1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680 |
- /*
- Open Asset Import Library (assimp)
- ----------------------------------------------------------------------
- Copyright (c) 2006-2010, assimp team
- All rights reserved.
- Redistribution and use of this software in source and binary forms,
- with or without modification, are permitted provided that the
- following conditions are met:
- * Redistributions of source code must retain the above
- copyright notice, this list of conditions and the
- following disclaimer.
- * Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the
- following disclaimer in the documentation and/or other
- materials provided with the distribution.
- * Neither the name of the assimp team, nor the names of its
- contributors may be used to endorse or promote products
- derived from this software without specific prior
- written permission of the assimp team.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- ----------------------------------------------------------------------
- */
- /** @file IFCGeometry.cpp
- * @brief Geometry conversion and synthesis for IFC
- */
- #include "AssimpPCH.h"
- #ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
- #include "IFCUtil.h"
- #include "PolyTools.h"
- #include "ProcessHelper.h"
- #include "../contrib/poly2tri/poly2tri/poly2tri.h"
- #include "../contrib/clipper/clipper.hpp"
- #include <iterator>
- namespace Assimp {
- namespace IFC {
- using ClipperLib::ulong64;
- // XXX use full -+ range ...
- const ClipperLib::long64 max_ulong64 = 1518500249; // clipper.cpp / hiRange var
- //#define to_int64(p) (static_cast<ulong64>( std::max( 0., std::min( static_cast<IfcFloat>((p)), 1.) ) * max_ulong64 ))
- #define to_int64(p) (static_cast<ulong64>(static_cast<IfcFloat>((p) ) * max_ulong64 ))
- #define from_int64(p) (static_cast<IfcFloat>((p)) / max_ulong64)
- #define one_vec (IfcVector2(static_cast<IfcFloat>(1.0),static_cast<IfcFloat>(1.0)))
- bool GenerateOpenings(std::vector<TempOpening>& openings,
- const std::vector<IfcVector3>& nors,
- TempMesh& curmesh,
- bool check_intersection = true,
- bool generate_connection_geometry = true);
- // ------------------------------------------------------------------------------------------------
- bool ProcessPolyloop(const IfcPolyLoop& loop, TempMesh& meshout, ConversionData& /*conv*/)
- {
- size_t cnt = 0;
- BOOST_FOREACH(const IfcCartesianPoint& c, loop.Polygon) {
- IfcVector3 tmp;
- ConvertCartesianPoint(tmp,c);
- meshout.verts.push_back(tmp);
- ++cnt;
- }
- meshout.vertcnt.push_back(cnt);
- // zero- or one- vertex polyloops simply ignored
- if (meshout.vertcnt.back() > 1) {
- return true;
- }
-
- if (meshout.vertcnt.back()==1) {
- meshout.vertcnt.pop_back();
- meshout.verts.pop_back();
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessPolygonBoundaries(TempMesh& result, const TempMesh& inmesh, size_t master_bounds = (size_t)-1)
- {
- // handle all trivial cases
- if(inmesh.vertcnt.empty()) {
- return;
- }
- if(inmesh.vertcnt.size() == 1) {
- result.Append(inmesh);
- return;
- }
- ai_assert(std::count(inmesh.vertcnt.begin(), inmesh.vertcnt.end(), 0) == 0);
- typedef std::vector<unsigned int>::const_iterator face_iter;
- face_iter begin = inmesh.vertcnt.begin(), end = inmesh.vertcnt.end(), iit;
- std::vector<unsigned int>::const_iterator outer_polygon_it = end;
- // major task here: given a list of nested polygon boundaries (one of which
- // is the outer contour), reduce the triangulation task arising here to
- // one that can be solved using the "quadrulation" algorithm which we use
- // for pouring windows out of walls. The algorithm does not handle all
- // cases but at least it is numerically stable and gives "nice" triangles.
- // first compute normals for all polygons using Newell's algorithm
- // do not normalize 'normals', we need the original length for computing the polygon area
- std::vector<IfcVector3> normals;
- inmesh.ComputePolygonNormals(normals,false);
- // One of the polygons might be a IfcFaceOuterBound (in which case `master_bounds`
- // is its index). Sadly we can't rely on it, the docs say 'At most one of the bounds
- // shall be of the type IfcFaceOuterBound'
- IfcFloat area_outer_polygon = 1e-10f;
- if (master_bounds != (size_t)-1) {
- ai_assert(master_bounds < inmesh.vertcnt.size());
- outer_polygon_it = begin + master_bounds;
- }
- else {
- for(iit = begin; iit != end; iit++) {
- // find the polygon with the largest area and take it as the outer bound.
- IfcVector3& n = normals[std::distance(begin,iit)];
- const IfcFloat area = n.SquareLength();
- if (area > area_outer_polygon) {
- area_outer_polygon = area;
- outer_polygon_it = iit;
- }
- }
- }
- ai_assert(outer_polygon_it != end);
- const size_t outer_polygon_size = *outer_polygon_it;
- const IfcVector3& master_normal = normals[std::distance(begin, outer_polygon_it)];
- const IfcVector3& master_normal_norm = IfcVector3(master_normal).Normalize();
- // Generate fake openings to meet the interface for the quadrulate
- // algorithm. It boils down to generating small boxes given the
- // inner polygon and the surface normal of the outer contour.
- // It is important that we use the outer contour's normal because
- // this is the plane onto which the quadrulate algorithm will
- // project the entire mesh.
- std::vector<TempOpening> fake_openings;
- fake_openings.reserve(inmesh.vertcnt.size()-1);
- std::vector<IfcVector3>::const_iterator vit = inmesh.verts.begin(), outer_vit;
- for(iit = begin; iit != end; vit += *iit++) {
- if (iit == outer_polygon_it) {
- outer_vit = vit;
- continue;
- }
- // Filter degenerate polygons to keep them from causing trouble later on
- IfcVector3& n = normals[std::distance(begin,iit)];
- const IfcFloat area = n.SquareLength();
- if (area < 1e-5f) {
- IFCImporter::LogWarn("skipping degenerate polygon (ProcessPolygonBoundaries)");
- continue;
- }
- fake_openings.push_back(TempOpening());
- TempOpening& opening = fake_openings.back();
- opening.extrusionDir = master_normal;
- opening.solid = NULL;
- opening.profileMesh = boost::make_shared<TempMesh>();
- opening.profileMesh->verts.reserve(*iit);
- opening.profileMesh->vertcnt.push_back(*iit);
- std::copy(vit, vit + *iit, std::back_inserter(opening.profileMesh->verts));
- }
- // fill a mesh with ONLY the main polygon
- TempMesh temp;
- temp.verts.reserve(outer_polygon_size);
- temp.vertcnt.push_back(outer_polygon_size);
- std::copy(outer_vit, outer_vit+outer_polygon_size,
- std::back_inserter(temp.verts));
- GenerateOpenings(fake_openings, normals, temp, false, false);
- result.Append(temp);
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessConnectedFaceSet(const IfcConnectedFaceSet& fset, TempMesh& result, ConversionData& conv)
- {
- BOOST_FOREACH(const IfcFace& face, fset.CfsFaces) {
- // size_t ob = -1, cnt = 0;
- TempMesh meshout;
- BOOST_FOREACH(const IfcFaceBound& bound, face.Bounds) {
-
- if(const IfcPolyLoop* const polyloop = bound.Bound->ToPtr<IfcPolyLoop>()) {
- if(ProcessPolyloop(*polyloop, meshout,conv)) {
- // The outer boundary is better determined by checking which
- // polygon covers the largest area.
- //if(bound.ToPtr<IfcFaceOuterBound>()) {
- // ob = cnt;
- //}
- //++cnt;
- }
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcFaceBound entity, type is " + bound.Bound->GetClassName());
- continue;
- }
- // And this, even though it is sometimes TRUE and sometimes FALSE,
- // does not really improve results.
- /*if(!IsTrue(bound.Orientation)) {
- size_t c = 0;
- BOOST_FOREACH(unsigned int& c, meshout.vertcnt) {
- std::reverse(result.verts.begin() + cnt,result.verts.begin() + cnt + c);
- cnt += c;
- }
- }*/
- }
- ProcessPolygonBoundaries(result, meshout);
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessRevolvedAreaSolid(const IfcRevolvedAreaSolid& solid, TempMesh& result, ConversionData& conv)
- {
- TempMesh meshout;
- // first read the profile description
- if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
- return;
- }
- IfcVector3 axis, pos;
- ConvertAxisPlacement(axis,pos,solid.Axis);
- IfcMatrix4 tb0,tb1;
- IfcMatrix4::Translation(pos,tb0);
- IfcMatrix4::Translation(-pos,tb1);
- const std::vector<IfcVector3>& in = meshout.verts;
- const size_t size=in.size();
-
- bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
- const IfcFloat max_angle = solid.Angle*conv.angle_scale;
- if(fabs(max_angle) < 1e-3) {
- if(has_area) {
- result = meshout;
- }
- return;
- }
- const unsigned int cnt_segments = std::max(2u,static_cast<unsigned int>(16 * fabs(max_angle)/AI_MATH_HALF_PI_F));
- const IfcFloat delta = max_angle/cnt_segments;
- has_area = has_area && fabs(max_angle) < AI_MATH_TWO_PI_F*0.99;
-
- result.verts.reserve(size*((cnt_segments+1)*4+(has_area?2:0)));
- result.vertcnt.reserve(size*cnt_segments+2);
- IfcMatrix4 rot;
- rot = tb0 * IfcMatrix4::Rotation(delta,axis,rot) * tb1;
- size_t base = 0;
- std::vector<IfcVector3>& out = result.verts;
- // dummy data to simplify later processing
- for(size_t i = 0; i < size; ++i) {
- out.insert(out.end(),4,in[i]);
- }
- for(unsigned int seg = 0; seg < cnt_segments; ++seg) {
- for(size_t i = 0; i < size; ++i) {
- const size_t next = (i+1)%size;
- result.vertcnt.push_back(4);
- const IfcVector3& base_0 = out[base+i*4+3],base_1 = out[base+next*4+3];
- out.push_back(base_0);
- out.push_back(base_1);
- out.push_back(rot*base_1);
- out.push_back(rot*base_0);
- }
- base += size*4;
- }
- out.erase(out.begin(),out.begin()+size*4);
- if(has_area) {
- // leave the triangulation of the profile area to the ear cutting
- // implementation in aiProcess_Triangulate - for now we just
- // feed in two huge polygons.
- base -= size*8;
- for(size_t i = size; i--; ) {
- out.push_back(out[base+i*4+3]);
- }
- for(size_t i = 0; i < size; ++i ) {
- out.push_back(out[i*4]);
- }
- result.vertcnt.push_back(size);
- result.vertcnt.push_back(size);
- }
- IfcMatrix4 trafo;
- ConvertAxisPlacement(trafo, solid.Position);
-
- result.Transform(trafo);
- IFCImporter::LogDebug("generate mesh procedurally by radial extrusion (IfcRevolvedAreaSolid)");
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessSweptDiskSolid(const IfcSweptDiskSolid solid, TempMesh& result, ConversionData& conv)
- {
- const Curve* const curve = Curve::Convert(*solid.Directrix, conv);
- if(!curve) {
- IFCImporter::LogError("failed to convert Directrix curve (IfcSweptDiskSolid)");
- return;
- }
- const std::vector<IfcVector3>& in = result.verts;
- const size_t size=in.size();
- const unsigned int cnt_segments = 16;
- const IfcFloat deltaAngle = AI_MATH_TWO_PI/cnt_segments;
- const size_t samples = curve->EstimateSampleCount(solid.StartParam,solid.EndParam);
- result.verts.reserve(cnt_segments * samples * 4);
- result.vertcnt.reserve((cnt_segments - 1) * samples);
- std::vector<IfcVector3> points;
- points.reserve(cnt_segments * samples);
- TempMesh temp;
- curve->SampleDiscrete(temp,solid.StartParam,solid.EndParam);
- const std::vector<IfcVector3>& curve_points = temp.verts;
- if(curve_points.empty()) {
- IFCImporter::LogWarn("curve evaluation yielded no points (IfcSweptDiskSolid)");
- return;
- }
- IfcVector3 current = curve_points[0];
- IfcVector3 previous = current;
- IfcVector3 next;
- IfcVector3 startvec;
- startvec.x = 1.0f;
- startvec.y = 1.0f;
- startvec.z = 1.0f;
- unsigned int last_dir = 0;
- // generate circles at the sweep positions
- for(size_t i = 0; i < samples; ++i) {
- if(i != samples - 1) {
- next = curve_points[i + 1];
- }
- // get a direction vector reflecting the approximate curvature (i.e. tangent)
- IfcVector3 d = (current-previous) + (next-previous);
-
- d.Normalize();
- // figure out an arbitrary point q so that (p-q) * d = 0,
- // try to maximize ||(p-q)|| * ||(p_last-q_last)||
- IfcVector3 q;
- bool take_any = false;
- for (unsigned int i = 0; i < 2; ++i, take_any = true) {
- if ((last_dir == 0 || take_any) && abs(d.x) > 1e-6) {
- q.y = startvec.y;
- q.z = startvec.z;
- q.x = -(d.y * q.y + d.z * q.z) / d.x;
- last_dir = 0;
- break;
- }
- else if ((last_dir == 1 || take_any) && abs(d.y) > 1e-6) {
- q.x = startvec.x;
- q.z = startvec.z;
- q.y = -(d.x * q.x + d.z * q.z) / d.y;
- last_dir = 1;
- break;
- }
- else if ((last_dir == 2 && abs(d.z) > 1e-6) || take_any) {
- q.y = startvec.y;
- q.x = startvec.x;
- q.z = -(d.y * q.y + d.x * q.x) / d.z;
- last_dir = 2;
- break;
- }
- }
- q *= solid.Radius / q.Length();
- startvec = q;
- // generate a rotation matrix to rotate q around d
- IfcMatrix4 rot;
- IfcMatrix4::Rotation(deltaAngle,d,rot);
- for (unsigned int seg = 0; seg < cnt_segments; ++seg, q *= rot ) {
- points.push_back(q + current);
- }
- previous = current;
- current = next;
- }
- // make quads
- for(size_t i = 0; i < samples - 1; ++i) {
- const aiVector3D& this_start = points[ i * cnt_segments ];
- // locate corresponding point on next sample ring
- unsigned int best_pair_offset = 0;
- float best_distance_squared = 1e10f;
- for (unsigned int seg = 0; seg < cnt_segments; ++seg) {
- const aiVector3D& p = points[ (i+1) * cnt_segments + seg];
- const float l = (p-this_start).SquareLength();
- if(l < best_distance_squared) {
- best_pair_offset = seg;
- best_distance_squared = l;
- }
- }
- for (unsigned int seg = 0; seg < cnt_segments; ++seg) {
- result.verts.push_back(points[ i * cnt_segments + (seg % cnt_segments)]);
- result.verts.push_back(points[ i * cnt_segments + (seg + 1) % cnt_segments]);
- result.verts.push_back(points[ (i+1) * cnt_segments + ((seg + 1 + best_pair_offset) % cnt_segments)]);
- result.verts.push_back(points[ (i+1) * cnt_segments + ((seg + best_pair_offset) % cnt_segments)]);
- IfcVector3& v1 = *(result.verts.end()-1);
- IfcVector3& v2 = *(result.verts.end()-2);
- IfcVector3& v3 = *(result.verts.end()-3);
- IfcVector3& v4 = *(result.verts.end()-4);
- if (((v4-v3) ^ (v4-v1)) * (v4 - curve_points[i]) < 0.0f) {
- std::swap(v4, v1);
- std::swap(v3, v2);
- }
- result.vertcnt.push_back(4);
- }
- }
- IFCImporter::LogDebug("generate mesh procedurally by sweeping a disk along a curve (IfcSweptDiskSolid)");
- }
- // ------------------------------------------------------------------------------------------------
- IfcMatrix3 DerivePlaneCoordinateSpace(const TempMesh& curmesh, bool& ok, IfcFloat* d = NULL)
- {
- const std::vector<IfcVector3>& out = curmesh.verts;
- IfcMatrix3 m;
- ok = true;
- const size_t s = out.size();
- assert(curmesh.vertcnt.size() == 1 && curmesh.vertcnt.back() == s);
- const IfcVector3 any_point = out[s-1];
- IfcVector3 nor;
- // The input polygon is arbitrarily shaped, therefore we might need some tries
- // until we find a suitable normal. Note that Newells algorithm would give
- // a more robust result, but this variant also gives us a suitable first
- // axis for the 2D coordinate space on the polygon plane, exploiting the
- // fact that the input polygon is nearly always a quad.
- bool done = false;
- size_t base = s-curmesh.vertcnt.back(), i, j;
- for (i = base; !done && i < s-1; !done && ++i) {
- for (j = i+1; j < s; ++j) {
- nor = -((out[i]-any_point)^(out[j]-any_point));
- if(fabs(nor.Length()) > 1e-8f) {
- done = true;
- break;
- }
- }
- }
- if(!done) {
- ok = false;
- return m;
- }
- nor.Normalize();
- IfcVector3 r = (out[i]-any_point);
- r.Normalize();
- if(d) {
- *d = -any_point * nor;
- }
- // Reconstruct orthonormal basis
- // XXX use Gram Schmidt for increased robustness
- IfcVector3 u = r ^ nor;
- u.Normalize();
- m.a1 = r.x;
- m.a2 = r.y;
- m.a3 = r.z;
- m.b1 = u.x;
- m.b2 = u.y;
- m.b3 = u.z;
- m.c1 = nor.x;
- m.c2 = nor.y;
- m.c3 = nor.z;
- return m;
- }
- // ------------------------------------------------------------------------------------------------
- bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std::vector<IfcVector3>& nors,
- TempMesh& curmesh)
- {
- IFCImporter::LogWarn("forced to use poly2tri fallback method to generate wall openings");
- std::vector<IfcVector3>& out = curmesh.verts;
- bool result = false;
- // Try to derive a solid base plane within the current surface for use as
- // working coordinate system.
- bool ok;
- const IfcMatrix3& m = DerivePlaneCoordinateSpace(curmesh, ok);
- if (!ok) {
- return false;
- }
- const IfcMatrix3 minv = IfcMatrix3(m).Inverse();
- const IfcVector3& nor = IfcVector3(m.c1, m.c2, m.c3);
- IfcFloat coord = -1;
- std::vector<IfcVector2> contour_flat;
- contour_flat.reserve(out.size());
- IfcVector2 vmin, vmax;
- MinMaxChooser<IfcVector2>()(vmin, vmax);
-
- // Move all points into the new coordinate system, collecting min/max verts on the way
- BOOST_FOREACH(IfcVector3& x, out) {
- const IfcVector3 vv = m * x;
- // keep Z offset in the plane coordinate system. Ignoring precision issues
- // (which are present, of course), this should be the same value for
- // all polygon vertices (assuming the polygon is planar).
- // XXX this should be guarded, but we somehow need to pick a suitable
- // epsilon
- // if(coord != -1.0f) {
- // assert(fabs(coord - vv.z) < 1e-3f);
- // }
- coord = vv.z;
- vmin = std::min(IfcVector2(vv.x, vv.y), vmin);
- vmax = std::max(IfcVector2(vv.x, vv.y), vmax);
- contour_flat.push_back(IfcVector2(vv.x,vv.y));
- }
-
- // With the current code in DerivePlaneCoordinateSpace,
- // vmin,vmax should always be the 0...1 rectangle (+- numeric inaccuracies)
- // but here we won't rely on this.
- vmax -= vmin;
- // If this happens then the projection must have been wrong.
- assert(vmax.Length());
- ClipperLib::ExPolygons clipped;
- ClipperLib::Polygons holes_union;
- IfcVector3 wall_extrusion;
- bool do_connections = false, first = true;
- try {
- ClipperLib::Clipper clipper_holes;
- size_t c = 0;
- BOOST_FOREACH(const TempOpening& t,openings) {
- const IfcVector3& outernor = nors[c++];
- const IfcFloat dot = nor * outernor;
- if (fabs(dot)<1.f-1e-6f) {
- continue;
- }
- const std::vector<IfcVector3>& va = t.profileMesh->verts;
- if(va.size() <= 2) {
- continue;
- }
-
- std::vector<IfcVector2> contour;
- BOOST_FOREACH(const IfcVector3& xx, t.profileMesh->verts) {
- IfcVector3 vv = m * xx, vv_extr = m * (xx + t.extrusionDir);
-
- const bool is_extruded_side = fabs(vv.z - coord) > fabs(vv_extr.z - coord);
- if (first) {
- first = false;
- if (dot > 0.f) {
- do_connections = true;
- wall_extrusion = t.extrusionDir;
- if (is_extruded_side) {
- wall_extrusion = - wall_extrusion;
- }
- }
- }
- // XXX should not be necessary - but it is. Why? For precision reasons?
- vv = is_extruded_side ? vv_extr : vv;
- contour.push_back(IfcVector2(vv.x,vv.y));
- }
- ClipperLib::Polygon hole;
- BOOST_FOREACH(IfcVector2& pip, contour) {
- pip.x = (pip.x - vmin.x) / vmax.x;
- pip.y = (pip.y - vmin.y) / vmax.y;
- hole.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- if (!ClipperLib::Orientation(hole)) {
- std::reverse(hole.begin(), hole.end());
- // assert(ClipperLib::Orientation(hole));
- }
- /*ClipperLib::Polygons pol_temp(1), pol_temp2(1);
- pol_temp[0] = hole;
- ClipperLib::OffsetPolygons(pol_temp,pol_temp2,5.0);
- hole = pol_temp2[0];*/
- clipper_holes.AddPolygon(hole,ClipperLib::ptSubject);
- }
- clipper_holes.Execute(ClipperLib::ctUnion,holes_union,
- ClipperLib::pftNonZero,
- ClipperLib::pftNonZero);
- if (holes_union.empty()) {
- return false;
- }
- // Now that we have the big union of all holes, subtract it from the outer contour
- // to obtain the final polygon to feed into the triangulator.
- {
- ClipperLib::Polygon poly;
- BOOST_FOREACH(IfcVector2& pip, contour_flat) {
- pip.x = (pip.x - vmin.x) / vmax.x;
- pip.y = (pip.y - vmin.y) / vmax.y;
- poly.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- if (ClipperLib::Orientation(poly)) {
- std::reverse(poly.begin(), poly.end());
- }
- clipper_holes.Clear();
- clipper_holes.AddPolygon(poly,ClipperLib::ptSubject);
- clipper_holes.AddPolygons(holes_union,ClipperLib::ptClip);
- clipper_holes.Execute(ClipperLib::ctDifference,clipped,
- ClipperLib::pftNonZero,
- ClipperLib::pftNonZero);
- }
- }
- catch (const char* sx) {
- IFCImporter::LogError("Ifc: error during polygon clipping, skipping openings for this face: (Clipper: "
- + std::string(sx) + ")");
- return false;
- }
- std::vector<IfcVector3> old_verts;
- std::vector<unsigned int> old_vertcnt;
- old_verts.swap(curmesh.verts);
- old_vertcnt.swap(curmesh.vertcnt);
- // add connection geometry to close the adjacent 'holes' for the openings
- // this should only be done from one side of the wall or the polygons
- // would be emitted twice.
- if (false && do_connections) {
- std::vector<IfcVector3> tmpvec;
- BOOST_FOREACH(ClipperLib::Polygon& opening, holes_union) {
- assert(ClipperLib::Orientation(opening));
- tmpvec.clear();
- BOOST_FOREACH(ClipperLib::IntPoint& point, opening) {
- tmpvec.push_back( minv * IfcVector3(
- vmin.x + from_int64(point.X) * vmax.x,
- vmin.y + from_int64(point.Y) * vmax.y,
- coord));
- }
- for(size_t i = 0, size = tmpvec.size(); i < size; ++i) {
- const size_t next = (i+1)%size;
- curmesh.vertcnt.push_back(4);
- const IfcVector3& in_world = tmpvec[i];
- const IfcVector3& next_world = tmpvec[next];
- // Assumptions: no 'partial' openings, wall thickness roughly the same across the wall
- curmesh.verts.push_back(in_world);
- curmesh.verts.push_back(in_world+wall_extrusion);
- curmesh.verts.push_back(next_world+wall_extrusion);
- curmesh.verts.push_back(next_world);
- }
- }
- }
-
- std::vector< std::vector<p2t::Point*> > contours;
- BOOST_FOREACH(ClipperLib::ExPolygon& clip, clipped) {
-
- contours.clear();
- // Build the outer polygon contour line for feeding into poly2tri
- std::vector<p2t::Point*> contour_points;
- BOOST_FOREACH(ClipperLib::IntPoint& point, clip.outer) {
- contour_points.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) );
- }
- p2t::CDT* cdt ;
- try {
- // Note: this relies on custom modifications in poly2tri to raise runtime_error's
- // instead if assertions. These failures are not debug only, they can actually
- // happen in production use if the input data is broken. An assertion would be
- // inappropriate.
- cdt = new p2t::CDT(contour_points);
- }
- catch(const std::exception& e) {
- IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
- + std::string(e.what()) + ")");
- continue;
- }
-
- // Build the poly2tri inner contours for all holes we got from ClipperLib
- BOOST_FOREACH(ClipperLib::Polygon& opening, clip.holes) {
-
- contours.push_back(std::vector<p2t::Point*>());
- std::vector<p2t::Point*>& contour = contours.back();
- BOOST_FOREACH(ClipperLib::IntPoint& point, opening) {
- contour.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) );
- }
- cdt->AddHole(contour);
- }
-
- try {
- // Note: See above
- cdt->Triangulate();
- }
- catch(const std::exception& e) {
- IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
- + std::string(e.what()) + ")");
- continue;
- }
- const std::vector<p2t::Triangle*>& tris = cdt->GetTriangles();
- // Collect the triangles we just produced
- BOOST_FOREACH(p2t::Triangle* tri, tris) {
- for(int i = 0; i < 3; ++i) {
- const IfcVector2& v = IfcVector2(
- static_cast<IfcFloat>( tri->GetPoint(i)->x ),
- static_cast<IfcFloat>( tri->GetPoint(i)->y )
- );
- assert(v.x <= 1.0 && v.x >= 0.0 && v.y <= 1.0 && v.y >= 0.0);
- const IfcVector3 v3 = minv * IfcVector3(vmin.x + v.x * vmax.x, vmin.y + v.y * vmax.y,coord) ;
- curmesh.verts.push_back(v3);
- }
- curmesh.vertcnt.push_back(3);
- }
- result = true;
- }
- if (!result) {
- // revert -- it's a shame, but better than nothing
- curmesh.verts.insert(curmesh.verts.end(),old_verts.begin(), old_verts.end());
- curmesh.vertcnt.insert(curmesh.vertcnt.end(),old_vertcnt.begin(), old_vertcnt.end());
- IFCImporter::LogError("Ifc: revert, could not generate openings for this wall");
- }
- return result;
- }
- // ------------------------------------------------------------------------------------------------
- struct DistanceSorter {
- DistanceSorter(const IfcVector3& base) : base(base) {}
- bool operator () (const TempOpening& a, const TempOpening& b) const {
- return (a.profileMesh->Center()-base).SquareLength() < (b.profileMesh->Center()-base).SquareLength();
- }
- IfcVector3 base;
- };
- // ------------------------------------------------------------------------------------------------
- struct XYSorter {
- // sort first by X coordinates, then by Y coordinates
- bool operator () (const IfcVector2&a, const IfcVector2& b) const {
- if (a.x == b.x) {
- return a.y < b.y;
- }
- return a.x < b.x;
- }
- };
- typedef std::pair< IfcVector2, IfcVector2 > BoundingBox;
- typedef std::map<IfcVector2,size_t,XYSorter> XYSortedField;
- // ------------------------------------------------------------------------------------------------
- void QuadrifyPart(const IfcVector2& pmin, const IfcVector2& pmax, XYSortedField& field,
- const std::vector< BoundingBox >& bbs,
- std::vector<IfcVector2>& out)
- {
- if (!(pmin.x-pmax.x) || !(pmin.y-pmax.y)) {
- return;
- }
- IfcFloat xs = 1e10, xe = 1e10;
- bool found = false;
- // Search along the x-axis until we find an opening
- XYSortedField::iterator start = field.begin();
- for(; start != field.end(); ++start) {
- const BoundingBox& bb = bbs[(*start).second];
- if(bb.first.x >= pmax.x) {
- break;
- }
- if (bb.second.x > pmin.x && bb.second.y > pmin.y && bb.first.y < pmax.y) {
- xs = bb.first.x;
- xe = bb.second.x;
- found = true;
- break;
- }
- }
- if (!found) {
- // the rectangle [pmin,pend] is opaque, fill it
- out.push_back(pmin);
- out.push_back(IfcVector2(pmin.x,pmax.y));
- out.push_back(pmax);
- out.push_back(IfcVector2(pmax.x,pmin.y));
- return;
- }
- xs = std::max(pmin.x,xs);
- xe = std::min(pmax.x,xe);
- // see if there's an offset to fill at the top of our quad
- if (xs - pmin.x) {
- out.push_back(pmin);
- out.push_back(IfcVector2(pmin.x,pmax.y));
- out.push_back(IfcVector2(xs,pmax.y));
- out.push_back(IfcVector2(xs,pmin.y));
- }
- // search along the y-axis for all openings that overlap xs and our quad
- IfcFloat ylast = pmin.y;
- found = false;
- for(; start != field.end(); ++start) {
- const BoundingBox& bb = bbs[(*start).second];
- if (bb.first.x > xs || bb.first.y >= pmax.y) {
- break;
- }
- if (bb.second.y > ylast) {
- found = true;
- const IfcFloat ys = std::max(bb.first.y,pmin.y), ye = std::min(bb.second.y,pmax.y);
- if (ys - ylast > 0.0f) {
- QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,ys) ,field,bbs,out);
- }
- // the following are the window vertices
- /*wnd.push_back(IfcVector2(xs,ys));
- wnd.push_back(IfcVector2(xs,ye));
- wnd.push_back(IfcVector2(xe,ye));
- wnd.push_back(IfcVector2(xe,ys));*/
- ylast = ye;
- }
- }
- if (!found) {
- // the rectangle [pmin,pend] is opaque, fill it
- out.push_back(IfcVector2(xs,pmin.y));
- out.push_back(IfcVector2(xs,pmax.y));
- out.push_back(IfcVector2(xe,pmax.y));
- out.push_back(IfcVector2(xe,pmin.y));
- return;
- }
- if (ylast < pmax.y) {
- QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,pmax.y) ,field,bbs,out);
- }
- // now for the whole rest
- if (pmax.x-xe) {
- QuadrifyPart(IfcVector2(xe,pmin.y), pmax ,field,bbs,out);
- }
- }
- typedef std::vector<IfcVector2> Contour;
- typedef std::vector<bool> SkipList; // should probably use int for performance reasons
- struct ProjectedWindowContour
- {
- Contour contour;
- BoundingBox bb;
- SkipList skiplist;
- bool is_rectangular;
- ProjectedWindowContour(const Contour& contour, const BoundingBox& bb, bool is_rectangular)
- : contour(contour)
- , bb(bb)
- , is_rectangular(is_rectangular)
- {}
- bool IsInvalid() const {
- return contour.empty();
- }
- void FlagInvalid() {
- contour.clear();
- }
- void PrepareSkiplist() {
- skiplist.resize(contour.size(),false);
- }
- };
- typedef std::vector< ProjectedWindowContour > ContourVector;
- // ------------------------------------------------------------------------------------------------
- bool BoundingBoxesOverlapping( const BoundingBox &ibb, const BoundingBox &bb )
- {
- // count the '=' case as non-overlapping but as adjacent to each other
- return ibb.first.x < bb.second.x && ibb.second.x > bb.first.x &&
- ibb.first.y < bb.second.y && ibb.second.y > bb.first.y;
- }
- // ------------------------------------------------------------------------------------------------
- bool IsDuplicateVertex(const IfcVector2& vv, const std::vector<IfcVector2>& temp_contour)
- {
- // sanity check for duplicate vertices
- BOOST_FOREACH(const IfcVector2& cp, temp_contour) {
- if ((cp-vv).SquareLength() < 1e-5f) {
- return true;
- }
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- void ExtractVerticesFromClipper(const ClipperLib::Polygon& poly, std::vector<IfcVector2>& temp_contour,
- bool filter_duplicates = false)
- {
- temp_contour.clear();
- BOOST_FOREACH(const ClipperLib::IntPoint& point, poly) {
- IfcVector2 vv = IfcVector2( from_int64(point.X), from_int64(point.Y));
- vv = std::max(vv,IfcVector2());
- vv = std::min(vv,one_vec);
- if (!filter_duplicates || !IsDuplicateVertex(vv, temp_contour)) {
- temp_contour.push_back(vv);
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- BoundingBox GetBoundingBox(const ClipperLib::Polygon& poly)
- {
- IfcVector2 newbb_min, newbb_max;
- MinMaxChooser<IfcVector2>()(newbb_min, newbb_max);
- BOOST_FOREACH(const ClipperLib::IntPoint& point, poly) {
- IfcVector2 vv = IfcVector2( from_int64(point.X), from_int64(point.Y));
- // sanity rounding
- vv = std::max(vv,IfcVector2());
- vv = std::min(vv,one_vec);
- newbb_min = std::min(newbb_min,vv);
- newbb_max = std::max(newbb_max,vv);
- }
- return BoundingBox(newbb_min, newbb_max);
- }
- // ------------------------------------------------------------------------------------------------
- void InsertWindowContours(const ContourVector& contours,
- const std::vector<TempOpening>& openings,
- TempMesh& curmesh)
- {
- // fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
- for(size_t i = 0; i < contours.size();++i) {
- const BoundingBox& bb = contours[i].bb;
- const std::vector<IfcVector2>& contour = contours[i].contour;
- if(contour.empty()) {
- continue;
- }
- // check if we need to do it at all - many windows just fit perfectly into their quadratic holes,
- // i.e. their contours *are* already their bounding boxes.
- if (contour.size() == 4) {
- std::set<IfcVector2,XYSorter> verts;
- for(size_t n = 0; n < 4; ++n) {
- verts.insert(contour[n]);
- }
- const std::set<IfcVector2,XYSorter>::const_iterator end = verts.end();
- if (verts.find(bb.first)!=end && verts.find(bb.second)!=end
- && verts.find(IfcVector2(bb.first.x,bb.second.y))!=end
- && verts.find(IfcVector2(bb.second.x,bb.first.y))!=end
- ) {
- continue;
- }
- }
- const IfcFloat diag = (bb.first-bb.second).Length();
- const IfcFloat epsilon = diag/1000.f;
- // walk through all contour points and find those that lie on the BB corner
- size_t last_hit = -1, very_first_hit = -1;
- IfcVector2 edge;
- for(size_t n = 0, e=0, size = contour.size();; n=(n+1)%size, ++e) {
- // sanity checking
- if (e == size*2) {
- IFCImporter::LogError("encountered unexpected topology while generating window contour");
- break;
- }
- const IfcVector2& v = contour[n];
- bool hit = false;
- if (fabs(v.x-bb.first.x)<epsilon) {
- edge.x = bb.first.x;
- hit = true;
- }
- else if (fabs(v.x-bb.second.x)<epsilon) {
- edge.x = bb.second.x;
- hit = true;
- }
- if (fabs(v.y-bb.first.y)<epsilon) {
- edge.y = bb.first.y;
- hit = true;
- }
- else if (fabs(v.y-bb.second.y)<epsilon) {
- edge.y = bb.second.y;
- hit = true;
- }
- if (hit) {
- if (last_hit != (size_t)-1) {
- const size_t old = curmesh.verts.size();
- size_t cnt = last_hit > n ? size-(last_hit-n) : n-last_hit;
- for(size_t a = last_hit, e = 0; e <= cnt; a=(a+1)%size, ++e) {
- // hack: this is to fix cases where opening contours are self-intersecting.
- // Clipper doesn't produce such polygons, but as soon as we're back in
- // our brave new floating-point world, very small distances are consumed
- // by the maximum available precision, leading to self-intersecting
- // polygons. This fix makes concave windows fail even worse, but
- // anyway, fail is fail.
- if ((contour[a] - edge).SquareLength() > diag*diag*0.7) {
- continue;
- }
- curmesh.verts.push_back(IfcVector3(contour[a].x, contour[a].y, 0.0f));
- }
- if (edge != contour[last_hit]) {
- IfcVector2 corner = edge;
- if (fabs(contour[last_hit].x-bb.first.x)<epsilon) {
- corner.x = bb.first.x;
- }
- else if (fabs(contour[last_hit].x-bb.second.x)<epsilon) {
- corner.x = bb.second.x;
- }
- if (fabs(contour[last_hit].y-bb.first.y)<epsilon) {
- corner.y = bb.first.y;
- }
- else if (fabs(contour[last_hit].y-bb.second.y)<epsilon) {
- corner.y = bb.second.y;
- }
- curmesh.verts.push_back(IfcVector3(corner.x, corner.y, 0.0f));
- }
- else if (cnt == 1) {
- // avoid degenerate polygons (also known as lines or points)
- curmesh.verts.erase(curmesh.verts.begin()+old,curmesh.verts.end());
- }
- if (const size_t d = curmesh.verts.size()-old) {
- curmesh.vertcnt.push_back(d);
- std::reverse(curmesh.verts.rbegin(),curmesh.verts.rbegin()+d);
- }
- if (n == very_first_hit) {
- break;
- }
- }
- else {
- very_first_hit = n;
- }
- last_hit = n;
- }
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- void MergeWindowContours (const std::vector<IfcVector2>& a,
- const std::vector<IfcVector2>& b,
- ClipperLib::ExPolygons& out)
- {
- out.clear();
- ClipperLib::Clipper clipper;
- ClipperLib::Polygon clip;
- BOOST_FOREACH(const IfcVector2& pip, a) {
- clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- if (ClipperLib::Orientation(clip)) {
- std::reverse(clip.begin(), clip.end());
- }
- clipper.AddPolygon(clip, ClipperLib::ptSubject);
- clip.clear();
- BOOST_FOREACH(const IfcVector2& pip, b) {
- clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- if (ClipperLib::Orientation(clip)) {
- std::reverse(clip.begin(), clip.end());
- }
- clipper.AddPolygon(clip, ClipperLib::ptSubject);
- clipper.Execute(ClipperLib::ctUnion, out,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
- }
- // ------------------------------------------------------------------------------------------------
- // Subtract a from b
- void MakeDisjunctWindowContours (const std::vector<IfcVector2>& a,
- const std::vector<IfcVector2>& b,
- ClipperLib::ExPolygons& out)
- {
- out.clear();
- ClipperLib::Clipper clipper;
- ClipperLib::Polygon clip;
- BOOST_FOREACH(const IfcVector2& pip, a) {
- clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- if (ClipperLib::Orientation(clip)) {
- std::reverse(clip.begin(), clip.end());
- }
- clipper.AddPolygon(clip, ClipperLib::ptClip);
- clip.clear();
- BOOST_FOREACH(const IfcVector2& pip, b) {
- clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- if (ClipperLib::Orientation(clip)) {
- std::reverse(clip.begin(), clip.end());
- }
- clipper.AddPolygon(clip, ClipperLib::ptSubject);
- clipper.Execute(ClipperLib::ctDifference, out,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
- }
- // ------------------------------------------------------------------------------------------------
- void CleanupWindowContour(ProjectedWindowContour& window)
- {
- std::vector<IfcVector2> scratch;
- std::vector<IfcVector2>& contour = window.contour;
- ClipperLib::Polygon subject;
- ClipperLib::Clipper clipper;
- ClipperLib::ExPolygons clipped;
- BOOST_FOREACH(const IfcVector2& pip, contour) {
- subject.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- clipper.AddPolygon(subject,ClipperLib::ptSubject);
- clipper.Execute(ClipperLib::ctUnion,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
- // This should yield only one polygon or something went wrong
- if (clipped.size() != 1) {
- // Empty polygon? drop the contour altogether
- if(clipped.empty()) {
- IFCImporter::LogError("error during polygon clipping, window contour is degenerate");
- window.FlagInvalid();
- return;
- }
- // Else: take the first only
- IFCImporter::LogError("error during polygon clipping, window contour is not convex");
- }
- ExtractVerticesFromClipper(clipped[0].outer, scratch);
- // Assume the bounding box doesn't change during this operation
- }
- // ------------------------------------------------------------------------------------------------
- void CleanupWindowContours(ContourVector& contours)
- {
- // Use PolyClipper to clean up window contours
- try {
- BOOST_FOREACH(ProjectedWindowContour& window, contours) {
- CleanupWindowContour(window);
- }
- }
- catch (const char* sx) {
- IFCImporter::LogError("error during polygon clipping, window shape may be wrong: (Clipper: "
- + std::string(sx) + ")");
- }
- }
- // ------------------------------------------------------------------------------------------------
- void CleanupOuterContour(const std::vector<IfcVector2>& contour_flat, TempMesh& curmesh)
- {
- std::vector<IfcVector3> vold;
- std::vector<unsigned int> iold;
- vold.reserve(curmesh.verts.size());
- iold.reserve(curmesh.vertcnt.size());
- // Fix the outer contour using polyclipper
- try {
- ClipperLib::Polygon subject;
- ClipperLib::Clipper clipper;
- ClipperLib::ExPolygons clipped;
- ClipperLib::Polygon clip;
- clip.reserve(contour_flat.size());
- BOOST_FOREACH(const IfcVector2& pip, contour_flat) {
- clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- if (!ClipperLib::Orientation(clip)) {
- std::reverse(clip.begin(), clip.end());
- }
- // We need to run polyclipper on every single polygon -- we can't run it one all
- // of them at once or it would merge them all together which would undo all
- // previous steps
- subject.reserve(4);
- size_t index = 0;
- size_t countdown = 0;
- BOOST_FOREACH(const IfcVector3& pip, curmesh.verts) {
- if (!countdown) {
- countdown = curmesh.vertcnt[index++];
- if (!countdown) {
- continue;
- }
- }
- subject.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- if (--countdown == 0) {
- if (!ClipperLib::Orientation(subject)) {
- std::reverse(subject.begin(), subject.end());
- }
- clipper.AddPolygon(subject,ClipperLib::ptSubject);
- clipper.AddPolygon(clip,ClipperLib::ptClip);
- clipper.Execute(ClipperLib::ctIntersection,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
- BOOST_FOREACH(const ClipperLib::ExPolygon& ex, clipped) {
- iold.push_back(ex.outer.size());
- BOOST_FOREACH(const ClipperLib::IntPoint& point, ex.outer) {
- vold.push_back(IfcVector3(
- from_int64(point.X),
- from_int64(point.Y),
- 0.0f));
- }
- }
- subject.clear();
- clipped.clear();
- clipper.Clear();
- }
- }
- }
- catch (const char* sx) {
- IFCImporter::LogError("Ifc: error during polygon clipping, wall contour line may be wrong: (Clipper: "
- + std::string(sx) + ")");
- return;
- }
- // swap data arrays
- std::swap(vold,curmesh.verts);
- std::swap(iold,curmesh.vertcnt);
- }
- typedef std::vector<TempOpening*> OpeningRefs;
- typedef std::vector<OpeningRefs > OpeningRefVector;
- typedef std::vector<std::pair<
- ContourVector::const_iterator,
- Contour::const_iterator>
- > ContourRefVector;
- // ------------------------------------------------------------------------------------------------
- bool BoundingBoxesAdjacent(const BoundingBox& bb, const BoundingBox& ibb)
- {
- // TODO: I'm pretty sure there is a much more compact way to check this
- const IfcFloat epsilon = 1e-5f;
- return (fabs(bb.second.x - ibb.first.x) < epsilon && bb.first.y <= ibb.second.y && bb.second.y >= ibb.first.y) ||
- (fabs(bb.first.x - ibb.second.x) < epsilon && ibb.first.y <= bb.second.y && ibb.second.y >= bb.first.y) ||
- (fabs(bb.second.y - ibb.first.y) < epsilon && bb.first.x <= ibb.second.x && bb.second.x >= ibb.first.x) ||
- (fabs(bb.first.y - ibb.second.y) < epsilon && ibb.first.x <= bb.second.x && ibb.second.x >= bb.first.x);
- }
- // ------------------------------------------------------------------------------------------------
- // Check if m0,m1 intersects n0,n1 assuming same ordering of the points in the line segments
- // output the intersection points on n0,n1
- bool IntersectingLineSegments(const IfcVector2& n0, const IfcVector2& n1,
- const IfcVector2& m0, const IfcVector2& m1,
- IfcVector2& out0, IfcVector2& out1)
- {
- const IfcVector2& m0_to_m1 = m1 - m0;
- const IfcVector2& n0_to_n1 = n1 - n0;
- const IfcVector2& n0_to_m0 = m0 - n0;
- const IfcVector2& n1_to_m1 = m1 - n1;
- const IfcVector2& n0_to_m1 = m1 - n0;
- const IfcFloat e = 1e-5f;
- const IfcFloat smalle = 1e-9f;
- static const IfcFloat inf = std::numeric_limits<IfcFloat>::infinity();
- if (!(n0_to_m0.SquareLength() < e*e || fabs(n0_to_m0 * n0_to_n1) / (n0_to_m0.Length() * n0_to_n1.Length()) > 1-1e-5 )) {
- return false;
- }
- if (!(n1_to_m1.SquareLength() < e*e || fabs(n1_to_m1 * n0_to_n1) / (n1_to_m1.Length() * n0_to_n1.Length()) > 1-1e-5 )) {
- return false;
- }
- IfcFloat s0;
- IfcFloat s1;
- // pick the axis with the higher absolute difference so the result
- // is more accurate. Since we cannot guarantee that the axis with
- // the higher absolute difference is big enough as to avoid
- // divisions by zero, the case 0/0 ~ infinity is detected and
- // handled separately.
- if(fabs(n0_to_n1.x) > fabs(n0_to_n1.y)) {
- s0 = n0_to_m0.x / n0_to_n1.x;
- s1 = n0_to_m1.x / n0_to_n1.x;
- if (fabs(s0) == inf && fabs(n0_to_m0.x) < smalle) {
- s0 = 0.;
- }
- if (fabs(s1) == inf && fabs(n0_to_m1.x) < smalle) {
- s1 = 0.;
- }
- }
- else {
- s0 = n0_to_m0.y / n0_to_n1.y;
- s1 = n0_to_m1.y / n0_to_n1.y;
- if (fabs(s0) == inf && fabs(n0_to_m0.y) < smalle) {
- s0 = 0.;
- }
- if (fabs(s1) == inf && fabs(n0_to_m1.y) < smalle) {
- s1 = 0.;
- }
- }
- if (s1 < s0) {
- std::swap(s1,s0);
- }
- s0 = std::max(0.0,s0);
- s1 = std::max(0.0,s1);
- s0 = std::min(1.0,s0);
- s1 = std::min(1.0,s1);
- if (fabs(s1-s0) < e) {
- return false;
- }
- out0 = n0 + s0 * n0_to_n1;
- out1 = n0 + s1 * n0_to_n1;
- return true;
- }
- // ------------------------------------------------------------------------------------------------
- void FindAdjacentContours(ContourVector::iterator current, const ContourVector& contours)
- {
- const IfcFloat sqlen_epsilon = static_cast<IfcFloat>(1e-8);
- const BoundingBox& bb = (*current).bb;
- // What is to be done here is to populate the skip lists for the contour
- // and to add necessary padding points when needed.
- SkipList& skiplist = (*current).skiplist;
- // First step to find possible adjacent contours is to check for adjacent bounding
- // boxes. If the bounding boxes are not adjacent, the contours lines cannot possibly be.
- for (ContourVector::const_iterator it = contours.begin(), end = contours.end(); it != end; ++it) {
- if ((*it).IsInvalid()) {
- continue;
- }
- // this left here to make clear we also run on the current contour
- // to check for overlapping contour segments (which can happen due
- // to projection artifacts).
- //if(it == current) {
- // continue;
- //}
- const bool is_me = it == current;
- const BoundingBox& ibb = (*it).bb;
- // Assumption: the bounding boxes are pairwise disjoint or identical
- ai_assert(is_me || !BoundingBoxesOverlapping(bb, ibb));
- if (is_me || BoundingBoxesAdjacent(bb, ibb)) {
- // Now do a each-against-everyone check for intersecting contour
- // lines. This obviously scales terribly, but in typical real
- // world Ifc files it will not matter since most windows that
- // are adjacent to each others are rectangular anyway.
- Contour& ncontour = (*current).contour;
- const Contour& mcontour = (*it).contour;
- for (size_t n = 0; n < ncontour.size(); ++n) {
- const IfcVector2& n0 = ncontour[n];
- const IfcVector2& n1 = ncontour[(n+1) % ncontour.size()];
- for (size_t m = 0, mend = (is_me ? n : mcontour.size()); m < mend; ++m) {
- ai_assert(&mcontour != &ncontour || m < n);
- const IfcVector2& m0 = mcontour[m];
- const IfcVector2& m1 = mcontour[(m+1) % mcontour.size()];
- IfcVector2 isect0, isect1;
- if (IntersectingLineSegments(n0,n1, m0, m1, isect0, isect1)) {
- if ((isect0 - n0).SquareLength() > sqlen_epsilon) {
- ++n;
- ncontour.insert(ncontour.begin() + n, isect0);
- skiplist.insert(skiplist.begin() + n, true);
- }
- else {
- skiplist[n] = true;
- }
- if ((isect1 - n1).SquareLength() > sqlen_epsilon) {
- ++n;
- ncontour.insert(ncontour.begin() + n, isect1);
- skiplist.insert(skiplist.begin() + n, false);
- }
- }
- }
- }
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- AI_FORCE_INLINE bool LikelyBorder(const IfcVector2& vdelta)
- {
- const IfcFloat dot_point_epsilon = static_cast<IfcFloat>(1e-5);
- return fabs(vdelta.x * vdelta.y) < dot_point_epsilon;
- }
- // ------------------------------------------------------------------------------------------------
- void FindBorderContours(ContourVector::iterator current)
- {
- const IfcFloat border_epsilon_upper = static_cast<IfcFloat>(1-1e-4);
- const IfcFloat border_epsilon_lower = static_cast<IfcFloat>(1e-4);
- bool outer_border = false;
- bool start_on_outer_border = false;
- SkipList& skiplist = (*current).skiplist;
- IfcVector2 last_proj_point;
- const Contour::const_iterator cbegin = (*current).contour.begin(), cend = (*current).contour.end();
- for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
- const IfcVector2& proj_point = *cit;
- // Check if this connection is along the outer boundary of the projection
- // plane. In such a case we better drop it because such 'edges' should
- // not have any geometry to close them (think of door openings).
- if (proj_point.x <= border_epsilon_lower || proj_point.x >= border_epsilon_upper ||
- proj_point.y <= border_epsilon_lower || proj_point.y >= border_epsilon_upper) {
- if (outer_border) {
- ai_assert(cit != cbegin);
- if (LikelyBorder(proj_point - last_proj_point)) {
- skiplist[std::distance(cbegin, cit) - 1] = true;
- }
- }
- else if (cit == cbegin) {
- start_on_outer_border = true;
- }
-
- outer_border = true;
- }
- else {
- outer_border = false;
- }
- last_proj_point = proj_point;
- }
- // handle last segment
- if (outer_border && start_on_outer_border) {
- const IfcVector2& proj_point = *cbegin;
- if (LikelyBorder(proj_point - last_proj_point)) {
- skiplist[skiplist.size()-1] = true;
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- AI_FORCE_INLINE bool LikelyDiagonal(IfcVector2 vdelta)
- {
- vdelta.x = fabs(vdelta.x);
- vdelta.y = fabs(vdelta.y);
- return (fabs(vdelta.x-vdelta.y) < 0.8 * std::max(vdelta.x, vdelta.y));
- }
- // ------------------------------------------------------------------------------------------------
- void FindLikelyCrossingLines(ContourVector::iterator current)
- {
- SkipList& skiplist = (*current).skiplist;
- IfcVector2 last_proj_point;
- const Contour::const_iterator cbegin = (*current).contour.begin(), cend = (*current).contour.end();
- for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
- const IfcVector2& proj_point = *cit;
- if (cit != cbegin) {
- IfcVector2 vdelta = proj_point - last_proj_point;
- if (LikelyDiagonal(vdelta)) {
- skiplist[std::distance(cbegin, cit) - 1] = true;
- }
- }
- last_proj_point = proj_point;
- }
- // handle last segment
- if (LikelyDiagonal(*cbegin - last_proj_point)) {
- skiplist[skiplist.size()-1] = true;
- }
- }
- // ------------------------------------------------------------------------------------------------
- void CloseWindows(ContourVector& contours,
- const IfcMatrix4& minv,
- OpeningRefVector contours_to_openings,
- TempMesh& curmesh)
- {
- // For all contour points, check if one of the assigned openings does
- // already have points assigned to it. In this case, assume this is
- // the other side of the wall and generate connections between
- // the two holes in order to close the window.
- // All this gets complicated by the fact that contours may pertain to
- // multiple openings(due to merging of adjacent or overlapping openings).
- // The code is based on the assumption that this happens symmetrically
- // on both sides of the wall. If it doesn't (which would be a bug anyway)
- // wrong geometry may be generated.
- for (ContourVector::iterator it = contours.begin(), end = contours.end(); it != end; ++it) {
- if ((*it).IsInvalid()) {
- continue;
- }
- OpeningRefs& refs = contours_to_openings[std::distance(contours.begin(), it)];
- bool has_other_side = false;
- BOOST_FOREACH(const TempOpening* opening, refs) {
- if(!opening->wallPoints.empty()) {
- has_other_side = true;
- break;
- }
- }
- ContourRefVector adjacent_contours;
- // prepare a skiplist for this contour. The skiplist is used to
- // eliminate unwanted contour lines for adjacent windows and
- // those bordering the outer frame.
- (*it).PrepareSkiplist();
- FindAdjacentContours(it, contours);
- FindBorderContours(it);
- // if the window is the result of a finite union or intersection of rectangles,
- // there shouldn't be any crossing or diagonal lines in it. Such lines would
- // be artifacts caused by numerical inaccuracies or other bugs in polyclipper
- // and our own code. Since rectangular openings are by far the most frequent
- // case, it is worth filtering for this corner case.
- if((*it).is_rectangular) {
- FindLikelyCrossingLines(it);
- }
- ai_assert((*it).skiplist.size() == (*it).contour.size());
- SkipList::const_iterator skipbegin = (*it).skiplist.begin(), skipend = (*it).skiplist.end();
- const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end();
- if (has_other_side) {
- curmesh.verts.reserve(curmesh.verts.size() + (*it).contour.size() * 4);
- curmesh.vertcnt.reserve(curmesh.vertcnt.size() + (*it).contour.size());
- // XXX this algorithm is really a bit inefficient - both in terms
- // of constant factor and of asymptotic runtime.
- size_t vstart = curmesh.verts.size();
- std::vector<bool>::const_iterator skipit = skipbegin;
- IfcVector3 start0;
- IfcVector3 start1;
- IfcVector2 last_proj;
- //const IfcVector2& first_proj;
- bool drop_this_edge = false;
- for (Contour::const_iterator cit = cbegin; cit != cend; ++cit, drop_this_edge = *skipit++) {
- const IfcVector2& proj_point = *cit;
- // Locate the closest opposite point. This should be a good heuristic to
- // connect only the points that are really intended to be connected.
- IfcFloat best = static_cast<IfcFloat>(1e10);
- IfcVector3 bestv;
- /* debug code to check for unwanted diagonal lines in window contours
- if (cit != cbegin) {
- const IfcVector2& vdelta = proj_point - last_proj;
- if (fabs(vdelta.x-vdelta.y) < 0.5 * std::max(vdelta.x, vdelta.y)) {
- //continue;
- }
- } */
- const IfcVector3& world_point = minv * IfcVector3(proj_point.x,proj_point.y,0.0f);
- last_proj = proj_point;
- BOOST_FOREACH(const TempOpening* opening, refs) {
- BOOST_FOREACH(const IfcVector3& other, opening->wallPoints) {
- const IfcFloat sqdist = (world_point - other).SquareLength();
- if (sqdist < best) {
- bestv = other;
- best = sqdist;
- }
- }
- }
- IfcVector3 diff = bestv - world_point;
- diff.Normalize();
- if (drop_this_edge) {
- curmesh.verts.pop_back();
- curmesh.verts.pop_back();
- }
- else {
- curmesh.verts.push_back(cit == cbegin ? world_point : bestv);
- curmesh.verts.push_back(cit == cbegin ? bestv : world_point);
- curmesh.vertcnt.push_back(4);
- }
- if (cit == cbegin) {
- start0 = world_point;
- start1 = bestv;
- continue;
- }
- curmesh.verts.push_back(world_point);
- curmesh.verts.push_back(bestv);
- if (cit == cend - 1) {
- drop_this_edge = *skipit;
- // Check if the final connection (last to first element) is itself
- // a border edge that needs to be dropped.
- if (drop_this_edge) {
- curmesh.vertcnt.pop_back();
- curmesh.verts.pop_back();
- curmesh.verts.pop_back();
- }
- else {
- curmesh.verts.push_back(start1);
- curmesh.verts.push_back(start0);
- }
- }
- }
- }
- else {
- BOOST_FOREACH(TempOpening* opening, refs) {
- opening->wallPoints.reserve(opening->wallPoints.capacity() + (*it).contour.size());
- for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
- const IfcVector2& proj_point = *cit;
- opening->wallPoints.push_back(minv * IfcVector3(proj_point.x,proj_point.y,0.0f));
- }
- }
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- void Quadrify(const std::vector< BoundingBox >& bbs, TempMesh& curmesh)
- {
- ai_assert(curmesh.IsEmpty());
- std::vector<IfcVector2> quads;
- quads.reserve(bbs.size()*4);
- // sort openings by x and y axis as a preliminiary to the QuadrifyPart() algorithm
- XYSortedField field;
- for (std::vector<BoundingBox>::const_iterator it = bbs.begin(); it != bbs.end(); ++it) {
- if (field.find((*it).first) != field.end()) {
- IFCImporter::LogWarn("constraint failure during generation of wall openings, results may be faulty");
- }
- field[(*it).first] = std::distance(bbs.begin(),it);
- }
- QuadrifyPart(IfcVector2(),one_vec,field,bbs,quads);
- ai_assert(!(quads.size() % 4));
- curmesh.vertcnt.resize(quads.size()/4,4);
- curmesh.verts.reserve(quads.size());
- BOOST_FOREACH(const IfcVector2& v2, quads) {
- curmesh.verts.push_back(IfcVector3(v2.x, v2.y, static_cast<IfcFloat>(0.0)));
- }
- }
- // ------------------------------------------------------------------------------------------------
- void Quadrify(const ContourVector& contours, TempMesh& curmesh)
- {
- std::vector<BoundingBox> bbs;
- bbs.reserve(contours.size());
- BOOST_FOREACH(const ContourVector::value_type& val, contours) {
- bbs.push_back(val.bb);
- }
- Quadrify(bbs, curmesh);
- }
- // ------------------------------------------------------------------------------------------------
- IfcMatrix4 ProjectOntoPlane(std::vector<IfcVector2>& out_contour, const TempMesh& in_mesh,
- IfcFloat& out_base_d, bool &ok)
- {
- const std::vector<IfcVector3>& in_verts = in_mesh.verts;
- ok = true;
- IfcMatrix4 m = IfcMatrix4(DerivePlaneCoordinateSpace(in_mesh, ok, &out_base_d));
- if(!ok) {
- return IfcMatrix4();
- }
- IfcFloat coord = 0;
- out_contour.reserve(in_verts.size());
- IfcVector2 vmin, vmax;
- MinMaxChooser<IfcVector2>()(vmin, vmax);
- // Project all points into the new coordinate system, collect min/max verts on the way
- BOOST_FOREACH(const IfcVector3& x, in_verts) {
- const IfcVector3& vv = m * x;
- // keep Z offset in the plane coordinate system. Ignoring precision issues
- // (which are present, of course), this should be the same value for
- // all polygon vertices (assuming the polygon is planar).
- // XXX this should be guarded, but we somehow need to pick a suitable
- // epsilon
- // if(coord != -1.0f) {
- // assert(fabs(coord - vv.z) < 1e-3f);
- // }
- coord += vv.z;
- vmin = std::min(IfcVector2(vv.x, vv.y), vmin);
- vmax = std::max(IfcVector2(vv.x, vv.y), vmax);
- out_contour.push_back(IfcVector2(vv.x,vv.y));
- }
- coord /= in_verts.size();
- // Further improve the projection by mapping the entire working set into
- // [0,1] range. This gives us a consistent data range so all epsilons
- // used below can be constants.
- vmax -= vmin;
- BOOST_FOREACH(IfcVector2& vv, out_contour) {
- vv.x = (vv.x - vmin.x) / vmax.x;
- vv.y = (vv.y - vmin.y) / vmax.y;
- // sanity rounding
- vv = std::max(vv,IfcVector2());
- vv = std::min(vv,one_vec);
- }
- IfcMatrix4 mult;
- mult.a1 = static_cast<IfcFloat>(1.0) / vmax.x;
- mult.b2 = static_cast<IfcFloat>(1.0) / vmax.y;
- mult.a4 = -vmin.x * mult.a1;
- mult.b4 = -vmin.y * mult.b2;
- mult.c4 = -coord;
- m = mult * m;
- // debug code to verify correctness
- #ifdef _DEBUG
- std::vector<IfcVector2> out_contour2;
- BOOST_FOREACH(const IfcVector3& x, in_verts) {
- const IfcVector3& vv = m * x;
- out_contour2.push_back(IfcVector2(vv.x,vv.y));
- ai_assert(fabs(vv.z) < 1e-5);
- }
- for(size_t i = 0; i < out_contour.size(); ++i) {
- ai_assert((out_contour[i]-out_contour2[i]).SquareLength() < 1e-6);
- }
- #endif
- return m;
- }
- // ------------------------------------------------------------------------------------------------
- bool GenerateOpenings(std::vector<TempOpening>& openings,
- const std::vector<IfcVector3>& nors,
- TempMesh& curmesh,
- bool check_intersection,
- bool generate_connection_geometry)
- {
- std::vector<IfcVector3>& out = curmesh.verts;
- OpeningRefVector contours_to_openings;
- // Try to derive a solid base plane within the current surface for use as
- // working coordinate system. Map all vertices onto this plane and
- // rescale them to [0,1] range. This normalization means all further
- // epsilons need not be scaled.
- bool ok = true;
- std::vector<IfcVector2> contour_flat;
- IfcFloat base_d;
- const IfcMatrix4& m = ProjectOntoPlane(contour_flat, curmesh, base_d, ok);
- if(!ok) {
- return false;
- }
- const IfcVector3& nor = IfcVector3(m.c1, m.c2, m.c3);
- // Obtain inverse transform for getting back to world space later on
- const IfcMatrix4& minv = IfcMatrix4(m).Inverse();
- // Compute bounding boxes for all 2D openings in projection space
- ContourVector contours;
- std::vector<IfcVector2> temp_contour;
- std::vector<IfcVector2> temp_contour2;
- size_t c = 0;
- BOOST_FOREACH(TempOpening& opening,openings) {
- std::vector<IfcVector3> profile_verts = opening.profileMesh->verts;
- std::vector<unsigned int> profile_vertcnts = opening.profileMesh->vertcnt;
- if(profile_verts.size() <= 2) {
- continue;
- }
- // The opening meshes are real 3D meshes so skip over all faces
- // clearly facing into the wrong direction. Also, we need to check
- // whether the meshes do actually intersect the base surface plane.
- // This is done by recording minimum and maximum values for the
- // d component of the plane equation for all polys and checking
- // against surface d.
- // Use the sign of the dot product of the face normal to the plane
- // normal to determine to which side of the difference mesh a
- // triangle belongs. Get independent bounding boxes and vertex
- // sets for both sides and take the better one (we can't just
- // take both - this would likely cause major screwup of vertex
- // winding, producing errors as late as in CloseWindows()).
- IfcFloat dmin, dmax;
- MinMaxChooser<IfcFloat>()(dmin,dmax);
- temp_contour.clear();
- temp_contour2.clear();
- IfcVector2 vpmin,vpmax;
- MinMaxChooser<IfcVector2>()(vpmin,vpmax);
- IfcVector2 vpmin2,vpmax2;
- MinMaxChooser<IfcVector2>()(vpmin2,vpmax2);
- for (size_t f = 0, vi_total = 0, fend = profile_vertcnts.size(); f < fend; ++f) {
- const IfcVector3& face_nor = ((profile_verts[vi_total+2] - profile_verts[vi_total]) ^
- (profile_verts[vi_total+1] - profile_verts[vi_total])).Normalize();
- const IfcFloat abs_dot_face_nor = abs(nor * face_nor);
- if (abs_dot_face_nor < 0.5) {
- vi_total += profile_vertcnts[f];
- continue;
- }
- const bool side_flag = nor * face_nor > 0;
- for (unsigned int vi = 0, vend = profile_vertcnts[f]; vi < vend; ++vi, ++vi_total) {
- const IfcVector3& x = profile_verts[vi_total];
- const IfcVector3& v = m * x;
- IfcVector2 vv(v.x, v.y);
- if(check_intersection) {
- dmin = std::min(dmin, v.z);
- dmax = std::max(dmax, v.z);
- }
- // sanity rounding
- vv = std::max(vv,IfcVector2());
- vv = std::min(vv,one_vec);
- if(side_flag) {
- vpmin = std::min(vpmin,vv);
- vpmax = std::max(vpmax,vv);
- }
- else {
- vpmin2 = std::min(vpmin2,vv);
- vpmax2 = std::max(vpmax2,vv);
- }
- std::vector<IfcVector2>& store = side_flag ? temp_contour : temp_contour2;
- if (!IsDuplicateVertex(vv, store)) {
- store.push_back(vv);
- }
- }
- }
- if (temp_contour2.size() > 2) {
- const IfcVector2 area = vpmax-vpmin;
- const IfcVector2 area2 = vpmax2-vpmin2;
- if (temp_contour.size() <= 2 || fabs(area2.x * area2.y) > fabs(area.x * area.y)) {
- temp_contour.swap(temp_contour2);
- vpmax = vpmax2;
- vpmin = vpmin2;
- }
- }
- if(temp_contour.size() <= 2) {
- continue;
- }
- // TODO: This epsilon may be too large
- const IfcFloat epsilon = fabs(dmax-dmin) * 0.001;
- if (check_intersection && (0 < dmin-epsilon || 0 > dmax+epsilon)) {
- continue;
- }
- BoundingBox bb = BoundingBox(vpmin,vpmax);
- // Skip over very small openings - these are likely projection errors
- // (i.e. they don't belong to this side of the wall)
- if(fabs(vpmax.x - vpmin.x) * fabs(vpmax.y - vpmin.y) < static_cast<IfcFloat>(1e-10)) {
- continue;
- }
- std::vector<TempOpening*> joined_openings(1, &opening);
- bool is_rectangle = temp_contour.size() == 4;
- // See if this BB intersects or is in close adjacency to any other BB we have so far.
- for (ContourVector::iterator it = contours.begin(); it != contours.end(); ) {
- const BoundingBox& ibb = (*it).bb;
- if (BoundingBoxesOverlapping(ibb, bb)) {
- if (!(*it).is_rectangular) {
- is_rectangle = false;
- }
- const std::vector<IfcVector2>& other = (*it).contour;
- ClipperLib::ExPolygons poly;
- // First check whether subtracting the old contour (to which ibb belongs)
- // from the new contour (to which bb belongs) yields an updated bb which
- // no longer overlaps ibb
- MakeDisjunctWindowContours(other, temp_contour, poly);
- if(poly.size() == 1) {
-
- const BoundingBox& newbb = GetBoundingBox(poly[0].outer);
- if (!BoundingBoxesOverlapping(ibb, newbb )) {
- // Good guy bounding box
- bb = newbb ;
- ExtractVerticesFromClipper(poly[0].outer, temp_contour, false);
- continue;
- }
- }
- // Take these two overlapping contours and try to merge them. If they
- // overlap (which should not happen, but in fact happens-in-the-real-
- // world [tm] ), resume using a single contour and a single bounding box.
- MergeWindowContours(temp_contour, other, poly);
- if (poly.size() > 1) {
- return TryAddOpenings_Poly2Tri(openings, nors, curmesh);
- }
- else if (poly.size() == 0) {
- IFCImporter::LogWarn("ignoring duplicate opening");
- temp_contour.clear();
- break;
- }
- else {
- IFCImporter::LogDebug("merging overlapping openings");
- ExtractVerticesFromClipper(poly[0].outer, temp_contour, false);
- // Generate the union of the bounding boxes
- bb.first = std::min(bb.first, ibb.first);
- bb.second = std::max(bb.second, ibb.second);
- // Update contour-to-opening tables accordingly
- if (generate_connection_geometry) {
- std::vector<TempOpening*>& t = contours_to_openings[std::distance(contours.begin(),it)];
- joined_openings.insert(joined_openings.end(), t.begin(), t.end());
- contours_to_openings.erase(contours_to_openings.begin() + std::distance(contours.begin(),it));
- }
- contours.erase(it);
- // Restart from scratch because the newly formed BB might now
- // overlap any other BB which its constituent BBs didn't
- // previously overlap.
- it = contours.begin();
- continue;
- }
- }
- ++it;
- }
- if(!temp_contour.empty()) {
- if (generate_connection_geometry) {
- contours_to_openings.push_back(std::vector<TempOpening*>(
- joined_openings.begin(),
- joined_openings.end()));
- }
- contours.push_back(ProjectedWindowContour(temp_contour, bb, is_rectangle));
- }
- }
- // Check if we still have any openings left - it may well be that this is
- // not the cause, for example if all the opening candidates don't intersect
- // this surface or point into a direction perpendicular to it.
- if (contours.empty()) {
- return false;
- }
- curmesh.Clear();
- // Generate a base subdivision into quads to accommodate the given list
- // of window bounding boxes.
- Quadrify(contours,curmesh);
- // Run a sanity cleanup pass on the window contours to avoid generating
- // artifacts during the contour generation phase later on.
- CleanupWindowContours(contours);
- // Previously we reduced all windows to rectangular AABBs in projection
- // space, now it is time to fill the gaps between the BBs and the real
- // window openings.
- InsertWindowContours(contours,openings, curmesh);
- // Clip the entire outer contour of our current result against the real
- // outer contour of the surface. This is necessary because the result
- // of the Quadrify() algorithm is always a square area spanning
- // over [0,1]^2 (i.e. entire projection space).
- CleanupOuterContour(contour_flat, curmesh);
- // Undo the projection and get back to world (or local object) space
- BOOST_FOREACH(IfcVector3& v3, curmesh.verts) {
- v3 = minv * v3;
- }
- // Generate window caps to connect the symmetric openings on both sides
- // of the wall.
- if (generate_connection_geometry) {
- CloseWindows(contours, minv, contours_to_openings, curmesh);
- }
- return true;
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& result,
- ConversionData& conv)
- {
- TempMesh meshout;
-
- // First read the profile description
- if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
- return;
- }
- IfcVector3 dir;
- ConvertDirection(dir,solid.ExtrudedDirection);
- dir *= solid.Depth;
- // Outline: assuming that `meshout.verts` is now a list of vertex points forming
- // the underlying profile, extrude along the given axis, forming new
- // triangles.
-
- std::vector<IfcVector3>& in = meshout.verts;
- const size_t size=in.size();
- const bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
- if(solid.Depth < 1e-3) {
- if(has_area) {
- meshout = result;
- }
- return;
- }
- result.verts.reserve(size*(has_area?4:2));
- result.vertcnt.reserve(meshout.vertcnt.size()+2);
- // First step: transform all vertices into the target coordinate space
- IfcMatrix4 trafo;
- ConvertAxisPlacement(trafo, solid.Position);
- BOOST_FOREACH(IfcVector3& v,in) {
- v *= trafo;
- }
-
- IfcVector3 min = in[0];
- dir *= IfcMatrix3(trafo);
- std::vector<IfcVector3> nors;
- const bool openings = !!conv.apply_openings && conv.apply_openings->size();
-
- // Compute the normal vectors for all opening polygons as a prerequisite
- // to TryAddOpenings_Poly2Tri()
- // XXX this belongs into the aforementioned function
- if (openings) {
- if (!conv.settings.useCustomTriangulation) {
- // it is essential to apply the openings in the correct spatial order. The direction
- // doesn't matter, but we would screw up if we started with e.g. a door in between
- // two windows.
- std::sort(conv.apply_openings->begin(),conv.apply_openings->end(),
- DistanceSorter(min));
- }
-
- nors.reserve(conv.apply_openings->size());
- BOOST_FOREACH(TempOpening& t,*conv.apply_openings) {
- TempMesh& bounds = *t.profileMesh.get();
-
- if (bounds.verts.size() <= 2) {
- nors.push_back(IfcVector3());
- continue;
- }
- nors.push_back(((bounds.verts[2]-bounds.verts[0])^(bounds.verts[1]-bounds.verts[0]) ).Normalize());
- }
- }
-
- TempMesh temp;
- TempMesh& curmesh = openings ? temp : result;
- std::vector<IfcVector3>& out = curmesh.verts;
-
- size_t sides_with_openings = 0;
- for(size_t i = 0; i < size; ++i) {
- const size_t next = (i+1)%size;
- curmesh.vertcnt.push_back(4);
-
- out.push_back(in[i]);
- out.push_back(in[i]+dir);
- out.push_back(in[next]+dir);
- out.push_back(in[next]);
- if(openings) {
- if(GenerateOpenings(*conv.apply_openings,nors,temp,true, true)) {
- ++sides_with_openings;
- }
-
- result.Append(temp);
- temp.Clear();
- }
- }
-
- size_t sides_with_v_openings = 0;
- if(has_area) {
- for(size_t n = 0; n < 2; ++n) {
- for(size_t i = size; i--; ) {
- out.push_back(in[i]+(n?dir:IfcVector3()));
- }
- curmesh.vertcnt.push_back(size);
- if(openings && size > 2) {
- if(GenerateOpenings(*conv.apply_openings,nors,temp,true, true)) {
- ++sides_with_v_openings;
- }
- result.Append(temp);
- temp.Clear();
- }
- }
- }
- if(openings && ((sides_with_openings == 1 && sides_with_openings) || (sides_with_v_openings == 2 && sides_with_v_openings))) {
- IFCImporter::LogWarn("failed to resolve all openings, presumably their topology is not supported by Assimp");
- }
- IFCImporter::LogDebug("generate mesh procedurally by extrusion (IfcExtrudedAreaSolid)");
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessSweptAreaSolid(const IfcSweptAreaSolid& swept, TempMesh& meshout,
- ConversionData& conv)
- {
- if(const IfcExtrudedAreaSolid* const solid = swept.ToPtr<IfcExtrudedAreaSolid>()) {
- ProcessExtrudedAreaSolid(*solid,meshout,conv);
- }
- else if(const IfcRevolvedAreaSolid* const rev = swept.ToPtr<IfcRevolvedAreaSolid>()) {
- ProcessRevolvedAreaSolid(*rev,meshout,conv);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcSweptAreaSolid entity, type is " + swept.GetClassName());
- }
- }
- // ------------------------------------------------------------------------------------------------
- enum Intersect {
- Intersect_No,
- Intersect_LiesOnPlane,
- Intersect_Yes
- };
- // ------------------------------------------------------------------------------------------------
- Intersect IntersectSegmentPlane(const IfcVector3& p,const IfcVector3& n, const IfcVector3& e0,
- const IfcVector3& e1,
- IfcVector3& out)
- {
- const IfcVector3 pdelta = e0 - p, seg = e1-e0;
- const IfcFloat dotOne = n*seg, dotTwo = -(n*pdelta);
- if (fabs(dotOne) < 1e-6) {
- return fabs(dotTwo) < 1e-6f ? Intersect_LiesOnPlane : Intersect_No;
- }
- const IfcFloat t = dotTwo/dotOne;
- // t must be in [0..1] if the intersection point is within the given segment
- if (t > 1.f || t < 0.f) {
- return Intersect_No;
- }
- out = e0+t*seg;
- return Intersect_Yes;
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessBooleanHalfSpaceDifference(const IfcHalfSpaceSolid* hs, TempMesh& result,
- const TempMesh& first_operand,
- ConversionData& conv)
- {
- ai_assert(hs != NULL);
- const IfcPlane* const plane = hs->BaseSurface->ToPtr<IfcPlane>();
- if(!plane) {
- IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
- return;
- }
- // extract plane base position vector and normal vector
- IfcVector3 p,n(0.f,0.f,1.f);
- if (plane->Position->Axis) {
- ConvertDirection(n,plane->Position->Axis.Get());
- }
- ConvertCartesianPoint(p,plane->Position->Location);
- if(!IsTrue(hs->AgreementFlag)) {
- n *= -1.f;
- }
- // clip the current contents of `meshout` against the plane we obtained from the second operand
- const std::vector<IfcVector3>& in = first_operand.verts;
- std::vector<IfcVector3>& outvert = result.verts;
- std::vector<unsigned int>::const_iterator begin = first_operand.vertcnt.begin(),
- end = first_operand.vertcnt.end(), iit;
- outvert.reserve(in.size());
- result.vertcnt.reserve(first_operand.vertcnt.size());
- unsigned int vidx = 0;
- for(iit = begin; iit != end; vidx += *iit++) {
- unsigned int newcount = 0;
- for(unsigned int i = 0; i < *iit; ++i) {
- const IfcVector3& e0 = in[vidx+i], e1 = in[vidx+(i+1)%*iit];
- // does the next segment intersect the plane?
- IfcVector3 isectpos;
- const Intersect isect = IntersectSegmentPlane(p,n,e0,e1,isectpos);
- if (isect == Intersect_No || isect == Intersect_LiesOnPlane) {
- if ( (e0-p).Normalize()*n > 0 ) {
- outvert.push_back(e0);
- ++newcount;
- }
- }
- else if (isect == Intersect_Yes) {
- if ( (e0-p).Normalize()*n > 0 ) {
- // e0 is on the right side, so keep it
- outvert.push_back(e0);
- outvert.push_back(isectpos);
- newcount += 2;
- }
- else {
- // e0 is on the wrong side, so drop it and keep e1 instead
- outvert.push_back(isectpos);
- ++newcount;
- }
- }
- }
- if (!newcount) {
- continue;
- }
- IfcVector3 vmin,vmax;
- ArrayBounds(&*(outvert.end()-newcount),newcount,vmin,vmax);
- // filter our IfcFloat points - those may happen if a point lies
- // directly on the intersection line. However, due to IfcFloat
- // precision a bitwise comparison is not feasible to detect
- // this case.
- const IfcFloat epsilon = (vmax-vmin).SquareLength() / 1e6f;
- FuzzyVectorCompare fz(epsilon);
- std::vector<IfcVector3>::iterator e = std::unique( outvert.end()-newcount, outvert.end(), fz );
- if (e != outvert.end()) {
- newcount -= static_cast<unsigned int>(std::distance(e,outvert.end()));
- outvert.erase(e,outvert.end());
- }
- if (fz(*( outvert.end()-newcount),outvert.back())) {
- outvert.pop_back();
- --newcount;
- }
- if(newcount > 2) {
- result.vertcnt.push_back(newcount);
- }
- else while(newcount-->0) {
- result.verts.pop_back();
- }
- }
- IFCImporter::LogDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)");
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessBooleanExtrudedAreaSolidDifference(const IfcExtrudedAreaSolid* as, TempMesh& result,
- const TempMesh& first_operand,
- ConversionData& conv)
- {
- ai_assert(as != NULL);
- // This case is handled by reduction to an instance of the quadrify() algorithm.
- // Obviously, this won't work for arbitrarily complex cases. In fact, the first
- // operand should be near-planar. Luckily, this is usually the case in Ifc
- // buildings.
- boost::shared_ptr<TempMesh> meshtmp(new TempMesh());
- ProcessExtrudedAreaSolid(*as,*meshtmp,conv);
- std::vector<TempOpening> openings(1, TempOpening(as,IfcVector3(0,0,0),meshtmp));
- result = first_operand;
- TempMesh temp;
- std::vector<IfcVector3>::const_iterator vit = first_operand.verts.begin();
- BOOST_FOREACH(unsigned int pcount, first_operand.vertcnt) {
- temp.Clear();
- temp.verts.insert(temp.verts.end(), vit, vit + pcount);
- temp.vertcnt.push_back(pcount);
- // The algorithms used to generate mesh geometry sometimes
- // spit out lines or other degenerates which must be
- // filtered to avoid running into assertions later on.
- // ComputePolygonNormal returns the Newell normal, so the
- // length of the normal is the area of the polygon.
- const IfcVector3& normal = temp.ComputeLastPolygonNormal(false);
- if (normal.SquareLength() < static_cast<IfcFloat>(1e-5)) {
- IFCImporter::LogWarn("skipping degenerate polygon (ProcessBooleanExtrudedAreaSolidDifference)");
- continue;
- }
- GenerateOpenings(openings, std::vector<IfcVector3>(1,IfcVector3(1,0,0)), temp);
- result.Append(temp);
- vit += pcount;
- }
- IFCImporter::LogDebug("generating CSG geometry by geometric difference to a solid (IfcExtrudedAreaSolid)");
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessBoolean(const IfcBooleanResult& boolean, TempMesh& result, ConversionData& conv)
- {
- // supported CSG operations:
- // DIFFERENCE
- if(const IfcBooleanResult* const clip = boolean.ToPtr<IfcBooleanResult>()) {
- if(clip->Operator != "DIFFERENCE") {
- IFCImporter::LogWarn("encountered unsupported boolean operator: " + (std::string)clip->Operator);
- return;
- }
- // supported cases (1st operand):
- // IfcBooleanResult -- call ProcessBoolean recursively
- // IfcSweptAreaSolid -- obtain polygonal geometry first
- // supported cases (2nd operand):
- // IfcHalfSpaceSolid -- easy, clip against plane
- // IfcExtrudedAreaSolid -- reduce to an instance of the quadrify() algorithm
-
- const IfcHalfSpaceSolid* const hs = clip->SecondOperand->ResolveSelectPtr<IfcHalfSpaceSolid>(conv.db);
- const IfcExtrudedAreaSolid* const as = clip->SecondOperand->ResolveSelectPtr<IfcExtrudedAreaSolid>(conv.db);
- if(!hs && !as) {
- IFCImporter::LogError("expected IfcHalfSpaceSolid or IfcExtrudedAreaSolid as second clipping operand");
- return;
- }
- TempMesh first_operand;
- if(const IfcBooleanResult* const op0 = clip->FirstOperand->ResolveSelectPtr<IfcBooleanResult>(conv.db)) {
- ProcessBoolean(*op0,first_operand,conv);
- }
- else if (const IfcSweptAreaSolid* const swept = clip->FirstOperand->ResolveSelectPtr<IfcSweptAreaSolid>(conv.db)) {
- ProcessSweptAreaSolid(*swept,first_operand,conv);
- }
- else {
- IFCImporter::LogError("expected IfcSweptAreaSolid or IfcBooleanResult as first clipping operand");
- return;
- }
- if(hs) {
- ProcessBooleanHalfSpaceDifference(hs, result, first_operand, conv);
- }
- else {
- ProcessBooleanExtrudedAreaSolidDifference(as, result, first_operand, conv);
- }
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is " + boolean.GetClassName());
- }
- }
- // ------------------------------------------------------------------------------------------------
- bool ProcessGeometricItem(const IfcRepresentationItem& geo, std::vector<unsigned int>& mesh_indices,
- ConversionData& conv)
- {
- bool fix_orientation = true;
- boost::shared_ptr< TempMesh > meshtmp = boost::make_shared<TempMesh>();
- if(const IfcShellBasedSurfaceModel* shellmod = geo.ToPtr<IfcShellBasedSurfaceModel>()) {
- BOOST_FOREACH(boost::shared_ptr<const IfcShell> shell,shellmod->SbsmBoundary) {
- try {
- const EXPRESS::ENTITY& e = shell->To<ENTITY>();
- const IfcConnectedFaceSet& fs = conv.db.MustGetObject(e).To<IfcConnectedFaceSet>();
- ProcessConnectedFaceSet(fs,*meshtmp.get(),conv);
- }
- catch(std::bad_cast&) {
- IFCImporter::LogWarn("unexpected type error, IfcShell ought to inherit from IfcConnectedFaceSet");
- }
- }
- }
- else if(const IfcConnectedFaceSet* fset = geo.ToPtr<IfcConnectedFaceSet>()) {
- ProcessConnectedFaceSet(*fset,*meshtmp.get(),conv);
- }
- else if(const IfcSweptAreaSolid* swept = geo.ToPtr<IfcSweptAreaSolid>()) {
- ProcessSweptAreaSolid(*swept,*meshtmp.get(),conv);
- }
- else if(const IfcSweptDiskSolid* disk = geo.ToPtr<IfcSweptDiskSolid>()) {
- ProcessSweptDiskSolid(*disk,*meshtmp.get(),conv);
- fix_orientation = false;
- }
- else if(const IfcManifoldSolidBrep* brep = geo.ToPtr<IfcManifoldSolidBrep>()) {
- ProcessConnectedFaceSet(brep->Outer,*meshtmp.get(),conv);
- }
- else if(const IfcFaceBasedSurfaceModel* surf = geo.ToPtr<IfcFaceBasedSurfaceModel>()) {
- BOOST_FOREACH(const IfcConnectedFaceSet& fc, surf->FbsmFaces) {
- ProcessConnectedFaceSet(fc,*meshtmp.get(),conv);
- }
- }
- else if(const IfcBooleanResult* boolean = geo.ToPtr<IfcBooleanResult>()) {
- ProcessBoolean(*boolean,*meshtmp.get(),conv);
- }
- else if(geo.ToPtr<IfcBoundingBox>()) {
- // silently skip over bounding boxes
- return false;
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcGeometricRepresentationItem entity, type is " + geo.GetClassName());
- return false;
- }
- meshtmp->RemoveAdjacentDuplicates();
- meshtmp->RemoveDegenerates();
- // Do we just collect openings for a parent element (i.e. a wall)?
- // In such a case, we generate the polygonal extrusion mesh as usual,
- // but attach it to a TempOpening instance which will later be applied
- // to the wall it pertains to.
- if(conv.collect_openings) {
- conv.collect_openings->push_back(TempOpening(geo.ToPtr<IfcSolidModel>(),IfcVector3(0,0,0),meshtmp));
- return true;
- }
- if(fix_orientation) {
- meshtmp->FixupFaceOrientation();
- }
- aiMesh* const mesh = meshtmp->ToMesh();
- if(mesh) {
- mesh->mMaterialIndex = ProcessMaterials(geo,conv);
- mesh_indices.push_back(conv.meshes.size());
- conv.meshes.push_back(mesh);
- return true;
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- void AssignAddedMeshes(std::vector<unsigned int>& mesh_indices,aiNode* nd,
- ConversionData& /*conv*/)
- {
- if (!mesh_indices.empty()) {
- // make unique
- std::sort(mesh_indices.begin(),mesh_indices.end());
- std::vector<unsigned int>::iterator it_end = std::unique(mesh_indices.begin(),mesh_indices.end());
- const size_t size = std::distance(mesh_indices.begin(),it_end);
- nd->mNumMeshes = size;
- nd->mMeshes = new unsigned int[nd->mNumMeshes];
- for(unsigned int i = 0; i < nd->mNumMeshes; ++i) {
- nd->mMeshes[i] = mesh_indices[i];
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- bool TryQueryMeshCache(const IfcRepresentationItem& item,
- std::vector<unsigned int>& mesh_indices,
- ConversionData& conv)
- {
- ConversionData::MeshCache::const_iterator it = conv.cached_meshes.find(&item);
- if (it != conv.cached_meshes.end()) {
- std::copy((*it).second.begin(),(*it).second.end(),std::back_inserter(mesh_indices));
- return true;
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- void PopulateMeshCache(const IfcRepresentationItem& item,
- const std::vector<unsigned int>& mesh_indices,
- ConversionData& conv)
- {
- conv.cached_meshes[&item] = mesh_indices;
- }
- // ------------------------------------------------------------------------------------------------
- bool ProcessRepresentationItem(const IfcRepresentationItem& item,
- std::vector<unsigned int>& mesh_indices,
- ConversionData& conv)
- {
- if (!TryQueryMeshCache(item,mesh_indices,conv)) {
- if(ProcessGeometricItem(item,mesh_indices,conv)) {
- if(mesh_indices.size()) {
- PopulateMeshCache(item,mesh_indices,conv);
- }
- }
- else return false;
- }
- return true;
- }
- #undef to_int64
- #undef from_int64
- #undef one_vec
- } // ! IFC
- } // ! Assimp
- #endif
|