Explorar o código

Use ear-cutting library for triangulation (#5977)

* Use ear-cutting library for triangulation

Fixes #3609
Fixes #3019
Fixes #1136

* Fix typo

---------

Co-authored-by: Kim Kulling <[email protected]>
Stefan hai 5 meses
pai
achega
7945359a5c
Modificáronse 3 ficheiros con 867 adicións e 124 borrados
  1. 38 124
      code/PostProcessing/TriangulateProcess.cpp
  2. 15 0
      contrib/earcut-hpp/LICENSE
  3. 814 0
      contrib/earcut-hpp/earcut.hpp

+ 38 - 124
code/PostProcessing/TriangulateProcess.cpp

@@ -62,6 +62,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 #include "PostProcessing/TriangulateProcess.h"
 #include "PostProcessing/ProcessHelper.h"
 #include "Common/PolyTools.h"
+#include "contrib/earcut-hpp/earcut.hpp"
 
 #include <memory>
 #include <cstdint>
@@ -74,6 +75,23 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 #define POLY_GRID_XPAD 20
 #define POLY_OUTPUT_FILE "assimp_polygons_debug.txt"
 
+namespace mapbox::util {
+
+template <>
+struct nth<0, aiVector2D> {
+    inline static auto get(const aiVector2D& t) {
+        return t.x;
+    }
+};
+template <>
+struct nth<1, aiVector2D> {
+    inline static auto get(const aiVector2D& t) {
+        return t.y;
+    }
+};
+
+} // namespace mapbox::util
+
 using namespace Assimp;
 
 namespace {
@@ -244,7 +262,9 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh) {
 
     aiFace* out = new aiFace[numOut](), *curOut = out;
     std::vector<aiVector3D> temp_verts3d(max_out+2); /* temporary storage for vertices */
-    std::vector<aiVector2D> temp_verts(max_out+2);
+    std::vector<std::vector<aiVector2D>> temp_poly(1); /* temporary storage for earcut.hpp */
+    std::vector<aiVector2D>& temp_verts = temp_poly[0];
+    temp_verts.reserve(max_out + 2);
 
     NGONEncoder ngonEncoder;
 
@@ -264,13 +284,11 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh) {
 
     const aiVector3D* verts = pMesh->mVertices;
 
-    // use std::unique_ptr to avoid slow std::vector<bool> specialiations
-    std::unique_ptr<bool[]> done(new bool[max_out]);
     for( unsigned int a = 0; a < pMesh->mNumFaces; a++) {
         aiFace& face = pMesh->mFaces[a];
 
         unsigned int* idx = face.mIndices;
-        int num = (int)face.mNumIndices, ear = 0, tmp, prev = num-1, next = 0, max = num;
+        unsigned int num = face.mNumIndices;
 
         // Apply vertex colors to represent the face winding?
 #ifdef AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING
@@ -363,16 +381,16 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh) {
             // We project it onto a plane to get a 2d triangle.
 
             // Collect all vertices of of the polygon.
-            for (tmp = 0; tmp < max; ++tmp) {
+            for (unsigned int tmp = 0; tmp < num; ++tmp) {
                 temp_verts3d[tmp] = verts[idx[tmp]];
             }
 
             // Get newell normal of the polygon. Store it for future use if it's a polygon-only mesh
             aiVector3D n;
-            NewellNormal<3,3,3>(n,max,&temp_verts3d.front().x,&temp_verts3d.front().y,&temp_verts3d.front().z);
+            NewellNormal<3, 3, 3>(n, num, &temp_verts3d.front().x, &temp_verts3d.front().y, &temp_verts3d.front().z);
             if (nor_out) {
-                 for (tmp = 0; tmp < max; ++tmp)
-                     nor_out[idx[tmp]] = n;
+                for (unsigned int tmp = 0; tmp < num; ++tmp)
+                    nor_out[idx[tmp]] = n;
             }
 
             // Select largest normal coordinate to ignore for projection
@@ -398,10 +416,20 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh) {
                 std::swap(ac,bc);
             }
 
-            for (tmp =0; tmp < max; ++tmp) {
+            temp_verts.resize(num);
+            for (unsigned int tmp = 0; tmp < num; ++tmp) {
                 temp_verts[tmp].x = verts[idx[tmp]][ac];
                 temp_verts[tmp].y = verts[idx[tmp]][bc];
-                done[tmp] = false;
+            }
+
+            auto indices = mapbox::earcut(temp_poly);
+            for (size_t i = 0; i < indices.size(); i += 3) {
+                aiFace& nface = *curOut++;
+                nface.mIndices = new unsigned int[3];
+                nface.mNumIndices = 3;
+                nface.mIndices[0] = indices[i];
+                nface.mIndices[1] = indices[i + 1];
+                nface.mIndices[2] = indices[i + 2];
             }
 
 #ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS
@@ -431,120 +459,6 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh) {
 
             fprintf(fout,"\ntriangulation sequence: ");
 #endif
-
-            //
-            // FIXME: currently this is the slow O(kn) variant with a worst case
-            // complexity of O(n^2) (I think). Can be done in O(n).
-            while (num > 3) {
-
-                // Find the next ear of the polygon
-                int num_found = 0;
-                for (ear = next;;prev = ear,ear = next) {
-
-                    // break after we looped two times without a positive match
-                    for (next=ear+1;done[(next>=max?next=0:next)];++next);
-                    if (next < ear) {
-                        if (++num_found == 2) {
-                            break;
-                        }
-                    }
-                    const aiVector2D* pnt1 = &temp_verts[ear],
-                        *pnt0 = &temp_verts[prev],
-                        *pnt2 = &temp_verts[next];
-
-                    // Must be a convex point. Assuming ccw winding, it must be on the right of the line between p-1 and p+1.
-                    if (OnLeftSideOfLine2D(*pnt0,*pnt2,*pnt1) == 1) {
-                        continue;
-                    }
-
-                    // Skip when three point is in a line
-                    aiVector2D left = *pnt0 - *pnt1;
-                    aiVector2D right = *pnt2 - *pnt1;
-
-                    left.Normalize();
-                    right.Normalize();
-                    auto mul = left * right;
-
-                    // if the angle is 0 or 180
-                    if (std::abs(mul - 1.f) < ai_epsilon || std::abs(mul + 1.f) < ai_epsilon) {
-                        // skip this ear
-                        ASSIMP_LOG_WARN("Skip a ear, due to its angle is near 0 or 180.");
-                        continue;
-                    }
-
-                    // and no other point may be contained in this triangle
-                    for ( tmp = 0; tmp < max; ++tmp) {
-
-                        // We need to compare the actual values because it's possible that multiple indexes in
-                        // the polygon are referring to the same position. concave_polygon.obj is a sample
-                        //
-                        // FIXME: Use 'epsiloned' comparisons instead? Due to numeric inaccuracies in
-                        // PointInTriangle() I'm guessing that it's actually possible to construct
-                        // input data that would cause us to end up with no ears. The problem is,
-                        // which epsilon? If we chose a too large value, we'd get wrong results
-                        const aiVector2D& vtmp = temp_verts[tmp];
-                        if ( vtmp != *pnt1 && vtmp != *pnt2 && vtmp != *pnt0 && PointInTriangle2D(*pnt0,*pnt1,*pnt2,vtmp)) {
-                            break;
-                        }
-                    }
-                    if (tmp != max) {
-                        continue;
-                    }
-
-                    // this vertex is an ear
-                    break;
-                }
-                if (num_found == 2) {
-
-                    // Due to the 'two ear theorem', every simple polygon with more than three points must
-                    // have 2 'ears'. Here's definitely something wrong ... but we don't give up yet.
-                    //
-
-                    // Instead we're continuing with the standard tri-fanning algorithm which we'd
-                    // use if we had only convex polygons. That's life.
-                    ASSIMP_LOG_ERROR("Failed to triangulate polygon (no ear found). Probably not a simple polygon?");
-
-#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS
-                    fprintf(fout,"critical error here, no ear found! ");
-#endif
-                    num = 0;
-                    break;
-                }
-
-                aiFace& nface = *curOut++;
-                nface.mNumIndices = 3;
-
-                if (!nface.mIndices) {
-                    nface.mIndices = new unsigned int[3];
-                }
-
-                // setup indices for the new triangle ...
-                nface.mIndices[0] = prev;
-                nface.mIndices[1] = ear;
-                nface.mIndices[2] = next;
-
-                // exclude the ear from most further processing
-                done[ear] = true;
-                --num;
-            }
-            if (num > 0) {
-                // We have three indices forming the last 'ear' remaining. Collect them.
-                aiFace& nface = *curOut++;
-                nface.mNumIndices = 3;
-                if (!nface.mIndices) {
-                    nface.mIndices = new unsigned int[3];
-                }
-
-                for (tmp = 0; done[tmp]; ++tmp);
-                nface.mIndices[0] = tmp;
-
-                for (++tmp; done[tmp]; ++tmp);
-                nface.mIndices[1] = tmp;
-
-                for (++tmp; done[tmp]; ++tmp);
-                nface.mIndices[2] = tmp;
-
-            }
         }
 
 #ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS

+ 15 - 0
contrib/earcut-hpp/LICENSE

@@ -0,0 +1,15 @@
+ISC License
+
+Copyright (c) 2015, Mapbox
+
+Permission to use, copy, modify, and/or distribute this software for any purpose
+with or without fee is hereby granted, provided that the above copyright notice
+and this permission notice appear in all copies.
+
+THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
+REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
+FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
+INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
+OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
+TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
+THIS SOFTWARE.

+ 814 - 0
contrib/earcut-hpp/earcut.hpp

@@ -0,0 +1,814 @@
+#pragma once
+
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <cstddef>
+#include <cstdint>
+#include <limits>
+#include <memory>
+#include <utility>
+#include <vector>
+
+namespace mapbox {
+
+namespace util {
+
+template <std::size_t I, typename T> struct nth {
+    inline static typename std::tuple_element<I, T>::type
+    get(const T& t) { return std::get<I>(t); };
+};
+
+}
+
+namespace detail {
+
+template <typename N = uint32_t>
+class Earcut {
+public:
+    std::vector<N> indices;
+    std::size_t vertices = 0;
+
+    template <typename Polygon>
+    void operator()(const Polygon& points);
+
+private:
+    struct Node {
+        Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {}
+        Node(const Node&) = delete;
+        Node& operator=(const Node&) = delete;
+        Node(Node&&) = delete;
+        Node& operator=(Node&&) = delete;
+
+        const N i;
+        const double x;
+        const double y;
+
+        // previous and next vertice nodes in a polygon ring
+        Node* prev = nullptr;
+        Node* next = nullptr;
+
+        // z-order curve value
+        int32_t z = 0;
+
+        // previous and next nodes in z-order
+        Node* prevZ = nullptr;
+        Node* nextZ = nullptr;
+
+        // indicates whether this is a steiner point
+        bool steiner = false;
+    };
+
+    template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise);
+    Node* filterPoints(Node* start, Node* end = nullptr);
+    void earcutLinked(Node* ear, int pass = 0);
+    bool isEar(Node* ear);
+    bool isEarHashed(Node* ear);
+    Node* cureLocalIntersections(Node* start);
+    void splitEarcut(Node* start);
+    template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode);
+    Node* eliminateHole(Node* hole, Node* outerNode);
+    Node* findHoleBridge(Node* hole, Node* outerNode);
+    bool sectorContainsSector(const Node* m, const Node* p);
+    void indexCurve(Node* start);
+    Node* sortLinked(Node* list);
+    int32_t zOrder(const double x_, const double y_);
+    Node* getLeftmost(Node* start);
+    bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const;
+    bool isValidDiagonal(Node* a, Node* b);
+    double area(const Node* p, const Node* q, const Node* r) const;
+    bool equals(const Node* p1, const Node* p2);
+    bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2);
+    bool onSegment(const Node* p, const Node* q, const Node* r);
+    int sign(double val);
+    bool intersectsPolygon(const Node* a, const Node* b);
+    bool locallyInside(const Node* a, const Node* b);
+    bool middleInside(const Node* a, const Node* b);
+    Node* splitPolygon(Node* a, Node* b);
+    template <typename Point> Node* insertNode(std::size_t i, const Point& p, Node* last);
+    void removeNode(Node* p);
+
+    bool hashing;
+    double minX, maxX;
+    double minY, maxY;
+    double inv_size = 0;
+
+    template <typename T, typename Alloc = std::allocator<T>>
+    class ObjectPool {
+    public:
+        ObjectPool() { }
+        ObjectPool(std::size_t blockSize_) {
+            reset(blockSize_);
+        }
+        ~ObjectPool() {
+            clear();
+        }
+        template <typename... Args>
+        T* construct(Args&&... args) {
+            if (currentIndex >= blockSize) {
+                currentBlock = alloc_traits::allocate(alloc, blockSize);
+                allocations.emplace_back(currentBlock);
+                currentIndex = 0;
+            }
+            T* object = &currentBlock[currentIndex++];
+            alloc_traits::construct(alloc, object, std::forward<Args>(args)...);
+            return object;
+        }
+        void reset(std::size_t newBlockSize) {
+            for (auto allocation : allocations) {
+                alloc_traits::deallocate(alloc, allocation, blockSize);
+            }
+            allocations.clear();
+            blockSize = std::max<std::size_t>(1, newBlockSize);
+            currentBlock = nullptr;
+            currentIndex = blockSize;
+        }
+        void clear() { reset(blockSize); }
+    private:
+        T* currentBlock = nullptr;
+        std::size_t currentIndex = 1;
+        std::size_t blockSize = 1;
+        std::vector<T*> allocations;
+        Alloc alloc;
+        typedef typename std::allocator_traits<Alloc> alloc_traits;
+    };
+    ObjectPool<Node> nodes;
+};
+
+template <typename N> template <typename Polygon>
+void Earcut<N>::operator()(const Polygon& points) {
+    // reset
+    indices.clear();
+    vertices = 0;
+
+    if (points.empty()) return;
+
+    double x;
+    double y;
+    int threshold = 80;
+    std::size_t len = 0;
+
+    for (size_t i = 0; threshold >= 0 && i < points.size(); i++) {
+        threshold -= static_cast<int>(points[i].size());
+        len += points[i].size();
+    }
+
+    //estimate size of nodes and indices
+    nodes.reset(len * 3 / 2);
+    indices.reserve(len + points[0].size());
+
+    Node* outerNode = linkedList(points[0], true);
+    if (!outerNode || outerNode->prev == outerNode->next) return;
+
+    if (points.size() > 1) outerNode = eliminateHoles(points, outerNode);
+
+    // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
+    hashing = threshold < 0;
+    if (hashing) {
+        Node* p = outerNode->next;
+        minX = maxX = outerNode->x;
+        minY = maxY = outerNode->y;
+        do {
+            x = p->x;
+            y = p->y;
+            minX = std::min<double>(minX, x);
+            minY = std::min<double>(minY, y);
+            maxX = std::max<double>(maxX, x);
+            maxY = std::max<double>(maxY, y);
+            p = p->next;
+        } while (p != outerNode);
+
+        // minX, minY and inv_size are later used to transform coords into integers for z-order calculation
+        inv_size = std::max<double>(maxX - minX, maxY - minY);
+        inv_size = inv_size != .0 ? (32767. / inv_size) : .0;
+    }
+
+    earcutLinked(outerNode);
+
+    nodes.clear();
+}
+
+// create a circular doubly linked list from polygon points in the specified winding order
+template <typename N> template <typename Ring>
+typename Earcut<N>::Node*
+Earcut<N>::linkedList(const Ring& points, const bool clockwise) {
+    using Point = typename Ring::value_type;
+    double sum = 0;
+    const std::size_t len = points.size();
+    std::size_t i, j;
+    Node* last = nullptr;
+
+    // calculate original winding order of a polygon ring
+    for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++) {
+        const auto& p1 = points[i];
+        const auto& p2 = points[j];
+        const double p20 = util::nth<0, Point>::get(p2);
+        const double p10 = util::nth<0, Point>::get(p1);
+        const double p11 = util::nth<1, Point>::get(p1);
+        const double p21 = util::nth<1, Point>::get(p2);
+        sum += (p20 - p10) * (p11 + p21);
+    }
+
+    // link points into circular doubly-linked list in the specified winding order
+    if (clockwise == (sum > 0)) {
+        for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last);
+    } else {
+        for (i = len; i-- > 0;) last = insertNode(vertices + i, points[i], last);
+    }
+
+    if (last && equals(last, last->next)) {
+        removeNode(last);
+        last = last->next;
+    }
+
+    vertices += len;
+
+    return last;
+}
+
+// eliminate colinear or duplicate points
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::filterPoints(Node* start, Node* end) {
+    if (!end) end = start;
+
+    Node* p = start;
+    bool again;
+    do {
+        again = false;
+
+        if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0)) {
+            removeNode(p);
+            p = end = p->prev;
+
+            if (p == p->next) break;
+            again = true;
+
+        } else {
+            p = p->next;
+        }
+    } while (again || p != end);
+
+    return end;
+}
+
+// main ear slicing loop which triangulates a polygon (given as a linked list)
+template <typename N>
+void Earcut<N>::earcutLinked(Node* ear, int pass) {
+    if (!ear) return;
+
+    // interlink polygon nodes in z-order
+    if (!pass && hashing) indexCurve(ear);
+
+    Node* stop = ear;
+    Node* prev;
+    Node* next;
+
+    // iterate through ears, slicing them one by one
+    while (ear->prev != ear->next) {
+        prev = ear->prev;
+        next = ear->next;
+
+        if (hashing ? isEarHashed(ear) : isEar(ear)) {
+            // cut off the triangle
+            indices.emplace_back(prev->i);
+            indices.emplace_back(ear->i);
+            indices.emplace_back(next->i);
+
+            removeNode(ear);
+
+            // skipping the next vertice leads to less sliver triangles
+            ear = next->next;
+            stop = next->next;
+
+            continue;
+        }
+
+        ear = next;
+
+        // if we looped through the whole remaining polygon and can't find any more ears
+        if (ear == stop) {
+            // try filtering points and slicing again
+            if (!pass) earcutLinked(filterPoints(ear), 1);
+
+            // if this didn't work, try curing all small self-intersections locally
+            else if (pass == 1) {
+                ear = cureLocalIntersections(filterPoints(ear));
+                earcutLinked(ear, 2);
+
+            // as a last resort, try splitting the remaining polygon into two
+            } else if (pass == 2) splitEarcut(ear);
+
+            break;
+        }
+    }
+}
+
+// check whether a polygon node forms a valid ear with adjacent nodes
+template <typename N>
+bool Earcut<N>::isEar(Node* ear) {
+    const Node* a = ear->prev;
+    const Node* b = ear;
+    const Node* c = ear->next;
+
+    if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
+
+    // now make sure we don't have other points inside the potential ear
+    Node* p = ear->next->next;
+
+    while (p != ear->prev) {
+        if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
+            area(p->prev, p, p->next) >= 0) return false;
+        p = p->next;
+    }
+
+    return true;
+}
+
+template <typename N>
+bool Earcut<N>::isEarHashed(Node* ear) {
+    const Node* a = ear->prev;
+    const Node* b = ear;
+    const Node* c = ear->next;
+
+    if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
+
+    // triangle bbox; min & max are calculated like this for speed
+    const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x));
+    const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y));
+    const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x));
+    const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y));
+
+    // z-order range for the current triangle bbox;
+    const int32_t minZ = zOrder(minTX, minTY);
+    const int32_t maxZ = zOrder(maxTX, maxTY);
+
+    // first look for points inside the triangle in increasing z-order
+    Node* p = ear->nextZ;
+
+    while (p && p->z <= maxZ) {
+        if (p != ear->prev && p != ear->next &&
+            pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
+            area(p->prev, p, p->next) >= 0) return false;
+        p = p->nextZ;
+    }
+
+    // then look for points in decreasing z-order
+    p = ear->prevZ;
+
+    while (p && p->z >= minZ) {
+        if (p != ear->prev && p != ear->next &&
+            pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
+            area(p->prev, p, p->next) >= 0) return false;
+        p = p->prevZ;
+    }
+
+    return true;
+}
+
+// go through all polygon nodes and cure small local self-intersections
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::cureLocalIntersections(Node* start) {
+    Node* p = start;
+    do {
+        Node* a = p->prev;
+        Node* b = p->next->next;
+
+        // a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
+        if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) {
+            indices.emplace_back(a->i);
+            indices.emplace_back(p->i);
+            indices.emplace_back(b->i);
+
+            // remove two nodes involved
+            removeNode(p);
+            removeNode(p->next);
+
+            p = start = b;
+        }
+        p = p->next;
+    } while (p != start);
+
+    return filterPoints(p);
+}
+
+// try splitting polygon into two and triangulate them independently
+template <typename N>
+void Earcut<N>::splitEarcut(Node* start) {
+    // look for a valid diagonal that divides the polygon into two
+    Node* a = start;
+    do {
+        Node* b = a->next->next;
+        while (b != a->prev) {
+            if (a->i != b->i && isValidDiagonal(a, b)) {
+                // split the polygon in two by the diagonal
+                Node* c = splitPolygon(a, b);
+
+                // filter colinear points around the cuts
+                a = filterPoints(a, a->next);
+                c = filterPoints(c, c->next);
+
+                // run earcut on each half
+                earcutLinked(a);
+                earcutLinked(c);
+                return;
+            }
+            b = b->next;
+        }
+        a = a->next;
+    } while (a != start);
+}
+
+// link every hole into the outer loop, producing a single-ring polygon without holes
+template <typename N> template <typename Polygon>
+typename Earcut<N>::Node*
+Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) {
+    const size_t len = points.size();
+
+    std::vector<Node*> queue;
+    for (size_t i = 1; i < len; i++) {
+        Node* list = linkedList(points[i], false);
+        if (list) {
+            if (list == list->next) list->steiner = true;
+            queue.push_back(getLeftmost(list));
+        }
+    }
+    std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) {
+        return a->x < b->x;
+    });
+
+    // process holes from left to right
+    for (size_t i = 0; i < queue.size(); i++) {
+        outerNode = eliminateHole(queue[i], outerNode);
+    }
+
+    return outerNode;
+}
+
+// find a bridge between vertices that connects hole with an outer ring and and link it
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::eliminateHole(Node* hole, Node* outerNode) {
+    Node* bridge = findHoleBridge(hole, outerNode);
+    if (!bridge) {
+        return outerNode;
+    }
+
+    Node* bridgeReverse = splitPolygon(bridge, hole);
+
+    // filter collinear points around the cuts
+    filterPoints(bridgeReverse, bridgeReverse->next);
+
+    // Check if input node was removed by the filtering
+    return filterPoints(bridge, bridge->next);
+}
+
+// David Eberly's algorithm for finding a bridge between hole and outer polygon
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) {
+    Node* p = outerNode;
+    double hx = hole->x;
+    double hy = hole->y;
+    double qx = -std::numeric_limits<double>::infinity();
+    Node* m = nullptr;
+
+    // find a segment intersected by a ray from the hole's leftmost Vertex to the left;
+    // segment's endpoint with lesser x will be potential connection Vertex
+    do {
+        if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) {
+          double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
+          if (x <= hx && x > qx) {
+            qx = x;
+            m = p->x < p->next->x ? p : p->next;
+            if (x == hx) return m; // hole touches outer segment; pick leftmost endpoint
+          }
+        }
+        p = p->next;
+    } while (p != outerNode);
+
+    if (!m) return 0;
+
+    // look for points inside the triangle of hole Vertex, segment intersection and endpoint;
+    // if there are no points found, we have a valid connection;
+    // otherwise choose the Vertex of the minimum angle with the ray as connection Vertex
+
+    const Node* stop = m;
+    double tanMin = std::numeric_limits<double>::infinity();
+    double tanCur = 0;
+
+    p = m;
+    double mx = m->x;
+    double my = m->y;
+
+    do {
+        if (hx >= p->x && p->x >= mx && hx != p->x &&
+            pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) {
+
+            tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential
+
+            if (locallyInside(p, hole) &&
+                (tanCur < tanMin || (tanCur == tanMin && (p->x > m->x || sectorContainsSector(m, p))))) {
+                m = p;
+                tanMin = tanCur;
+            }
+        }
+
+        p = p->next;
+    } while (p != stop);
+
+    return m;
+}
+
+// whether sector in vertex m contains sector in vertex p in the same coordinates
+template <typename N>
+bool Earcut<N>::sectorContainsSector(const Node* m, const Node* p) {
+    return area(m->prev, m, p->prev) < 0 && area(p->next, m, m->next) < 0;
+}
+
+// interlink polygon nodes in z-order
+template <typename N>
+void Earcut<N>::indexCurve(Node* start) {
+    assert(start);
+    Node* p = start;
+
+    do {
+        p->z = p->z ? p->z : zOrder(p->x, p->y);
+        p->prevZ = p->prev;
+        p->nextZ = p->next;
+        p = p->next;
+    } while (p != start);
+
+    p->prevZ->nextZ = nullptr;
+    p->prevZ = nullptr;
+
+    sortLinked(p);
+}
+
+// Simon Tatham's linked list merge sort algorithm
+// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::sortLinked(Node* list) {
+    assert(list);
+    Node* p;
+    Node* q;
+    Node* e;
+    Node* tail;
+    int i, numMerges, pSize, qSize;
+    int inSize = 1;
+
+    for (;;) {
+        p = list;
+        list = nullptr;
+        tail = nullptr;
+        numMerges = 0;
+
+        while (p) {
+            numMerges++;
+            q = p;
+            pSize = 0;
+            for (i = 0; i < inSize; i++) {
+                pSize++;
+                q = q->nextZ;
+                if (!q) break;
+            }
+
+            qSize = inSize;
+
+            while (pSize > 0 || (qSize > 0 && q)) {
+
+                if (pSize == 0) {
+                    e = q;
+                    q = q->nextZ;
+                    qSize--;
+                } else if (qSize == 0 || !q) {
+                    e = p;
+                    p = p->nextZ;
+                    pSize--;
+                } else if (p->z <= q->z) {
+                    e = p;
+                    p = p->nextZ;
+                    pSize--;
+                } else {
+                    e = q;
+                    q = q->nextZ;
+                    qSize--;
+                }
+
+                if (tail) tail->nextZ = e;
+                else list = e;
+
+                e->prevZ = tail;
+                tail = e;
+            }
+
+            p = q;
+        }
+
+        tail->nextZ = nullptr;
+
+        if (numMerges <= 1) return list;
+
+        inSize *= 2;
+    }
+}
+
+// z-order of a Vertex given coords and size of the data bounding box
+template <typename N>
+int32_t Earcut<N>::zOrder(const double x_, const double y_) {
+    // coords are transformed into non-negative 15-bit integer range
+    int32_t x = static_cast<int32_t>((x_ - minX) * inv_size);
+    int32_t y = static_cast<int32_t>((y_ - minY) * inv_size);
+
+    x = (x | (x << 8)) & 0x00FF00FF;
+    x = (x | (x << 4)) & 0x0F0F0F0F;
+    x = (x | (x << 2)) & 0x33333333;
+    x = (x | (x << 1)) & 0x55555555;
+
+    y = (y | (y << 8)) & 0x00FF00FF;
+    y = (y | (y << 4)) & 0x0F0F0F0F;
+    y = (y | (y << 2)) & 0x33333333;
+    y = (y | (y << 1)) & 0x55555555;
+
+    return x | (y << 1);
+}
+
+// find the leftmost node of a polygon ring
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::getLeftmost(Node* start) {
+    Node* p = start;
+    Node* leftmost = start;
+    do {
+        if (p->x < leftmost->x || (p->x == leftmost->x && p->y < leftmost->y))
+            leftmost = p;
+        p = p->next;
+    } while (p != start);
+
+    return leftmost;
+}
+
+// check if a point lies within a convex triangle
+template <typename N>
+bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const {
+    return (cx - px) * (ay - py) >= (ax - px) * (cy - py) &&
+           (ax - px) * (by - py) >= (bx - px) * (ay - py) &&
+           (bx - px) * (cy - py) >= (cx - px) * (by - py);
+}
+
+// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
+template <typename N>
+bool Earcut<N>::isValidDiagonal(Node* a, Node* b) {
+    return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) && // dones't intersect other edges
+           ((locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible
+            (area(a->prev, a, b->prev) != 0.0 || area(a, b->prev, b) != 0.0)) || // does not create opposite-facing sectors
+            (equals(a, b) && area(a->prev, a, a->next) > 0 && area(b->prev, b, b->next) > 0)); // special zero-length case
+}
+
+// signed area of a triangle
+template <typename N>
+double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const {
+    return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
+}
+
+// check if two points are equal
+template <typename N>
+bool Earcut<N>::equals(const Node* p1, const Node* p2) {
+    return p1->x == p2->x && p1->y == p2->y;
+}
+
+// check if two segments intersect
+template <typename N>
+bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) {
+    int o1 = sign(area(p1, q1, p2));
+    int o2 = sign(area(p1, q1, q2));
+    int o3 = sign(area(p2, q2, p1));
+    int o4 = sign(area(p2, q2, q1));
+
+    if (o1 != o2 && o3 != o4) return true; // general case
+
+    if (o1 == 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
+    if (o2 == 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
+    if (o3 == 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
+    if (o4 == 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
+
+    return false;
+}
+
+// for collinear points p, q, r, check if point q lies on segment pr
+template <typename N>
+bool Earcut<N>::onSegment(const Node* p, const Node* q, const Node* r) {
+    return q->x <= std::max<double>(p->x, r->x) &&
+        q->x >= std::min<double>(p->x, r->x) &&
+        q->y <= std::max<double>(p->y, r->y) &&
+        q->y >= std::min<double>(p->y, r->y);
+}
+
+template <typename N>
+int Earcut<N>::sign(double val) {
+    return (0.0 < val) - (val < 0.0);
+}
+
+// check if a polygon diagonal intersects any polygon segments
+template <typename N>
+bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) {
+    const Node* p = a;
+    do {
+        if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i &&
+                intersects(p, p->next, a, b)) return true;
+        p = p->next;
+    } while (p != a);
+
+    return false;
+}
+
+// check if a polygon diagonal is locally inside the polygon
+template <typename N>
+bool Earcut<N>::locallyInside(const Node* a, const Node* b) {
+    return area(a->prev, a, a->next) < 0 ?
+        area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 :
+        area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
+}
+
+// check if the middle Vertex of a polygon diagonal is inside the polygon
+template <typename N>
+bool Earcut<N>::middleInside(const Node* a, const Node* b) {
+    const Node* p = a;
+    bool inside = false;
+    double px = (a->x + b->x) / 2;
+    double py = (a->y + b->y) / 2;
+    do {
+        if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
+                (px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
+            inside = !inside;
+        p = p->next;
+    } while (p != a);
+
+    return inside;
+}
+
+// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits
+// polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a
+// single ring
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::splitPolygon(Node* a, Node* b) {
+    Node* a2 = nodes.construct(a->i, a->x, a->y);
+    Node* b2 = nodes.construct(b->i, b->x, b->y);
+    Node* an = a->next;
+    Node* bp = b->prev;
+
+    a->next = b;
+    b->prev = a;
+
+    a2->next = an;
+    an->prev = a2;
+
+    b2->next = a2;
+    a2->prev = b2;
+
+    bp->next = b2;
+    b2->prev = bp;
+
+    return b2;
+}
+
+// create a node and util::optionally link it with previous one (in a circular doubly linked list)
+template <typename N> template <typename Point>
+typename Earcut<N>::Node*
+Earcut<N>::insertNode(std::size_t i, const Point& pt, Node* last) {
+    Node* p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt));
+
+    if (!last) {
+        p->prev = p;
+        p->next = p;
+
+    } else {
+        assert(last);
+        p->next = last->next;
+        p->prev = last;
+        last->next->prev = p;
+        last->next = p;
+    }
+    return p;
+}
+
+template <typename N>
+void Earcut<N>::removeNode(Node* p) {
+    p->next->prev = p->prev;
+    p->prev->next = p->next;
+
+    if (p->prevZ) p->prevZ->nextZ = p->nextZ;
+    if (p->nextZ) p->nextZ->prevZ = p->prevZ;
+}
+}
+
+template <typename N = uint32_t, typename Polygon>
+std::vector<N> earcut(const Polygon& poly) {
+    mapbox::detail::Earcut<N> earcut;
+    earcut(poly);
+    return std::move(earcut.indices);
+}
+}