|
@@ -1040,8 +1040,6 @@ void InsertWindowContours(const ContourVector& contours,
|
|
const std::vector<TempOpening>& openings,
|
|
const std::vector<TempOpening>& openings,
|
|
TempMesh& curmesh)
|
|
TempMesh& curmesh)
|
|
{
|
|
{
|
|
- ai_assert(contours.size() == bbs.size());
|
|
|
|
-
|
|
|
|
// fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
|
|
// fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
|
|
for(size_t i = 0; i < contours.size();++i) {
|
|
for(size_t i = 0; i < contours.size();++i) {
|
|
const BoundingBox& bb = contours[i].bb;
|
|
const BoundingBox& bb = contours[i].bb;
|
|
@@ -1365,11 +1363,108 @@ typedef std::vector<std::pair<
|
|
Contour::const_iterator>
|
|
Contour::const_iterator>
|
|
> ContourRefVector;
|
|
> ContourRefVector;
|
|
|
|
|
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
|
+bool BoundingBoxesAdjacent(const BoundingBox& bb, const BoundingBox& ibb)
|
|
|
|
+{
|
|
|
|
+ // TODO: I'm pretty sure there is a much more compact way to check this
|
|
|
|
+ const IfcFloat epsilon = 1e-5f;
|
|
|
|
+ return (fabs(bb.second.x - ibb.first.x) < epsilon && bb.first.y <= ibb.second.y && bb.second.y >= ibb.first.y) ||
|
|
|
|
+ (fabs(bb.first.x - ibb.second.x) < epsilon && ibb.first.y <= bb.second.y && ibb.second.y >= bb.first.y) ||
|
|
|
|
+ (fabs(bb.second.y - ibb.first.y) < epsilon && bb.first.x <= ibb.second.x && bb.second.x >= ibb.first.x) ||
|
|
|
|
+ (fabs(bb.first.y - ibb.second.y) < epsilon && ibb.first.x <= bb.second.x && ibb.second.x >= bb.first.x);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
|
+// Check if m0,m1 intersects n0,n1 assuming same ordering of the points in the line segments
|
|
|
|
+// output the intersection points on n0,n1
|
|
|
|
+bool IntersectingLineSegments(const IfcVector2& n0, const IfcVector2& n1,
|
|
|
|
+ const IfcVector2& m0, const IfcVector2& m1,
|
|
|
|
+ IfcVector2& out0, IfcVector2& out1)
|
|
|
|
+{
|
|
|
|
+ const IfcVector2& m0_to_m1 = m1 - m0;
|
|
|
|
+ const IfcVector2& m0_to_n1 = n1 - m0;
|
|
|
|
+ const IfcVector2& n0_to_n1 = n1 - n0;
|
|
|
|
+ const IfcVector2& n0_to_m1 = m1 - n0;
|
|
|
|
+
|
|
|
|
+ const IfcFloat m0_to_m1_len = m0_to_m1.SquareLength();
|
|
|
|
+ const IfcFloat m0_to_n1_len = m0_to_n1.SquareLength();
|
|
|
|
+ const IfcFloat n0_to_n1_len = n0_to_n1.SquareLength();
|
|
|
|
+ const IfcFloat n0_to_m1_len = n0_to_m1.SquareLength();
|
|
|
|
+
|
|
|
|
+ if (m0_to_m1_len < m0_to_n1_len) {
|
|
|
|
+ return false;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (n0_to_n1_len < n0_to_m1_len) {
|
|
|
|
+ return false;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ const IfcFloat epsilon = 1e-5f;
|
|
|
|
+ if (fabs((m0_to_m1 * n0_to_n1) - sqrt(m0_to_m1_len) * sqrt(n0_to_n1_len)) > epsilon) {
|
|
|
|
+ return false;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (fabs((m0_to_m1 * m0_to_n1) - sqrt(m0_to_m1_len) * sqrt(m0_to_n1_len)) > epsilon) {
|
|
|
|
+ return false;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // XXX this condition is probably redundant (or at least a check against > 0 is sufficient)
|
|
|
|
+ if (fabs((n0_to_n1 * n0_to_m1) - sqrt(n0_to_n1_len) * sqrt(n0_to_m1_len)) > epsilon) {
|
|
|
|
+ return false;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // determine intersection points
|
|
|
|
+
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// ------------------------------------------------------------------------------------------------
|
|
void FindAdjacentContours(const ContourVector::const_iterator current, const ContourVector& contours)
|
|
void FindAdjacentContours(const ContourVector::const_iterator current, const ContourVector& contours)
|
|
{
|
|
{
|
|
|
|
+ const BoundingBox& bb = (*current).bb;
|
|
|
|
+
|
|
|
|
+ // First step to find possible adjacent contours is to check for adjacent bounding
|
|
|
|
+ // boxes. If the bounding boxes are not adjacent, the contours lines cannot possibly be.
|
|
|
|
+ for (ContourVector::const_iterator it = contours.begin(), end = contours.end(); it != end; ++it) {
|
|
|
|
+ if ((*it).IsInvalid()) {
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if(it == current) {
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ const BoundingBox& ibb = (*it).bb;
|
|
|
|
|
|
|
|
+ // Assumption: the bounding boxes are pairwise disjoint
|
|
|
|
+ ai_assert(!BoundingBoxesOverlapping(bb, ibb));
|
|
|
|
+
|
|
|
|
+ if (BoundingBoxesAdjacent(bb, ibb)) {
|
|
|
|
+
|
|
|
|
+ // Now do a each-against-everyone check for intersecting contour
|
|
|
|
+ // lines. This obviously scales terribly, but in typical real
|
|
|
|
+ // world Ifc files it will not matter since most windows that
|
|
|
|
+ // are adjacent to each others are rectangular anyway.
|
|
|
|
+
|
|
|
|
+ const Contour& ncontour = (*current).contour;
|
|
|
|
+ const Contour& mcontour = (*it).contour;
|
|
|
|
+
|
|
|
|
+ for (size_t n = 0, nend = ncontour.size(); n < nend; ++n) {
|
|
|
|
+ const IfcVector2& n0 = ncontour[n];
|
|
|
|
+ const IfcVector2& n1 = ncontour[(n+1) % ncontour.size()];
|
|
|
|
+
|
|
|
|
+ for (size_t m = 0, mend = mcontour.size(); m < nend; ++m) {
|
|
|
|
+ const IfcVector2& m0 = ncontour[m];
|
|
|
|
+ const IfcVector2& m1 = ncontour[(m+1) % mcontour.size()];
|
|
|
|
+
|
|
|
|
+ IfcVector2 isect0, isect1;
|
|
|
|
+ if (IntersectingLineSegments(n0,n1, m0, m1, isect0, isect1)) {
|
|
|
|
+ // Find intersection range
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// ------------------------------------------------------------------------------------------------
|
|
@@ -1403,7 +1498,7 @@ void CloseWindows(const ContourVector& contours,
|
|
}
|
|
}
|
|
|
|
|
|
ContourRefVector adjacent_contours;
|
|
ContourRefVector adjacent_contours;
|
|
-// FindAdjacentContours(*it, contours);
|
|
|
|
|
|
+ FindAdjacentContours(it, contours);
|
|
|
|
|
|
const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end();
|
|
const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end();
|
|
|
|
|