ColladaLoader.cpp 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681
  1. /*
  2. ---------------------------------------------------------------------------
  3. Open Asset Import Library (assimp)
  4. ---------------------------------------------------------------------------
  5. Copyright (c) 2006-2016, assimp team
  6. All rights reserved.
  7. Redistribution and use of this software in source and binary forms,
  8. with or without modification, are permitted provided that the following
  9. conditions are met:
  10. * Redistributions of source code must retain the above
  11. copyright notice, this list of conditions and the
  12. following disclaimer.
  13. * Redistributions in binary form must reproduce the above
  14. copyright notice, this list of conditions and the
  15. following disclaimer in the documentation and/or other
  16. materials provided with the distribution.
  17. * Neither the name of the assimp team, nor the names of its
  18. contributors may be used to endorse or promote products
  19. derived from this software without specific prior
  20. written permission of the assimp team.
  21. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  22. "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  23. LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  24. A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  25. OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  26. SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  27. LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  28. DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  29. THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  30. (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  31. OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  32. ---------------------------------------------------------------------------
  33. */
  34. /** @file Implementation of the Collada loader */
  35. #ifndef ASSIMP_BUILD_NO_COLLADA_IMPORTER
  36. #include "ColladaLoader.h"
  37. #include <assimp/anim.h>
  38. #include <assimp/scene.h>
  39. #include <assimp/DefaultLogger.hpp>
  40. #include <assimp/Importer.hpp>
  41. #include "ColladaParser.h"
  42. #include "fast_atof.h"
  43. #include "ParsingUtils.h"
  44. #include "SkeletonMeshBuilder.h"
  45. #include "Defines.h"
  46. #include "time.h"
  47. #include "math.h"
  48. #include <algorithm>
  49. #include <cstdint>
  50. #include <numeric>
  51. #include "Defines.h"
  52. using namespace Assimp;
  53. using namespace Assimp::Formatter;
  54. static const aiImporterDesc desc = {
  55. "Collada Importer",
  56. "",
  57. "",
  58. "http://collada.org",
  59. aiImporterFlags_SupportTextFlavour,
  60. 1,
  61. 3,
  62. 1,
  63. 5,
  64. "dae"
  65. };
  66. // ------------------------------------------------------------------------------------------------
  67. // Constructor to be privately used by Importer
  68. ColladaLoader::ColladaLoader()
  69. : mFileName()
  70. , mMeshIndexByID()
  71. , mMaterialIndexByName()
  72. , mMeshes()
  73. , newMats()
  74. , mCameras()
  75. , mLights()
  76. , mTextures()
  77. , mAnims()
  78. , noSkeletonMesh( false )
  79. , ignoreUpDirection(false)
  80. , mNodeNameCounter( 0 )
  81. {}
  82. // ------------------------------------------------------------------------------------------------
  83. // Destructor, private as well
  84. ColladaLoader::~ColladaLoader()
  85. {}
  86. // ------------------------------------------------------------------------------------------------
  87. // Returns whether the class can handle the format of the given file.
  88. bool ColladaLoader::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const
  89. {
  90. // check file extension
  91. std::string extension = GetExtension(pFile);
  92. if( extension == "dae")
  93. return true;
  94. // XML - too generic, we need to open the file and search for typical keywords
  95. if( extension == "xml" || !extension.length() || checkSig) {
  96. /* If CanRead() is called in order to check whether we
  97. * support a specific file extension in general pIOHandler
  98. * might be NULL and it's our duty to return true here.
  99. */
  100. if (!pIOHandler)return true;
  101. const char* tokens[] = {"collada"};
  102. return SearchFileHeaderForToken(pIOHandler,pFile,tokens,1);
  103. }
  104. return false;
  105. }
  106. // ------------------------------------------------------------------------------------------------
  107. void ColladaLoader::SetupProperties(const Importer* pImp)
  108. {
  109. noSkeletonMesh = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_NO_SKELETON_MESHES,0) != 0;
  110. ignoreUpDirection = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_COLLADA_IGNORE_UP_DIRECTION,0) != 0;
  111. }
  112. // ------------------------------------------------------------------------------------------------
  113. // Get file extension list
  114. const aiImporterDesc* ColladaLoader::GetInfo () const
  115. {
  116. return &desc;
  117. }
  118. // ------------------------------------------------------------------------------------------------
  119. // Imports the given file into the given scene structure.
  120. void ColladaLoader::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler)
  121. {
  122. mFileName = pFile;
  123. // clean all member arrays - just for safety, it should work even if we did not
  124. mMeshIndexByID.clear();
  125. mMaterialIndexByName.clear();
  126. mMeshes.clear();
  127. newMats.clear();
  128. mLights.clear();
  129. mCameras.clear();
  130. mTextures.clear();
  131. mAnims.clear();
  132. // parse the input file
  133. ColladaParser parser( pIOHandler, pFile);
  134. if( !parser.mRootNode)
  135. throw DeadlyImportError( "Collada: File came out empty. Something is wrong here.");
  136. // reserve some storage to avoid unnecessary reallocs
  137. newMats.reserve(parser.mMaterialLibrary.size()*2);
  138. mMeshes.reserve(parser.mMeshLibrary.size()*2);
  139. mCameras.reserve(parser.mCameraLibrary.size());
  140. mLights.reserve(parser.mLightLibrary.size());
  141. // create the materials first, for the meshes to find
  142. BuildMaterials( parser, pScene);
  143. // build the node hierarchy from it
  144. pScene->mRootNode = BuildHierarchy( parser, parser.mRootNode);
  145. // ... then fill the materials with the now adjusted settings
  146. FillMaterials(parser, pScene);
  147. // Apply unitsize scale calculation
  148. pScene->mRootNode->mTransformation *= aiMatrix4x4(parser.mUnitSize, 0, 0, 0,
  149. 0, parser.mUnitSize, 0, 0,
  150. 0, 0, parser.mUnitSize, 0,
  151. 0, 0, 0, 1);
  152. if( !ignoreUpDirection ) {
  153. // Convert to Y_UP, if different orientation
  154. if( parser.mUpDirection == ColladaParser::UP_X)
  155. pScene->mRootNode->mTransformation *= aiMatrix4x4(
  156. 0, -1, 0, 0,
  157. 1, 0, 0, 0,
  158. 0, 0, 1, 0,
  159. 0, 0, 0, 1);
  160. else if( parser.mUpDirection == ColladaParser::UP_Z)
  161. pScene->mRootNode->mTransformation *= aiMatrix4x4(
  162. 1, 0, 0, 0,
  163. 0, 0, 1, 0,
  164. 0, -1, 0, 0,
  165. 0, 0, 0, 1);
  166. }
  167. // store all meshes
  168. StoreSceneMeshes( pScene);
  169. // store all materials
  170. StoreSceneMaterials( pScene);
  171. // store all lights
  172. StoreSceneLights( pScene);
  173. // store all cameras
  174. StoreSceneCameras( pScene);
  175. // store all animations
  176. StoreAnimations( pScene, parser);
  177. // If no meshes have been loaded, it's probably just an animated skeleton.
  178. if (!pScene->mNumMeshes) {
  179. if (!noSkeletonMesh) {
  180. SkeletonMeshBuilder hero(pScene);
  181. }
  182. pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
  183. }
  184. }
  185. // ------------------------------------------------------------------------------------------------
  186. // Recursively constructs a scene node for the given parser node and returns it.
  187. aiNode* ColladaLoader::BuildHierarchy( const ColladaParser& pParser, const Collada::Node* pNode)
  188. {
  189. // create a node for it
  190. aiNode* node = new aiNode();
  191. // find a name for the new node. It's more complicated than you might think
  192. node->mName.Set( FindNameForNode( pNode));
  193. // calculate the transformation matrix for it
  194. node->mTransformation = pParser.CalculateResultTransform( pNode->mTransforms);
  195. // now resolve node instances
  196. std::vector<const Collada::Node*> instances;
  197. ResolveNodeInstances(pParser,pNode,instances);
  198. // add children. first the *real* ones
  199. node->mNumChildren = static_cast<unsigned int>(pNode->mChildren.size()+instances.size());
  200. node->mChildren = new aiNode*[node->mNumChildren];
  201. for( size_t a = 0; a < pNode->mChildren.size(); a++)
  202. {
  203. node->mChildren[a] = BuildHierarchy( pParser, pNode->mChildren[a]);
  204. node->mChildren[a]->mParent = node;
  205. }
  206. // ... and finally the resolved node instances
  207. for( size_t a = 0; a < instances.size(); a++)
  208. {
  209. node->mChildren[pNode->mChildren.size() + a] = BuildHierarchy( pParser, instances[a]);
  210. node->mChildren[pNode->mChildren.size() + a]->mParent = node;
  211. }
  212. // construct meshes
  213. BuildMeshesForNode( pParser, pNode, node);
  214. // construct cameras
  215. BuildCamerasForNode(pParser, pNode, node);
  216. // construct lights
  217. BuildLightsForNode(pParser, pNode, node);
  218. return node;
  219. }
  220. // ------------------------------------------------------------------------------------------------
  221. // Resolve node instances
  222. void ColladaLoader::ResolveNodeInstances( const ColladaParser& pParser, const Collada::Node* pNode,
  223. std::vector<const Collada::Node*>& resolved)
  224. {
  225. // reserve enough storage
  226. resolved.reserve(pNode->mNodeInstances.size());
  227. // ... and iterate through all nodes to be instanced as children of pNode
  228. for (const auto &nodeInst: pNode->mNodeInstances)
  229. {
  230. // find the corresponding node in the library
  231. const ColladaParser::NodeLibrary::const_iterator itt = pParser.mNodeLibrary.find(nodeInst.mNode);
  232. const Collada::Node* nd = itt == pParser.mNodeLibrary.end() ? NULL : (*itt).second;
  233. // FIX for http://sourceforge.net/tracker/?func=detail&aid=3054873&group_id=226462&atid=1067632
  234. // need to check for both name and ID to catch all. To avoid breaking valid files,
  235. // the workaround is only enabled when the first attempt to resolve the node has failed.
  236. if (!nd) {
  237. nd = FindNode(pParser.mRootNode, nodeInst.mNode);
  238. }
  239. if (!nd)
  240. DefaultLogger::get()->error("Collada: Unable to resolve reference to instanced node " + nodeInst.mNode);
  241. else {
  242. // attach this node to the list of children
  243. resolved.push_back(nd);
  244. }
  245. }
  246. }
  247. // ------------------------------------------------------------------------------------------------
  248. // Resolve UV channels
  249. void ColladaLoader::ApplyVertexToEffectSemanticMapping(Collada::Sampler& sampler,
  250. const Collada::SemanticMappingTable& table)
  251. {
  252. std::map<std::string, Collada::InputSemanticMapEntry>::const_iterator it = table.mMap.find(sampler.mUVChannel);
  253. if (it != table.mMap.end()) {
  254. if (it->second.mType != Collada::IT_Texcoord)
  255. DefaultLogger::get()->error("Collada: Unexpected effect input mapping");
  256. sampler.mUVId = it->second.mSet;
  257. }
  258. }
  259. // ------------------------------------------------------------------------------------------------
  260. // Builds lights for the given node and references them
  261. void ColladaLoader::BuildLightsForNode( const ColladaParser& pParser, const Collada::Node* pNode, aiNode* pTarget)
  262. {
  263. for( const Collada::LightInstance& lid : pNode->mLights)
  264. {
  265. // find the referred light
  266. ColladaParser::LightLibrary::const_iterator srcLightIt = pParser.mLightLibrary.find( lid.mLight);
  267. if( srcLightIt == pParser.mLightLibrary.end())
  268. {
  269. DefaultLogger::get()->warn("Collada: Unable to find light for ID \"" + lid.mLight + "\". Skipping.");
  270. continue;
  271. }
  272. const Collada::Light* srcLight = &srcLightIt->second;
  273. // now fill our ai data structure
  274. aiLight* out = new aiLight();
  275. out->mName = pTarget->mName;
  276. out->mType = (aiLightSourceType)srcLight->mType;
  277. // collada lights point in -Z by default, rest is specified in node transform
  278. out->mDirection = aiVector3D(0.f,0.f,-1.f);
  279. out->mAttenuationConstant = srcLight->mAttConstant;
  280. out->mAttenuationLinear = srcLight->mAttLinear;
  281. out->mAttenuationQuadratic = srcLight->mAttQuadratic;
  282. out->mColorDiffuse = out->mColorSpecular = out->mColorAmbient = srcLight->mColor*srcLight->mIntensity;
  283. if (out->mType == aiLightSource_AMBIENT) {
  284. out->mColorDiffuse = out->mColorSpecular = aiColor3D(0, 0, 0);
  285. out->mColorAmbient = srcLight->mColor*srcLight->mIntensity;
  286. }
  287. else {
  288. // collada doesn't differentiate between these color types
  289. out->mColorDiffuse = out->mColorSpecular = srcLight->mColor*srcLight->mIntensity;
  290. out->mColorAmbient = aiColor3D(0, 0, 0);
  291. }
  292. // convert falloff angle and falloff exponent in our representation, if given
  293. if (out->mType == aiLightSource_SPOT) {
  294. out->mAngleInnerCone = AI_DEG_TO_RAD( srcLight->mFalloffAngle );
  295. // ... some extension magic.
  296. if (srcLight->mOuterAngle >= ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET*(1-1e-6f))
  297. {
  298. // ... some deprecation magic.
  299. if (srcLight->mPenumbraAngle >= ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET*(1-1e-6f))
  300. {
  301. // Need to rely on falloff_exponent. I don't know how to interpret it, so I need to guess ....
  302. // epsilon chosen to be 0.1
  303. out->mAngleOuterCone = std::acos(std::pow(0.1f,1.f/srcLight->mFalloffExponent))+
  304. out->mAngleInnerCone;
  305. }
  306. else {
  307. out->mAngleOuterCone = out->mAngleInnerCone + AI_DEG_TO_RAD( srcLight->mPenumbraAngle );
  308. if (out->mAngleOuterCone < out->mAngleInnerCone)
  309. std::swap(out->mAngleInnerCone,out->mAngleOuterCone);
  310. }
  311. }
  312. else out->mAngleOuterCone = AI_DEG_TO_RAD( srcLight->mOuterAngle );
  313. }
  314. // add to light list
  315. mLights.push_back(out);
  316. }
  317. }
  318. // ------------------------------------------------------------------------------------------------
  319. // Builds cameras for the given node and references them
  320. void ColladaLoader::BuildCamerasForNode( const ColladaParser& pParser, const Collada::Node* pNode, aiNode* pTarget)
  321. {
  322. for( const Collada::CameraInstance& cid : pNode->mCameras)
  323. {
  324. // find the referred light
  325. ColladaParser::CameraLibrary::const_iterator srcCameraIt = pParser.mCameraLibrary.find( cid.mCamera);
  326. if( srcCameraIt == pParser.mCameraLibrary.end())
  327. {
  328. DefaultLogger::get()->warn("Collada: Unable to find camera for ID \"" + cid.mCamera + "\". Skipping.");
  329. continue;
  330. }
  331. const Collada::Camera* srcCamera = &srcCameraIt->second;
  332. // orthographic cameras not yet supported in Assimp
  333. if (srcCamera->mOrtho) {
  334. DefaultLogger::get()->warn("Collada: Orthographic cameras are not supported.");
  335. }
  336. // now fill our ai data structure
  337. aiCamera* out = new aiCamera();
  338. out->mName = pTarget->mName;
  339. // collada cameras point in -Z by default, rest is specified in node transform
  340. out->mLookAt = aiVector3D(0.f,0.f,-1.f);
  341. // near/far z is already ok
  342. out->mClipPlaneFar = srcCamera->mZFar;
  343. out->mClipPlaneNear = srcCamera->mZNear;
  344. // ... but for the rest some values are optional
  345. // and we need to compute the others in any combination.
  346. if (srcCamera->mAspect != 10e10f)
  347. out->mAspect = srcCamera->mAspect;
  348. if (srcCamera->mHorFov != 10e10f) {
  349. out->mHorizontalFOV = srcCamera->mHorFov;
  350. if (srcCamera->mVerFov != 10e10f && srcCamera->mAspect == 10e10f) {
  351. out->mAspect = std::tan(AI_DEG_TO_RAD(srcCamera->mHorFov)) /
  352. std::tan(AI_DEG_TO_RAD(srcCamera->mVerFov));
  353. }
  354. }
  355. else if (srcCamera->mAspect != 10e10f && srcCamera->mVerFov != 10e10f) {
  356. out->mHorizontalFOV = 2.0f * AI_RAD_TO_DEG(std::atan(srcCamera->mAspect *
  357. std::tan(AI_DEG_TO_RAD(srcCamera->mVerFov) * 0.5f)));
  358. }
  359. // Collada uses degrees, we use radians
  360. out->mHorizontalFOV = AI_DEG_TO_RAD(out->mHorizontalFOV);
  361. // add to camera list
  362. mCameras.push_back(out);
  363. }
  364. }
  365. // ------------------------------------------------------------------------------------------------
  366. // Builds meshes for the given node and references them
  367. void ColladaLoader::BuildMeshesForNode( const ColladaParser& pParser, const Collada::Node* pNode, aiNode* pTarget)
  368. {
  369. // accumulated mesh references by this node
  370. std::vector<size_t> newMeshRefs;
  371. newMeshRefs.reserve(pNode->mMeshes.size());
  372. // add a mesh for each subgroup in each collada mesh
  373. for( const Collada::MeshInstance& mid : pNode->mMeshes)
  374. {
  375. const Collada::Mesh* srcMesh = NULL;
  376. const Collada::Controller* srcController = NULL;
  377. // find the referred mesh
  378. ColladaParser::MeshLibrary::const_iterator srcMeshIt = pParser.mMeshLibrary.find( mid.mMeshOrController);
  379. if( srcMeshIt == pParser.mMeshLibrary.end())
  380. {
  381. // if not found in the mesh-library, it might also be a controller referring to a mesh
  382. ColladaParser::ControllerLibrary::const_iterator srcContrIt = pParser.mControllerLibrary.find( mid.mMeshOrController);
  383. if( srcContrIt != pParser.mControllerLibrary.end())
  384. {
  385. srcController = &srcContrIt->second;
  386. srcMeshIt = pParser.mMeshLibrary.find( srcController->mMeshId);
  387. if( srcMeshIt != pParser.mMeshLibrary.end())
  388. srcMesh = srcMeshIt->second;
  389. }
  390. if( !srcMesh)
  391. {
  392. DefaultLogger::get()->warn( format() << "Collada: Unable to find geometry for ID \"" << mid.mMeshOrController << "\". Skipping." );
  393. continue;
  394. }
  395. } else
  396. {
  397. // ID found in the mesh library -> direct reference to an unskinned mesh
  398. srcMesh = srcMeshIt->second;
  399. }
  400. // build a mesh for each of its subgroups
  401. size_t vertexStart = 0, faceStart = 0;
  402. for( size_t sm = 0; sm < srcMesh->mSubMeshes.size(); ++sm)
  403. {
  404. const Collada::SubMesh& submesh = srcMesh->mSubMeshes[sm];
  405. if( submesh.mNumFaces == 0)
  406. continue;
  407. // find material assigned to this submesh
  408. std::string meshMaterial;
  409. std::map<std::string, Collada::SemanticMappingTable >::const_iterator meshMatIt = mid.mMaterials.find( submesh.mMaterial);
  410. const Collada::SemanticMappingTable* table = NULL;
  411. if( meshMatIt != mid.mMaterials.end())
  412. {
  413. table = &meshMatIt->second;
  414. meshMaterial = table->mMatName;
  415. }
  416. else
  417. {
  418. DefaultLogger::get()->warn( format() << "Collada: No material specified for subgroup <" << submesh.mMaterial << "> in geometry <" << mid.mMeshOrController << ">." );
  419. if( !mid.mMaterials.empty() )
  420. meshMaterial = mid.mMaterials.begin()->second.mMatName;
  421. }
  422. // OK ... here the *real* fun starts ... we have the vertex-input-to-effect-semantic-table
  423. // given. The only mapping stuff which we do actually support is the UV channel.
  424. std::map<std::string, size_t>::const_iterator matIt = mMaterialIndexByName.find( meshMaterial);
  425. unsigned int matIdx;
  426. if( matIt != mMaterialIndexByName.end())
  427. matIdx = static_cast<unsigned int>(matIt->second);
  428. else
  429. matIdx = 0;
  430. if (table && !table->mMap.empty() ) {
  431. std::pair<Collada::Effect*, aiMaterial*>& mat = newMats[matIdx];
  432. // Iterate through all texture channels assigned to the effect and
  433. // check whether we have mapping information for it.
  434. ApplyVertexToEffectSemanticMapping(mat.first->mTexDiffuse, *table);
  435. ApplyVertexToEffectSemanticMapping(mat.first->mTexAmbient, *table);
  436. ApplyVertexToEffectSemanticMapping(mat.first->mTexSpecular, *table);
  437. ApplyVertexToEffectSemanticMapping(mat.first->mTexEmissive, *table);
  438. ApplyVertexToEffectSemanticMapping(mat.first->mTexTransparent,*table);
  439. ApplyVertexToEffectSemanticMapping(mat.first->mTexBump, *table);
  440. }
  441. // built lookup index of the Mesh-Submesh-Material combination
  442. ColladaMeshIndex index( mid.mMeshOrController, sm, meshMaterial);
  443. // if we already have the mesh at the library, just add its index to the node's array
  444. std::map<ColladaMeshIndex, size_t>::const_iterator dstMeshIt = mMeshIndexByID.find( index);
  445. if( dstMeshIt != mMeshIndexByID.end()) {
  446. newMeshRefs.push_back( dstMeshIt->second);
  447. }
  448. else
  449. {
  450. // else we have to add the mesh to the collection and store its newly assigned index at the node
  451. aiMesh* dstMesh = CreateMesh( pParser, srcMesh, submesh, srcController, vertexStart, faceStart);
  452. // store the mesh, and store its new index in the node
  453. newMeshRefs.push_back( mMeshes.size());
  454. mMeshIndexByID[index] = mMeshes.size();
  455. mMeshes.push_back( dstMesh);
  456. vertexStart += dstMesh->mNumVertices; faceStart += submesh.mNumFaces;
  457. // assign the material index
  458. dstMesh->mMaterialIndex = matIdx;
  459. if(dstMesh->mName.length == 0)
  460. {
  461. dstMesh->mName = mid.mMeshOrController;
  462. }
  463. }
  464. }
  465. }
  466. // now place all mesh references we gathered in the target node
  467. pTarget->mNumMeshes = static_cast<unsigned int>(newMeshRefs.size());
  468. if( newMeshRefs.size())
  469. {
  470. struct UIntTypeConverter
  471. {
  472. unsigned int operator()(const size_t& v) const
  473. {
  474. return static_cast<unsigned int>(v);
  475. }
  476. };
  477. pTarget->mMeshes = new unsigned int[pTarget->mNumMeshes];
  478. std::transform( newMeshRefs.begin(), newMeshRefs.end(), pTarget->mMeshes, UIntTypeConverter());
  479. }
  480. }
  481. // ------------------------------------------------------------------------------------------------
  482. // Creates a mesh for the given ColladaMesh face subset and returns the newly created mesh
  483. aiMesh* ColladaLoader::CreateMesh( const ColladaParser& pParser, const Collada::Mesh* pSrcMesh, const Collada::SubMesh& pSubMesh,
  484. const Collada::Controller* pSrcController, size_t pStartVertex, size_t pStartFace)
  485. {
  486. aiMesh* dstMesh = new aiMesh;
  487. dstMesh->mName = pSrcMesh->mName;
  488. // count the vertices addressed by its faces
  489. const size_t numVertices = std::accumulate( pSrcMesh->mFaceSize.begin() + pStartFace,
  490. pSrcMesh->mFaceSize.begin() + pStartFace + pSubMesh.mNumFaces, size_t(0));
  491. // copy positions
  492. dstMesh->mNumVertices = static_cast<unsigned int>(numVertices);
  493. dstMesh->mVertices = new aiVector3D[numVertices];
  494. std::copy( pSrcMesh->mPositions.begin() + pStartVertex, pSrcMesh->mPositions.begin() +
  495. pStartVertex + numVertices, dstMesh->mVertices);
  496. // normals, if given. HACK: (thom) Due to the glorious Collada spec we never
  497. // know if we have the same number of normals as there are positions. So we
  498. // also ignore any vertex attribute if it has a different count
  499. if( pSrcMesh->mNormals.size() >= pStartVertex + numVertices)
  500. {
  501. dstMesh->mNormals = new aiVector3D[numVertices];
  502. std::copy( pSrcMesh->mNormals.begin() + pStartVertex, pSrcMesh->mNormals.begin() +
  503. pStartVertex + numVertices, dstMesh->mNormals);
  504. }
  505. // tangents, if given.
  506. if( pSrcMesh->mTangents.size() >= pStartVertex + numVertices)
  507. {
  508. dstMesh->mTangents = new aiVector3D[numVertices];
  509. std::copy( pSrcMesh->mTangents.begin() + pStartVertex, pSrcMesh->mTangents.begin() +
  510. pStartVertex + numVertices, dstMesh->mTangents);
  511. }
  512. // bitangents, if given.
  513. if( pSrcMesh->mBitangents.size() >= pStartVertex + numVertices)
  514. {
  515. dstMesh->mBitangents = new aiVector3D[numVertices];
  516. std::copy( pSrcMesh->mBitangents.begin() + pStartVertex, pSrcMesh->mBitangents.begin() +
  517. pStartVertex + numVertices, dstMesh->mBitangents);
  518. }
  519. // same for texturecoords, as many as we have
  520. // empty slots are not allowed, need to pack and adjust UV indexes accordingly
  521. for( size_t a = 0, real = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; a++)
  522. {
  523. if( pSrcMesh->mTexCoords[a].size() >= pStartVertex + numVertices)
  524. {
  525. dstMesh->mTextureCoords[real] = new aiVector3D[numVertices];
  526. for( size_t b = 0; b < numVertices; ++b)
  527. dstMesh->mTextureCoords[real][b] = pSrcMesh->mTexCoords[a][pStartVertex+b];
  528. dstMesh->mNumUVComponents[real] = pSrcMesh->mNumUVComponents[a];
  529. ++real;
  530. }
  531. }
  532. // same for vertex colors, as many as we have. again the same packing to avoid empty slots
  533. for( size_t a = 0, real = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; a++)
  534. {
  535. if( pSrcMesh->mColors[a].size() >= pStartVertex + numVertices)
  536. {
  537. dstMesh->mColors[real] = new aiColor4D[numVertices];
  538. std::copy( pSrcMesh->mColors[a].begin() + pStartVertex, pSrcMesh->mColors[a].begin() + pStartVertex + numVertices,dstMesh->mColors[real]);
  539. ++real;
  540. }
  541. }
  542. // create faces. Due to the fact that each face uses unique vertices, we can simply count up on each vertex
  543. size_t vertex = 0;
  544. dstMesh->mNumFaces = static_cast<unsigned int>(pSubMesh.mNumFaces);
  545. dstMesh->mFaces = new aiFace[dstMesh->mNumFaces];
  546. for( size_t a = 0; a < dstMesh->mNumFaces; ++a)
  547. {
  548. size_t s = pSrcMesh->mFaceSize[ pStartFace + a];
  549. aiFace& face = dstMesh->mFaces[a];
  550. face.mNumIndices = static_cast<unsigned int>(s);
  551. face.mIndices = new unsigned int[s];
  552. for( size_t b = 0; b < s; ++b)
  553. face.mIndices[b] = static_cast<unsigned int>(vertex++);
  554. }
  555. // create bones if given
  556. if( pSrcController)
  557. {
  558. // refuse if the vertex count does not match
  559. // if( pSrcController->mWeightCounts.size() != dstMesh->mNumVertices)
  560. // throw DeadlyImportError( "Joint Controller vertex count does not match mesh vertex count");
  561. // resolve references - joint names
  562. const Collada::Accessor& jointNamesAcc = pParser.ResolveLibraryReference( pParser.mAccessorLibrary, pSrcController->mJointNameSource);
  563. const Collada::Data& jointNames = pParser.ResolveLibraryReference( pParser.mDataLibrary, jointNamesAcc.mSource);
  564. // joint offset matrices
  565. const Collada::Accessor& jointMatrixAcc = pParser.ResolveLibraryReference( pParser.mAccessorLibrary, pSrcController->mJointOffsetMatrixSource);
  566. const Collada::Data& jointMatrices = pParser.ResolveLibraryReference( pParser.mDataLibrary, jointMatrixAcc.mSource);
  567. // joint vertex_weight name list - should refer to the same list as the joint names above. If not, report and reconsider
  568. const Collada::Accessor& weightNamesAcc = pParser.ResolveLibraryReference( pParser.mAccessorLibrary, pSrcController->mWeightInputJoints.mAccessor);
  569. if( &weightNamesAcc != &jointNamesAcc)
  570. throw DeadlyImportError( "Temporary implementational laziness. If you read this, please report to the author.");
  571. // vertex weights
  572. const Collada::Accessor& weightsAcc = pParser.ResolveLibraryReference( pParser.mAccessorLibrary, pSrcController->mWeightInputWeights.mAccessor);
  573. const Collada::Data& weights = pParser.ResolveLibraryReference( pParser.mDataLibrary, weightsAcc.mSource);
  574. if( !jointNames.mIsStringArray || jointMatrices.mIsStringArray || weights.mIsStringArray)
  575. throw DeadlyImportError( "Data type mismatch while resolving mesh joints");
  576. // sanity check: we rely on the vertex weights always coming as pairs of BoneIndex-WeightIndex
  577. if( pSrcController->mWeightInputJoints.mOffset != 0 || pSrcController->mWeightInputWeights.mOffset != 1)
  578. throw DeadlyImportError( "Unsupported vertex_weight addressing scheme. ");
  579. // create containers to collect the weights for each bone
  580. size_t numBones = jointNames.mStrings.size();
  581. std::vector<std::vector<aiVertexWeight> > dstBones( numBones);
  582. // build a temporary array of pointers to the start of each vertex's weights
  583. typedef std::vector< std::pair<size_t, size_t> > IndexPairVector;
  584. std::vector<IndexPairVector::const_iterator> weightStartPerVertex;
  585. weightStartPerVertex.resize(pSrcController->mWeightCounts.size(),pSrcController->mWeights.end());
  586. IndexPairVector::const_iterator pit = pSrcController->mWeights.begin();
  587. for( size_t a = 0; a < pSrcController->mWeightCounts.size(); ++a)
  588. {
  589. weightStartPerVertex[a] = pit;
  590. pit += pSrcController->mWeightCounts[a];
  591. }
  592. // now for each vertex put the corresponding vertex weights into each bone's weight collection
  593. for( size_t a = pStartVertex; a < pStartVertex + numVertices; ++a)
  594. {
  595. // which position index was responsible for this vertex? that's also the index by which
  596. // the controller assigns the vertex weights
  597. size_t orgIndex = pSrcMesh->mFacePosIndices[a];
  598. // find the vertex weights for this vertex
  599. IndexPairVector::const_iterator iit = weightStartPerVertex[orgIndex];
  600. size_t pairCount = pSrcController->mWeightCounts[orgIndex];
  601. for( size_t b = 0; b < pairCount; ++b, ++iit)
  602. {
  603. size_t jointIndex = iit->first;
  604. size_t vertexIndex = iit->second;
  605. ai_real weight = ReadFloat( weightsAcc, weights, vertexIndex, 0);
  606. // one day I gonna kill that XSI Collada exporter
  607. if( weight > 0.0f)
  608. {
  609. aiVertexWeight w;
  610. w.mVertexId = static_cast<unsigned int>(a - pStartVertex);
  611. w.mWeight = weight;
  612. dstBones[jointIndex].push_back( w);
  613. }
  614. }
  615. }
  616. // count the number of bones which influence vertices of the current submesh
  617. size_t numRemainingBones = 0;
  618. for( std::vector<std::vector<aiVertexWeight> >::const_iterator it = dstBones.begin(); it != dstBones.end(); ++it)
  619. if( it->size() > 0)
  620. numRemainingBones++;
  621. // create bone array and copy bone weights one by one
  622. dstMesh->mNumBones = static_cast<unsigned int>(numRemainingBones);
  623. dstMesh->mBones = new aiBone*[numRemainingBones];
  624. size_t boneCount = 0;
  625. for( size_t a = 0; a < numBones; ++a)
  626. {
  627. // omit bones without weights
  628. if( dstBones[a].size() == 0)
  629. continue;
  630. // create bone with its weights
  631. aiBone* bone = new aiBone;
  632. bone->mName = ReadString( jointNamesAcc, jointNames, a);
  633. bone->mOffsetMatrix.a1 = ReadFloat( jointMatrixAcc, jointMatrices, a, 0);
  634. bone->mOffsetMatrix.a2 = ReadFloat( jointMatrixAcc, jointMatrices, a, 1);
  635. bone->mOffsetMatrix.a3 = ReadFloat( jointMatrixAcc, jointMatrices, a, 2);
  636. bone->mOffsetMatrix.a4 = ReadFloat( jointMatrixAcc, jointMatrices, a, 3);
  637. bone->mOffsetMatrix.b1 = ReadFloat( jointMatrixAcc, jointMatrices, a, 4);
  638. bone->mOffsetMatrix.b2 = ReadFloat( jointMatrixAcc, jointMatrices, a, 5);
  639. bone->mOffsetMatrix.b3 = ReadFloat( jointMatrixAcc, jointMatrices, a, 6);
  640. bone->mOffsetMatrix.b4 = ReadFloat( jointMatrixAcc, jointMatrices, a, 7);
  641. bone->mOffsetMatrix.c1 = ReadFloat( jointMatrixAcc, jointMatrices, a, 8);
  642. bone->mOffsetMatrix.c2 = ReadFloat( jointMatrixAcc, jointMatrices, a, 9);
  643. bone->mOffsetMatrix.c3 = ReadFloat( jointMatrixAcc, jointMatrices, a, 10);
  644. bone->mOffsetMatrix.c4 = ReadFloat( jointMatrixAcc, jointMatrices, a, 11);
  645. bone->mNumWeights = static_cast<unsigned int>(dstBones[a].size());
  646. bone->mWeights = new aiVertexWeight[bone->mNumWeights];
  647. std::copy( dstBones[a].begin(), dstBones[a].end(), bone->mWeights);
  648. // apply bind shape matrix to offset matrix
  649. aiMatrix4x4 bindShapeMatrix;
  650. bindShapeMatrix.a1 = pSrcController->mBindShapeMatrix[0];
  651. bindShapeMatrix.a2 = pSrcController->mBindShapeMatrix[1];
  652. bindShapeMatrix.a3 = pSrcController->mBindShapeMatrix[2];
  653. bindShapeMatrix.a4 = pSrcController->mBindShapeMatrix[3];
  654. bindShapeMatrix.b1 = pSrcController->mBindShapeMatrix[4];
  655. bindShapeMatrix.b2 = pSrcController->mBindShapeMatrix[5];
  656. bindShapeMatrix.b3 = pSrcController->mBindShapeMatrix[6];
  657. bindShapeMatrix.b4 = pSrcController->mBindShapeMatrix[7];
  658. bindShapeMatrix.c1 = pSrcController->mBindShapeMatrix[8];
  659. bindShapeMatrix.c2 = pSrcController->mBindShapeMatrix[9];
  660. bindShapeMatrix.c3 = pSrcController->mBindShapeMatrix[10];
  661. bindShapeMatrix.c4 = pSrcController->mBindShapeMatrix[11];
  662. bindShapeMatrix.d1 = pSrcController->mBindShapeMatrix[12];
  663. bindShapeMatrix.d2 = pSrcController->mBindShapeMatrix[13];
  664. bindShapeMatrix.d3 = pSrcController->mBindShapeMatrix[14];
  665. bindShapeMatrix.d4 = pSrcController->mBindShapeMatrix[15];
  666. bone->mOffsetMatrix *= bindShapeMatrix;
  667. // HACK: (thom) Some exporters address the bone nodes by SID, others address them by ID or even name.
  668. // Therefore I added a little name replacement here: I search for the bone's node by either name, ID or SID,
  669. // and replace the bone's name by the node's name so that the user can use the standard
  670. // find-by-name method to associate nodes with bones.
  671. const Collada::Node* bnode = FindNode( pParser.mRootNode, bone->mName.data);
  672. if( !bnode)
  673. bnode = FindNodeBySID( pParser.mRootNode, bone->mName.data);
  674. // assign the name that we would have assigned for the source node
  675. if( bnode)
  676. bone->mName.Set( FindNameForNode( bnode));
  677. else
  678. DefaultLogger::get()->warn( format() << "ColladaLoader::CreateMesh(): could not find corresponding node for joint \"" << bone->mName.data << "\"." );
  679. // and insert bone
  680. dstMesh->mBones[boneCount++] = bone;
  681. }
  682. }
  683. return dstMesh;
  684. }
  685. // ------------------------------------------------------------------------------------------------
  686. // Stores all meshes in the given scene
  687. void ColladaLoader::StoreSceneMeshes( aiScene* pScene)
  688. {
  689. pScene->mNumMeshes = static_cast<unsigned int>(mMeshes.size());
  690. if( mMeshes.size() > 0)
  691. {
  692. pScene->mMeshes = new aiMesh*[mMeshes.size()];
  693. std::copy( mMeshes.begin(), mMeshes.end(), pScene->mMeshes);
  694. mMeshes.clear();
  695. }
  696. }
  697. // ------------------------------------------------------------------------------------------------
  698. // Stores all cameras in the given scene
  699. void ColladaLoader::StoreSceneCameras( aiScene* pScene)
  700. {
  701. pScene->mNumCameras = static_cast<unsigned int>(mCameras.size());
  702. if( mCameras.size() > 0)
  703. {
  704. pScene->mCameras = new aiCamera*[mCameras.size()];
  705. std::copy( mCameras.begin(), mCameras.end(), pScene->mCameras);
  706. mCameras.clear();
  707. }
  708. }
  709. // ------------------------------------------------------------------------------------------------
  710. // Stores all lights in the given scene
  711. void ColladaLoader::StoreSceneLights( aiScene* pScene)
  712. {
  713. pScene->mNumLights = static_cast<unsigned int>(mLights.size());
  714. if( mLights.size() > 0)
  715. {
  716. pScene->mLights = new aiLight*[mLights.size()];
  717. std::copy( mLights.begin(), mLights.end(), pScene->mLights);
  718. mLights.clear();
  719. }
  720. }
  721. // ------------------------------------------------------------------------------------------------
  722. // Stores all textures in the given scene
  723. void ColladaLoader::StoreSceneTextures( aiScene* pScene)
  724. {
  725. pScene->mNumTextures = static_cast<unsigned int>(mTextures.size());
  726. if( mTextures.size() > 0)
  727. {
  728. pScene->mTextures = new aiTexture*[mTextures.size()];
  729. std::copy( mTextures.begin(), mTextures.end(), pScene->mTextures);
  730. mTextures.clear();
  731. }
  732. }
  733. // ------------------------------------------------------------------------------------------------
  734. // Stores all materials in the given scene
  735. void ColladaLoader::StoreSceneMaterials( aiScene* pScene)
  736. {
  737. pScene->mNumMaterials = static_cast<unsigned int>(newMats.size());
  738. if (newMats.size() > 0) {
  739. pScene->mMaterials = new aiMaterial*[newMats.size()];
  740. for (unsigned int i = 0; i < newMats.size();++i)
  741. pScene->mMaterials[i] = newMats[i].second;
  742. newMats.clear();
  743. }
  744. }
  745. // ------------------------------------------------------------------------------------------------
  746. // Stores all animations
  747. void ColladaLoader::StoreAnimations( aiScene* pScene, const ColladaParser& pParser)
  748. {
  749. // recursivly collect all animations from the collada scene
  750. StoreAnimations( pScene, pParser, &pParser.mAnims, "");
  751. // catch special case: many animations with the same length, each affecting only a single node.
  752. // we need to unite all those single-node-anims to a proper combined animation
  753. for( size_t a = 0; a < mAnims.size(); ++a)
  754. {
  755. aiAnimation* templateAnim = mAnims[a];
  756. if( templateAnim->mNumChannels == 1)
  757. {
  758. // search for other single-channel-anims with the same duration
  759. std::vector<size_t> collectedAnimIndices;
  760. for( size_t b = a+1; b < mAnims.size(); ++b)
  761. {
  762. aiAnimation* other = mAnims[b];
  763. if( other->mNumChannels == 1 && other->mDuration == templateAnim->mDuration && other->mTicksPerSecond == templateAnim->mTicksPerSecond )
  764. collectedAnimIndices.push_back( b);
  765. }
  766. // if there are other animations which fit the template anim, combine all channels into a single anim
  767. if( !collectedAnimIndices.empty() )
  768. {
  769. aiAnimation* combinedAnim = new aiAnimation();
  770. combinedAnim->mName = aiString( std::string( "combinedAnim_") + char( '0' + a));
  771. combinedAnim->mDuration = templateAnim->mDuration;
  772. combinedAnim->mTicksPerSecond = templateAnim->mTicksPerSecond;
  773. combinedAnim->mNumChannels = static_cast<unsigned int>(collectedAnimIndices.size() + 1);
  774. combinedAnim->mChannels = new aiNodeAnim*[combinedAnim->mNumChannels];
  775. // add the template anim as first channel by moving its aiNodeAnim to the combined animation
  776. combinedAnim->mChannels[0] = templateAnim->mChannels[0];
  777. templateAnim->mChannels[0] = NULL;
  778. delete templateAnim;
  779. // combined animation replaces template animation in the anim array
  780. mAnims[a] = combinedAnim;
  781. // move the memory of all other anims to the combined anim and erase them from the source anims
  782. for( size_t b = 0; b < collectedAnimIndices.size(); ++b)
  783. {
  784. aiAnimation* srcAnimation = mAnims[collectedAnimIndices[b]];
  785. combinedAnim->mChannels[1 + b] = srcAnimation->mChannels[0];
  786. srcAnimation->mChannels[0] = NULL;
  787. delete srcAnimation;
  788. }
  789. // in a second go, delete all the single-channel-anims that we've stripped from their channels
  790. // back to front to preserve indices - you know, removing an element from a vector moves all elements behind the removed one
  791. while( !collectedAnimIndices.empty() )
  792. {
  793. mAnims.erase( mAnims.begin() + collectedAnimIndices.back());
  794. collectedAnimIndices.pop_back();
  795. }
  796. }
  797. }
  798. }
  799. // now store all anims in the scene
  800. if( !mAnims.empty())
  801. {
  802. pScene->mNumAnimations = static_cast<unsigned int>(mAnims.size());
  803. pScene->mAnimations = new aiAnimation*[mAnims.size()];
  804. std::copy( mAnims.begin(), mAnims.end(), pScene->mAnimations);
  805. }
  806. mAnims.clear();
  807. }
  808. // ------------------------------------------------------------------------------------------------
  809. // Constructs the animations for the given source anim
  810. void ColladaLoader::StoreAnimations( aiScene* pScene, const ColladaParser& pParser, const Collada::Animation* pSrcAnim, const std::string &pPrefix)
  811. {
  812. std::string animName = pPrefix.empty() ? pSrcAnim->mName : pPrefix + "_" + pSrcAnim->mName;
  813. // create nested animations, if given
  814. for( std::vector<Collada::Animation*>::const_iterator it = pSrcAnim->mSubAnims.begin(); it != pSrcAnim->mSubAnims.end(); ++it)
  815. StoreAnimations( pScene, pParser, *it, animName);
  816. // create animation channels, if any
  817. if( !pSrcAnim->mChannels.empty())
  818. CreateAnimation( pScene, pParser, pSrcAnim, animName);
  819. }
  820. // ------------------------------------------------------------------------------------------------
  821. // Constructs the animation for the given source anim
  822. void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pParser, const Collada::Animation* pSrcAnim, const std::string& pName)
  823. {
  824. // collect a list of animatable nodes
  825. std::vector<const aiNode*> nodes;
  826. CollectNodes( pScene->mRootNode, nodes);
  827. std::vector<aiNodeAnim*> anims;
  828. for( std::vector<const aiNode*>::const_iterator nit = nodes.begin(); nit != nodes.end(); ++nit)
  829. {
  830. // find all the collada anim channels which refer to the current node
  831. std::vector<Collada::ChannelEntry> entries;
  832. std::string nodeName = (*nit)->mName.data;
  833. // find the collada node corresponding to the aiNode
  834. const Collada::Node* srcNode = FindNode( pParser.mRootNode, nodeName);
  835. // ai_assert( srcNode != NULL);
  836. if( !srcNode)
  837. continue;
  838. // now check all channels if they affect the current node
  839. for( std::vector<Collada::AnimationChannel>::const_iterator cit = pSrcAnim->mChannels.begin();
  840. cit != pSrcAnim->mChannels.end(); ++cit)
  841. {
  842. const Collada::AnimationChannel& srcChannel = *cit;
  843. Collada::ChannelEntry entry;
  844. // we expect the animation target to be of type "nodeName/transformID.subElement". Ignore all others
  845. // find the slash that separates the node name - there should be only one
  846. std::string::size_type slashPos = srcChannel.mTarget.find( '/');
  847. if( slashPos == std::string::npos)
  848. continue;
  849. if( srcChannel.mTarget.find( '/', slashPos+1) != std::string::npos)
  850. continue;
  851. std::string targetID = srcChannel.mTarget.substr( 0, slashPos);
  852. if( targetID != srcNode->mID)
  853. continue;
  854. // find the dot that separates the transformID - there should be only one or zero
  855. std::string::size_type dotPos = srcChannel.mTarget.find( '.');
  856. if( dotPos != std::string::npos)
  857. {
  858. if( srcChannel.mTarget.find( '.', dotPos+1) != std::string::npos)
  859. continue;
  860. entry.mTransformId = srcChannel.mTarget.substr( slashPos+1, dotPos - slashPos - 1);
  861. std::string subElement = srcChannel.mTarget.substr( dotPos+1);
  862. if( subElement == "ANGLE")
  863. entry.mSubElement = 3; // last number in an Axis-Angle-Transform is the angle
  864. else if( subElement == "X")
  865. entry.mSubElement = 0;
  866. else if( subElement == "Y")
  867. entry.mSubElement = 1;
  868. else if( subElement == "Z")
  869. entry.mSubElement = 2;
  870. else
  871. DefaultLogger::get()->warn( format() << "Unknown anim subelement <" << subElement << ">. Ignoring" );
  872. } else
  873. {
  874. // no subelement following, transformId is remaining string
  875. entry.mTransformId = srcChannel.mTarget.substr( slashPos+1);
  876. }
  877. std::string::size_type bracketPos = srcChannel.mTarget.find('(');
  878. if (bracketPos != std::string::npos)
  879. {
  880. entry.mTransformId = srcChannel.mTarget.substr(slashPos + 1, bracketPos - slashPos - 1);
  881. std::string subElement = srcChannel.mTarget.substr(bracketPos);
  882. if (subElement == "(0)(0)")
  883. entry.mSubElement = 0;
  884. else if (subElement == "(1)(0)")
  885. entry.mSubElement = 1;
  886. else if (subElement == "(2)(0)")
  887. entry.mSubElement = 2;
  888. else if (subElement == "(3)(0)")
  889. entry.mSubElement = 3;
  890. else if (subElement == "(0)(1)")
  891. entry.mSubElement = 4;
  892. else if (subElement == "(1)(1)")
  893. entry.mSubElement = 5;
  894. else if (subElement == "(2)(1)")
  895. entry.mSubElement = 6;
  896. else if (subElement == "(3)(1)")
  897. entry.mSubElement = 7;
  898. else if (subElement == "(0)(2)")
  899. entry.mSubElement = 8;
  900. else if (subElement == "(1)(2)")
  901. entry.mSubElement = 9;
  902. else if (subElement == "(2)(2)")
  903. entry.mSubElement = 10;
  904. else if (subElement == "(3)(2)")
  905. entry.mSubElement = 11;
  906. else if (subElement == "(0)(3)")
  907. entry.mSubElement = 12;
  908. else if (subElement == "(1)(3)")
  909. entry.mSubElement = 13;
  910. else if (subElement == "(2)(3)")
  911. entry.mSubElement = 14;
  912. else if (subElement == "(3)(3)")
  913. entry.mSubElement = 15;
  914. }
  915. // determine which transform step is affected by this channel
  916. entry.mTransformIndex = SIZE_MAX;
  917. for( size_t a = 0; a < srcNode->mTransforms.size(); ++a)
  918. if( srcNode->mTransforms[a].mID == entry.mTransformId)
  919. entry.mTransformIndex = a;
  920. if( entry.mTransformIndex == SIZE_MAX) {
  921. continue;
  922. }
  923. entry.mChannel = &(*cit);
  924. entries.push_back( entry);
  925. }
  926. // if there's no channel affecting the current node, we skip it
  927. if( entries.empty())
  928. continue;
  929. // resolve the data pointers for all anim channels. Find the minimum time while we're at it
  930. ai_real startTime = ai_real( 1e20 ), endTime = ai_real( -1e20 );
  931. for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it)
  932. {
  933. Collada::ChannelEntry& e = *it;
  934. e.mTimeAccessor = &pParser.ResolveLibraryReference( pParser.mAccessorLibrary, e.mChannel->mSourceTimes);
  935. e.mTimeData = &pParser.ResolveLibraryReference( pParser.mDataLibrary, e.mTimeAccessor->mSource);
  936. e.mValueAccessor = &pParser.ResolveLibraryReference( pParser.mAccessorLibrary, e.mChannel->mSourceValues);
  937. e.mValueData = &pParser.ResolveLibraryReference( pParser.mDataLibrary, e.mValueAccessor->mSource);
  938. // time count and value count must match
  939. if( e.mTimeAccessor->mCount != e.mValueAccessor->mCount)
  940. throw DeadlyImportError( format() << "Time count / value count mismatch in animation channel \"" << e.mChannel->mTarget << "\"." );
  941. if( e.mTimeAccessor->mCount > 0 )
  942. {
  943. // find bounding times
  944. startTime = std::min( startTime, ReadFloat( *e.mTimeAccessor, *e.mTimeData, 0, 0));
  945. endTime = std::max( endTime, ReadFloat( *e.mTimeAccessor, *e.mTimeData, e.mTimeAccessor->mCount-1, 0));
  946. }
  947. }
  948. std::vector<aiMatrix4x4> resultTrafos;
  949. if( !entries.empty() && entries.front().mTimeAccessor->mCount > 0 )
  950. {
  951. // create a local transformation chain of the node's transforms
  952. std::vector<Collada::Transform> transforms = srcNode->mTransforms;
  953. // now for every unique point in time, find or interpolate the key values for that time
  954. // and apply them to the transform chain. Then the node's present transformation can be calculated.
  955. ai_real time = startTime;
  956. while( 1)
  957. {
  958. for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it)
  959. {
  960. Collada::ChannelEntry& e = *it;
  961. // find the keyframe behind the current point in time
  962. size_t pos = 0;
  963. ai_real postTime = 0.0;
  964. while( 1)
  965. {
  966. if( pos >= e.mTimeAccessor->mCount)
  967. break;
  968. postTime = ReadFloat( *e.mTimeAccessor, *e.mTimeData, pos, 0);
  969. if( postTime >= time)
  970. break;
  971. ++pos;
  972. }
  973. pos = std::min( pos, e.mTimeAccessor->mCount-1);
  974. // read values from there
  975. ai_real temp[16];
  976. for( size_t c = 0; c < e.mValueAccessor->mSize; ++c)
  977. temp[c] = ReadFloat( *e.mValueAccessor, *e.mValueData, pos, c);
  978. // if not exactly at the key time, interpolate with previous value set
  979. if( postTime > time && pos > 0)
  980. {
  981. ai_real preTime = ReadFloat( *e.mTimeAccessor, *e.mTimeData, pos-1, 0);
  982. ai_real factor = (time - postTime) / (preTime - postTime);
  983. for( size_t c = 0; c < e.mValueAccessor->mSize; ++c)
  984. {
  985. ai_real v = ReadFloat( *e.mValueAccessor, *e.mValueData, pos-1, c);
  986. temp[c] += (v - temp[c]) * factor;
  987. }
  988. }
  989. // Apply values to current transformation
  990. std::copy( temp, temp + e.mValueAccessor->mSize, transforms[e.mTransformIndex].f + e.mSubElement);
  991. }
  992. // Calculate resulting transformation
  993. aiMatrix4x4 mat = pParser.CalculateResultTransform( transforms);
  994. // out of laziness: we store the time in matrix.d4
  995. mat.d4 = time;
  996. resultTrafos.push_back( mat);
  997. // find next point in time to evaluate. That's the closest frame larger than the current in any channel
  998. ai_real nextTime = ai_real( 1e20 );
  999. for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it)
  1000. {
  1001. Collada::ChannelEntry& channelElement = *it;
  1002. // find the next time value larger than the current
  1003. size_t pos = 0;
  1004. while( pos < channelElement.mTimeAccessor->mCount)
  1005. {
  1006. const ai_real t = ReadFloat( *channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
  1007. if( t > time)
  1008. {
  1009. nextTime = std::min( nextTime, t);
  1010. break;
  1011. }
  1012. ++pos;
  1013. }
  1014. // https://github.com/assimp/assimp/issues/458
  1015. // Sub-sample axis-angle channels if the delta between two consecutive
  1016. // key-frame angles is >= 180 degrees.
  1017. if (transforms[channelElement.mTransformIndex].mType == Collada::TF_ROTATE && channelElement.mSubElement == 3 && pos > 0 && pos < channelElement.mTimeAccessor->mCount) {
  1018. const ai_real cur_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos, 0);
  1019. const ai_real last_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos - 1, 0);
  1020. const ai_real cur_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
  1021. const ai_real last_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos - 1, 0);
  1022. const ai_real last_eval_angle = last_key_angle + (cur_key_angle - last_key_angle) * (time - last_key_time) / (cur_key_time - last_key_time);
  1023. const ai_real delta = std::abs(cur_key_angle - last_eval_angle);
  1024. if (delta >= 180.0) {
  1025. const int subSampleCount = static_cast<int>(std::floor(delta / 90.0));
  1026. if (cur_key_time != time) {
  1027. const ai_real nextSampleTime = time + (cur_key_time - time) / subSampleCount;
  1028. nextTime = std::min(nextTime, nextSampleTime);
  1029. }
  1030. }
  1031. }
  1032. }
  1033. // no more keys on any channel after the current time -> we're done
  1034. if( nextTime > 1e19)
  1035. break;
  1036. // else construct next keyframe at this following time point
  1037. time = nextTime;
  1038. }
  1039. }
  1040. // there should be some keyframes, but we aren't that fixated on valid input data
  1041. // ai_assert( resultTrafos.size() > 0);
  1042. // build an animation channel for the given node out of these trafo keys
  1043. if( !resultTrafos.empty() )
  1044. {
  1045. aiNodeAnim* dstAnim = new aiNodeAnim;
  1046. dstAnim->mNodeName = nodeName;
  1047. dstAnim->mNumPositionKeys = static_cast<unsigned int>(resultTrafos.size());
  1048. dstAnim->mNumRotationKeys= static_cast<unsigned int>(resultTrafos.size());
  1049. dstAnim->mNumScalingKeys = static_cast<unsigned int>(resultTrafos.size());
  1050. dstAnim->mPositionKeys = new aiVectorKey[resultTrafos.size()];
  1051. dstAnim->mRotationKeys = new aiQuatKey[resultTrafos.size()];
  1052. dstAnim->mScalingKeys = new aiVectorKey[resultTrafos.size()];
  1053. for( size_t a = 0; a < resultTrafos.size(); ++a)
  1054. {
  1055. aiMatrix4x4 mat = resultTrafos[a];
  1056. double time = double( mat.d4); // remember? time is stored in mat.d4
  1057. mat.d4 = 1.0f;
  1058. dstAnim->mPositionKeys[a].mTime = time;
  1059. dstAnim->mRotationKeys[a].mTime = time;
  1060. dstAnim->mScalingKeys[a].mTime = time;
  1061. mat.Decompose( dstAnim->mScalingKeys[a].mValue, dstAnim->mRotationKeys[a].mValue, dstAnim->mPositionKeys[a].mValue);
  1062. }
  1063. anims.push_back( dstAnim);
  1064. } else
  1065. {
  1066. DefaultLogger::get()->warn( "Collada loader: found empty animation channel, ignored. Please check your exporter.");
  1067. }
  1068. }
  1069. if( !anims.empty())
  1070. {
  1071. aiAnimation* anim = new aiAnimation;
  1072. anim->mName.Set( pName);
  1073. anim->mNumChannels = static_cast<unsigned int>(anims.size());
  1074. anim->mChannels = new aiNodeAnim*[anims.size()];
  1075. std::copy( anims.begin(), anims.end(), anim->mChannels);
  1076. anim->mDuration = 0.0f;
  1077. for( size_t a = 0; a < anims.size(); ++a)
  1078. {
  1079. anim->mDuration = std::max( anim->mDuration, anims[a]->mPositionKeys[anims[a]->mNumPositionKeys-1].mTime);
  1080. anim->mDuration = std::max( anim->mDuration, anims[a]->mRotationKeys[anims[a]->mNumRotationKeys-1].mTime);
  1081. anim->mDuration = std::max( anim->mDuration, anims[a]->mScalingKeys[anims[a]->mNumScalingKeys-1].mTime);
  1082. }
  1083. anim->mTicksPerSecond = 1;
  1084. mAnims.push_back( anim);
  1085. }
  1086. }
  1087. // ------------------------------------------------------------------------------------------------
  1088. // Add a texture to a material structure
  1089. void ColladaLoader::AddTexture ( aiMaterial& mat, const ColladaParser& pParser,
  1090. const Collada::Effect& effect,
  1091. const Collada::Sampler& sampler,
  1092. aiTextureType type, unsigned int idx)
  1093. {
  1094. // first of all, basic file name
  1095. const aiString name = FindFilenameForEffectTexture( pParser, effect, sampler.mName );
  1096. mat.AddProperty( &name, _AI_MATKEY_TEXTURE_BASE, type, idx );
  1097. // mapping mode
  1098. int map = aiTextureMapMode_Clamp;
  1099. if (sampler.mWrapU)
  1100. map = aiTextureMapMode_Wrap;
  1101. if (sampler.mWrapU && sampler.mMirrorU)
  1102. map = aiTextureMapMode_Mirror;
  1103. mat.AddProperty( &map, 1, _AI_MATKEY_MAPPINGMODE_U_BASE, type, idx);
  1104. map = aiTextureMapMode_Clamp;
  1105. if (sampler.mWrapV)
  1106. map = aiTextureMapMode_Wrap;
  1107. if (sampler.mWrapV && sampler.mMirrorV)
  1108. map = aiTextureMapMode_Mirror;
  1109. mat.AddProperty( &map, 1, _AI_MATKEY_MAPPINGMODE_V_BASE, type, idx);
  1110. // UV transformation
  1111. mat.AddProperty(&sampler.mTransform, 1,
  1112. _AI_MATKEY_UVTRANSFORM_BASE, type, idx);
  1113. // Blend mode
  1114. mat.AddProperty((int*)&sampler.mOp , 1,
  1115. _AI_MATKEY_TEXBLEND_BASE, type, idx);
  1116. // Blend factor
  1117. mat.AddProperty((ai_real*)&sampler.mWeighting , 1,
  1118. _AI_MATKEY_TEXBLEND_BASE, type, idx);
  1119. // UV source index ... if we didn't resolve the mapping, it is actually just
  1120. // a guess but it works in most cases. We search for the frst occurrence of a
  1121. // number in the channel name. We assume it is the zero-based index into the
  1122. // UV channel array of all corresponding meshes. It could also be one-based
  1123. // for some exporters, but we won't care of it unless someone complains about.
  1124. if (sampler.mUVId != UINT_MAX)
  1125. map = sampler.mUVId;
  1126. else {
  1127. map = -1;
  1128. for (std::string::const_iterator it = sampler.mUVChannel.begin();it != sampler.mUVChannel.end(); ++it){
  1129. if (IsNumeric(*it)) {
  1130. map = strtoul10(&(*it));
  1131. break;
  1132. }
  1133. }
  1134. if (-1 == map) {
  1135. DefaultLogger::get()->warn("Collada: unable to determine UV channel for texture");
  1136. map = 0;
  1137. }
  1138. }
  1139. mat.AddProperty(&map,1,_AI_MATKEY_UVWSRC_BASE,type,idx);
  1140. }
  1141. // ------------------------------------------------------------------------------------------------
  1142. // Fills materials from the collada material definitions
  1143. void ColladaLoader::FillMaterials( const ColladaParser& pParser, aiScene* /*pScene*/)
  1144. {
  1145. for (auto &elem : newMats)
  1146. {
  1147. aiMaterial& mat = (aiMaterial&)*elem.second;
  1148. Collada::Effect& effect = *elem.first;
  1149. // resolve shading mode
  1150. int shadeMode;
  1151. if (effect.mFaceted) /* fixme */
  1152. shadeMode = aiShadingMode_Flat;
  1153. else {
  1154. switch( effect.mShadeType)
  1155. {
  1156. case Collada::Shade_Constant:
  1157. shadeMode = aiShadingMode_NoShading;
  1158. break;
  1159. case Collada::Shade_Lambert:
  1160. shadeMode = aiShadingMode_Gouraud;
  1161. break;
  1162. case Collada::Shade_Blinn:
  1163. shadeMode = aiShadingMode_Blinn;
  1164. break;
  1165. case Collada::Shade_Phong:
  1166. shadeMode = aiShadingMode_Phong;
  1167. break;
  1168. default:
  1169. DefaultLogger::get()->warn("Collada: Unrecognized shading mode, using gouraud shading");
  1170. shadeMode = aiShadingMode_Gouraud;
  1171. break;
  1172. }
  1173. }
  1174. mat.AddProperty<int>( &shadeMode, 1, AI_MATKEY_SHADING_MODEL);
  1175. // double-sided?
  1176. shadeMode = effect.mDoubleSided;
  1177. mat.AddProperty<int>( &shadeMode, 1, AI_MATKEY_TWOSIDED);
  1178. // wireframe?
  1179. shadeMode = effect.mWireframe;
  1180. mat.AddProperty<int>( &shadeMode, 1, AI_MATKEY_ENABLE_WIREFRAME);
  1181. // add material colors
  1182. mat.AddProperty( &effect.mAmbient, 1,AI_MATKEY_COLOR_AMBIENT);
  1183. mat.AddProperty( &effect.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
  1184. mat.AddProperty( &effect.mSpecular, 1,AI_MATKEY_COLOR_SPECULAR);
  1185. mat.AddProperty( &effect.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE);
  1186. mat.AddProperty( &effect.mReflective, 1, AI_MATKEY_COLOR_REFLECTIVE);
  1187. // scalar properties
  1188. mat.AddProperty( &effect.mShininess, 1, AI_MATKEY_SHININESS);
  1189. mat.AddProperty( &effect.mReflectivity, 1, AI_MATKEY_REFLECTIVITY);
  1190. mat.AddProperty( &effect.mRefractIndex, 1, AI_MATKEY_REFRACTI);
  1191. // transparency, a very hard one. seemingly not all files are following the
  1192. // specification here (1.0 transparency => completly opaque)...
  1193. // therefore, we let the opportunity for the user to manually invert
  1194. // the transparency if necessary and we add preliminary support for RGB_ZERO mode
  1195. if(effect.mTransparency >= 0.f && effect.mTransparency <= 1.f) {
  1196. // handle RGB transparency completely, cf Collada specs 1.5.0 pages 249 and 304
  1197. if(effect.mRGBTransparency) {
  1198. // use luminance as defined by ISO/CIE color standards (see ITU-R Recommendation BT.709-4)
  1199. effect.mTransparency *= (
  1200. 0.212671f * effect.mTransparent.r +
  1201. 0.715160f * effect.mTransparent.g +
  1202. 0.072169f * effect.mTransparent.b
  1203. );
  1204. effect.mTransparent.a = 1.f;
  1205. mat.AddProperty( &effect.mTransparent, 1, AI_MATKEY_COLOR_TRANSPARENT );
  1206. } else {
  1207. effect.mTransparency *= effect.mTransparent.a;
  1208. }
  1209. if(effect.mInvertTransparency) {
  1210. effect.mTransparency = 1.f - effect.mTransparency;
  1211. }
  1212. // Is the material finally transparent ?
  1213. if (effect.mHasTransparency || effect.mTransparency < 1.f) {
  1214. mat.AddProperty( &effect.mTransparency, 1, AI_MATKEY_OPACITY );
  1215. }
  1216. }
  1217. // add textures, if given
  1218. if( !effect.mTexAmbient.mName.empty())
  1219. /* It is merely a lightmap */
  1220. AddTexture( mat, pParser, effect, effect.mTexAmbient, aiTextureType_LIGHTMAP);
  1221. if( !effect.mTexEmissive.mName.empty())
  1222. AddTexture( mat, pParser, effect, effect.mTexEmissive, aiTextureType_EMISSIVE);
  1223. if( !effect.mTexSpecular.mName.empty())
  1224. AddTexture( mat, pParser, effect, effect.mTexSpecular, aiTextureType_SPECULAR);
  1225. if( !effect.mTexDiffuse.mName.empty())
  1226. AddTexture( mat, pParser, effect, effect.mTexDiffuse, aiTextureType_DIFFUSE);
  1227. if( !effect.mTexBump.mName.empty())
  1228. AddTexture( mat, pParser, effect, effect.mTexBump, aiTextureType_NORMALS);
  1229. if( !effect.mTexTransparent.mName.empty())
  1230. AddTexture( mat, pParser, effect, effect.mTexTransparent, aiTextureType_OPACITY);
  1231. if( !effect.mTexReflective.mName.empty())
  1232. AddTexture( mat, pParser, effect, effect.mTexReflective, aiTextureType_REFLECTION);
  1233. }
  1234. }
  1235. // ------------------------------------------------------------------------------------------------
  1236. // Constructs materials from the collada material definitions
  1237. void ColladaLoader::BuildMaterials( ColladaParser& pParser, aiScene* /*pScene*/)
  1238. {
  1239. newMats.reserve(pParser.mMaterialLibrary.size());
  1240. for( ColladaParser::MaterialLibrary::const_iterator matIt = pParser.mMaterialLibrary.begin(); matIt != pParser.mMaterialLibrary.end(); ++matIt)
  1241. {
  1242. const Collada::Material& material = matIt->second;
  1243. // a material is only a reference to an effect
  1244. ColladaParser::EffectLibrary::iterator effIt = pParser.mEffectLibrary.find( material.mEffect);
  1245. if( effIt == pParser.mEffectLibrary.end())
  1246. continue;
  1247. Collada::Effect& effect = effIt->second;
  1248. // create material
  1249. aiMaterial* mat = new aiMaterial;
  1250. aiString name( material.mName.empty() ? matIt->first : material.mName );
  1251. mat->AddProperty(&name,AI_MATKEY_NAME);
  1252. // store the material
  1253. mMaterialIndexByName[matIt->first] = newMats.size();
  1254. newMats.push_back( std::pair<Collada::Effect*, aiMaterial*>( &effect,mat) );
  1255. }
  1256. // ScenePreprocessor generates a default material automatically if none is there.
  1257. // All further code here in this loader works well without a valid material so
  1258. // we can safely let it to ScenePreprocessor.
  1259. #if 0
  1260. if( newMats.size() == 0)
  1261. {
  1262. aiMaterial* mat = new aiMaterial;
  1263. aiString name( AI_DEFAULT_MATERIAL_NAME );
  1264. mat->AddProperty( &name, AI_MATKEY_NAME);
  1265. const int shadeMode = aiShadingMode_Phong;
  1266. mat->AddProperty<int>( &shadeMode, 1, AI_MATKEY_SHADING_MODEL);
  1267. aiColor4D colAmbient( 0.2, 0.2, 0.2, 1.0), colDiffuse( 0.8, 0.8, 0.8, 1.0), colSpecular( 0.5, 0.5, 0.5, 0.5);
  1268. mat->AddProperty( &colAmbient, 1, AI_MATKEY_COLOR_AMBIENT);
  1269. mat->AddProperty( &colDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
  1270. mat->AddProperty( &colSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
  1271. const ai_real specExp = 5.0;
  1272. mat->AddProperty( &specExp, 1, AI_MATKEY_SHININESS);
  1273. }
  1274. #endif
  1275. }
  1276. // ------------------------------------------------------------------------------------------------
  1277. // Resolves the texture name for the given effect texture entry
  1278. aiString ColladaLoader::FindFilenameForEffectTexture( const ColladaParser& pParser,
  1279. const Collada::Effect& pEffect, const std::string& pName)
  1280. {
  1281. // recurse through the param references until we end up at an image
  1282. std::string name = pName;
  1283. while( 1)
  1284. {
  1285. // the given string is a param entry. Find it
  1286. Collada::Effect::ParamLibrary::const_iterator it = pEffect.mParams.find( name);
  1287. // if not found, we're at the end of the recursion. The resulting string should be the image ID
  1288. if( it == pEffect.mParams.end())
  1289. break;
  1290. // else recurse on
  1291. name = it->second.mReference;
  1292. }
  1293. // find the image referred by this name in the image library of the scene
  1294. ColladaParser::ImageLibrary::const_iterator imIt = pParser.mImageLibrary.find( name);
  1295. if( imIt == pParser.mImageLibrary.end())
  1296. {
  1297. throw DeadlyImportError( format() <<
  1298. "Collada: Unable to resolve effect texture entry \"" << pName << "\", ended up at ID \"" << name << "\"." );
  1299. }
  1300. aiString result;
  1301. // if this is an embedded texture image setup an aiTexture for it
  1302. if (imIt->second.mFileName.empty())
  1303. {
  1304. if (imIt->second.mImageData.empty()) {
  1305. throw DeadlyImportError("Collada: Invalid texture, no data or file reference given");
  1306. }
  1307. aiTexture* tex = new aiTexture();
  1308. // setup format hint
  1309. if (imIt->second.mEmbeddedFormat.length() > 3) {
  1310. DefaultLogger::get()->warn("Collada: texture format hint is too long, truncating to 3 characters");
  1311. }
  1312. strncpy(tex->achFormatHint,imIt->second.mEmbeddedFormat.c_str(),3);
  1313. // and copy texture data
  1314. tex->mHeight = 0;
  1315. tex->mWidth = static_cast<unsigned int>(imIt->second.mImageData.size());
  1316. tex->pcData = (aiTexel*)new char[tex->mWidth];
  1317. memcpy(tex->pcData,&imIt->second.mImageData[0],tex->mWidth);
  1318. // setup texture reference string
  1319. result.data[0] = '*';
  1320. result.length = 1 + ASSIMP_itoa10(result.data+1,static_cast<unsigned int>(MAXLEN-1),static_cast<int32_t>(mTextures.size()));
  1321. // and add this texture to the list
  1322. mTextures.push_back(tex);
  1323. }
  1324. else
  1325. {
  1326. result.Set( imIt->second.mFileName );
  1327. ConvertPath(result);
  1328. }
  1329. return result;
  1330. }
  1331. // ------------------------------------------------------------------------------------------------
  1332. // Convert a path read from a collada file to the usual representation
  1333. void ColladaLoader::ConvertPath (aiString& ss)
  1334. {
  1335. // TODO: collada spec, p 22. Handle URI correctly.
  1336. // For the moment we're just stripping the file:// away to make it work.
  1337. // Windoes doesn't seem to be able to find stuff like
  1338. // 'file://..\LWO\LWO2\MappingModes\earthSpherical.jpg'
  1339. if (0 == strncmp(ss.data,"file://",7))
  1340. {
  1341. ss.length -= 7;
  1342. memmove(ss.data,ss.data+7,ss.length);
  1343. ss.data[ss.length] = '\0';
  1344. }
  1345. // Maxon Cinema Collada Export writes "file:///C:\andsoon" with three slashes...
  1346. // I need to filter it without destroying linux paths starting with "/somewhere"
  1347. if( ss.data[0] == '/' && isalpha( ss.data[1]) && ss.data[2] == ':' )
  1348. {
  1349. ss.length--;
  1350. memmove( ss.data, ss.data+1, ss.length);
  1351. ss.data[ss.length] = 0;
  1352. }
  1353. // find and convert all %xy special chars
  1354. char* out = ss.data;
  1355. for( const char* it = ss.data; it != ss.data + ss.length; /**/ )
  1356. {
  1357. if( *it == '%' && (it + 3) < ss.data + ss.length )
  1358. {
  1359. // separate the number to avoid dragging in chars from behind into the parsing
  1360. char mychar[3] = { it[1], it[2], 0 };
  1361. size_t nbr = strtoul16( mychar);
  1362. it += 3;
  1363. *out++ = (char)(nbr & 0xFF);
  1364. } else
  1365. {
  1366. *out++ = *it++;
  1367. }
  1368. }
  1369. // adjust length and terminator of the shortened string
  1370. *out = 0;
  1371. ss.length = (ptrdiff_t) (out - ss.data);
  1372. }
  1373. // ------------------------------------------------------------------------------------------------
  1374. // Reads a float value from an accessor and its data array.
  1375. ai_real ColladaLoader::ReadFloat( const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex, size_t pOffset) const
  1376. {
  1377. // FIXME: (thom) Test for data type here in every access? For the moment, I leave this to the caller
  1378. size_t pos = pAccessor.mStride * pIndex + pAccessor.mOffset + pOffset;
  1379. ai_assert( pos < pData.mValues.size());
  1380. return pData.mValues[pos];
  1381. }
  1382. // ------------------------------------------------------------------------------------------------
  1383. // Reads a string value from an accessor and its data array.
  1384. const std::string& ColladaLoader::ReadString( const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex) const
  1385. {
  1386. size_t pos = pAccessor.mStride * pIndex + pAccessor.mOffset;
  1387. ai_assert( pos < pData.mStrings.size());
  1388. return pData.mStrings[pos];
  1389. }
  1390. // ------------------------------------------------------------------------------------------------
  1391. // Collects all nodes into the given array
  1392. void ColladaLoader::CollectNodes( const aiNode* pNode, std::vector<const aiNode*>& poNodes) const
  1393. {
  1394. poNodes.push_back( pNode);
  1395. for( size_t a = 0; a < pNode->mNumChildren; ++a)
  1396. CollectNodes( pNode->mChildren[a], poNodes);
  1397. }
  1398. // ------------------------------------------------------------------------------------------------
  1399. // Finds a node in the collada scene by the given name
  1400. const Collada::Node* ColladaLoader::FindNode( const Collada::Node* pNode, const std::string& pName) const
  1401. {
  1402. if( pNode->mName == pName || pNode->mID == pName)
  1403. return pNode;
  1404. for( size_t a = 0; a < pNode->mChildren.size(); ++a)
  1405. {
  1406. const Collada::Node* node = FindNode( pNode->mChildren[a], pName);
  1407. if( node)
  1408. return node;
  1409. }
  1410. return NULL;
  1411. }
  1412. // ------------------------------------------------------------------------------------------------
  1413. // Finds a node in the collada scene by the given SID
  1414. const Collada::Node* ColladaLoader::FindNodeBySID( const Collada::Node* pNode, const std::string& pSID) const
  1415. {
  1416. if( pNode->mSID == pSID)
  1417. return pNode;
  1418. for( size_t a = 0; a < pNode->mChildren.size(); ++a)
  1419. {
  1420. const Collada::Node* node = FindNodeBySID( pNode->mChildren[a], pSID);
  1421. if( node)
  1422. return node;
  1423. }
  1424. return NULL;
  1425. }
  1426. // ------------------------------------------------------------------------------------------------
  1427. // Finds a proper name for a node derived from the collada-node's properties
  1428. std::string ColladaLoader::FindNameForNode( const Collada::Node* pNode)
  1429. {
  1430. // now setup the name of the node. We take the name if not empty, otherwise the collada ID
  1431. // FIX: Workaround for XSI calling the instanced visual scene 'untitled' by default.
  1432. if (!pNode->mName.empty() && pNode->mName != "untitled")
  1433. return pNode->mName;
  1434. else if (!pNode->mID.empty())
  1435. return pNode->mID;
  1436. else if (!pNode->mSID.empty())
  1437. return pNode->mSID;
  1438. else
  1439. {
  1440. // No need to worry. Unnamed nodes are no problem at all, except
  1441. // if cameras or lights need to be assigned to them.
  1442. return format() << "$ColladaAutoName$_" << mNodeNameCounter++;
  1443. }
  1444. }
  1445. #endif // !! ASSIMP_BUILD_NO_DAE_IMPORTER