - remove locks.
|
|
|
-
|
|
|
- */
|
|
|
-
|
|
|
- throw new ImportErrorException("OG step is still undeer development and not yet finished");
|
|
|
-
|
|
|
- // STEP 1
|
|
|
- ComputeMeshHashes();
|
|
|
-
|
|
|
- // STEP 2
|
|
|
- FindLockedNodes(pScene->mRootNode);
|
|
|
-
|
|
|
- // STEP 3
|
|
|
- FindLockedMeshes(pScene->mRootNode);
|
|
|
-
|
|
|
- // STEP 4
|
|
|
- ApplyOptimizations(pScene->mRootNode);
|
|
|
-
|
|
|
- // STEP 5
|
|
|
- BuildOutputMeshList();
|
|
|
-
|
|
|
- // STEP 6
|
|
|
- UnlockNodes(pScene->mRootNode);
|
|
|
- UnlockMeshes();
|
|
|
-}
|