|
@@ -455,12 +455,11 @@ void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const IfcPolygonalBounded
|
|
|
continue;
|
|
|
|
|
|
IfcVector3 polyNormal = TempMesh::ComputePolygonNormal(srcVertices, srcVtxCount, true);
|
|
|
- polyNormal = IfcMatrix3(proj) * polyNormal;
|
|
|
|
|
|
// if the poly is parallel to the plane, put it completely on the black or white side
|
|
|
if( std::abs(polyNormal * n) > 0.9999 )
|
|
|
{
|
|
|
- bool isOnWhiteSide = ((proj * srcVertices[0]) - p) * n > -1e-6;
|
|
|
+ bool isOnWhiteSide = (srcVertices[0] - p) * n > -1e-6;
|
|
|
std::vector<IfcVector3>& targetSide = isOnWhiteSide ? whiteside : blackside;
|
|
|
targetSide.insert(targetSide.end(), srcVertices, srcVertices + srcVtxCount);
|
|
|
}
|
|
@@ -469,11 +468,11 @@ void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const IfcPolygonalBounded
|
|
|
// otherwise start building one polygon for each side. Whenever the current line segment intersects the plane
|
|
|
// we put a point there as an end of the current segment. Then we switch to the other side, put a point there, too,
|
|
|
// as a beginning of the current segment, and simply continue accumulating vertices.
|
|
|
- bool isCurrentlyOnWhiteSide = ((proj * srcVertices[0]) - p) * n > -1e-6;
|
|
|
+ bool isCurrentlyOnWhiteSide = ((srcVertices[0]) - p) * n > -1e-6;
|
|
|
for( size_t a = 0; a < srcVtxCount; ++a )
|
|
|
{
|
|
|
- IfcVector3 e0 = proj * srcVertices[a];
|
|
|
- IfcVector3 e1 = proj * srcVertices[(a + 1) % srcVtxCount];
|
|
|
+ IfcVector3 e0 = srcVertices[a];
|
|
|
+ IfcVector3 e1 = srcVertices[(a + 1) % srcVtxCount];
|
|
|
IfcVector3 ei;
|
|
|
|
|
|
// put starting point to the current mesh
|
|
@@ -485,12 +484,11 @@ void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const IfcPolygonalBounded
|
|
|
bool isPlaneHit = IntersectSegmentPlane(p, n, e0, e1, isCurrentlyOnWhiteSide, ei);
|
|
|
if( isPlaneHit )
|
|
|
{
|
|
|
- IfcVector3 global_ei = proj_inv * ei;
|
|
|
- if( trgt.empty() || (trgt.back() - global_ei).SquareLength() > 1e-12 )
|
|
|
- trgt.push_back(global_ei);
|
|
|
+ if( trgt.empty() || (trgt.back() - ei).SquareLength() > 1e-12 )
|
|
|
+ trgt.push_back(ei);
|
|
|
isCurrentlyOnWhiteSide = !isCurrentlyOnWhiteSide;
|
|
|
std::vector<IfcVector3>& newtrgt = isCurrentlyOnWhiteSide ? whiteside : blackside;
|
|
|
- newtrgt.push_back(global_ei);
|
|
|
+ newtrgt.push_back(ei);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
@@ -648,6 +646,12 @@ void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const IfcPolygonalBounded
|
|
|
// vertices of the current boundary segments
|
|
|
IfcVector3 currBoundaryPoint = profile->verts[currentBoundaryEdgeIdx];
|
|
|
IfcVector3 nextBoundaryPoint = profile->verts[nextBoundaryEdgeIdx];
|
|
|
+ // project the two onto the polygon
|
|
|
+ if( std::abs(polyNormal.z) > 1e-5 )
|
|
|
+ {
|
|
|
+ currBoundaryPoint.z = startingPoint.z + (currBoundaryPoint.x - startingPoint.x) * polyNormal.x/polyNormal.z + (currBoundaryPoint.y - startingPoint.y) * polyNormal.y/polyNormal.z;
|
|
|
+ nextBoundaryPoint.z = startingPoint.z + (nextBoundaryPoint.x - startingPoint.x) * polyNormal.x/polyNormal.z + (nextBoundaryPoint.y - startingPoint.y) * polyNormal.y/polyNormal.z;
|
|
|
+ }
|
|
|
|
|
|
// build a direction that goes along the boundary border but lies in the poly plane
|
|
|
IfcVector3 boundaryPlaneNormal = ((nextBoundaryPoint - currBoundaryPoint) ^ profileNormal).Normalize();
|
|
@@ -656,7 +660,7 @@ void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const IfcPolygonalBounded
|
|
|
// until we finish that boundary segment and continue on the next
|
|
|
if( std::abs(polyNormal.z) > 1e-5 )
|
|
|
{
|
|
|
- t = std::min(t, (nextBoundaryPoint - startingPoint).Length() / std::abs(polyNormal.z));
|
|
|
+ t = std::min(t, (nextBoundaryPoint - startingPoint).Length());
|
|
|
}
|
|
|
|
|
|
// check if the direction hits the loop start - if yes, we got a poly to output
|