|
@@ -5,8 +5,6 @@ Open Asset Import Library (assimp)
|
|
|
|
|
|
Copyright (c) 2006-2020, assimp team
|
|
|
|
|
|
-
|
|
|
-
|
|
|
All rights reserved.
|
|
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
@@ -50,71 +48,64 @@ using namespace Assimp;
|
|
|
|
|
|
// CHAR_BIT seems to be defined under MVSC, but not under GCC. Pray that the correct value is 8.
|
|
|
#ifndef CHAR_BIT
|
|
|
-# define CHAR_BIT 8
|
|
|
+#define CHAR_BIT 8
|
|
|
#endif
|
|
|
|
|
|
#ifdef _WIN32
|
|
|
-# pragma warning(disable : 4127)
|
|
|
+//# pragma warning(disable : 4127)
|
|
|
#endif // _WIN32
|
|
|
|
|
|
-// ------------------------------------------------------------------------------------------------
|
|
|
-// Constructs a spatially sorted representation from the given position array.
|
|
|
-SpatialSort::SpatialSort( const aiVector3D* pPositions, unsigned int pNumPositions,
|
|
|
- unsigned int pElementOffset)
|
|
|
+const aiVector3D PlaneInit( 0.8523f, 0.34321f, 0.5736f );
|
|
|
|
|
|
- // define the reference plane. We choose some arbitrary vector away from all basic axises
|
|
|
- // in the hope that no model spreads all its vertices along this plane.
|
|
|
- : mPlaneNormal(0.8523f, 0.34321f, 0.5736f)
|
|
|
-{
|
|
|
+ // ------------------------------------------------------------------------------------------------
|
|
|
+// Constructs a spatially sorted representation from the given position array.
|
|
|
+// define the reference plane. We choose some arbitrary vector away from all basic axises
|
|
|
+// in the hope that no model spreads all its vertices along this plane.
|
|
|
+SpatialSort::SpatialSort(const aiVector3D *pPositions, unsigned int pNumPositions, unsigned int pElementOffset) :
|
|
|
+ mPlaneNormal(PlaneInit) {
|
|
|
mPlaneNormal.Normalize();
|
|
|
- Fill(pPositions,pNumPositions,pElementOffset);
|
|
|
+ Fill(pPositions, pNumPositions, pElementOffset);
|
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
-SpatialSort :: SpatialSort()
|
|
|
-: mPlaneNormal(0.8523f, 0.34321f, 0.5736f)
|
|
|
-{
|
|
|
+SpatialSort::SpatialSort() :
|
|
|
+ mPlaneNormal(PlaneInit) {
|
|
|
mPlaneNormal.Normalize();
|
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
// Destructor
|
|
|
-SpatialSort::~SpatialSort()
|
|
|
-{
|
|
|
- // nothing to do here, everything destructs automatically
|
|
|
+SpatialSort::~SpatialSort() {
|
|
|
+ // empty
|
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
-void SpatialSort::Fill( const aiVector3D* pPositions, unsigned int pNumPositions,
|
|
|
- unsigned int pElementOffset,
|
|
|
- bool pFinalize /*= true */)
|
|
|
-{
|
|
|
+void SpatialSort::Fill(const aiVector3D *pPositions, unsigned int pNumPositions,
|
|
|
+ unsigned int pElementOffset,
|
|
|
+ bool pFinalize /*= true */) {
|
|
|
mPositions.clear();
|
|
|
- Append(pPositions,pNumPositions,pElementOffset,pFinalize);
|
|
|
+ Append(pPositions, pNumPositions, pElementOffset, pFinalize);
|
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
-void SpatialSort :: Finalize()
|
|
|
-{
|
|
|
- std::sort( mPositions.begin(), mPositions.end());
|
|
|
+void SpatialSort::Finalize() {
|
|
|
+ std::sort(mPositions.begin(), mPositions.end());
|
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
-void SpatialSort::Append( const aiVector3D* pPositions, unsigned int pNumPositions,
|
|
|
- unsigned int pElementOffset,
|
|
|
- bool pFinalize /*= true */)
|
|
|
-{
|
|
|
+void SpatialSort::Append(const aiVector3D *pPositions, unsigned int pNumPositions,
|
|
|
+ unsigned int pElementOffset,
|
|
|
+ bool pFinalize /*= true */) {
|
|
|
// store references to all given positions along with their distance to the reference plane
|
|
|
const size_t initial = mPositions.size();
|
|
|
- mPositions.reserve(initial + (pFinalize?pNumPositions:pNumPositions*2));
|
|
|
- for( unsigned int a = 0; a < pNumPositions; a++)
|
|
|
- {
|
|
|
- const char* tempPointer = reinterpret_cast<const char*> (pPositions);
|
|
|
- const aiVector3D* vec = reinterpret_cast<const aiVector3D*> (tempPointer + a * pElementOffset);
|
|
|
+ mPositions.reserve(initial + (pFinalize ? pNumPositions : pNumPositions * 2));
|
|
|
+ for (unsigned int a = 0; a < pNumPositions; a++) {
|
|
|
+ const char *tempPointer = reinterpret_cast<const char *>(pPositions);
|
|
|
+ const aiVector3D *vec = reinterpret_cast<const aiVector3D *>(tempPointer + a * pElementOffset);
|
|
|
|
|
|
// store position by index and distance
|
|
|
ai_real distance = *vec * mPlaneNormal;
|
|
|
- mPositions.push_back( Entry( static_cast<unsigned int>(a+initial), *vec, distance));
|
|
|
+ mPositions.push_back(Entry(static_cast<unsigned int>(a + initial), *vec, distance));
|
|
|
}
|
|
|
|
|
|
if (pFinalize) {
|
|
@@ -125,9 +116,8 @@ void SpatialSort::Append( const aiVector3D* pPositions, unsigned int pNumPositio
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
// Returns an iterator for all positions close to the given position.
|
|
|
-void SpatialSort::FindPositions( const aiVector3D& pPosition,
|
|
|
- ai_real pRadius, std::vector<unsigned int>& poResults) const
|
|
|
-{
|
|
|
+void SpatialSort::FindPositions(const aiVector3D &pPosition,
|
|
|
+ ai_real pRadius, std::vector<unsigned int> &poResults) const {
|
|
|
const ai_real dist = pPosition * mPlaneNormal;
|
|
|
const ai_real minDist = dist - pRadius, maxDist = dist + pRadius;
|
|
|
|
|
@@ -135,19 +125,18 @@ void SpatialSort::FindPositions( const aiVector3D& pPosition,
|
|
|
poResults.clear();
|
|
|
|
|
|
// quick check for positions outside the range
|
|
|
- if( mPositions.size() == 0)
|
|
|
+ if (mPositions.size() == 0)
|
|
|
return;
|
|
|
- if( maxDist < mPositions.front().mDistance)
|
|
|
+ if (maxDist < mPositions.front().mDistance)
|
|
|
return;
|
|
|
- if( minDist > mPositions.back().mDistance)
|
|
|
+ if (minDist > mPositions.back().mDistance)
|
|
|
return;
|
|
|
|
|
|
// do a binary search for the minimal distance to start the iteration there
|
|
|
unsigned int index = (unsigned int)mPositions.size() / 2;
|
|
|
unsigned int binaryStepSize = (unsigned int)mPositions.size() / 4;
|
|
|
- while( binaryStepSize > 1)
|
|
|
- {
|
|
|
- if( mPositions[index].mDistance < minDist)
|
|
|
+ while (binaryStepSize > 1) {
|
|
|
+ if (mPositions[index].mDistance < minDist)
|
|
|
index += binaryStepSize;
|
|
|
else
|
|
|
index -= binaryStepSize;
|
|
@@ -157,21 +146,20 @@ void SpatialSort::FindPositions( const aiVector3D& pPosition,
|
|
|
|
|
|
// depending on the direction of the last step we need to single step a bit back or forth
|
|
|
// to find the actual beginning element of the range
|
|
|
- while( index > 0 && mPositions[index].mDistance > minDist)
|
|
|
+ while (index > 0 && mPositions[index].mDistance > minDist)
|
|
|
index--;
|
|
|
- while( index < (mPositions.size() - 1) && mPositions[index].mDistance < minDist)
|
|
|
+ while (index < (mPositions.size() - 1) && mPositions[index].mDistance < minDist)
|
|
|
index++;
|
|
|
|
|
|
// Mow start iterating from there until the first position lays outside of the distance range.
|
|
|
// Add all positions inside the distance range within the given radius to the result aray
|
|
|
std::vector<Entry>::const_iterator it = mPositions.begin() + index;
|
|
|
- const ai_real pSquared = pRadius*pRadius;
|
|
|
- while( it->mDistance < maxDist)
|
|
|
- {
|
|
|
- if( (it->mPosition - pPosition).SquareLength() < pSquared)
|
|
|
- poResults.push_back( it->mIndex);
|
|
|
+ const ai_real pSquared = pRadius * pRadius;
|
|
|
+ while (it->mDistance < maxDist) {
|
|
|
+ if ((it->mPosition - pPosition).SquareLength() < pSquared)
|
|
|
+ poResults.push_back(it->mIndex);
|
|
|
++it;
|
|
|
- if( it == mPositions.end())
|
|
|
+ if (it == mPositions.end())
|
|
|
break;
|
|
|
}
|
|
|
|
|
@@ -180,70 +168,71 @@ void SpatialSort::FindPositions( const aiVector3D& pPosition,
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
- // Binary, signed-integer representation of a single-precision floating-point value.
|
|
|
- // IEEE 754 says: "If two floating-point numbers in the same format are ordered then they are
|
|
|
- // ordered the same way when their bits are reinterpreted as sign-magnitude integers."
|
|
|
- // This allows us to convert all floating-point numbers to signed integers of arbitrary size
|
|
|
- // and then use them to work with ULPs (Units in the Last Place, for high-precision
|
|
|
- // computations) or to compare them (integer comparisons are faster than floating-point
|
|
|
- // comparisons on many platforms).
|
|
|
- typedef ai_int BinFloat;
|
|
|
-
|
|
|
- // --------------------------------------------------------------------------------------------
|
|
|
- // Converts the bit pattern of a floating-point number to its signed integer representation.
|
|
|
- BinFloat ToBinary( const ai_real & pValue) {
|
|
|
-
|
|
|
- // If this assertion fails, signed int is not big enough to store a float on your platform.
|
|
|
- // Please correct the declaration of BinFloat a few lines above - but do it in a portable,
|
|
|
- // #ifdef'd manner!
|
|
|
- static_assert( sizeof(BinFloat) >= sizeof(ai_real), "sizeof(BinFloat) >= sizeof(ai_real)");
|
|
|
-
|
|
|
- #if defined( _MSC_VER)
|
|
|
- // If this assertion fails, Visual C++ has finally moved to ILP64. This means that this
|
|
|
- // code has just become legacy code! Find out the current value of _MSC_VER and modify
|
|
|
- // the #if above so it evaluates false on the current and all upcoming VC versions (or
|
|
|
- // on the current platform, if LP64 or LLP64 are still used on other platforms).
|
|
|
- static_assert( sizeof(BinFloat) == sizeof(ai_real), "sizeof(BinFloat) == sizeof(ai_real)");
|
|
|
-
|
|
|
- // This works best on Visual C++, but other compilers have their problems with it.
|
|
|
- const BinFloat binValue = reinterpret_cast<BinFloat const &>(pValue);
|
|
|
- #else
|
|
|
- // On many compilers, reinterpreting a float address as an integer causes aliasing
|
|
|
- // problems. This is an ugly but more or less safe way of doing it.
|
|
|
- union {
|
|
|
- ai_real asFloat;
|
|
|
- BinFloat asBin;
|
|
|
- } conversion;
|
|
|
- conversion.asBin = 0; // zero empty space in case sizeof(BinFloat) > sizeof(float)
|
|
|
- conversion.asFloat = pValue;
|
|
|
- const BinFloat binValue = conversion.asBin;
|
|
|
- #endif
|
|
|
-
|
|
|
- // floating-point numbers are of sign-magnitude format, so find out what signed number
|
|
|
- // representation we must convert negative values to.
|
|
|
- // See http://en.wikipedia.org/wiki/Signed_number_representations.
|
|
|
-
|
|
|
- // Two's complement?
|
|
|
- if( (-42 == (~42 + 1)) && (binValue & 0x80000000))
|
|
|
- return BinFloat(1 << (CHAR_BIT * sizeof(BinFloat) - 1)) - binValue;
|
|
|
- // One's complement?
|
|
|
- else if ( (-42 == ~42) && (binValue & 0x80000000))
|
|
|
- return BinFloat(-0) - binValue;
|
|
|
- // Sign-magnitude?
|
|
|
- else if( (-42 == (42 | (-0))) && (binValue & 0x80000000)) // -0 = 1000... binary
|
|
|
- return binValue;
|
|
|
- else
|
|
|
- return binValue;
|
|
|
- }
|
|
|
+// Binary, signed-integer representation of a single-precision floating-point value.
|
|
|
+// IEEE 754 says: "If two floating-point numbers in the same format are ordered then they are
|
|
|
+// ordered the same way when their bits are reinterpreted as sign-magnitude integers."
|
|
|
+// This allows us to convert all floating-point numbers to signed integers of arbitrary size
|
|
|
+// and then use them to work with ULPs (Units in the Last Place, for high-precision
|
|
|
+// computations) or to compare them (integer comparisons are faster than floating-point
|
|
|
+// comparisons on many platforms).
|
|
|
+typedef ai_int BinFloat;
|
|
|
+
|
|
|
+// --------------------------------------------------------------------------------------------
|
|
|
+// Converts the bit pattern of a floating-point number to its signed integer representation.
|
|
|
+BinFloat ToBinary(const ai_real &pValue) {
|
|
|
+
|
|
|
+ // If this assertion fails, signed int is not big enough to store a float on your platform.
|
|
|
+ // Please correct the declaration of BinFloat a few lines above - but do it in a portable,
|
|
|
+ // #ifdef'd manner!
|
|
|
+ static_assert(sizeof(BinFloat) >= sizeof(ai_real), "sizeof(BinFloat) >= sizeof(ai_real)");
|
|
|
+
|
|
|
+#if defined(_MSC_VER)
|
|
|
+ // If this assertion fails, Visual C++ has finally moved to ILP64. This means that this
|
|
|
+ // code has just become legacy code! Find out the current value of _MSC_VER and modify
|
|
|
+ // the #if above so it evaluates false on the current and all upcoming VC versions (or
|
|
|
+ // on the current platform, if LP64 or LLP64 are still used on other platforms).
|
|
|
+ static_assert(sizeof(BinFloat) == sizeof(ai_real), "sizeof(BinFloat) == sizeof(ai_real)");
|
|
|
+
|
|
|
+ // This works best on Visual C++, but other compilers have their problems with it.
|
|
|
+ const BinFloat binValue = reinterpret_cast<BinFloat const &>(pValue);
|
|
|
+ //::memcpy(&binValue, &pValue, sizeof(pValue));
|
|
|
+ //return binValue;
|
|
|
+#else
|
|
|
+ // On many compilers, reinterpreting a float address as an integer causes aliasing
|
|
|
+ // problems. This is an ugly but more or less safe way of doing it.
|
|
|
+ union {
|
|
|
+ ai_real asFloat;
|
|
|
+ BinFloat asBin;
|
|
|
+ } conversion;
|
|
|
+ conversion.asBin = 0; // zero empty space in case sizeof(BinFloat) > sizeof(float)
|
|
|
+ conversion.asFloat = pValue;
|
|
|
+ const BinFloat binValue = conversion.asBin;
|
|
|
+#endif
|
|
|
+
|
|
|
+ // floating-point numbers are of sign-magnitude format, so find out what signed number
|
|
|
+ // representation we must convert negative values to.
|
|
|
+ // See http://en.wikipedia.org/wiki/Signed_number_representations.
|
|
|
+
|
|
|
+ // Two's complement?
|
|
|
+ /*if ((-42 == (~42 + 1)) && (binValue & 0x80000000))
|
|
|
+ return BinFloat(1 << (CHAR_BIT * sizeof(BinFloat) - 1)) - binValue;
|
|
|
+ // One's complement?
|
|
|
+ else if ((-42 == ~42) && (binValue & 0x80000000))
|
|
|
+ return BinFloat(-0) - binValue;
|
|
|
+ // Sign-magnitude?
|
|
|
+ else if ((-42 == (42 | (-0))) && (binValue & 0x80000000)) // -0 = 1000... binary
|
|
|
+ return binValue;
|
|
|
+ else*/
|
|
|
+
|
|
|
+ return binValue;
|
|
|
+}
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
// Fills an array with indices of all positions identical to the given position. In opposite to
|
|
|
// FindPositions(), not an epsilon is used but a (very low) tolerance of four floating-point units.
|
|
|
-void SpatialSort::FindIdenticalPositions( const aiVector3D& pPosition,
|
|
|
- std::vector<unsigned int>& poResults) const
|
|
|
-{
|
|
|
+void SpatialSort::FindIdenticalPositions(const aiVector3D &pPosition, std::vector<unsigned int> &poResults) const {
|
|
|
// Epsilons have a huge disadvantage: they are of constant precision, while floating-point
|
|
|
// values are of log2 precision. If you apply e=0.01 to 100, the epsilon is rather small, but
|
|
|
// if you apply it to 0.001, it is enormous.
|
|
@@ -269,20 +258,19 @@ void SpatialSort::FindIdenticalPositions( const aiVector3D& pPosition,
|
|
|
|
|
|
// Convert the plane distance to its signed integer representation so the ULPs tolerance can be
|
|
|
// applied. For some reason, VC won't optimize two calls of the bit pattern conversion.
|
|
|
- const BinFloat minDistBinary = ToBinary( pPosition * mPlaneNormal) - distanceToleranceInULPs;
|
|
|
+ const BinFloat minDistBinary = ToBinary(pPosition * mPlaneNormal) - distanceToleranceInULPs;
|
|
|
const BinFloat maxDistBinary = minDistBinary + 2 * distanceToleranceInULPs;
|
|
|
|
|
|
// clear the array in this strange fashion because a simple clear() would also deallocate
|
|
|
// the array which we want to avoid
|
|
|
- poResults.resize( 0 );
|
|
|
+ poResults.resize(0);
|
|
|
|
|
|
// do a binary search for the minimal distance to start the iteration there
|
|
|
unsigned int index = (unsigned int)mPositions.size() / 2;
|
|
|
unsigned int binaryStepSize = (unsigned int)mPositions.size() / 4;
|
|
|
- while( binaryStepSize > 1)
|
|
|
- {
|
|
|
+ while (binaryStepSize > 1) {
|
|
|
// Ugly, but conditional jumps are faster with integers than with floats
|
|
|
- if( minDistBinary > ToBinary(mPositions[index].mDistance))
|
|
|
+ if (minDistBinary > ToBinary(mPositions[index].mDistance))
|
|
|
index += binaryStepSize;
|
|
|
else
|
|
|
index -= binaryStepSize;
|
|
@@ -292,20 +280,19 @@ void SpatialSort::FindIdenticalPositions( const aiVector3D& pPosition,
|
|
|
|
|
|
// depending on the direction of the last step we need to single step a bit back or forth
|
|
|
// to find the actual beginning element of the range
|
|
|
- while( index > 0 && minDistBinary < ToBinary(mPositions[index].mDistance) )
|
|
|
+ while (index > 0 && minDistBinary < ToBinary(mPositions[index].mDistance))
|
|
|
index--;
|
|
|
- while( index < (mPositions.size() - 1) && minDistBinary > ToBinary(mPositions[index].mDistance))
|
|
|
+ while (index < (mPositions.size() - 1) && minDistBinary > ToBinary(mPositions[index].mDistance))
|
|
|
index++;
|
|
|
|
|
|
// Now start iterating from there until the first position lays outside of the distance range.
|
|
|
// Add all positions inside the distance range within the tolerance to the result array
|
|
|
std::vector<Entry>::const_iterator it = mPositions.begin() + index;
|
|
|
- while( ToBinary(it->mDistance) < maxDistBinary)
|
|
|
- {
|
|
|
- if( distance3DToleranceInULPs >= ToBinary((it->mPosition - pPosition).SquareLength()))
|
|
|
+ while (ToBinary(it->mDistance) < maxDistBinary) {
|
|
|
+ if (distance3DToleranceInULPs >= ToBinary((it->mPosition - pPosition).SquareLength()))
|
|
|
poResults.push_back(it->mIndex);
|
|
|
++it;
|
|
|
- if( it == mPositions.end())
|
|
|
+ if (it == mPositions.end())
|
|
|
break;
|
|
|
}
|
|
|
|
|
@@ -313,22 +300,19 @@ void SpatialSort::FindIdenticalPositions( const aiVector3D& pPosition,
|
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
-unsigned int SpatialSort::GenerateMappingTable(std::vector<unsigned int>& fill, ai_real pRadius) const
|
|
|
-{
|
|
|
- fill.resize(mPositions.size(),UINT_MAX);
|
|
|
+unsigned int SpatialSort::GenerateMappingTable(std::vector<unsigned int> &fill, ai_real pRadius) const {
|
|
|
+ fill.resize(mPositions.size(), UINT_MAX);
|
|
|
ai_real dist, maxDist;
|
|
|
|
|
|
- unsigned int t=0;
|
|
|
- const ai_real pSquared = pRadius*pRadius;
|
|
|
+ unsigned int t = 0;
|
|
|
+ const ai_real pSquared = pRadius * pRadius;
|
|
|
for (size_t i = 0; i < mPositions.size();) {
|
|
|
dist = mPositions[i].mPosition * mPlaneNormal;
|
|
|
maxDist = dist + pRadius;
|
|
|
|
|
|
fill[mPositions[i].mIndex] = t;
|
|
|
- const aiVector3D& oldpos = mPositions[i].mPosition;
|
|
|
- for (++i; i < fill.size() && mPositions[i].mDistance < maxDist
|
|
|
- && (mPositions[i].mPosition - oldpos).SquareLength() < pSquared; ++i)
|
|
|
- {
|
|
|
+ const aiVector3D &oldpos = mPositions[i].mPosition;
|
|
|
+ for (++i; i < fill.size() && mPositions[i].mDistance < maxDist && (mPositions[i].mPosition - oldpos).SquareLength() < pSquared; ++i) {
|
|
|
fill[mPositions[i].mIndex] = t;
|
|
|
}
|
|
|
++t;
|
|
@@ -338,7 +322,7 @@ unsigned int SpatialSort::GenerateMappingTable(std::vector<unsigned int>& fill,
|
|
|
|
|
|
// debug invariant: mPositions[i].mIndex values must range from 0 to mPositions.size()-1
|
|
|
for (size_t i = 0; i < fill.size(); ++i) {
|
|
|
- ai_assert(fill[i]<mPositions.size());
|
|
|
+ ai_assert(fill[i] < mPositions.size());
|
|
|
}
|
|
|
|
|
|
#endif
|