Răsfoiți Sursa

fix misalignment in vector2 [] operator, the non-const one.

Kim Kulling 7 ani în urmă
părinte
comite
e0649b6822
1 a modificat fișierele cu 40 adăugiri și 18 ștergeri
  1. 40 18
      include/assimp/vector2.inl

+ 40 - 18
include/assimp/vector2.inl

@@ -60,24 +60,28 @@ aiVector2t<TReal>::operator aiVector2t<TOther> () const {
 }
 // ------------------------------------------------------------------------------------------------
 template <typename TReal>
+inline
 void aiVector2t<TReal>::Set( TReal pX, TReal pY) {
     x = pX; y = pY;
 }
 
 // ------------------------------------------------------------------------------------------------
 template <typename TReal>
+inline
 TReal aiVector2t<TReal>::SquareLength() const {
     return x*x + y*y;
 }
 
 // ------------------------------------------------------------------------------------------------
 template <typename TReal>
+inline
 TReal aiVector2t<TReal>::Length() const {
     return std::sqrt( SquareLength());
 }
 
 // ------------------------------------------------------------------------------------------------
 template <typename TReal>
+inline
 aiVector2t<TReal>& aiVector2t<TReal>::Normalize() {
     *this /= Length();
     return *this;
@@ -85,6 +89,7 @@ aiVector2t<TReal>& aiVector2t<TReal>::Normalize() {
 
 // ------------------------------------------------------------------------------------------------
 template <typename TReal>
+inline
 const aiVector2t<TReal>& aiVector2t<TReal>::operator += (const aiVector2t& o) {
     x += o.x; y += o.y;
     return *this;
@@ -92,6 +97,7 @@ const aiVector2t<TReal>& aiVector2t<TReal>::operator += (const aiVector2t& o) {
 
 // ------------------------------------------------------------------------------------------------
 template <typename TReal>
+inline
 const aiVector2t<TReal>& aiVector2t<TReal>::operator -= (const aiVector2t& o) {
     x -= o.x; y -= o.y;
     return *this;
@@ -99,6 +105,7 @@ const aiVector2t<TReal>& aiVector2t<TReal>::operator -= (const aiVector2t& o) {
 
 // ------------------------------------------------------------------------------------------------
 template <typename TReal>
+inline
 const aiVector2t<TReal>& aiVector2t<TReal>::operator *= (TReal f) {
     x *= f; y *= f;
     return *this;
@@ -106,6 +113,7 @@ const aiVector2t<TReal>& aiVector2t<TReal>::operator *= (TReal f) {
 
 // ------------------------------------------------------------------------------------------------
 template <typename TReal>
+inline
 const aiVector2t<TReal>& aiVector2t<TReal>::operator /= (TReal f) {
     x /= f; y /= f;
     return *this;
@@ -113,6 +121,7 @@ const aiVector2t<TReal>& aiVector2t<TReal>::operator /= (TReal f) {
 
 // ------------------------------------------------------------------------------------------------
 template <typename TReal>
+inline
 TReal aiVector2t<TReal>::operator[](unsigned int i) const {
 	switch (i) {
 		case 0:
@@ -127,24 +136,36 @@ TReal aiVector2t<TReal>::operator[](unsigned int i) const {
 
 // ------------------------------------------------------------------------------------------------
 template <typename TReal>
+inline
 TReal& aiVector2t<TReal>::operator[](unsigned int i) {
-    return *(&x + i);
+	switch (i) {
+		case 0:
+			return x;
+		case 1:
+			return y;
+		default:
+			break;
+    }
+    return x;
 }
 
 // ------------------------------------------------------------------------------------------------
 template <typename TReal>
+inline
 bool aiVector2t<TReal>::operator== (const aiVector2t& other) const {
     return x == other.x && y == other.y;
 }
 
 // ------------------------------------------------------------------------------------------------
 template <typename TReal>
+inline
 bool aiVector2t<TReal>::operator!= (const aiVector2t& other) const {
     return x != other.x || y != other.y;
 }
 
 // ---------------------------------------------------------------------------
 template<typename TReal>
+inline
 bool aiVector2t<TReal>::Equal(const aiVector2t& other, TReal epsilon) const {
     return
         std::abs(x - other.x) <= epsilon &&
@@ -153,6 +174,7 @@ bool aiVector2t<TReal>::Equal(const aiVector2t& other, TReal epsilon) const {
 
 // ------------------------------------------------------------------------------------------------
 template <typename TReal>
+inline
 aiVector2t<TReal>& aiVector2t<TReal>::operator= (TReal f)   {
     x = y = f;
     return *this;
@@ -160,6 +182,7 @@ aiVector2t<TReal>& aiVector2t<TReal>::operator= (TReal f)   {
 
 // ------------------------------------------------------------------------------------------------
 template <typename TReal>
+inline
 const aiVector2t<TReal> aiVector2t<TReal>::SymMul(const aiVector2t& o) {
     return aiVector2t(x*o.x,y*o.y);
 }
@@ -168,65 +191,64 @@ const aiVector2t<TReal> aiVector2t<TReal>::SymMul(const aiVector2t& o) {
 // ------------------------------------------------------------------------------------------------
 // symmetric addition
 template <typename TReal>
-inline aiVector2t<TReal> operator + (const aiVector2t<TReal>& v1, const aiVector2t<TReal>& v2)
-{
+inline
+inline aiVector2t<TReal> operator + (const aiVector2t<TReal>& v1, const aiVector2t<TReal>& v2) {
     return aiVector2t<TReal>( v1.x + v2.x, v1.y + v2.y);
 }
 
 // ------------------------------------------------------------------------------------------------
 // symmetric subtraction
 template <typename TReal>
-inline aiVector2t<TReal> operator - (const aiVector2t<TReal>& v1, const aiVector2t<TReal>& v2)
-{
+inline 
+aiVector2t<TReal> operator - (const aiVector2t<TReal>& v1, const aiVector2t<TReal>& v2) {
     return aiVector2t<TReal>( v1.x - v2.x, v1.y - v2.y);
 }
 
 // ------------------------------------------------------------------------------------------------
 // scalar product
 template <typename TReal>
-inline TReal operator * (const aiVector2t<TReal>& v1, const aiVector2t<TReal>& v2)
-{
+inline 
+TReal operator * (const aiVector2t<TReal>& v1, const aiVector2t<TReal>& v2) {
     return v1.x*v2.x + v1.y*v2.y;
 }
 
 // ------------------------------------------------------------------------------------------------
 // scalar multiplication
 template <typename TReal>
-inline aiVector2t<TReal> operator * ( TReal f, const aiVector2t<TReal>& v)
-{
+inline 
+aiVector2t<TReal> operator * ( TReal f, const aiVector2t<TReal>& v) {
     return aiVector2t<TReal>( f*v.x, f*v.y);
 }
 
 // ------------------------------------------------------------------------------------------------
 // and the other way around
 template <typename TReal>
-inline aiVector2t<TReal> operator * ( const aiVector2t<TReal>& v, TReal f)
-{
+inline 
+aiVector2t<TReal> operator * ( const aiVector2t<TReal>& v, TReal f) {
     return aiVector2t<TReal>( f*v.x, f*v.y);
 }
 
 // ------------------------------------------------------------------------------------------------
 // scalar division
 template <typename TReal>
-inline aiVector2t<TReal> operator / ( const aiVector2t<TReal>& v, TReal f)
-{
-
+inline 
+aiVector2t<TReal> operator / ( const aiVector2t<TReal>& v, TReal f) {
     return v * (1/f);
 }
 
 // ------------------------------------------------------------------------------------------------
 // vector division
 template <typename TReal>
-inline aiVector2t<TReal> operator / ( const aiVector2t<TReal>& v, const aiVector2t<TReal>& v2)
-{
+inline 
+aiVector2t<TReal> operator / ( const aiVector2t<TReal>& v, const aiVector2t<TReal>& v2) {
     return aiVector2t<TReal>(v.x / v2.x,v.y / v2.y);
 }
 
 // ------------------------------------------------------------------------------------------------
 // vector negation
 template <typename TReal>
-inline aiVector2t<TReal> operator - ( const aiVector2t<TReal>& v)
-{
+inline 
+aiVector2t<TReal> operator - ( const aiVector2t<TReal>& v) {
     return aiVector2t<TReal>( -v.x, -v.y);
 }