123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- /** @file Implementation of the helper class to quickly find vertices close to a given position */
- #include <algorithm>
- #include "SpatialSort.h"
- using namespace Assimp;
- // ------------------------------------------------------------------------------------------------
- // Constructs a spatially sorted representation from the given position array.
- SpatialSort::SpatialSort( const aiVector3D* pPositions, unsigned int pNumPositions, unsigned int pElementOffset)
- {
- // define the reference plane. We choose some arbitrary vector away from all basic axises
- // in the hope that no model spreads all its vertices along this plane.
- mPlaneNormal.Set( 0.8523f, 0.34321f, 0.5736f);
- mPlaneNormal.Normalize();
- // store references to all given positions along with their distance to the reference plane
- mPositions.reserve( pNumPositions);
- for( unsigned int a = 0; a < pNumPositions; a++)
- {
- const char* tempPointer = reinterpret_cast<const char*> (pPositions);
- const aiVector3D* vec = reinterpret_cast<const aiVector3D*> (tempPointer + a * pElementOffset);
- // store position by index and distance
- float distance = *vec * mPlaneNormal;
- mPositions.push_back( Entry( a, *vec, distance));
- }
- // now sort the array ascending by distance.
- std::sort( mPositions.begin(), mPositions.end());
- }
- // ------------------------------------------------------------------------------------------------
- // Destructor
- SpatialSort::~SpatialSort()
- {
- // nothing to do here, everything destructs automatically
- }
- // ------------------------------------------------------------------------------------------------
- // Returns an iterator for all positions close to the given position.
- void SpatialSort::FindPositions( const aiVector3D& pPosition, float pRadius, std::vector<unsigned int>& poResults) const
- {
- float dist = pPosition * mPlaneNormal;
- float minDist = dist - pRadius, maxDist = dist + pRadius;
- // clear the array in this strange fashion because a simple clear() would also deallocate
- // the array which we want to avoid
- poResults.erase( poResults.begin(), poResults.end());
- // quick check for positions outside the range
- if( mPositions.size() == 0)
- return;
- if( maxDist < mPositions.front().mDistance)
- return;
- if( minDist > mPositions.back().mDistance)
- return;
- // do a binary search for the minimal distance to start the iteration there
- unsigned int index = mPositions.size() / 2;
- unsigned int binaryStepSize = mPositions.size() / 4;
- while( binaryStepSize > 1)
- {
- if( mPositions[index].mDistance < minDist)
- index += binaryStepSize;
- else
- index -= binaryStepSize;
- binaryStepSize /= 2;
- }
- // depending on the direction of the last step we need to single step a bit back or forth
- // to find the actual beginning element of the range
- while( index > 0 && mPositions[index].mDistance > minDist)
- index--;
- while( index < (mPositions.size() - 1) && mPositions[index].mDistance < minDist)
- index++;
-
- // Mow start iterating from there until the first position lays outside of the distance range.
- // Add all positions inside the distance range within the given radius to the result aray
- std::vector<Entry>::const_iterator it = mPositions.begin() + index;
- float squareEpsilon = pRadius * pRadius;
- while( it->mDistance < maxDist)
- {
- if( (it->mPosition - pPosition).SquareLength() < squareEpsilon)
- poResults.push_back( it->mIndex);
- ++it;
- if( it == mPositions.end())
- break;
- }
- // that's it
- }
|