|
@@ -0,0 +1,393 @@
|
|
|
+/*
|
|
|
+Open Asset Import Library (ASSIMP)
|
|
|
+----------------------------------------------------------------------
|
|
|
+
|
|
|
+Copyright (c) 2006-2010, ASSIMP Development Team
|
|
|
+All rights reserved.
|
|
|
+
|
|
|
+Redistribution and use of this software in source and binary forms,
|
|
|
+with or without modification, are permitted provided that the
|
|
|
+following conditions are met:
|
|
|
+
|
|
|
+* Redistributions of source code must retain the above
|
|
|
+ copyright notice, this list of conditions and the
|
|
|
+ following disclaimer.
|
|
|
+
|
|
|
+* Redistributions in binary form must reproduce the above
|
|
|
+ copyright notice, this list of conditions and the
|
|
|
+ following disclaimer in the documentation and/or other
|
|
|
+ materials provided with the distribution.
|
|
|
+
|
|
|
+* Neither the name of the ASSIMP team, nor the names of its
|
|
|
+ contributors may be used to endorse or promote products
|
|
|
+ derived from this software without specific prior
|
|
|
+ written permission of the ASSIMP Development Team.
|
|
|
+
|
|
|
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
+
|
|
|
+----------------------------------------------------------------------
|
|
|
+*/
|
|
|
+
|
|
|
+
|
|
|
+/// @file SplitByBoneCountProcess.cpp
|
|
|
+/// Implementation of the SplitByBoneCount postprocessing step
|
|
|
+
|
|
|
+#include "AssimpPCH.h"
|
|
|
+
|
|
|
+// internal headers of the post-processing framework
|
|
|
+#include "SplitByBoneCountProcess.h"
|
|
|
+
|
|
|
+using namespace Assimp;
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Constructor
|
|
|
+SplitByBoneCountProcess::SplitByBoneCountProcess()
|
|
|
+{
|
|
|
+ // set default, might be overriden by importer config
|
|
|
+ mMaxBoneCount = AI_SBBC_DEFAULT_MAX_BONES;
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Destructor
|
|
|
+SplitByBoneCountProcess::~SplitByBoneCountProcess()
|
|
|
+{
|
|
|
+ // nothing to do here
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Returns whether the processing step is present in the given flag.
|
|
|
+bool SplitByBoneCountProcess::IsActive( unsigned int pFlags) const
|
|
|
+{
|
|
|
+ return !!(pFlags & aiProcess_SplitByBoneCount);
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Updates internal properties
|
|
|
+void SplitByBoneCountProcess::SetupProperties(const Importer* pImp)
|
|
|
+{
|
|
|
+ // ein andermal.
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Executes the post processing step on the given imported data.
|
|
|
+void SplitByBoneCountProcess::Execute( aiScene* pScene)
|
|
|
+{
|
|
|
+ DefaultLogger::get()->debug("SplitByBoneCountProcess begin");
|
|
|
+
|
|
|
+ // early out
|
|
|
+ bool isNecessary = false;
|
|
|
+ for( size_t a = 0; a < pScene->mNumMeshes; ++a)
|
|
|
+ if( pScene->mMeshes[a]->mNumBones > mMaxBoneCount )
|
|
|
+ isNecessary = true;
|
|
|
+
|
|
|
+ if( !isNecessary )
|
|
|
+ {
|
|
|
+ DefaultLogger::get()->debug( boost::str( boost::format( "SplitByBoneCountProcess early-out: no meshes with more than %d bones.") % mMaxBoneCount));
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ // we need to do something. Let's go.
|
|
|
+ mSubMeshIndices.clear();
|
|
|
+ mSubMeshIndices.resize( pScene->mNumMeshes);
|
|
|
+
|
|
|
+ // build a new array of meshes for the scene
|
|
|
+ std::vector<aiMesh*> meshes;
|
|
|
+
|
|
|
+ for( size_t a = 0; a < pScene->mNumMeshes; ++a)
|
|
|
+ {
|
|
|
+ aiMesh* srcMesh = pScene->mMeshes[a];
|
|
|
+
|
|
|
+ std::vector<aiMesh*> newMeshes;
|
|
|
+ SplitMesh( pScene->mMeshes[a], newMeshes);
|
|
|
+
|
|
|
+ // mesh was split
|
|
|
+ if( !newMeshes.empty() )
|
|
|
+ {
|
|
|
+ // store new meshes and indices of the new meshes
|
|
|
+ for( size_t b = 0; b < newMeshes.size(); ++b)
|
|
|
+ {
|
|
|
+ mSubMeshIndices[a].push_back( meshes.size());
|
|
|
+ meshes.push_back( newMeshes[b]);
|
|
|
+ }
|
|
|
+
|
|
|
+ // and destroy the source mesh. It should be completely contained inside the new submeshes
|
|
|
+ delete srcMesh;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Mesh is kept unchanged - store it's new place in the mesh array
|
|
|
+ mSubMeshIndices[a].push_back( meshes.size());
|
|
|
+ meshes.push_back( srcMesh);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // rebuild the scene's mesh array
|
|
|
+ pScene->mNumMeshes = meshes.size();
|
|
|
+ delete [] pScene->mMeshes;
|
|
|
+ pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
|
|
|
+ std::copy( meshes.begin(), meshes.end(), pScene->mMeshes);
|
|
|
+
|
|
|
+ // recurse through all nodes and translate the node's mesh indices to fit the new mesh array
|
|
|
+ UpdateNode( pScene->mRootNode);
|
|
|
+
|
|
|
+ DefaultLogger::get()->debug( boost::str( boost::format( "SplitByBoneCountProcess end: split %d meshes into %d submeshes.") % mSubMeshIndices.size() % meshes.size()));
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Splits the given mesh by bone count.
|
|
|
+void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh*>& poNewMeshes) const
|
|
|
+{
|
|
|
+ // skip if not necessary
|
|
|
+ if( pMesh->mNumBones <= mMaxBoneCount )
|
|
|
+ return;
|
|
|
+
|
|
|
+ // necessary optimisation: build a list of all affecting bones for each vertex
|
|
|
+ // TODO: (thom) maybe add a custom allocator here to avoid allocating tens of thousands of small arrays
|
|
|
+ typedef std::pair<size_t, float> BoneWeight;
|
|
|
+ std::vector< std::vector<BoneWeight> > vertexBones( pMesh->mNumVertices);
|
|
|
+ for( size_t a = 0; a < pMesh->mNumBones; ++a)
|
|
|
+ {
|
|
|
+ const aiBone* bone = pMesh->mBones[a];
|
|
|
+ for( size_t b = 0; b < bone->mNumWeights; ++b)
|
|
|
+ vertexBones[ bone->mWeights[b].mVertexId ].push_back( BoneWeight( a, bone->mWeights[b].mWeight));
|
|
|
+ }
|
|
|
+
|
|
|
+ size_t numFacesHandled = 0;
|
|
|
+ std::vector<bool> isFaceHandled( pMesh->mNumFaces, false);
|
|
|
+ while( numFacesHandled < pMesh->mNumFaces )
|
|
|
+ {
|
|
|
+ // which bones are used in the current submesh
|
|
|
+ size_t numBones = 0;
|
|
|
+ std::vector<bool> isBoneUsed( pMesh->mNumBones, false);
|
|
|
+ // indices of the faces which are going to go into this submesh
|
|
|
+ std::vector<size_t> subMeshFaces;
|
|
|
+ subMeshFaces.reserve( pMesh->mNumFaces);
|
|
|
+ // accumulated vertex count of all the faces in this submesh
|
|
|
+ size_t numSubMeshVertices = 0;
|
|
|
+
|
|
|
+ // add faces to the new submesh as long as all bones affecting the faces' vertices fit in the limit
|
|
|
+ for( size_t a = 0; a < pMesh->mNumFaces; ++a)
|
|
|
+ {
|
|
|
+ // skip if the face is already stored in a submesh
|
|
|
+ if( isFaceHandled[a] )
|
|
|
+ continue;
|
|
|
+
|
|
|
+ const aiFace& face = pMesh->mFaces[a];
|
|
|
+ // check every vertex if its bones would still fit into the current submesh
|
|
|
+ bool fitsInCurrentSubmesh = true;
|
|
|
+ for( size_t b = 0; b < face.mNumIndices; ++b )
|
|
|
+ {
|
|
|
+ const std::vector<BoneWeight>& vb = vertexBones[face.mIndices[b]];
|
|
|
+ for( size_t c = 0; c < vb.size(); ++c)
|
|
|
+ {
|
|
|
+ // if the bone is already used in this submesh, it's ok
|
|
|
+ if( isBoneUsed[ vb[c].first ] )
|
|
|
+ continue;
|
|
|
+
|
|
|
+ // if it's not used, yet, we would need to add it. That only works
|
|
|
+ // if we're still under the bone count limit
|
|
|
+ if( numBones >= mMaxBoneCount )
|
|
|
+ {
|
|
|
+ fitsInCurrentSubmesh = false;
|
|
|
+ break;
|
|
|
+ } else
|
|
|
+ {
|
|
|
+ numBones++;
|
|
|
+ isBoneUsed[ vb[c].first ] = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if( !fitsInCurrentSubmesh )
|
|
|
+ continue;
|
|
|
+
|
|
|
+ // store the face index and the vertex count
|
|
|
+ subMeshFaces.push_back( a);
|
|
|
+ numSubMeshVertices += face.mNumIndices;
|
|
|
+
|
|
|
+ // remember that this face is handled
|
|
|
+ isFaceHandled[a] = true;
|
|
|
+ numFacesHandled++;
|
|
|
+ }
|
|
|
+
|
|
|
+ // create a new mesh to hold this subset of the source mesh
|
|
|
+ aiMesh* newMesh = new aiMesh;
|
|
|
+ if( pMesh->mName.length > 0 )
|
|
|
+ newMesh->mName.Set( boost::str( boost::format( "%s_sub%d") % pMesh->mName.data % poNewMeshes.size()));
|
|
|
+ newMesh->mMaterialIndex = pMesh->mMaterialIndex;
|
|
|
+ newMesh->mPrimitiveTypes = pMesh->mPrimitiveTypes;
|
|
|
+ poNewMeshes.push_back( newMesh);
|
|
|
+
|
|
|
+ // create all the arrays for this mesh if the old mesh contained them
|
|
|
+ newMesh->mNumVertices = numSubMeshVertices;
|
|
|
+ newMesh->mNumFaces = subMeshFaces.size();
|
|
|
+ newMesh->mVertices = new aiVector3D[newMesh->mNumVertices];
|
|
|
+ if( pMesh->HasNormals() )
|
|
|
+ newMesh->mNormals = new aiVector3D[newMesh->mNumVertices];
|
|
|
+ if( pMesh->HasTangentsAndBitangents() )
|
|
|
+ {
|
|
|
+ newMesh->mTangents = new aiVector3D[newMesh->mNumVertices];
|
|
|
+ newMesh->mBitangents = new aiVector3D[newMesh->mNumVertices];
|
|
|
+ }
|
|
|
+ for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a )
|
|
|
+ {
|
|
|
+ if( pMesh->HasTextureCoords( a) )
|
|
|
+ newMesh->mTextureCoords[a] = new aiVector3D[newMesh->mNumVertices];
|
|
|
+ newMesh->mNumUVComponents[a] = pMesh->mNumUVComponents[a];
|
|
|
+ }
|
|
|
+ for( size_t a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a )
|
|
|
+ {
|
|
|
+ if( pMesh->HasVertexColors( a) )
|
|
|
+ newMesh->mColors[a] = new aiColor4D[newMesh->mNumVertices];
|
|
|
+ }
|
|
|
+
|
|
|
+ // and copy over the data, generating faces with linear indices along the way
|
|
|
+ newMesh->mFaces = new aiFace[subMeshFaces.size()];
|
|
|
+ size_t nvi = 0; // next vertex index
|
|
|
+ std::vector<size_t> previousVertexIndices( numSubMeshVertices, SIZE_MAX); // per new vertex: its index in the source mesh
|
|
|
+ for( size_t a = 0; a < subMeshFaces.size(); ++a )
|
|
|
+ {
|
|
|
+ const aiFace& srcFace = pMesh->mFaces[subMeshFaces[a]];
|
|
|
+ aiFace& dstFace = newMesh->mFaces[a];
|
|
|
+ dstFace.mNumIndices = srcFace.mNumIndices;
|
|
|
+ dstFace.mIndices = new unsigned int[dstFace.mNumIndices];
|
|
|
+
|
|
|
+ // accumulate linearly all the vertices of the source face
|
|
|
+ for( size_t b = 0; b < dstFace.mNumIndices; ++b )
|
|
|
+ {
|
|
|
+ size_t srcIndex = srcFace.mIndices[b];
|
|
|
+ dstFace.mIndices[b] = nvi;
|
|
|
+ previousVertexIndices[nvi] = srcIndex;
|
|
|
+
|
|
|
+ newMesh->mVertices[nvi] = pMesh->mVertices[srcIndex];
|
|
|
+ if( pMesh->HasNormals() )
|
|
|
+ newMesh->mNormals[nvi] = pMesh->mNormals[srcIndex];
|
|
|
+ if( pMesh->HasTangentsAndBitangents() )
|
|
|
+ {
|
|
|
+ newMesh->mTangents[nvi] = pMesh->mTangents[srcIndex];
|
|
|
+ newMesh->mBitangents[nvi] = pMesh->mBitangents[srcIndex];
|
|
|
+ }
|
|
|
+ for( size_t c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c )
|
|
|
+ {
|
|
|
+ if( pMesh->HasTextureCoords( c) )
|
|
|
+ newMesh->mTextureCoords[c][nvi] = pMesh->mTextureCoords[c][srcIndex];
|
|
|
+ }
|
|
|
+ for( size_t c = 0; c < AI_MAX_NUMBER_OF_COLOR_SETS; ++c )
|
|
|
+ {
|
|
|
+ if( pMesh->HasVertexColors( c) )
|
|
|
+ newMesh->mColors[c][nvi] = pMesh->mColors[c][srcIndex];
|
|
|
+ }
|
|
|
+
|
|
|
+ nvi++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ ai_assert( nvi == numSubMeshVertices );
|
|
|
+
|
|
|
+ // Create the bones for the new submesh: first create the bone array
|
|
|
+ newMesh->mNumBones = 0;
|
|
|
+ newMesh->mBones = new aiBone*[numBones];
|
|
|
+
|
|
|
+ std::vector<size_t> mappedBoneIndex( pMesh->mNumBones, SIZE_MAX);
|
|
|
+ for( size_t a = 0; a < pMesh->mNumBones; ++a )
|
|
|
+ {
|
|
|
+ if( !isBoneUsed[a] )
|
|
|
+ continue;
|
|
|
+
|
|
|
+ // create the new bone
|
|
|
+ const aiBone* srcBone = pMesh->mBones[a];
|
|
|
+ aiBone* dstBone = new aiBone;
|
|
|
+ mappedBoneIndex[a] = newMesh->mNumBones;
|
|
|
+ newMesh->mBones[newMesh->mNumBones++] = dstBone;
|
|
|
+ dstBone->mName = srcBone->mName;
|
|
|
+ dstBone->mOffsetMatrix = srcBone->mOffsetMatrix;
|
|
|
+ dstBone->mNumWeights = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ ai_assert( newMesh->mNumBones == numBones );
|
|
|
+
|
|
|
+ // iterate over all new vertices and count which bones affected its old vertex in the source mesh
|
|
|
+ for( size_t a = 0; a < numSubMeshVertices; ++a )
|
|
|
+ {
|
|
|
+ size_t oldIndex = previousVertexIndices[a];
|
|
|
+ const std::vector<BoneWeight>& bonesOnThisVertex = vertexBones[oldIndex];
|
|
|
+
|
|
|
+ for( size_t b = 0; b < bonesOnThisVertex.size(); ++b )
|
|
|
+ {
|
|
|
+ size_t newBoneIndex = mappedBoneIndex[ bonesOnThisVertex[b].first ];
|
|
|
+ if( newBoneIndex != SIZE_MAX )
|
|
|
+ newMesh->mBones[newBoneIndex]->mNumWeights++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // allocate all bone weight arrays accordingly
|
|
|
+ for( size_t a = 0; a < newMesh->mNumBones; ++a )
|
|
|
+ {
|
|
|
+ aiBone* bone = newMesh->mBones[a];
|
|
|
+ ai_assert( bone->mNumWeights > 0 );
|
|
|
+ bone->mWeights = new aiVertexWeight[bone->mNumWeights];
|
|
|
+ bone->mNumWeights = 0; // for counting up in the next step
|
|
|
+ }
|
|
|
+
|
|
|
+ // now copy all the bone vertex weights for all the vertices which made it into the new submesh
|
|
|
+ for( size_t a = 0; a < numSubMeshVertices; ++a)
|
|
|
+ {
|
|
|
+ // find the source vertex for it in the source mesh
|
|
|
+ size_t previousIndex = previousVertexIndices[a];
|
|
|
+ // these bones were affecting it
|
|
|
+ const std::vector<BoneWeight>& bonesOnThisVertex = vertexBones[previousIndex];
|
|
|
+ // all of the bones affecting it should be present in the new submesh, or else
|
|
|
+ // the face it comprises shouldn't be present
|
|
|
+ for( size_t b = 0; b < bonesOnThisVertex.size(); ++b)
|
|
|
+ {
|
|
|
+ size_t newBoneIndex = mappedBoneIndex[ bonesOnThisVertex[b].first ];
|
|
|
+ ai_assert( newBoneIndex != SIZE_MAX );
|
|
|
+ aiVertexWeight* dstWeight = newMesh->mBones[newBoneIndex]->mWeights + newMesh->mBones[newBoneIndex]->mNumWeights;
|
|
|
+ newMesh->mBones[newBoneIndex]->mNumWeights++;
|
|
|
+
|
|
|
+ dstWeight->mVertexId = a;
|
|
|
+ dstWeight->mWeight = bonesOnThisVertex[b].second;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // I have the strange feeling that this will break apart at some point in time...
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Recursively updates the node's mesh list to account for the changed mesh list
|
|
|
+void SplitByBoneCountProcess::UpdateNode( aiNode* pNode) const
|
|
|
+{
|
|
|
+ // rebuild the node's mesh index list
|
|
|
+ if( pNode->mNumMeshes > 0 )
|
|
|
+ {
|
|
|
+ std::vector<size_t> newMeshList;
|
|
|
+ for( size_t a = 0; a < pNode->mNumMeshes; ++a)
|
|
|
+ {
|
|
|
+ size_t srcIndex = pNode->mMeshes[a];
|
|
|
+ const std::vector<size_t>& replaceMeshes = mSubMeshIndices[srcIndex];
|
|
|
+ newMeshList.insert( newMeshList.end(), replaceMeshes.begin(), replaceMeshes.end());
|
|
|
+ }
|
|
|
+
|
|
|
+ delete pNode->mMeshes;
|
|
|
+ pNode->mNumMeshes = newMeshList.size();
|
|
|
+ pNode->mMeshes = new unsigned int[pNode->mNumMeshes];
|
|
|
+ std::copy( newMeshList.begin(), newMeshList.end(), pNode->mMeshes);
|
|
|
+ }
|
|
|
+
|
|
|
+ // do that also recursively for all children
|
|
|
+ for( size_t a = 0; a < pNode->mNumChildren; ++a )
|
|
|
+ {
|
|
|
+ UpdateNode( pNode->mChildren[a]);
|
|
|
+ }
|
|
|
+}
|