123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371 |
- /*
- Open Asset Import Library (ASSIMP)
- ----------------------------------------------------------------------
- Copyright (c) 2006-2010, ASSIMP Development Team
- All rights reserved.
- Redistribution and use of this software in source and binary forms,
- with or without modification, are permitted provided that the
- following conditions are met:
- * Redistributions of source code must retain the above
- copyright notice, this list of conditions and the
- following disclaimer.
- * Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the
- following disclaimer in the documentation and/or other
- materials provided with the distribution.
- * Neither the name of the ASSIMP team, nor the names of its
- contributors may be used to endorse or promote products
- derived from this software without specific prior
- written permission of the ASSIMP Development Team.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- ----------------------------------------------------------------------
- */
- /** @file IFCGeometry.cpp
- * @brief Geometry conversion and synthesis for IFC
- */
- #include "AssimpPCH.h"
- #ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
- #include "IFCUtil.h"
- #include "PolyTools.h"
- #include "ProcessHelper.h"
- #include <iterator>
- namespace Assimp {
- namespace IFC {
- // ------------------------------------------------------------------------------------------------
- bool ProcessPolyloop(const IfcPolyLoop& loop, TempMesh& meshout, ConversionData& /*conv*/)
- {
- size_t cnt = 0;
- BOOST_FOREACH(const IfcCartesianPoint& c, loop.Polygon) {
- aiVector3D tmp;
- ConvertCartesianPoint(tmp,c);
- meshout.verts.push_back(tmp);
- ++cnt;
- }
- meshout.vertcnt.push_back(cnt);
- // zero- or one- vertex polyloops simply ignored
- if (meshout.vertcnt.back() > 1) {
- return true;
- }
-
- if (meshout.vertcnt.back()==1) {
- meshout.vertcnt.pop_back();
- meshout.verts.pop_back();
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- void ComputePolygonNormals(const TempMesh& meshout, std::vector<aiVector3D>& normals, bool normalize = true, size_t ofs = 0)
- {
- size_t max_vcount = 0;
- std::vector<unsigned int>::const_iterator begin=meshout.vertcnt.begin()+ofs, end=meshout.vertcnt.end(), iit;
- for(iit = begin; iit != end; ++iit) {
- max_vcount = std::max(max_vcount,static_cast<size_t>(*iit));
- }
- std::vector<float> temp((max_vcount+2)*4);
- normals.reserve( normals.size() + meshout.vertcnt.size()-ofs );
- // `NewellNormal()` currently has a relatively strange interface and need to
- // re-structure things a bit to meet them.
- size_t vidx = std::accumulate(meshout.vertcnt.begin(),begin,0);
- for(iit = begin; iit != end; vidx += *iit++) {
- if (!*iit) {
- normals.push_back(aiVector3D());
- continue;
- }
- for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
- const aiVector3D& v = meshout.verts[vidx+vofs];
- temp[cnt++] = v.x;
- temp[cnt++] = v.y;
- temp[cnt++] = v.z;
- #ifdef _DEBUG
- temp[cnt] = std::numeric_limits<float>::quiet_NaN();
- #endif
- ++cnt;
- }
- normals.push_back(aiVector3D());
- NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]);
- }
- if(normalize) {
- BOOST_FOREACH(aiVector3D& n, normals) {
- n.Normalize();
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- // Compute the normal of the last polygon in the given mesh
- aiVector3D ComputePolygonNormal(const TempMesh& inmesh, bool normalize = true)
- {
- size_t total = inmesh.vertcnt.back(), vidx = inmesh.verts.size() - total;
- std::vector<float> temp((total+2)*3);
- for(size_t vofs = 0, cnt = 0; vofs < total; ++vofs) {
- const aiVector3D& v = inmesh.verts[vidx+vofs];
- temp[cnt++] = v.x;
- temp[cnt++] = v.y;
- temp[cnt++] = v.z;
- }
- aiVector3D nor;
- NewellNormal<3,3,3>(nor,total,&temp[0],&temp[1],&temp[2]);
- return normalize ? nor.Normalize() : nor;
- }
- // ------------------------------------------------------------------------------------------------
- void FixupFaceOrientation(TempMesh& result)
- {
- const aiVector3D vavg = result.Center();
- std::vector<aiVector3D> normals;
- ComputePolygonNormals(result,normals);
- size_t c = 0, ofs = 0;
- BOOST_FOREACH(unsigned int cnt, result.vertcnt) {
- if (cnt>2){
- const aiVector3D& thisvert = result.verts[c];
- if (normals[ofs]*(thisvert-vavg) < 0) {
- std::reverse(result.verts.begin()+c,result.verts.begin()+cnt+c);
- }
- }
- c += cnt;
- ++ofs;
- }
- }
- // ------------------------------------------------------------------------------------------------
- void RecursiveMergeBoundaries(TempMesh& final_result, const TempMesh& in, const TempMesh& boundary, std::vector<aiVector3D>& normals, const aiVector3D& nor_boundary)
- {
- ai_assert(in.vertcnt.size() >= 1);
- ai_assert(boundary.vertcnt.size() == 1);
- std::vector<unsigned int>::const_iterator end = in.vertcnt.end(), begin=in.vertcnt.begin(), iit, best_iit;
- TempMesh out;
- // iterate through all other bounds and find the one for which the shortest connection
- // to the outer boundary is actually the shortest possible.
- size_t vidx = 0, best_vidx_start = 0;
- size_t best_ofs, best_outer = boundary.verts.size();
- float best_dist = 1e10;
- for(std::vector<unsigned int>::const_iterator iit = begin; iit != end; vidx += *iit++) {
-
- for(size_t vofs = 0; vofs < *iit; ++vofs) {
- const aiVector3D& v = in.verts[vidx+vofs];
- for(size_t outer = 0; outer < boundary.verts.size(); ++outer) {
- const aiVector3D& o = boundary.verts[outer];
- const float d = (o-v).SquareLength();
- if (d < best_dist) {
- best_dist = d;
- best_ofs = vofs;
- best_outer = outer;
- best_iit = iit;
- best_vidx_start = vidx;
- }
- }
- }
- }
- ai_assert(best_outer != boundary.verts.size());
- // now that we collected all vertex connections to be added, build the output polygon
- const size_t cnt = boundary.verts.size() + *best_iit+2;
- out.verts.reserve(cnt);
- for(size_t outer = 0; outer < boundary.verts.size(); ++outer) {
- const aiVector3D& o = boundary.verts[outer];
- out.verts.push_back(o);
- if (outer == best_outer) {
- for(size_t i = best_ofs; i < *best_iit; ++i) {
- out.verts.push_back(in.verts[best_vidx_start + i]);
- }
- // we need the first vertex of the inner polygon twice as we return to the
- // outer loop through the very same connection through which we got there.
- for(size_t i = 0; i <= best_ofs; ++i) {
- out.verts.push_back(in.verts[best_vidx_start + i]);
- }
- // reverse face winding if the normal of the sub-polygon points in the
- // same direction as the normal of the outer polygonal boundary
- if (normals[std::distance(begin,best_iit)] * nor_boundary > 0) {
- std::reverse(out.verts.rbegin(),out.verts.rbegin()+*best_iit+1);
- }
- // also append a copy of the initial insertion point to be able to continue the outer polygon
- out.verts.push_back(o);
- }
- }
- out.vertcnt.push_back(cnt);
- ai_assert(out.verts.size() == cnt);
- if (in.vertcnt.size()-std::count(begin,end,0) > 1) {
- // Recursively apply the same algorithm if there are more boundaries to merge. The
- // current implementation is relatively inefficient, though.
-
- TempMesh temp;
-
- // drop the boundary that we just processed
- const size_t dist = std::distance(begin, best_iit);
- TempMesh remaining = in;
- remaining.vertcnt.erase(remaining.vertcnt.begin() + dist);
- remaining.verts.erase(remaining.verts.begin()+best_vidx_start,remaining.verts.begin()+best_vidx_start+*best_iit);
- normals.erase(normals.begin() + dist);
- RecursiveMergeBoundaries(temp,remaining,out,normals,nor_boundary);
- final_result.Append(temp);
- }
- else final_result.Append(out);
- }
- // ------------------------------------------------------------------------------------------------
- void MergePolygonBoundaries(TempMesh& result, const TempMesh& inmesh, size_t master_bounds = -1)
- {
- // standard case - only one boundary, just copy it to the result vector
- if (inmesh.vertcnt.size() <= 1) {
- result.Append(inmesh);
- return;
- }
- result.vertcnt.reserve(inmesh.vertcnt.size()+result.vertcnt.size());
- // XXX get rid of the extra copy if possible
- TempMesh meshout = inmesh;
- // handle polygons with holes. Our built in triangulation won't handle them as is, but
- // the ear cutting algorithm is solid enough to deal with them if we join the inner
- // holes with the outer boundaries by dummy connections.
- IFCImporter::LogDebug("fixing polygon with holes for triangulation via ear-cutting");
- std::vector<unsigned int>::iterator outer_polygon = meshout.vertcnt.end(), begin=meshout.vertcnt.begin(), end=outer_polygon, iit;
- // each hole results in two extra vertices
- result.verts.reserve(meshout.verts.size()+meshout.vertcnt.size()*2+result.verts.size());
- size_t outer_polygon_start = 0;
- // do not normalize 'normals', we need the original length for computing the polygon area
- std::vector<aiVector3D> normals;
- ComputePolygonNormals(meshout,normals,false);
- // see if one of the polygons is a IfcFaceOuterBound (in which case `master_bounds` is its index).
- // sadly we can't rely on it, the docs say 'At most one of the bounds shall be of the type IfcFaceOuterBound'
- float area_outer_polygon = 1e-10f;
- if (master_bounds != (size_t)-1) {
- outer_polygon = begin + master_bounds;
- outer_polygon_start = std::accumulate(begin,outer_polygon,0);
- area_outer_polygon = normals[master_bounds].SquareLength();
- }
- else {
- size_t vidx = 0;
- for(iit = begin; iit != meshout.vertcnt.end(); vidx += *iit++) {
- // find the polygon with the largest area, it must be the outer bound.
- aiVector3D& n = normals[std::distance(begin,iit)];
- const float area = n.SquareLength();
- if (area > area_outer_polygon) {
- area_outer_polygon = area;
- outer_polygon = iit;
- outer_polygon_start = vidx;
- }
- }
- }
- ai_assert(outer_polygon != meshout.vertcnt.end());
- std::vector<aiVector3D>& in = meshout.verts;
- // skip over extremely small boundaries - this is a workaround to fix cases
- // in which the number of holes is so extremely large that the
- // triangulation code fails.
- #define IFC_VERTICAL_HOLE_SIZE_TRESHOLD 0.000001f
- size_t vidx = 0, removed = 0, index = 0;
- const float treshold = area_outer_polygon * IFC_VERTICAL_HOLE_SIZE_TRESHOLD;
- for(iit = begin; iit != end ;++index) {
- const float sqlen = normals[index].SquareLength();
- if (sqlen < treshold) {
- std::vector<aiVector3D>::iterator inbase = in.begin()+vidx;
- in.erase(inbase,inbase+*iit);
-
- outer_polygon_start -= outer_polygon_start>vidx ? *iit : 0;
- *iit++ = 0;
- ++removed;
- IFCImporter::LogDebug("skip small hole below treshold");
- }
- else {
- normals[index] /= sqrt(sqlen);
- vidx += *iit++;
- }
- }
- // see if one or more of the hole has a face that lies directly on an outer bound.
- // this happens for doors, for example.
- vidx = 0;
- for(iit = begin; ; vidx += *iit++) {
- next_loop:
- if (iit == end) {
- break;
- }
- if (iit == outer_polygon) {
- continue;
- }
- for(size_t vofs = 0; vofs < *iit; ++vofs) {
- if (!*iit) {
- continue;
- }
- const size_t next = (vofs+1)%*iit;
- const aiVector3D& v = in[vidx+vofs], &vnext = in[vidx+next],&vd = (vnext-v).Normalize();
- for(size_t outer = 0; outer < *outer_polygon; ++outer) {
- const aiVector3D& o = in[outer_polygon_start+outer], &onext = in[outer_polygon_start+(outer+1)%*outer_polygon], &od = (onext-o).Normalize();
- if (fabs(vd * od) > 1.f-1e-6f && (onext-v).Normalize() * vd > 1.f-1e-6f && (onext-v)*(o-v) < 0) {
- IFCImporter::LogDebug("got an inner hole that lies partly on the outer polygonal boundary, merging them to a single contour");
- // in between outer and outer+1 insert all vertices of this loop, then drop the original altogether.
- std::vector<aiVector3D> tmp(*iit);
- const size_t start = (v-o).SquareLength() > (vnext-o).SquareLength() ? vofs : next;
- std::vector<aiVector3D>::iterator inbase = in.begin()+vidx, it = std::copy(inbase+start, inbase+*iit,tmp.begin());
- std::copy(inbase, inbase+start,it);
- std::reverse(tmp.begin(),tmp.end());
- in.insert(in.begin()+outer_polygon_start+(outer+1)%*outer_polygon,tmp.begin(),tmp.end());
- vidx += outer_polygon_start<vidx ? *iit : 0;
- inbase = in.begin()+vidx;
- in.erase(inbase,inbase+*iit);
- outer_polygon_start -= outer_polygon_start>vidx ? *iit : 0;
-
- *outer_polygon += tmp.size();
- *iit++ = 0;
- ++removed;
- goto next_loop;
- }
- }
- }
- }
- if ( meshout.vertcnt.size() - removed <= 1) {
- result.Append(meshout);
- return;
- }
- // extract the outer boundary and move it to a separate mesh
- TempMesh boundary;
- boundary.vertcnt.resize(1,*outer_polygon);
- boundary.verts.resize(*outer_polygon);
- std::vector<aiVector3D>::iterator b = in.begin()+outer_polygon_start;
- std::copy(b,b+*outer_polygon,boundary.verts.begin());
- in.erase(b,b+*outer_polygon);
- std::vector<aiVector3D>::iterator norit = normals.begin()+std::distance(meshout.vertcnt.begin(),outer_polygon);
- const aiVector3D nor_boundary = *norit;
- normals.erase(norit);
- meshout.vertcnt.erase(outer_polygon);
- // keep merging the closest inner boundary with the outer boundary until no more boundaries are left
- RecursiveMergeBoundaries(result,meshout,boundary,normals,nor_boundary);
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessConnectedFaceSet(const IfcConnectedFaceSet& fset, TempMesh& result, ConversionData& conv)
- {
- BOOST_FOREACH(const IfcFace& face, fset.CfsFaces) {
- // size_t ob = -1, cnt = 0;
- TempMesh meshout;
- BOOST_FOREACH(const IfcFaceBound& bound, face.Bounds) {
-
- // XXX implement proper merging for polygonal loops
- if(const IfcPolyLoop* const polyloop = bound.Bound->ToPtr<IfcPolyLoop>()) {
- if(ProcessPolyloop(*polyloop, meshout,conv)) {
- //if(bound.ToPtr<IfcFaceOuterBound>()) {
- // ob = cnt;
- //}
- //++cnt;
- }
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcFaceBound entity, type is " + bound.Bound->GetClassName());
- continue;
- }
- /*if(!IsTrue(bound.Orientation)) {
- size_t c = 0;
- BOOST_FOREACH(unsigned int& c, meshout.vertcnt) {
- std::reverse(result.verts.begin() + cnt,result.verts.begin() + cnt + c);
- cnt += c;
- }
- }*/
- }
- MergePolygonBoundaries(result,meshout);
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessRevolvedAreaSolid(const IfcRevolvedAreaSolid& solid, TempMesh& result, ConversionData& conv)
- {
- TempMesh meshout;
- // first read the profile description
- if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
- return;
- }
- aiVector3D axis, pos;
- ConvertAxisPlacement(axis,pos,solid.Axis);
- aiMatrix4x4 tb0,tb1;
- aiMatrix4x4::Translation(pos,tb0);
- aiMatrix4x4::Translation(-pos,tb1);
- const std::vector<aiVector3D>& in = meshout.verts;
- const size_t size=in.size();
-
- bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
- const float max_angle = solid.Angle*conv.angle_scale;
- if(fabs(max_angle) < 1e-3) {
- if(has_area) {
- result = meshout;
- }
- return;
- }
- const unsigned int cnt_segments = std::max(2u,static_cast<unsigned int>(16 * fabs(max_angle)/AI_MATH_HALF_PI_F));
- const float delta = max_angle/cnt_segments;
- has_area = has_area && fabs(max_angle) < AI_MATH_TWO_PI_F*0.99;
-
- result.verts.reserve(size*((cnt_segments+1)*4+(has_area?2:0)));
- result.vertcnt.reserve(size*cnt_segments+2);
- aiMatrix4x4 rot;
- rot = tb0 * aiMatrix4x4::Rotation(delta,axis,rot) * tb1;
- size_t base = 0;
- std::vector<aiVector3D>& out = result.verts;
- // dummy data to simplify later processing
- for(size_t i = 0; i < size; ++i) {
- out.insert(out.end(),4,in[i]);
- }
- for(unsigned int seg = 0; seg < cnt_segments; ++seg) {
- for(size_t i = 0; i < size; ++i) {
- const size_t next = (i+1)%size;
- result.vertcnt.push_back(4);
- const aiVector3D& base_0 = out[base+i*4+3],base_1 = out[base+next*4+3];
- out.push_back(base_0);
- out.push_back(base_1);
- out.push_back(rot*base_1);
- out.push_back(rot*base_0);
- }
- base += size*4;
- }
- out.erase(out.begin(),out.begin()+size*4);
- if(has_area) {
- // leave the triangulation of the profile area to the ear cutting
- // implementation in aiProcess_Triangulate - for now we just
- // feed in two huge polygons.
- base -= size*8;
- for(size_t i = size; i--; ) {
- out.push_back(out[base+i*4+3]);
- }
- for(size_t i = 0; i < size; ++i ) {
- out.push_back(out[i*4]);
- }
- result.vertcnt.push_back(size);
- result.vertcnt.push_back(size);
- }
- aiMatrix4x4 trafo;
- ConvertAxisPlacement(trafo, solid.Position);
-
- result.Transform(trafo);
- IFCImporter::LogDebug("generate mesh procedurally by radial extrusion (IfcRevolvedAreaSolid)");
- }
- // ------------------------------------------------------------------------------------------------
- bool TryAddOpenings(const std::vector<TempOpening>& openings,const std::vector<aiVector3D>& nors, TempMesh& curmesh)
- {
- std::vector<aiVector3D>& out = curmesh.verts;
- const size_t s = out.size();
- const aiVector3D any_point = out[s-1];
- const aiVector3D nor = ComputePolygonNormal(curmesh); ;
-
- bool got_openings = false;
- TempMesh res;
- size_t c = 0;
- BOOST_FOREACH(const TempOpening& t,openings) {
- const aiVector3D& outernor = nors[c++];
- const float dot = nor * outernor;
- if (fabs(dot)<1.f-1e-6f) {
- continue;
- }
- // const aiVector3D diff = t.extrusionDir;
- const std::vector<aiVector3D>& va = t.profileMesh->verts;
- if(va.size() <= 2) {
- continue;
- }
- // const float dd = t.extrusionDir*nor;
- IFCImporter::LogDebug("apply an IfcOpeningElement linked via IfcRelVoidsElement to this polygon");
- got_openings = true;
- // project va[i] onto the plane formed by the current polygon [given by (any_point,nor)]
- for(size_t i = 0; i < va.size(); ++i) {
- const aiVector3D& v = va[i];
- out.push_back(v-(nor*(v-any_point))*nor);
- }
-
- curmesh.vertcnt.push_back(va.size());
- res.Clear();
- MergePolygonBoundaries(res,curmesh,0);
- curmesh = res;
- }
- return got_openings;
- }
- // ------------------------------------------------------------------------------------------------
- struct DistanceSorter {
- DistanceSorter(const aiVector3D& base) : base(base) {}
- bool operator () (const TempOpening& a, const TempOpening& b) const {
- return (a.profileMesh->Center()-base).SquareLength() < (b.profileMesh->Center()-base).SquareLength();
- }
- aiVector3D base;
- };
- // ------------------------------------------------------------------------------------------------
- struct XYSorter {
- // sort first by X coordinates, then by Y coordinates
- bool operator () (const aiVector2D&a, const aiVector2D& b) const {
- if (a.x == b.x) {
- return a.y < b.y;
- }
- return a.x < b.x;
- }
- };
- // ------------------------------------------------------------------------------------------------
- struct ProjectionInfo {
- unsigned int ac, bc;
- aiVector3D p,u,v;
- };
- typedef std::pair< aiVector2D, aiVector2D > BoundingBox;
- typedef std::map<aiVector2D,size_t,XYSorter> XYSortedField;
- // ------------------------------------------------------------------------------------------------
- aiVector2D ProjectPositionVectorOntoPlane(const aiVector3D& x, const ProjectionInfo& proj)
- {
- const aiVector3D xx = x-proj.p;
- return aiVector2D(xx[proj.ac]/proj.u[proj.ac],xx[proj.bc]/proj.v[proj.bc]);
- }
- // ------------------------------------------------------------------------------------------------
- void QuadrifyPart(const aiVector2D& pmin, const aiVector2D& pmax, XYSortedField& field, const std::vector< BoundingBox >& bbs,
- std::vector<aiVector2D>& out)
- {
- if (!(pmin.x-pmax.x) || !(pmin.y-pmax.y)) {
- return;
- }
- float xs = 1e10, xe = 1e10;
- bool found = false;
- // Search along the x-axis until we find an opening
- XYSortedField::iterator start = field.begin();
- for(; start != field.end(); ++start) {
- const BoundingBox& bb = bbs[(*start).second];
- if(bb.first.x >= pmax.x) {
- break;
- }
- if (bb.second.x > pmin.x && bb.second.y > pmin.y && bb.first.y < pmax.y) {
- xs = bb.first.x;
- xe = bb.second.x;
- found = true;
- break;
- }
- }
- if (!found) {
- // the rectangle [pmin,pend] is opaque, fill it
- out.push_back(pmin);
- out.push_back(aiVector2D(pmin.x,pmax.y));
- out.push_back(pmax);
- out.push_back(aiVector2D(pmax.x,pmin.y));
- return;
- }
- xs = std::max(pmin.x,xs);
- xe = std::min(pmax.x,xe);
- // see if there's an offset to fill at the top of our quad
- if (xs - pmin.x) {
- out.push_back(pmin);
- out.push_back(aiVector2D(pmin.x,pmax.y));
- out.push_back(aiVector2D(xs,pmax.y));
- out.push_back(aiVector2D(xs,pmin.y));
- }
- // search along the y-axis for all openings that overlap xs and our quad
- float ylast = pmin.y;
- found = false;
- for(; start != field.end(); ++start) {
- const BoundingBox& bb = bbs[(*start).second];
- if (bb.first.x > xs || bb.first.y >= pmax.y) {
- break;
- }
- if (bb.second.y > ylast) {
- found = true;
- const float ys = std::max(bb.first.y,pmin.y), ye = std::min(bb.second.y,pmax.y);
- if (ys - ylast) {
- QuadrifyPart( aiVector2D(xs,ylast), aiVector2D(xe,ys) ,field,bbs,out);
- }
- // the following are the window vertices
- /*wnd.push_back(aiVector2D(xs,ys));
- wnd.push_back(aiVector2D(xs,ye));
- wnd.push_back(aiVector2D(xe,ye));
- wnd.push_back(aiVector2D(xe,ys));*/
- ylast = ye;
- }
- }
- if (!found) {
- // the rectangle [pmin,pend] is opaque, fill it
- out.push_back(aiVector2D(xs,pmin.y));
- out.push_back(aiVector2D(xs,pmax.y));
- out.push_back(aiVector2D(xe,pmax.y));
- out.push_back(aiVector2D(xe,pmin.y));
- return;
- }
- if (ylast < pmax.y) {
- QuadrifyPart( aiVector2D(xs,ylast), aiVector2D(xe,pmax.y) ,field,bbs,out);
- }
- // now for the whole rest
- if (pmax.x-xe) {
- QuadrifyPart(aiVector2D(xe,pmin.y), pmax ,field,bbs,out);
- }
- }
- // ------------------------------------------------------------------------------------------------
- enum Intersect {
- Intersect_No,
- Intersect_LiesOnPlane,
- Intersect_Yes
- };
- // ------------------------------------------------------------------------------------------------
- Intersect IntersectSegmentPlane(const aiVector3D& p,const aiVector3D& n, const aiVector3D& e0, const aiVector3D& e1, aiVector3D& out)
- {
- const aiVector3D pdelta = e0 - p, seg = e1-e0;
- const float dotOne = n*seg, dotTwo = -(n*pdelta);
- if (fabs(dotOne) < 1e-6) {
- return fabs(dotTwo) < 1e-6f ? Intersect_LiesOnPlane : Intersect_No;
- }
- const float t = dotTwo/dotOne;
- // t must be in [0..1] if the intersection point is within the given segment
- if (t > 1.f || t < 0.f) {
- return Intersect_No;
- }
- out = e0+t*seg;
- return Intersect_Yes;
- }
- // ------------------------------------------------------------------------------------------------
- aiVector3D Unproject(const aiVector2D& vproj, const ProjectionInfo& proj)
- {
- return vproj.x*proj.u + vproj.y*proj.v + proj.p;
- }
- // ------------------------------------------------------------------------------------------------
- void InsertWindowContours(const std::vector< BoundingBox >& bbs,const std::vector< std::vector<aiVector2D> >& contours,const ProjectionInfo& proj, TempMesh& curmesh)
- {
- ai_assert(contours.size() == bbs.size());
- // fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
- for(size_t i = 0; i < contours.size();++i) {
- const BoundingBox& bb = bbs[i];
- const std::vector<aiVector2D>& contour = contours[i];
- // check if we need to do it at all - many windows just fit perfectly into their quadratic holes,
- // i.e. their contours *are* already their bounding boxes.
- if (contour.size() == 4) {
- std::set<aiVector2D,XYSorter> verts;
- for(size_t n = 0; n < 4; ++n) {
- verts.insert(contour[n]);
- }
- const std::set<aiVector2D,XYSorter>::const_iterator end = verts.end();
- if (verts.find(bb.first)!=end && verts.find(bb.second)!=end
- && verts.find(aiVector2D(bb.first.x,bb.second.y))!=end
- && verts.find(aiVector2D(bb.second.x,bb.first.y))!=end
- ) {
- continue;
- }
- }
- const float epsilon = (bb.first-bb.second).Length()/1000.f;
- // walk through all contour points and find those that lie on the BB corner
- size_t last_hit = -1, very_first_hit = -1;
- aiVector2D edge;
- for(size_t n = 0, e=0, size = contour.size();; n=(n+1)%size, ++e) {
- // sanity checking
- if (e == size*2) {
- IFCImporter::LogError("encountered unexpected topology while generating window contour");
- break;
- }
- const aiVector2D& v = contour[n];
- bool hit = false;
- if (fabs(v.x-bb.first.x)<epsilon) {
- edge.x = bb.first.x;
- hit = true;
- }
- else if (fabs(v.x-bb.second.x)<epsilon) {
- edge.x = bb.second.x;
- hit = true;
- }
- if (fabs(v.y-bb.first.y)<epsilon) {
- edge.y = bb.first.y;
- hit = true;
- }
- else if (fabs(v.y-bb.second.y)<epsilon) {
- edge.y = bb.second.y;
- hit = true;
- }
- if (hit) {
- if (last_hit != (size_t)-1) {
- const size_t old = curmesh.verts.size();
- size_t cnt = last_hit > n ? size-(last_hit-n) : n-last_hit;
- for(size_t a = last_hit, e = 0; e <= cnt; a=(a+1)%size, ++e) {
- curmesh.verts.push_back(Unproject(contour[a],proj));
- }
-
- if (edge != contour[last_hit] && edge != contour[n]) {
- curmesh.verts.push_back(Unproject(edge,proj));
- }
- else if (cnt == 1) {
- // avoid degenerate polygons (also known as lines or points)
- curmesh.verts.erase(curmesh.verts.begin()+old,curmesh.verts.end());
- }
- if (const size_t d = curmesh.verts.size()-old) {
- curmesh.vertcnt.push_back(d);
- std::reverse(curmesh.verts.rbegin(),curmesh.verts.rbegin()+d);
- }
- if (n == very_first_hit) {
- break;
- }
- }
- else {
- very_first_hit = n;
- }
-
- last_hit = n;
- }
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings,const std::vector<aiVector3D>& nors, TempMesh& curmesh)
- {
- std::vector<aiVector3D>& out = curmesh.verts;
- // Try to derive a solid base plane within the current surface for use as
- // working coordinate system.
- aiVector3D vmin,vmax;
- ArrayBounds(&out[0],out.size(),vmin,vmax);
- const size_t s = out.size();
- const aiVector3D any_point = out[s-4];
- const aiVector3D nor = ((out[s-3]-any_point)^(out[s-2]-any_point)).Normalize();
- const aiVector3D diag = vmax-vmin;
- const float ax = fabs(nor.x);
- const float ay = fabs(nor.y);
- const float az = fabs(nor.z);
- unsigned int ac = 0, bc = 1; /* no z coord. -> projection to xy */
- if (ax > ay) {
- if (ax > az) { /* no x coord. -> projection to yz */
- ac = 1; bc = 2;
- }
- }
- else if (ay > az) { /* no y coord. -> projection to zy */
- ac = 2; bc = 0;
- }
- ProjectionInfo proj;
- proj.u = proj.v = diag;
- proj.u[bc]=0;
- proj.v[ac]=0;
- proj.ac = ac;
- proj.bc = bc;
- proj.p = vmin;
- // project all points into the coordinate system defined by the p+sv*tu plane
- // and compute bounding boxes for them
- std::vector< BoundingBox > bbs;
- XYSortedField field;
- std::vector<aiVector2D> contour_flat;
- contour_flat.reserve(out.size());
- BOOST_FOREACH(const aiVector3D& x, out) {
- contour_flat.push_back(ProjectPositionVectorOntoPlane(x,proj));
- }
- std::vector< std::vector<aiVector2D> > contours;
- size_t c = 0;
- BOOST_FOREACH(const TempOpening& t,openings) {
- const aiVector3D& outernor = nors[c++];
- const float dot = nor * outernor;
- if (fabs(dot)<1.f-1e-6f) {
- continue;
- }
- // const aiVector3D diff = t.extrusionDir;
- const std::vector<aiVector3D>& va = t.profileMesh->verts;
- if(va.size() <= 2) {
- continue;
- }
- aiVector2D vpmin,vpmax;
- MinMaxChooser<aiVector2D>()(vpmin,vpmax);
- contours.push_back(std::vector<aiVector2D>());
- std::vector<aiVector2D>& contour = contours.back();
- BOOST_FOREACH(const aiVector3D& x, t.profileMesh->verts) {
- const aiVector2D& vproj = ProjectPositionVectorOntoPlane(x,proj);
- vpmin = std::min(vpmin,vproj);
- vpmax = std::max(vpmax,vproj);
- contour.push_back(vproj);
- }
-
- if (field.find(vpmin) != field.end()) {
- IFCImporter::LogWarn("constraint failure during generation of wall openings, results may be faulty");
- }
- field[vpmin] = bbs.size();
- bbs.push_back(BoundingBox(vpmin,vpmax));
- }
- if (bbs.empty()) {
- return false;
- }
- std::vector<aiVector2D> outflat;
- outflat.reserve(openings.size()*4);
- QuadrifyPart(aiVector2D(0.f,0.f),aiVector2D(1.f,1.f),field,bbs,outflat);
- ai_assert(!(outflat.size() % 4));
- //FixOuterBoundaries(outflat,contour_flat);
- // undo the projection, generate output quads
- std::vector<aiVector3D> vold;
- vold.reserve(outflat.size());
- std::swap(vold,curmesh.verts);
- std::vector<unsigned int> iold;
- iold.resize(outflat.size()/4,4);
- std::swap(iold,curmesh.vertcnt);
- BOOST_FOREACH(const aiVector2D& vproj, outflat) {
- out.push_back(Unproject(vproj,proj));
- }
- InsertWindowContours(bbs,contours,proj,curmesh);
- return true;
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& result, ConversionData& conv)
- {
- TempMesh meshout;
-
- // first read the profile description
- if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
- return;
- }
- aiVector3D dir;
- ConvertDirection(dir,solid.ExtrudedDirection);
- dir *= solid.Depth;
- // assuming that `meshout.verts` is now a list of vertex points forming
- // the underlying profile, extrude along the given axis, forming new
- // triangles.
-
- std::vector<aiVector3D>& in = meshout.verts;
- const size_t size=in.size();
- const bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
- if(solid.Depth < 1e-3) {
- if(has_area) {
- meshout = result;
- }
- return;
- }
- result.verts.reserve(size*(has_area?4:2));
- result.vertcnt.reserve(meshout.vertcnt.size()+2);
- // transform to target space
- aiMatrix4x4 trafo;
- ConvertAxisPlacement(trafo, solid.Position);
- BOOST_FOREACH(aiVector3D& v,in) {
- v *= trafo;
- }
-
- aiVector3D min = in[0];
- dir *= aiMatrix3x3(trafo);
- std::vector<aiVector3D> nors;
-
- // compute the normal vectors for all opening polygons
- if (conv.apply_openings) {
- if (!conv.settings.useCustomTriangulation) {
- // it is essential to apply the openings in the correct spatial order. The direction
- // doesn't matter, but we would screw up if we started with e.g. a door in between
- // two windows.
- std::sort(conv.apply_openings->begin(),conv.apply_openings->end(),DistanceSorter(min));
- }
- nors.reserve(conv.apply_openings->size());
- BOOST_FOREACH(TempOpening& t,*conv.apply_openings) {
- TempMesh& bounds = *t.profileMesh.get();
-
- if (bounds.verts.size() <= 2) {
- nors.push_back(aiVector3D());
- continue;
- }
- nors.push_back(((bounds.verts[2]-bounds.verts[0])^(bounds.verts[1]-bounds.verts[0]) ).Normalize());
- }
- }
- TempMesh temp;
- TempMesh& curmesh = conv.apply_openings ? temp : result;
- std::vector<aiVector3D>& out = curmesh.verts;
- bool (* const gen_openings)(const std::vector<TempOpening>&,const std::vector<aiVector3D>&, TempMesh&) = conv.settings.useCustomTriangulation
- ? &TryAddOpenings_Quadrulate
- : &TryAddOpenings;
-
- size_t sides_with_openings = 0;
- for(size_t i = 0; i < size; ++i) {
- const size_t next = (i+1)%size;
- curmesh.vertcnt.push_back(4);
-
- out.push_back(in[i]);
- out.push_back(in[i]+dir);
- out.push_back(in[next]+dir);
- out.push_back(in[next]);
- if(conv.apply_openings) {
- if(gen_openings(*conv.apply_openings,nors,temp)) {
- ++sides_with_openings;
- }
-
- result.Append(temp);
- temp.Clear();
- }
- }
-
- size_t sides_with_v_openings = 0;
- if(has_area) {
- for(size_t n = 0; n < 2; ++n) {
- for(size_t i = size; i--; ) {
- out.push_back(in[i]+(n?dir:aiVector3D()));
- }
- curmesh.vertcnt.push_back(size);
- if(conv.apply_openings && size > 2) {
- // XXX here we are forced to use the un-triangulated version of TryAddOpening, with
- // all the problems it causes. The reason is that vertical walls (ehm, floors)
- // can have an arbitrary outer shape, so the usual approach of projecting
- // the surface and all openings onto a flat quad and triangulating the quad
- // fails.
- if(TryAddOpenings(*conv.apply_openings,nors,temp)) {
- ++sides_with_v_openings;
- }
- result.Append(temp);
- temp.Clear();
- }
- }
- }
- // add connection geometry to close the 'holes' for the openings
- if(conv.apply_openings) {
- //result.infacing.resize(result.verts.size()+);
- BOOST_FOREACH(const TempOpening& t,*conv.apply_openings) {
- const std::vector<aiVector3D>& in = t.profileMesh->verts;
- std::vector<aiVector3D>& out = result.verts;
- const aiVector3D dir = t.extrusionDir;
- for(size_t i = 0, size = in.size(); i < size; ++i) {
- const size_t next = (i+1)%size;
- result.vertcnt.push_back(4);
- out.push_back(in[i]);
- out.push_back(in[i]+dir);
- out.push_back(in[next]+dir);
- out.push_back(in[next]);
- }
- }
- }
- if(conv.apply_openings && ((sides_with_openings != 2 && sides_with_openings) || (sides_with_v_openings != 2 && sides_with_v_openings))) {
- IFCImporter::LogWarn("failed to resolve all openings, presumably their topology is not supported by Assimp");
- }
- IFCImporter::LogDebug("generate mesh procedurally by extrusion (IfcExtrudedAreaSolid)");
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessSweptAreaSolid(const IfcSweptAreaSolid& swept, TempMesh& meshout, ConversionData& conv)
- {
- if(const IfcExtrudedAreaSolid* const solid = swept.ToPtr<IfcExtrudedAreaSolid>()) {
- // Do we just collect openings for a parent element (i.e. a wall)?
- // In this case we don't extrude the surface yet, just keep the profile and transform it correctly
- if(conv.collect_openings) {
- boost::shared_ptr<TempMesh> meshtmp(new TempMesh());
- ProcessProfile(swept.SweptArea,*meshtmp,conv);
- aiMatrix4x4 m;
- ConvertAxisPlacement(m,solid->Position);
- meshtmp->Transform(m);
- aiVector3D dir;
- ConvertDirection(dir,solid->ExtrudedDirection);
- conv.collect_openings->push_back(TempOpening(solid, aiMatrix3x3(m) * (dir*solid->Depth),meshtmp));
- return;
- }
- ProcessExtrudedAreaSolid(*solid,meshout,conv);
- }
- else if(const IfcRevolvedAreaSolid* const rev = swept.ToPtr<IfcRevolvedAreaSolid>()) {
- ProcessRevolvedAreaSolid(*rev,meshout,conv);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcSweptAreaSolid entity, type is " + swept.GetClassName());
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessBoolean(const IfcBooleanResult& boolean, TempMesh& result, ConversionData& conv)
- {
- if(const IfcBooleanResult* const clip = boolean.ToPtr<IfcBooleanResult>()) {
- if(clip->Operator != "DIFFERENCE") {
- IFCImporter::LogWarn("encountered unsupported boolean operator: " + (std::string)clip->Operator);
- return;
- }
- TempMesh meshout;
- const IfcHalfSpaceSolid* const hs = clip->SecondOperand->ResolveSelectPtr<IfcHalfSpaceSolid>(conv.db);
- if(!hs) {
- IFCImporter::LogError("expected IfcHalfSpaceSolid as second clipping operand");
- return;
- }
- const IfcPlane* const plane = hs->BaseSurface->ToPtr<IfcPlane>();
- if(!plane) {
- IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
- return;
- }
- if(const IfcBooleanResult* const op0 = clip->FirstOperand->ResolveSelectPtr<IfcBooleanResult>(conv.db)) {
- ProcessBoolean(*op0,meshout,conv);
- }
- else if (const IfcSweptAreaSolid* const swept = clip->FirstOperand->ResolveSelectPtr<IfcSweptAreaSolid>(conv.db)) {
- ProcessSweptAreaSolid(*swept,meshout,conv);
- }
- else {
- IFCImporter::LogError("expected IfcSweptAreaSolid or IfcBooleanResult as first clipping operand");
- return;
- }
- // extract plane base position vector and normal vector
- aiVector3D p,n(0.f,0.f,1.f);
- if (plane->Position->Axis) {
- ConvertDirection(n,plane->Position->Axis.Get());
- }
- ConvertCartesianPoint(p,plane->Position->Location);
- if(!IsTrue(hs->AgreementFlag)) {
- n *= -1.f;
- }
- // clip the current contents of `meshout` against the plane we obtained from the second operand
- const std::vector<aiVector3D>& in = meshout.verts;
- std::vector<aiVector3D>& outvert = result.verts;
- std::vector<unsigned int>::const_iterator begin=meshout.vertcnt.begin(), end=meshout.vertcnt.end(), iit;
- outvert.reserve(in.size());
- result.vertcnt.reserve(meshout.vertcnt.size());
- unsigned int vidx = 0;
- for(iit = begin; iit != end; vidx += *iit++) {
- unsigned int newcount = 0;
- for(unsigned int i = 0; i < *iit; ++i) {
- const aiVector3D& e0 = in[vidx+i], e1 = in[vidx+(i+1)%*iit];
- // does the next segment intersect the plane?
- aiVector3D isectpos;
- const Intersect isect = IntersectSegmentPlane(p,n,e0,e1,isectpos);
- if (isect == Intersect_No || isect == Intersect_LiesOnPlane) {
- if ( (e0-p).Normalize()*n > 0 ) {
- outvert.push_back(e0);
- ++newcount;
- }
- }
- else if (isect == Intersect_Yes) {
- if ( (e0-p).Normalize()*n > 0 ) {
- // e0 is on the right side, so keep it
- outvert.push_back(e0);
- outvert.push_back(isectpos);
- newcount += 2;
- }
- else {
- // e0 is on the wrong side, so drop it and keep e1 instead
- outvert.push_back(isectpos);
- ++newcount;
- }
- }
- }
- if (!newcount) {
- continue;
- }
- aiVector3D vmin,vmax;
- ArrayBounds(&*(outvert.end()-newcount),newcount,vmin,vmax);
- // filter our double points - those may happen if a point lies
- // directly on the intersection line. However, due to float
- // precision a bitwise comparison is not feasible to detect
- // this case.
- const float epsilon = (vmax-vmin).SquareLength() / 1e6f;
- FuzzyVectorCompare fz(epsilon);
- std::vector<aiVector3D>::iterator e = std::unique( outvert.end()-newcount, outvert.end(), fz );
- if (e != outvert.end()) {
- newcount -= static_cast<unsigned int>(std::distance(e,outvert.end()));
- outvert.erase(e,outvert.end());
- }
- if (fz(*( outvert.end()-newcount),outvert.back())) {
- outvert.pop_back();
- --newcount;
- }
- if(newcount > 2) {
- result.vertcnt.push_back(newcount);
- }
- else while(newcount-->0)result.verts.pop_back();
- }
- IFCImporter::LogDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)");
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is " + boolean.GetClassName());
- }
- }
- // ------------------------------------------------------------------------------------------------
- bool ProcessGeometricItem(const IfcRepresentationItem& geo, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
- {
- TempMesh meshtmp;
- if(const IfcShellBasedSurfaceModel* shellmod = geo.ToPtr<IfcShellBasedSurfaceModel>()) {
- BOOST_FOREACH(boost::shared_ptr<const IfcShell> shell,shellmod->SbsmBoundary) {
- try {
- const EXPRESS::ENTITY& e = shell->To<ENTITY>();
- const IfcConnectedFaceSet& fs = conv.db.MustGetObject(e).To<IfcConnectedFaceSet>();
- ProcessConnectedFaceSet(fs,meshtmp,conv);
- }
- catch(std::bad_cast&) {
- IFCImporter::LogWarn("unexpected type error, IfcShell ought to inherit from IfcConnectedFaceSet");
- }
- }
- }
- else if(const IfcConnectedFaceSet* fset = geo.ToPtr<IfcConnectedFaceSet>()) {
- ProcessConnectedFaceSet(*fset,meshtmp,conv);
- }
- else if(const IfcSweptAreaSolid* swept = geo.ToPtr<IfcSweptAreaSolid>()) {
- ProcessSweptAreaSolid(*swept,meshtmp,conv);
- }
- else if(const IfcManifoldSolidBrep* brep = geo.ToPtr<IfcManifoldSolidBrep>()) {
- ProcessConnectedFaceSet(brep->Outer,meshtmp,conv);
- }
- else if(const IfcFaceBasedSurfaceModel* surf = geo.ToPtr<IfcFaceBasedSurfaceModel>()) {
- BOOST_FOREACH(const IfcConnectedFaceSet& fc, surf->FbsmFaces) {
- ProcessConnectedFaceSet(fc,meshtmp,conv);
- }
- }
- else if(const IfcBooleanResult* boolean = geo.ToPtr<IfcBooleanResult>()) {
- ProcessBoolean(*boolean,meshtmp,conv);
- }
- else if(geo.ToPtr<IfcBoundingBox>()) {
- // silently skip over bounding boxes
- return false;
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcGeometricRepresentationItem entity, type is " + geo.GetClassName());
- return false;
- }
- meshtmp.RemoveAdjacentDuplicates();
- FixupFaceOrientation(meshtmp);
- aiMesh* const mesh = meshtmp.ToMesh();
- if(mesh) {
- mesh->mMaterialIndex = ProcessMaterials(geo,conv);
- mesh_indices.push_back(conv.meshes.size());
- conv.meshes.push_back(mesh);
- return true;
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- void AssignAddedMeshes(std::vector<unsigned int>& mesh_indices,aiNode* nd,ConversionData& /*conv*/)
- {
- if (!mesh_indices.empty()) {
- // make unique
- std::sort(mesh_indices.begin(),mesh_indices.end());
- std::vector<unsigned int>::iterator it_end = std::unique(mesh_indices.begin(),mesh_indices.end());
- const size_t size = std::distance(mesh_indices.begin(),it_end);
- nd->mNumMeshes = size;
- nd->mMeshes = new unsigned int[nd->mNumMeshes];
- for(unsigned int i = 0; i < nd->mNumMeshes; ++i) {
- nd->mMeshes[i] = mesh_indices[i];
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- bool TryQueryMeshCache(const IfcRepresentationItem& item, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
- {
- ConversionData::MeshCache::const_iterator it = conv.cached_meshes.find(&item);
- if (it != conv.cached_meshes.end()) {
- std::copy((*it).second.begin(),(*it).second.end(),std::back_inserter(mesh_indices));
- return true;
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- void PopulateMeshCache(const IfcRepresentationItem& item, const std::vector<unsigned int>& mesh_indices, ConversionData& conv)
- {
- conv.cached_meshes[&item] = mesh_indices;
- }
- // ------------------------------------------------------------------------------------------------
- bool ProcessRepresentationItem(const IfcRepresentationItem& item, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
- {
- if (!TryQueryMeshCache(item,mesh_indices,conv)) {
- if(ProcessGeometricItem(item,mesh_indices,conv)) {
- if(mesh_indices.size()) {
- PopulateMeshCache(item,mesh_indices,conv);
- }
- }
- else return false;
- }
- return true;
- }
- } // ! IFC
- } // ! Assimp
- #endif
|