|
@@ -188,6 +188,8 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
|
|
|
FILE* fout = fopen(POLY_OUTPUT_FILE,"a");
|
|
|
#endif
|
|
|
|
|
|
+ const aiVector3D* verts = pMesh->mVertices;
|
|
|
+
|
|
|
// use boost::scoped_array to avoid slow std::vector<bool> specialiations
|
|
|
boost::scoped_array<bool> done(new bool[max_out]);
|
|
|
for( unsigned int a = 0; a < pMesh->mNumFaces; a++) {
|
|
@@ -216,24 +218,59 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
|
|
|
|
|
|
face.mIndices = NULL;
|
|
|
continue;
|
|
|
- } /* does not handle concave quads
|
|
|
+ }
|
|
|
// optimized code for quadrilaterals
|
|
|
else if ( face.mNumIndices == 4) {
|
|
|
+
|
|
|
+ // quads can have at maximum one concave vertex. Determine
|
|
|
+ // this vertex (if it exists) and start tri-fanning from
|
|
|
+ // it.
|
|
|
+ unsigned int start_vertex = 0;
|
|
|
+ for (unsigned int i = 0; i < 4; ++i) {
|
|
|
+ const aiVector3D& v0 = verts[face.mIndices[(i+3) % 4]];
|
|
|
+ const aiVector3D& v1 = verts[face.mIndices[(i+2) % 4]];
|
|
|
+ const aiVector3D& v2 = verts[face.mIndices[(i+1) % 4]];
|
|
|
+
|
|
|
+ const aiVector3D& v = verts[face.mIndices[i]];
|
|
|
+
|
|
|
+ aiVector3D left = (v0-v);
|
|
|
+ aiVector3D diag = (v1-v);
|
|
|
+ aiVector3D right = (v2-v);
|
|
|
+
|
|
|
+ left.Normalize();
|
|
|
+ diag.Normalize();
|
|
|
+ right.Normalize();
|
|
|
+
|
|
|
+ const float angle = acos(left*diag) + acos(right*diag);
|
|
|
+ if (angle > AI_MATH_PI_F) {
|
|
|
+ // this is the concave point
|
|
|
+ start_vertex = i;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ const unsigned int temp[] = {face.mIndices[0], face.mIndices[1], face.mIndices[2], face.mIndices[3]};
|
|
|
+
|
|
|
aiFace& nface = *curOut++;
|
|
|
nface.mNumIndices = 3;
|
|
|
nface.mIndices = face.mIndices;
|
|
|
|
|
|
+ nface.mIndices[0] = temp[start_vertex];
|
|
|
+ nface.mIndices[1] = temp[(start_vertex + 1) % 4];
|
|
|
+ nface.mIndices[2] = temp[(start_vertex + 2) % 4];
|
|
|
+
|
|
|
aiFace& sface = *curOut++;
|
|
|
sface.mNumIndices = 3;
|
|
|
sface.mIndices = new unsigned int[3];
|
|
|
|
|
|
- sface.mIndices[0] = face.mIndices[0];
|
|
|
- sface.mIndices[1] = face.mIndices[2];
|
|
|
- sface.mIndices[2] = face.mIndices[3];
|
|
|
-
|
|
|
+ sface.mIndices[0] = temp[start_vertex];
|
|
|
+ sface.mIndices[1] = temp[(start_vertex + 2) % 4];
|
|
|
+ sface.mIndices[2] = temp[(start_vertex + 3) % 4];
|
|
|
+
|
|
|
+ // prevent double deletion of the indices field
|
|
|
face.mIndices = NULL;
|
|
|
continue;
|
|
|
- } */
|
|
|
+ }
|
|
|
else
|
|
|
{
|
|
|
// A polygon with more than 3 vertices can be either concave or convex.
|
|
@@ -246,7 +283,6 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
|
|
|
// We project it onto a plane to get a 2d triangle.
|
|
|
|
|
|
// Collect all vertices of of the polygon.
|
|
|
- const aiVector3D* verts = pMesh->mVertices;
|
|
|
for (tmp = 0; tmp < max; ++tmp) {
|
|
|
temp_verts3d[tmp] = verts[idx[tmp]];
|
|
|
}
|