| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706 |
- /*
- Open Asset Import Library (ASSIMP)
- ----------------------------------------------------------------------
- Copyright (c) 2006-2010, ASSIMP Development Team
- All rights reserved.
- Redistribution and use of this software in source and binary forms,
- with or without modification, are permitted provided that the
- following conditions are met:
- * Redistributions of source code must retain the above
- copyright notice, this list of conditions and the
- following disclaimer.
- * Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the
- following disclaimer in the documentation and/or other
- materials provided with the distribution.
- * Neither the name of the ASSIMP team, nor the names of its
- contributors may be used to endorse or promote products
- derived from this software without specific prior
- written permission of the ASSIMP Development Team.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- ----------------------------------------------------------------------
- */
- /** @file IFC.cpp
- * @brief Implementation of the Industry Foundation Classes loader
- */
- #include "AssimpPCH.h"
- #ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
- #include "IFCLoader.h"
- #include "STEPFileReader.h"
- #include "IFCReaderGen.h"
- #include "StreamReader.h"
- #include "MemoryIOWrapper.h"
- #include "ProcessHelper.h"
- #include <iterator>
- #include <boost/tuple/tuple.hpp>
- using namespace Assimp;
- using namespace Assimp::Formatter;
- namespace EXPRESS = STEP::EXPRESS;
- template<> const std::string LogFunctions<IFCImporter>::log_prefix = "IFC: ";
- /* DO NOT REMOVE this comment block. The genentitylist.sh script
- * just looks for names adhering to the IFC :: IfcSomething naming scheme
- * and includes all matches in the whitelist for code-generation. Thus,
- * all entity classes that are only indirectly referenced need to be
- * mentioned explicitly.
- IFC::IfcRepresentationMap
- IFC::IfcProductRepresentation
- IFC::IfcUnitAssignment
- IFC::IfcClosedShell
- IFC::IfcDoor
- */
- namespace {
- // helper for std::for_each to delete all heap-allocated items in a container
- template<typename T>
- struct delete_fun
- {
- void operator()(T* del) {
- delete del;
- }
- };
- // intermediate data dump during conversion
- struct ConversionData
- {
- ConversionData(const STEP::DB& db, const IFC::IfcProject& proj, aiScene* out,const IFCImporter::Settings& settings)
- : len_scale(1.0)
- , angle_scale(1.0)
- , db(db)
- , proj(proj)
- , out(out)
- , settings(settings)
- {}
- ~ConversionData() {
- std::for_each(meshes.begin(),meshes.end(),delete_fun<aiMesh>());
- std::for_each(materials.begin(),materials.end(),delete_fun<aiMaterial>());
- }
- float len_scale, angle_scale;
- bool plane_angle_in_radians;
- const STEP::DB& db;
- const IFC::IfcProject& proj;
- aiScene* out;
- aiMatrix4x4 wcs;
- std::vector<aiMesh*> meshes;
- std::vector<aiMaterial*> materials;
- typedef std::map<const IFC::IfcRepresentationItem*, std::vector<unsigned int> > MeshCache;
- MeshCache cached_meshes;
- const IFCImporter::Settings& settings;
- };
- // helper used during mesh construction
- struct TempMesh
- {
- std::vector<aiVector3D> verts;
- std::vector<unsigned int> vertcnt;
- std::vector<unsigned int> mat_idx;
- aiMesh* ToMesh() {
- ai_assert(verts.size() == std::accumulate(vertcnt.begin(),vertcnt.end(),0));
- if (verts.empty()) {
- return NULL;
- }
- std::auto_ptr<aiMesh> mesh(new aiMesh());
- // copy vertices
- mesh->mNumVertices = static_cast<unsigned int>(verts.size());
- mesh->mVertices = new aiVector3D[mesh->mNumVertices];
- std::copy(verts.begin(),verts.end(),mesh->mVertices);
- // and build up faces
- mesh->mNumFaces = static_cast<unsigned int>(vertcnt.size());
- mesh->mFaces = new aiFace[mesh->mNumFaces];
- for(unsigned int i = 0, acc = 0; i < mesh->mNumFaces; ++i) {
- aiFace& f = mesh->mFaces[i];
- f.mNumIndices = vertcnt[i];
- f.mIndices = new unsigned int[f.mNumIndices];
- for(unsigned int a = 0; a < f.mNumIndices; ++a) {
- f.mIndices[a] = acc++;
- }
- }
- // XXX materials
- mesh->mMaterialIndex = UINT_MAX;
- return mesh.release();
- }
- };
- // forward declarations
- float ConvertSIPrefix(const std::string& prefix);
- void SetUnits(ConversionData& conv);
- void ConvertAxisPlacement(aiMatrix4x4& out, const IFC::IfcAxis2Placement& in, ConversionData& conv);
- void SetCoordinateSpace(ConversionData& conv);
- void ProcessSpatialStructures(ConversionData& conv);
- aiNode* ProcessSpatialStructure(aiNode* parent, const IFC::IfcProduct& el ,ConversionData& conv);
- void ProcessProductRepresentation(const IFC::IfcProduct& el, aiNode* nd, ConversionData& conv);
- void MakeTreeRelative(ConversionData& conv);
- void ConvertUnit(const EXPRESS::DataType* dt,ConversionData& conv);
- } // anon
- // ------------------------------------------------------------------------------------------------
- // Constructor to be privately used by Importer
- IFCImporter::IFCImporter()
- {}
- // ------------------------------------------------------------------------------------------------
- // Destructor, private as well
- IFCImporter::~IFCImporter()
- {
- }
- // ------------------------------------------------------------------------------------------------
- // Returns whether the class can handle the format of the given file.
- bool IFCImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const
- {
- const std::string& extension = GetExtension(pFile);
- if (extension == "ifc") {
- return true;
- }
- else if ((!extension.length() || checkSig) && pIOHandler) {
- // note: this is the common identification for STEP-encoded files, so
- // it is only unambiguous as long as we don't support any further
- // file formats with STEP as their encoding.
- const char* tokens[] = {"ISO-10303-21"};
- return SearchFileHeaderForToken(pIOHandler,pFile,tokens,1);
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- // List all extensions handled by this loader
- void IFCImporter::GetExtensionList(std::set<std::string>& app)
- {
- app.insert("ifc");
- }
- // ------------------------------------------------------------------------------------------------
- // Setup configuration properties for the loader
- void IFCImporter::SetupProperties(const Importer* pImp)
- {
- settings.skipSpaceRepresentations = pImp->GetPropertyBool(AI_CONFIG_IMPORT_IFC_SKIP_SPACE_REPRESENTATIONS,true);
- settings.skipCurveRepresentations = pImp->GetPropertyBool(AI_CONFIG_IMPORT_IFC_SKIP_CURVE_REPRESENTATIONS,true);
- }
- // ------------------------------------------------------------------------------------------------
- // Imports the given file into the given scene structure.
- void IFCImporter::InternReadFile( const std::string& pFile,
- aiScene* pScene, IOSystem* pIOHandler)
- {
- boost::shared_ptr<IOStream> stream(pIOHandler->Open(pFile));
- if (!stream) {
- ThrowException("Could not open file for reading");
- }
- boost::scoped_ptr<STEP::DB> db(STEP::ReadFileHeader(stream));
- const STEP::HeaderInfo& head = const_cast<const STEP::DB&>(*db).GetHeader();
- if(!head.fileSchema.size() || head.fileSchema.substr(0,3) != "IFC") {
- ThrowException("Unrecognized file schema: " + head.fileSchema);
- }
- if (!DefaultLogger::isNullLogger()) {
- LogDebug("File schema is \'" + head.fileSchema + '\'');
- if (head.timestamp.length()) {
- LogDebug("Timestamp \'" + head.timestamp + '\'');
- }
- if (head.app.length()) {
- LogDebug("Application/Exporter identline is \'" + head.app + '\'');
- }
- }
- // obtain a copy of the machine-generated IFC scheme
- EXPRESS::ConversionSchema schema;
- IFC::GetSchema(schema);
- // feed the IFC schema into the reader and pre-parse all lines
- STEP::ReadFile(*db, schema);
- const STEP::LazyObject* proj = db->GetObject("ifcproject");
- if (!proj) {
- ThrowException("missing IfcProject entity");
- }
- ConversionData conv(*db,proj->To<IFC::IfcProject>(),pScene,settings);
- SetUnits(conv);
- SetCoordinateSpace(conv);
- ProcessSpatialStructures(conv);
- MakeTreeRelative(conv);
- #ifdef ASSIMP_IFC_TEST
- db->EvaluateAll();
- #endif
- // do final data copying
- if (conv.meshes.size()) {
- pScene->mNumMeshes = static_cast<unsigned int>(conv.meshes.size());
- pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]();
- std::copy(conv.meshes.begin(),conv.meshes.end(),pScene->mMeshes);
- // needed to keep the d'tor from burning us
- conv.meshes.clear();
- }
- if (conv.materials.size()) {
- pScene->mNumMaterials = static_cast<unsigned int>(conv.materials.size());
- pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials]();
- std::copy(conv.materials.begin(),conv.materials.end(),pScene->mMaterials);
- // needed to keep the d'tor from burning us
- conv.materials.clear();
- }
- // apply world coordinate system (which includes the scaling to convert to meters and a -90 degrees rotation around x)
- aiMatrix4x4 scale, rot;
- aiMatrix4x4::Scaling(aiVector3D(conv.len_scale,conv.len_scale,conv.len_scale),scale);
- aiMatrix4x4::RotationX(-AI_MATH_HALF_PI_F,rot);
- pScene->mRootNode->mTransformation = rot * scale * conv.wcs * pScene->mRootNode->mTransformation;
- // this must be last because objects are evaluated lazily as we process them
- if ( !DefaultLogger::isNullLogger() ){
- LogDebug((Formatter::format(),"STEP: evaluated ",db->GetEvaluatedObjectCount()," object records"));
- }
- }
- namespace {
- // ------------------------------------------------------------------------------------------------
- bool IsTrue(const EXPRESS::BOOLEAN& in)
- {
- return (std::string)in == "TRUE" || (std::string)in == "T";
- }
- // ------------------------------------------------------------------------------------------------
- float ConvertSIPrefix(const std::string& prefix)
- {
- if (prefix == "EXA") {
- return 1e18f;
- }
- else if (prefix == "PETA") {
- return 1e15f;
- }
- else if (prefix == "TERA") {
- return 1e12f;
- }
- else if (prefix == "GIGA") {
- return 1e9f;
- }
- else if (prefix == "MEGA") {
- return 1e6f;
- }
- else if (prefix == "KILO") {
- return 1e3f;
- }
- else if (prefix == "HECTO") {
- return 1e2f;
- }
- else if (prefix == "DECA") {
- return 1e-0f;
- }
- else if (prefix == "DECI") {
- return 1e-1f;
- }
- else if (prefix == "CENTI") {
- return 1e-2f;
- }
- else if (prefix == "MILLI") {
- return 1e-3f;
- }
- else if (prefix == "MICRO") {
- return 1e-6f;
- }
- else if (prefix == "NANO") {
- return 1e-9f;
- }
- else if (prefix == "PICO") {
- return 1e-12f;
- }
- else if (prefix == "FEMTO") {
- return 1e-15f;
- }
- else if (prefix == "ATTO") {
- return 1e-18f;
- }
- else {
- IFCImporter::LogError("Unrecognized SI prefix: " + prefix);
- return 1;
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertUnit(const IFC::IfcNamedUnit& unit,ConversionData& conv)
- {
- if(const IFC::IfcSIUnit* const si = unit.ToPtr<IFC::IfcSIUnit>()) {
- if(si->UnitType == "LENGTHUNIT") {
- conv.len_scale = si->Prefix ? ConvertSIPrefix(si->Prefix) : 1.f;
- IFCImporter::LogDebug("got units used for lengths");
- }
- if(si->UnitType == "PLANEANGLEUNIT") {
- if (si->Name != "RADIAN") {
- IFCImporter::LogWarn("expected base unit for angles to be radian");
- }
- }
- }
- else if(const IFC::IfcConversionBasedUnit* const convu = unit.ToPtr<IFC::IfcConversionBasedUnit>()) {
- if(convu->UnitType == "PLANEANGLEUNIT") {
- try {
- conv.angle_scale = convu->ConversionFactor->ValueComponent->To<EXPRESS::REAL>();
- ConvertUnit(convu->ConversionFactor->UnitComponent,conv);
- IFCImporter::LogDebug("got units used for angles");
- }
- catch(std::bad_cast&) {
- IFCImporter::LogError("skipping unknown IfcConversionBasedUnit.ValueComponent entry - expected REAL");
- }
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertUnit(const EXPRESS::DataType* dt,ConversionData& conv)
- {
- try {
- const EXPRESS::ENTITY& e = dt->To<IFC::ENTITY>();
- const IFC::IfcNamedUnit& unit = e.ResolveSelect<IFC::IfcNamedUnit>(conv.db);
- if(unit.UnitType != "LENGTHUNIT" && unit.UnitType != "PLANEANGLEUNIT") {
- return;
- }
- ConvertUnit(unit,conv);
- }
- catch(std::bad_cast&) {
- // not entity, somehow
- IFCImporter::LogError("skipping unknown IfcUnit entry - expected entity");
- }
- }
- // ------------------------------------------------------------------------------------------------
- void SetUnits(ConversionData& conv)
- {
- // see if we can determine the coordinate space used to express.
- for(size_t i = 0; i < conv.proj.UnitsInContext->Units.size(); ++i ) {
- ConvertUnit(conv.proj.UnitsInContext->Units[i],conv);
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertColor(aiColor4D& out, const IFC::IfcColourRgb& in)
- {
- out.r = in.Red;
- out.g = in.Green;
- out.b = in.Blue;
- out.a = 1.f;
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertColor(aiColor4D& out, const IFC::IfcColourOrFactor* in,ConversionData& conv,const aiColor4D* base)
- {
- if (const EXPRESS::REAL* const r = in->ToPtr<EXPRESS::REAL>()) {
- out.r = out.g = out.b = *r;
- if(base) {
- out.r *= base->r;
- out.g *= base->g;
- out.b *= base->b;
- out.a = base->a;
- }
- else out.a = 1.0;
- }
- else if (const IFC::IfcColourRgb* const rgb = in->ResolveSelectPtr<IFC::IfcColourRgb>(conv.db)) {
- ConvertColor(out,*rgb);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcColourOrFactor entity");
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertCartesianPoint(aiVector3D& out, const IFC::IfcCartesianPoint& in)
- {
- out = aiVector3D();
- for(size_t i = 0; i < in.Coordinates.size(); ++i) {
- out[i] = in.Coordinates[i];
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertDirection(aiVector3D& out, const IFC::IfcDirection& in)
- {
- out = aiVector3D();
- for(size_t i = 0; i < in.DirectionRatios.size(); ++i) {
- out[i] = in.DirectionRatios[i];
- }
- const float len = out.Length();
- if (len<1e-6) {
- IFCImporter::LogWarn("direction vector too small, normalizing would result in a division by zero");
- return;
- }
- out /= len;
- }
- // ------------------------------------------------------------------------------------------------
- void AssignMatrixAxes(aiMatrix4x4& out, const aiVector3D& x, const aiVector3D& y, const aiVector3D& z)
- {
- out.a1 = x.x;
- out.b1 = x.y;
- out.c1 = x.z;
- out.a2 = y.x;
- out.b2 = y.y;
- out.c2 = y.z;
- out.a3 = z.x;
- out.b3 = z.y;
- out.c3 = z.z;
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertAxisPlacement(aiMatrix4x4& out, const IFC::IfcAxis2Placement3D& in, ConversionData& conv)
- {
- aiVector3D loc;
- ConvertCartesianPoint(loc,in.Location);
- aiVector3D z(0.f,0.f,1.f),r(0.f,1.f,0.f),x;
- if (in.Axis) {
- ConvertDirection(z,*in.Axis.Get());
- }
- if (in.RefDirection) {
- ConvertDirection(r,*in.RefDirection.Get());
- }
- aiVector3D v = r.Normalize();
- aiVector3D tmpx = z * (v*z);
- x = (v-tmpx).Normalize();
- aiVector3D y = (z^x);
- aiMatrix4x4::Translation(loc,out);
- AssignMatrixAxes(out,x,y,z);
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertAxisPlacement(aiMatrix4x4& out, const IFC::IfcAxis2Placement2D& in, ConversionData& conv)
- {
- aiVector3D loc;
- ConvertCartesianPoint(loc,in.Location);
- aiVector3D x(1.f,0.f,1.f);
- if (in.RefDirection) {
- ConvertDirection(x,*in.RefDirection.Get());
- }
- const aiVector3D y = aiVector3D(x.y,-x.x,0.f);
- aiMatrix4x4::Translation(loc,out);
- AssignMatrixAxes(out,x,y,aiVector3D(0.f,0.f,1.f));
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertAxisPlacement(aiVector3D& axis, aiVector3D& pos, const IFC::IfcAxis1Placement& in, ConversionData& conv)
- {
- ConvertCartesianPoint(pos,in.Location);
- if (in.Axis) {
- ConvertDirection(axis,in.Axis.Get());
- }
- else {
- axis = aiVector3D(0.f,0.f,1.f);
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertAxisPlacement(aiMatrix4x4& out, const IFC::IfcAxis2Placement& in, ConversionData& conv)
- {
- if(const IFC::IfcAxis2Placement3D* pl3 = in.ResolveSelectPtr<IFC::IfcAxis2Placement3D>(conv.db)) {
- ConvertAxisPlacement(out,*pl3,conv);
- }
- else if(const IFC::IfcAxis2Placement2D* pl2 = in.ResolveSelectPtr<IFC::IfcAxis2Placement2D>(conv.db)) {
- ConvertAxisPlacement(out,*pl2,conv);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcAxis2Placement entity");
- }
- }
- // ------------------------------------------------------------------------------------------------
- void SetCoordinateSpace(ConversionData& conv)
- {
- const IFC::IfcRepresentationContext* fav = NULL;
- BOOST_FOREACH(const IFC::IfcRepresentationContext& v, conv.proj.RepresentationContexts) {
- fav = &v;
- // Model should be the most suitable type of context, hence ignore the others
- if (v.ContextType && v.ContextType.Get() == "Model") {
- break;
- }
- }
- if (fav) {
- if(const IFC::IfcGeometricRepresentationContext* const geo = fav->ToPtr<IFC::IfcGeometricRepresentationContext>()) {
- ConvertAxisPlacement(conv.wcs, *geo->WorldCoordinateSystem, conv);
- IFCImporter::LogDebug("got world coordinate system");
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertTransformOperator(aiMatrix4x4& out, const IFC::IfcCartesianTransformationOperator& op)
- {
- aiVector3D loc;
- ConvertCartesianPoint(loc,op.LocalOrigin);
- aiVector3D x(1.f,0.f,0.f),y(0.f,1.f,0.f),z(0.f,0.f,1.f);
- if (op.Axis1) {
- ConvertDirection(x,*op.Axis1.Get());
- }
- if (op.Axis2) {
- ConvertDirection(y,*op.Axis2.Get());
- }
- if (const IFC::IfcCartesianTransformationOperator3D* op2 = op.ToPtr<IFC::IfcCartesianTransformationOperator3D>()) {
- if(op2->Axis3) {
- ConvertDirection(z,*op2->Axis3.Get());
- }
- }
- aiMatrix4x4 locm;
- aiMatrix4x4::Translation(loc,locm);
- AssignMatrixAxes(out,x,y,z);
- const float sc = op.Scale?op.Scale.Get():1.f;
- aiMatrix4x4 s;
- aiMatrix4x4::Scaling(aiVector3D(sc,sc,sc),s);
- out = locm * out * s;
- }
- // ------------------------------------------------------------------------------------------------
- bool ProcessPolyloop(const IFC::IfcPolyLoop& loop, TempMesh& meshout, ConversionData& conv)
- {
- size_t cnt = 0;
- BOOST_FOREACH(const IFC::IfcCartesianPoint& c, loop.Polygon) {
- aiVector3D tmp;
- ConvertCartesianPoint(tmp,c);
- meshout.verts.push_back(tmp);
- ++cnt;
- }
- // zero- or one- vertex polyloops simply ignored
- if (cnt >= 1) {
- meshout.vertcnt.push_back(cnt);
- return true;
- }
-
- if (cnt==1) {
- meshout.vertcnt.pop_back();
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessConnectedFaceSet(const IFC::IfcConnectedFaceSet& fset, TempMesh& result, ConversionData& conv)
- {
- BOOST_FOREACH(const IFC::IfcFace& face, fset.CfsFaces) {
- TempMesh meshout;
- size_t ob = face.Bounds.size(), cnt = 0;
- BOOST_FOREACH(const IFC::IfcFaceBound& bound, face.Bounds) {
-
- if(const IFC::IfcPolyLoop* const polyloop = bound.Bound->ToPtr<IFC::IfcPolyLoop>()) {
- if(ProcessPolyloop(*polyloop, meshout, conv)) {
- if(bound.ToPtr<IFC::IfcFaceOuterBound>()) {
- ob = cnt;
- }
- ++cnt;
- }
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcFaceBound entity, type is " + bound.Bound->GetClassName());
- continue;
- }
- if(!IsTrue(bound.Orientation)) {
- size_t c = 0;
- BOOST_FOREACH(unsigned int& i, meshout.vertcnt) {
- std::reverse(meshout.verts.begin() + cnt,meshout.verts.begin() + cnt + c);
- cnt += c;
- }
- }
-
- }
- result.vertcnt.reserve(meshout.vertcnt.size()+result.vertcnt.size());
- if (meshout.vertcnt.size() <= 1) {
- result.verts.reserve(meshout.verts.size()+result.verts.size());
- std::copy(meshout.verts.begin(),meshout.verts.end(),std::back_inserter(result.verts));
- std::copy(meshout.vertcnt.begin(),meshout.vertcnt.end(),std::back_inserter(result.vertcnt));
- continue;
- }
- IFCImporter::LogDebug("fixing polygon with holes for triangulation via ear-cutting");
- // each hole results in two extra vertices
- result.verts.reserve(meshout.verts.size()+cnt*2+result.verts.size());
- // handle polygons with holes. our built in triangulation won't handle them as is, but
- // the ear cutting algorithm is solid enough to deal with them if we join the inner
- // holes with the outer boundaries by dummy connections.
- size_t outer_polygon_start = 0;
-
- // see if one of the polygons is a IfcFaceOuterBound - treats this as the outer boundary.
- // sadly we can't rely on it, the docs say 'At most one of the bounds shall be of the type IfcFaceOuterBound'
- std::vector<unsigned int>::iterator outer_polygon = meshout.vertcnt.end(), begin=meshout.vertcnt.begin(), iit;
- if (ob < face.Bounds.size()) {
- outer_polygon = begin + ob;
- outer_polygon_start = std::accumulate(begin,outer_polygon,0);
- }
- else {
- float area_outer_polygon = 1e-10f;
- // find the polygon with the largest area, it must be the outer bound.
- size_t max_vcount = 0;
- for(iit = begin; iit != meshout.vertcnt.end(); ++iit) {
- ai_assert(*iit);
- max_vcount = std::max(max_vcount,static_cast<size_t>(*iit));
- }
- std::vector<float> temp((max_vcount+2)*4);
- size_t vidx = 0;
- for(iit = begin; iit != meshout.vertcnt.end(); vidx += *iit++) {
- for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
- const aiVector3D& v = meshout.verts[vidx+vofs];
- temp[cnt++] = v.x;
- temp[cnt++] = v.y;
- temp[cnt++] = v.z;
- #ifdef _DEBUG
- temp[cnt] = std::numeric_limits<float>::quiet_NaN();
- #endif
- ++cnt;
- }
-
- aiVector3D nor;
- NewellNormal<4,4,4>(nor,*iit,&temp[0],&temp[1],&temp[2]);
- const float area = nor.SquareLength();
- if (area > area_outer_polygon) {
- area_outer_polygon = area;
- outer_polygon = iit;
- outer_polygon_start = vidx;
- }
- }
- }
- ai_assert(outer_polygon != meshout.vertcnt.end());
- typedef boost::tuple<unsigned int, unsigned int, unsigned int> InsertionPoint;
- std::vector< InsertionPoint > insertions(*outer_polygon,boost::make_tuple(0u,0u,0u));
- // iterate through all other polyloops and find points in the outer polyloop that are close
- size_t vidx = 0;
- for(iit = begin; iit != meshout.vertcnt.end(); vidx += *iit++) {
- if (iit == outer_polygon) {
- continue;
- }
- size_t best_ofs,best_outer;
- float best_dist = 1e10;
- for(size_t vofs = 0; vofs < *iit; ++vofs) {
- const aiVector3D& v = meshout.verts[vidx+vofs];
- for(size_t outer = 0; outer < *outer_polygon; ++outer) {
- if (insertions[outer].get<0>()) {
- continue;
- }
- const aiVector3D& o = meshout.verts[outer_polygon_start+outer];
- const float d = (o-v).SquareLength();
-
- if (d < best_dist) {
- best_dist = d;
- best_ofs = vofs;
- best_outer = outer;
- }
- }
- }
-
- // we will later insert a hidden connection line right after the closest point in the outer polygon
- insertions[best_outer] = boost::make_tuple(*iit,vidx,best_ofs);
- }
- // now that we collected all vertex connections to be added, build the output polygon
- cnt = *outer_polygon;
- for(size_t outer = 0; outer < *outer_polygon; ++outer) {
- const aiVector3D& o = meshout.verts[outer_polygon_start+outer];
- result.verts.push_back(o);
- const InsertionPoint& ins = insertions[outer];
- if (!ins.get<0>()) {
- continue;
- }
- for(size_t i = ins.get<2>(); i < ins.get<0>(); ++i) {
- result.verts.push_back(meshout.verts[ins.get<1>() + i]);
- }
- for(size_t i = 0; i < ins.get<2>(); ++i) {
- result.verts.push_back(meshout.verts[ins.get<1>() + i]);
- }
- // we need the first vertex of the inner polygon twice as we return to the
- // outer loop through the very same connection through which we got there.
- result.verts.push_back(meshout.verts[ins.get<1>() + ins.get<2>()]);
- // also append a copy of the initial insertion point to be able to continue the outer polygon
- result.verts.push_back(o);
- cnt += ins.get<0>()+2;
- }
- result.vertcnt.push_back(cnt);
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessPolyLine(const IFC::IfcPolyline& def, TempMesh& meshout, ConversionData& conv)
- {
- // this won't produce a valid mesh, it just spits out a list of vertices
- aiVector3D t;
- BOOST_FOREACH(const IFC::IfcCartesianPoint& cp, def.Points) {
- ConvertCartesianPoint(t,cp);
- meshout.verts.push_back(t);
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessClosedProfile(const IFC::IfcArbitraryClosedProfileDef& def, TempMesh& meshout, ConversionData& conv)
- {
- if(const IFC::IfcPolyline* poly = def.OuterCurve->ToPtr<IFC::IfcPolyline>()) {
- ProcessPolyLine(*poly,meshout,conv);
- if(meshout.verts.size()>2 && meshout.verts.front() == meshout.verts.back()) {
- meshout.verts.pop_back(); // duplicate element, first==last
- }
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcCurve entity, type is " + def.OuterCurve->GetClassName());
- return;
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessOpenProfile(const IFC::IfcArbitraryOpenProfileDef& def, TempMesh& meshout, ConversionData& conv)
- {
- if(const IFC::IfcPolyline* poly = def.Curve->ToPtr<IFC::IfcPolyline>()) {
- ProcessPolyLine(*poly,meshout,conv);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcBoundedCurve entity, type is " + def.Curve->GetClassName());
- return;
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessParametrizedProfile(const IFC::IfcParameterizedProfileDef& def, TempMesh& meshout, ConversionData& conv)
- {
- if(const IFC::IfcRectangleProfileDef* const cprofile = def.ToPtr<IFC::IfcRectangleProfileDef>()) {
- const float x = cprofile->XDim*0.5f, y = cprofile->YDim*0.5f;
- meshout.verts.reserve(meshout.verts.size()+4);
- meshout.verts.push_back( aiVector3D( x, y, 0.f ));
- meshout.verts.push_back( aiVector3D(-x, y, 0.f ));
- meshout.verts.push_back( aiVector3D(-x,-y, 0.f ));
- meshout.verts.push_back( aiVector3D( x,-y, 0.f ));
- meshout.vertcnt.push_back(4);
- }
- else if( const IFC::IfcCircleProfileDef* const circle = def.ToPtr<IFC::IfcCircleProfileDef>()) {
- if( const IFC::IfcCircleHollowProfileDef* const hollow = def.ToPtr<IFC::IfcCircleHollowProfileDef>()) {
- // TODO
- }
- const size_t segments = 32;
- const float delta = AI_MATH_TWO_PI_F/segments, radius = circle->Radius;
- meshout.verts.reserve(segments);
- float angle = 0.f;
- for(size_t i = 0; i < segments; ++i, angle += delta) {
- meshout.verts.push_back( aiVector3D( cos(angle)*radius, sin(angle)*radius, 0.f ));
- }
-
- meshout.vertcnt.push_back(segments);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcParameterizedProfileDef entity, type is " + def.GetClassName());
- return;
- }
- aiMatrix4x4 trafo;
- ConvertAxisPlacement(trafo, *def.Position,conv);
- BOOST_FOREACH(aiVector3D& v, meshout.verts) {
- v *= trafo;
- }
- }
- // ------------------------------------------------------------------------------------------------
- bool ProcessProfile(const IFC::IfcProfileDef& prof, TempMesh& meshout, ConversionData& conv)
- {
- if(const IFC::IfcArbitraryClosedProfileDef* const cprofile = prof.ToPtr<IFC::IfcArbitraryClosedProfileDef>()) {
- ProcessClosedProfile(*cprofile,meshout,conv);
- }
- else if(const IFC::IfcArbitraryOpenProfileDef* const copen = prof.ToPtr<IFC::IfcArbitraryOpenProfileDef>()) {
- ProcessOpenProfile(*copen,meshout,conv);
- }
- else if(const IFC::IfcParameterizedProfileDef* const cparam = prof.ToPtr<IFC::IfcParameterizedProfileDef>()) {
- ProcessParametrizedProfile(*cparam,meshout,conv);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcProfileDef entity, type is " + prof.GetClassName());
- return false;
- }
- return true;
- }
- // ------------------------------------------------------------------------------------------------
- void FixupFaceOrientation(TempMesh& result)
- {
- aiVector3D vavg;
- BOOST_FOREACH(aiVector3D& v, result.verts) {
- vavg += v;
- }
- // fixup face orientation.
- vavg /= static_cast<float>( result.verts.size() );
- size_t c = 0;
- BOOST_FOREACH(unsigned int cnt, result.vertcnt) {
- if (cnt>2){
- const aiVector3D& thisvert = result.verts[c];
- const aiVector3D normal((thisvert-result.verts[c+1])^(thisvert-result.verts[c+2]));
- if (normal*(thisvert-vavg) < 0) {
- std::reverse(result.verts.begin()+c,result.verts.begin()+cnt+c);
- }
- }
- c += cnt;
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessRevolvedAreaSolid(const IFC::IfcRevolvedAreaSolid& solid, TempMesh& result, ConversionData& conv)
- {
- TempMesh meshout;
- // first read the profile description
- if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
- return;
- }
- aiVector3D axis, pos;
- ConvertAxisPlacement(axis,pos,solid.Axis,conv);
- aiMatrix4x4 tb0,tb1;
- aiMatrix4x4::Translation(pos,tb0);
- aiMatrix4x4::Translation(-pos,tb1);
- const std::vector<aiVector3D>& in = meshout.verts;
- const size_t size=in.size();
-
- bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
- const float max_angle = solid.Angle*conv.angle_scale;
- if(fabs(max_angle) < 1e-3) {
- if(has_area) {
- result = meshout;
- }
- return;
- }
- const unsigned int cnt_segments = std::max(2u,static_cast<unsigned int>(16 * fabs(max_angle)/AI_MATH_HALF_PI_F));
- const float delta = max_angle/cnt_segments;
- has_area = has_area && fabs(max_angle) < AI_MATH_TWO_PI_F*0.99;
-
- result.verts.reserve(size*((cnt_segments+1)*4+(has_area?2:0)));
- result.vertcnt.reserve(size*cnt_segments+2);
- aiMatrix4x4 rot;
- rot = tb0 * aiMatrix4x4::Rotation(delta,axis,rot) * tb1;
- size_t base = 0;
- std::vector<aiVector3D>& out = result.verts;
- // dummy data to simplify later processing
- for(size_t i = 0; i < size; ++i) {
- out.insert(out.end(),4,in[i]);
- }
- for(unsigned int seg = 0; seg < cnt_segments; ++seg) {
- for(size_t i = 0; i < size; ++i) {
- const size_t next = (i+1)%size;
- result.vertcnt.push_back(4);
- const aiVector3D& base_0 = out[base+i*4+3],base_1 = out[base+next*4+3];
- out.push_back(base_0);
- out.push_back(base_1);
- out.push_back(rot*base_1);
- out.push_back(rot*base_0);
- }
- base += size*4;
- }
- out.erase(out.begin(),out.begin()+size*4);
- if(has_area) {
- // leave the triangulation of the profile area to the ear cutting
- // implementation in aiProcess_Triangulate - for now we just
- // feed in two huge polygons.
- base -= size*8;
- for(size_t i = size; i--; ) {
- out.push_back(out[base+i*4+3]);
- }
- for(size_t i = 0; i < size; ++i ) {
- out.push_back(out[i*4]);
- }
- result.vertcnt.push_back(size);
- result.vertcnt.push_back(size);
- }
- aiMatrix4x4 trafo;
- ConvertAxisPlacement(trafo, solid.Position,conv);
- BOOST_FOREACH(aiVector3D& v, out) {
- v *= trafo;
- }
- FixupFaceOrientation(result);
- IFCImporter::LogDebug("generate mesh procedurally by radial extrusion (IfcRevolvedAreaSolid)");
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessExtrudedAreaSolid(const IFC::IfcExtrudedAreaSolid& solid, TempMesh& result, ConversionData& conv)
- {
- TempMesh meshout;
-
- // first read the profile description
- if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
- return;
- }
- aiVector3D dir;
- ConvertDirection(dir,solid.ExtrudedDirection);
- dir *= solid.Depth;
- // assuming that `meshout.verts` is now a list of vertex points forming
- // the underlying profile, extrude along the given axis, forming new
- // triangles.
-
- const std::vector<aiVector3D>& in = meshout.verts;
- const size_t size=in.size();
- const bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
- if(solid.Depth < 1e-3) {
- if(has_area) {
- meshout = result;
- }
- return;
- }
- result.verts.reserve(size*(has_area?4:2));
- result.vertcnt.reserve(meshout.vertcnt.size()+2);
- for(size_t i = 0; i < size; ++i) {
- const size_t next = (i+1)%size;
- result.vertcnt.push_back(4);
- result.verts.push_back(in[i]);
- result.verts.push_back(in[next]);
- result.verts.push_back(in[next]+dir);
- result.verts.push_back(in[i]+dir);
- }
- if(has_area) {
- // leave the triangulation of the profile area to the ear cutting
- // implementation in aiProcess_Triangulate - for now we just
- // feed in two huge polygons.
- for(size_t i = size; i--; ) {
- result.verts.push_back(in[i]+dir);
- }
- for(size_t i = 0; i < size; ++i ) {
- result.verts.push_back(in[i]);
- }
- result.vertcnt.push_back(size);
- result.vertcnt.push_back(size);
- }
- aiMatrix4x4 trafo;
- ConvertAxisPlacement(trafo, solid.Position,conv);
- BOOST_FOREACH(aiVector3D& v, result.verts) {
- v *= trafo;
- }
- FixupFaceOrientation(result);
- IFCImporter::LogDebug("generate mesh procedurally by extrusion (IfcExtrudedAreaSolid)");
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessSweptAreaSolid(const IFC::IfcSweptAreaSolid& swept, TempMesh& meshout, ConversionData& conv)
- {
- if(const IFC::IfcExtrudedAreaSolid* const solid = swept.ToPtr<IFC::IfcExtrudedAreaSolid>()) {
- ProcessExtrudedAreaSolid(*solid,meshout,conv);
- }
- else if(const IFC::IfcRevolvedAreaSolid* const rev = swept.ToPtr<IFC::IfcRevolvedAreaSolid>()) {
- ProcessRevolvedAreaSolid(*rev,meshout,conv);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcSweptAreaSolid entity, type is " + swept.GetClassName());
- }
- }
- // ------------------------------------------------------------------------------------------------
- enum Intersect {
- Intersect_No,
- Intersect_LiesOnPlane,
- Intersect_Yes
- };
- // ------------------------------------------------------------------------------------------------
- Intersect IntersectSegmentPlane(const aiVector3D& p,const aiVector3D& n, const aiVector3D& e0, const aiVector3D& e1, aiVector3D& out)
- {
- const aiVector3D pdelta = e0 - p, seg = e1-e0;
- const float dotOne = n*seg, dotTwo = -(n*pdelta);
- if (fabs(dotOne) < 1e-6) {
- return fabs(dotTwo) < 1e-6f ? Intersect_LiesOnPlane : Intersect_No;
- }
- const float t = dotTwo/dotOne;
- // t must be in [0..1] if the intersection point is within the given segment
- if (t > 1.f || t < 0.f) {
- return Intersect_No;
- }
- out = e0+t*seg;
- return Intersect_Yes;
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessBoolean(const IFC::IfcBooleanResult& boolean, TempMesh& result, ConversionData& conv)
- {
- if(const IFC::IfcBooleanClippingResult* const clip = boolean.ToPtr<IFC::IfcBooleanClippingResult>()) {
- if(clip->Operator != "DIFFERENCE") {
- IFCImporter::LogWarn("encountered unsupported boolean operator: " + (std::string)clip->Operator);
- return;
- }
- TempMesh meshout;
- const IFC::IfcHalfSpaceSolid* const hs = clip->SecondOperand->ResolveSelectPtr<IFC::IfcHalfSpaceSolid>(conv.db);
- if(!hs) {
- IFCImporter::LogError("expected IfcHalfSpaceSolid as second clipping operand");
- return;
- }
- const IFC::IfcPlane* const plane = hs->BaseSurface->ToPtr<IFC::IfcPlane>();
- if(!plane) {
- IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
- return;
- }
-
- if(const IFC::IfcBooleanResult* const op0 = clip->FirstOperand->ResolveSelectPtr<IFC::IfcBooleanResult>(conv.db)) {
- ProcessBoolean(*op0,meshout,conv);
- }
- else if (const IFC::IfcSweptAreaSolid* const swept = clip->FirstOperand->ResolveSelectPtr<IFC::IfcSweptAreaSolid>(conv.db)) {
- ProcessSweptAreaSolid(*swept,meshout,conv);
- }
- else {
- IFCImporter::LogError("expected IfcSweptAreaSolid or IfcBooleanResult as first clipping operand");
- return;
- }
- // extract plane base position vector and normal vector
- aiVector3D p,n(0.f,0.f,1.f);
- if (plane->Position->Axis) {
- ConvertDirection(n,plane->Position->Axis.Get());
- }
- ConvertCartesianPoint(p,plane->Position->Location);
- if(!IsTrue(hs->AgreementFlag)) {
- n *= -1.f;
- }
- // clip the current contents of `meshout` against the plane we obtained from the second operand
- const std::vector<aiVector3D>& in = meshout.verts;
- std::vector<aiVector3D>& outvert = result.verts;
- std::vector<unsigned int>::const_iterator outer_polygon = meshout.vertcnt.end(), begin=meshout.vertcnt.begin(), iit;
-
- unsigned int vidx = 0;
- for(iit = begin; iit != meshout.vertcnt.end(); vidx += *iit++) {
- unsigned int newcount = 0;
- for(unsigned int i = 0; i < *iit; ++i) {
- const aiVector3D& e0 = in[vidx+i], e1 = in[vidx+(i+1)%*iit];
- // does the next segment intersect the plane?
- aiVector3D isectpos;
- const Intersect isect = IntersectSegmentPlane(p,n,e0,e1,isectpos);
- if (isect == Intersect_No || isect == Intersect_LiesOnPlane) {
- if ( (e0-p).Normalize()*n > 0 ) {
- outvert.push_back(e0);
- ++newcount;
- }
- }
- else if (isect == Intersect_Yes) {
- if ( (e0-p).Normalize()*n > 0 ) {
- // e0 is on the right side, so keep it
- outvert.push_back(e0);
- outvert.push_back(isectpos);
- newcount += 2;
- }
- else {
- // e0 is on the wrong side, so drop it and keep e1 instead
- outvert.push_back(isectpos);
- ++newcount;
- }
- }
- }
- if(newcount) {
- result.vertcnt.push_back(newcount);
- }
- }
- IFCImporter::LogDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)");
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is " + boolean.GetClassName());
- }
- }
- // ------------------------------------------------------------------------------------------------
- int ConvertShadingMode(const std::string& name)
- {
- if (name == "BLINN") {
- return aiShadingMode_Blinn;
- }
- else if (name == "FLAT" || name == "NOTDEFINED") {
- return aiShadingMode_NoShading;
- }
- else if (name == "PHONG") {
- return aiShadingMode_Phong;
- }
- IFCImporter::LogWarn("shading mode "+name+" not recognized by Assimp, using Phong instead");
- return aiShadingMode_Phong;
- }
- // ------------------------------------------------------------------------------------------------
- unsigned int ProcessMaterials(const IFC::IfcRepresentationItem& item, ConversionData& conv)
- {
- aiString name;
- aiColor4D col;
- if (conv.materials.empty()) {
- std::auto_ptr<MaterialHelper> mat(new MaterialHelper());
- name.Set("<IFCDefault>");
- mat->AddProperty(&name,AI_MATKEY_NAME);
- col = aiColor4D(0.6f,0.6f,0.6f,1.0f);
- mat->AddProperty(&col,1, AI_MATKEY_COLOR_DIFFUSE);
- conv.materials.push_back(mat.release());
- }
- STEP::DB::RefMapRange range = conv.db.GetRefs().equal_range(item.GetID());
- for(;range.first != range.second; ++range.first) {
- if(const IFC::IfcStyledItem* const styled = conv.db.GetObject((*range.first).second)->ToPtr<IFC::IfcStyledItem>()) {
- BOOST_FOREACH(const IFC::IfcPresentationStyleAssignment& as, styled->Styles) {
- BOOST_FOREACH(const IFC::IfcPresentationStyleSelect* sel, as.Styles) {
-
- if (const IFC::IfcSurfaceStyle* surf = sel->ResolveSelectPtr<IFC::IfcSurfaceStyle>(conv.db)) {
- const std::string side = static_cast<std::string>(surf->Side);
- if (side != "BOTH") {
- IFCImporter::LogWarn("ignoring surface side marker on IFC::IfcSurfaceStyle: " + side);
- }
- std::auto_ptr<MaterialHelper> mat(new MaterialHelper());
- name.Set((surf->Name? surf->Name.Get() : "IfcSurfaceStyle_Unnamed"));
- mat->AddProperty(&name,AI_MATKEY_NAME);
- // now see which kinds of surface information are present
- BOOST_FOREACH(const IFC::IfcSurfaceStyleElementSelect* sel2, surf->Styles) {
- if (const IFC::IfcSurfaceStyleShading* shade = sel2->ResolveSelectPtr<IFC::IfcSurfaceStyleShading>(conv.db)) {
- aiColor4D col_base;
- ConvertColor(col_base, shade->SurfaceColour);
- mat->AddProperty(&col,1, AI_MATKEY_COLOR_DIFFUSE);
- if (const IFC::IfcSurfaceStyleRendering* ren = shade->ToPtr<IFC::IfcSurfaceStyleRendering>()) {
-
- if (ren->DiffuseColour) {
- ConvertColor(col, ren->DiffuseColour.Get(),conv,&col_base);
- mat->AddProperty(&col,1, AI_MATKEY_COLOR_DIFFUSE);
- }
- if (ren->SpecularColour) {
- ConvertColor(col, ren->SpecularColour.Get(),conv,&col_base);
- mat->AddProperty(&col,1, AI_MATKEY_COLOR_SPECULAR);
- }
- if (ren->TransmissionColour) {
- ConvertColor(col, ren->TransmissionColour.Get(),conv,&col_base);
- mat->AddProperty(&col,1, AI_MATKEY_COLOR_TRANSPARENT);
- }
- if (ren->ReflectionColour) {
- ConvertColor(col, ren->ReflectionColour.Get(),conv,&col_base);
- mat->AddProperty(&col,1, AI_MATKEY_COLOR_REFLECTIVE);
- }
- const int shading = (ren->SpecularHighlight && ren->SpecularColour)?ConvertShadingMode(ren->ReflectanceMethod):aiShadingMode_Gouraud;
- mat->AddProperty(&shading,1, AI_MATKEY_SHADING_MODEL);
- if (ren->SpecularHighlight) {
- if(const EXPRESS::REAL* rt = ren->SpecularHighlight.Get()->ToPtr<EXPRESS::REAL>()) {
- // at this point we don't distinguish between the two distinct ways of
- // specifying highlight intensities. leave this to the user.
- const float e = *rt;
- mat->AddProperty(&e,1,AI_MATKEY_SHININESS);
- }
- else {
- IFCImporter::LogWarn("unexpected type error, SpecularHighlight should be a REAL");
- }
- }
- }
- }
- else if (const IFC::IfcSurfaceStyleWithTextures* tex = sel2->ResolveSelectPtr<IFC::IfcSurfaceStyleWithTextures>(conv.db)) {
- // XXX
- }
- }
- conv.materials.push_back(mat.release());
- return conv.materials.size()-1;
- }
- }
- }
- }
- }
- return 0;
- }
- // ------------------------------------------------------------------------------------------------
- bool ProcessTopologicalItem(const IFC::IfcTopologicalRepresentationItem& topo, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
- {
- TempMesh meshtmp;
- if(const IFC::IfcConnectedFaceSet* fset = topo.ToPtr<IFC::IfcConnectedFaceSet>()) {
- ProcessConnectedFaceSet(*fset,meshtmp,conv);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcTopologicalRepresentationItem entity, type is " + topo.GetClassName());
- return false;
- }
- aiMesh* const mesh = meshtmp.ToMesh();
- if(mesh) {
- mesh->mMaterialIndex = ProcessMaterials(topo,conv);
- mesh_indices.push_back(conv.meshes.size());
- conv.meshes.push_back(mesh);
- return true;
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- bool ProcessGeometricItem(const IFC::IfcGeometricRepresentationItem& geo, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
- {
- TempMesh meshtmp;
- if(const IFC::IfcShellBasedSurfaceModel* shellmod = geo.ToPtr<IFC::IfcShellBasedSurfaceModel>()) {
- BOOST_FOREACH(const IFC::IfcShell* shell,shellmod->SbsmBoundary) {
- try {
- const EXPRESS::ENTITY& e = shell->To<IFC::ENTITY>();
- const IFC::IfcConnectedFaceSet& fs = conv.db.MustGetObject(e).To<IFC::IfcConnectedFaceSet>();
- ProcessConnectedFaceSet(fs,meshtmp,conv);
- }
- catch(std::bad_cast&) {
- IFCImporter::LogWarn("unexpected type error, IfcShell ought to inherit from IfcConnectedFaceSet");
- }
- }
- }
- else if(const IFC::IfcSweptAreaSolid* swept = geo.ToPtr<IFC::IfcSweptAreaSolid>()) {
- ProcessSweptAreaSolid(*swept,meshtmp,conv);
- }
- else if(const IFC::IfcManifoldSolidBrep* brep = geo.ToPtr<IFC::IfcManifoldSolidBrep>()) {
- ProcessConnectedFaceSet(brep->Outer,meshtmp,conv);
- }
- else if(const IFC::IfcFaceBasedSurfaceModel* surf = geo.ToPtr<IFC::IfcFaceBasedSurfaceModel>()) {
- BOOST_FOREACH(const IFC::IfcConnectedFaceSet& fc, surf->FbsmFaces) {
- ProcessConnectedFaceSet(fc,meshtmp,conv);
- }
- }
- else if(const IFC::IfcBooleanResult* boolean = geo.ToPtr<IFC::IfcBooleanResult>()) {
- ProcessBoolean(*boolean,meshtmp,conv);
- }
- else if(const IFC::IfcBoundingBox* bb = geo.ToPtr<IFC::IfcBoundingBox>()) {
- // silently skip over bounding boxes
- return false;
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcGeometricRepresentationItem entity, type is " + geo.GetClassName());
- return false;
- }
- aiMesh* const mesh = meshtmp.ToMesh();
- if(mesh) {
- mesh->mMaterialIndex = ProcessMaterials(geo,conv);
- mesh_indices.push_back(conv.meshes.size());
- conv.meshes.push_back(mesh);
- return true;
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- void AssignAddedMeshes(std::vector<unsigned int>& mesh_indices,aiNode* nd,ConversionData& conv)
- {
- if (!mesh_indices.empty()) {
- // make unique
- std::sort(mesh_indices.begin(),mesh_indices.end());
- std::vector<unsigned int>::iterator it_end = std::unique(mesh_indices.begin(),mesh_indices.end());
-
- const size_t size = std::distance(mesh_indices.begin(),it_end);
- nd->mNumMeshes = size;
- nd->mMeshes = new unsigned int[nd->mNumMeshes];
- for(unsigned int i = 0; i < nd->mNumMeshes; ++i) {
- nd->mMeshes[i] = mesh_indices[i];
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- bool TryQueryMeshCache(const IFC::IfcRepresentationItem& item, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
- {
- ConversionData::MeshCache::const_iterator it = conv.cached_meshes.find(&item);
- if (it != conv.cached_meshes.end()) {
- std::copy((*it).second.begin(),(*it).second.end(),std::back_inserter(mesh_indices));
- return true;
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- void PopulateMeshCache(const IFC::IfcRepresentationItem& item, const std::vector<unsigned int>& mesh_indices, ConversionData& conv)
- {
- conv.cached_meshes[&item] = mesh_indices;
- }
- // ------------------------------------------------------------------------------------------------
- bool ProcessRepresentationItem(const IFC::IfcRepresentationItem& item, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
- {
- if(const IFC::IfcTopologicalRepresentationItem* const topo = item.ToPtr<IFC::IfcTopologicalRepresentationItem>()) {
- if (!TryQueryMeshCache(item,mesh_indices,conv)) {
- if(ProcessTopologicalItem(*topo,mesh_indices,conv)) {
- PopulateMeshCache(item,mesh_indices,conv);
- }
- else return false;
- }
- return true;
- }
- else if(const IFC::IfcGeometricRepresentationItem* const geo = item.ToPtr<IFC::IfcGeometricRepresentationItem>()) {
- if (!TryQueryMeshCache(item,mesh_indices,conv)) {
- if(ProcessGeometricItem(*geo,mesh_indices,conv)) {
- PopulateMeshCache(item,mesh_indices,conv);
-
- }
- else return false;
- }
- return true;
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- void ResolveObjectPlacement(aiMatrix4x4& m, const IFC::IfcObjectPlacement& place, ConversionData& conv)
- {
- if (const IFC::IfcLocalPlacement* const local = place.ToPtr<IFC::IfcLocalPlacement>()){
- ConvertAxisPlacement(m, *local->RelativePlacement, conv);
- if (local->PlacementRelTo) {
- aiMatrix4x4 tmp;
- ResolveObjectPlacement(tmp,local->PlacementRelTo.Get(),conv);
- m = tmp * m;
- }
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcObjectPlacement entity, type is " + place.GetClassName());
- }
- }
- // ------------------------------------------------------------------------------------------------
- void GetAbsTransform(aiMatrix4x4& out, const aiNode* nd, ConversionData& conv)
- {
- aiMatrix4x4 t;
- if (nd->mParent) {
- GetAbsTransform(t,nd->mParent,conv);
- }
- out = t*nd->mTransformation;
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessMappedItem(const IFC::IfcMappedItem& mapped, aiNode* nd_src, std::vector< aiNode* >& subnodes_src, ConversionData& conv)
- {
- // insert a custom node here, the cartesian transform operator is simply a conventional transformation matrix
- std::auto_ptr<aiNode> nd(new aiNode());
- nd->mName.Set("MappedItem");
-
- std::vector<unsigned int> meshes;
- const IFC::IfcRepresentation& repr = mapped.MappingSource->MappedRepresentation;
- BOOST_FOREACH(const IFC::IfcRepresentationItem& item, repr.Items) {
- if(!ProcessRepresentationItem(item,meshes,conv)) {
- IFCImporter::LogWarn("skipping unknown mapped entity, type is " + item.GetClassName());
- }
- }
- AssignAddedMeshes(meshes,nd.get(),conv);
-
- // handle the cartesian operator
- aiMatrix4x4 m;
- ConvertTransformOperator(m, *mapped.MappingTarget);
- aiMatrix4x4 msrc;
- ConvertAxisPlacement(msrc,*mapped.MappingSource->MappingOrigin,conv);
- aiMatrix4x4 minv = msrc;
- minv.Inverse();
- //aiMatrix4x4 correct;
- //GetAbsTransform(correct,nd_src,conv);
- nd->mTransformation = nd_src->mTransformation * minv * m * msrc;
- subnodes_src.push_back(nd.release());
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessProductRepresentation(const IFC::IfcProduct& el, aiNode* nd, std::vector< aiNode* >& subnodes, ConversionData& conv)
- {
- if(!el.Representation) {
- return;
- }
- if(conv.settings.skipSpaceRepresentations) {
- if(const IFC::IfcSpace* const space = el.ToPtr<IFC::IfcSpace>()) {
- IFCImporter::LogWarn("skipping IfcSpace entity due to importer settings");
- return;
- }
- }
- std::vector<unsigned int> meshes;
-
- BOOST_FOREACH(const IFC::IfcRepresentation& repr, el.Representation.Get()->Representations) {
- if (conv.settings.skipCurveRepresentations && repr.RepresentationType && repr.RepresentationType.Get() == "Curve2D") {
- IFCImporter::LogWarn("skipping Curve2D representation item due to importer settings");
- continue;
- }
- BOOST_FOREACH(const IFC::IfcRepresentationItem& item, repr.Items) {
- if(const IFC::IfcMappedItem* const geo = item.ToPtr<IFC::IfcMappedItem>()) {
- ProcessMappedItem(*geo,nd,subnodes,conv);
- }
- else {
- ProcessRepresentationItem(item,meshes,conv);
- }
- }
- }
- AssignAddedMeshes(meshes,nd,conv);
- }
- // ------------------------------------------------------------------------------------------------
- aiNode* ProcessSpatialStructure(aiNode* parent, const IFC::IfcProduct& el, ConversionData& conv)
- {
- const STEP::DB::RefMap& refs = conv.db.GetRefs();
- // add an output node for this spatial structure
- std::auto_ptr<aiNode> nd(new aiNode());
- nd->mName.Set(el.GetClassName()+"_"+(el.Name?el.Name:el.GlobalId));
- nd->mParent = parent;
- if(el.ObjectPlacement) {
- ResolveObjectPlacement(nd->mTransformation,el.ObjectPlacement.Get(),conv);
- }
- // convert everything contained directly within this structure,
- // this may result in more nodes.
- std::vector< aiNode* > subnodes;
- try {
- ProcessProductRepresentation(el,nd.get(),subnodes,conv);
- // locate aggregates and 'contained-in-here'-elements of this spatial structure and add them in recursively
- STEP::DB::RefMapRange range = refs.equal_range(el.GetID());
- for(STEP::DB::RefMapRange range2=range;range2.first != range.second; ++range2.first) {
- if(const IFC::IfcRelContainedInSpatialStructure* const cont = conv.db.GetObject((*range2.first).second)->
- ToPtr<IFC::IfcRelContainedInSpatialStructure>()) {
-
- BOOST_FOREACH(const IFC::IfcProduct& pro, cont->RelatedElements) {
- subnodes.push_back( ProcessSpatialStructure(nd.get(),pro,conv) );
- }
- break;
- }
- }
- for(;range.first != range.second; ++range.first) {
- if(const IFC::IfcRelAggregates* const aggr = conv.db.GetObject((*range.first).second)->ToPtr<IFC::IfcRelAggregates>()) {
- // move aggregate elements to a separate node since they are semantically different than elements that are merely 'contained'
- std::auto_ptr<aiNode> nd_aggr(new aiNode());
- nd_aggr->mName.Set("$Aggregates");
- nd_aggr->mParent = nd.get();
- nd_aggr->mChildren = new aiNode*[aggr->RelatedObjects.size()]();
- BOOST_FOREACH(const IFC::IfcObjectDefinition& def, aggr->RelatedObjects) {
- if(const IFC::IfcProduct* const prod = def.ToPtr<IFC::IfcProduct>()) {
- nd_aggr->mChildren[nd_aggr->mNumChildren++] = ProcessSpatialStructure(nd_aggr.get(),*prod,conv);
- }
- }
-
- subnodes.push_back( nd_aggr.release() );
- break;
- }
- }
- if (subnodes.size()) {
- nd->mChildren = new aiNode*[subnodes.size()]();
- BOOST_FOREACH(aiNode* nd2, subnodes) {
- nd->mChildren[nd->mNumChildren++] = nd2;
- nd2->mParent = nd.get();
- }
- }
- }
- catch(...) {
- // it hurts, but I don't want to pull boost::ptr_vector into -noboost only for these few spots here
- std::for_each(subnodes.begin(),subnodes.end(),delete_fun<aiNode>());
- throw;
- }
- return nd.release();
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessSpatialStructures(ConversionData& conv)
- {
- // process all products in the file. it is reasonable to assume that a
- // file that is relevant for us contains at least a site or a building.
- const STEP::DB::ObjectMapByType& map = conv.db.GetObjectsByType();
- STEP::DB::ObjectMapRange range = map.equal_range("ifcsite");
- if (range.first == map.end()) {
- range = map.equal_range("ifcbuilding");
- if (range.first == map.end()) {
- // no site, no building - try all ids. this will take ages, but it should rarely happen.
- range = STEP::DB::ObjectMapRange(map.begin(),map.end());
- }
- }
-
- for(;range.first != range.second; ++range.first) {
- const IFC::IfcSpatialStructureElement* const prod = (*range.first).second->ToPtr<IFC::IfcSpatialStructureElement>();
- if(!prod) {
- continue;
- }
- IFCImporter::LogDebug("looking at spatial structure `" + (prod->Name ? prod->Name.Get() : "unnamed") + "`" + (prod->ObjectType? " which is of type " + prod->ObjectType.Get():""));
-
- // the primary site is referenced by an IFCRELAGGREGATES element which assigns it to the IFCPRODUCT
- const STEP::DB::RefMap& refs = conv.db.GetRefs();
- STEP::DB::RefMapRange range = refs.equal_range(conv.proj.GetID());
- for(;range.first != range.second; ++range.first) {
- if(const IFC::IfcRelAggregates* const aggr = conv.db.GetObject((*range.first).second)->ToPtr<IFC::IfcRelAggregates>()) {
-
- BOOST_FOREACH(const IFC::IfcObjectDefinition& def, aggr->RelatedObjects) {
- // comparing pointer values is not sufficient, we would need to cast them to the same type first
- // as there is multiple inheritance in the game.
- if (def.GlobalId == prod->GlobalId) {
- IFCImporter::LogDebug("selecting this spatial structure as root structure");
- // got it, this is the primary site.
- conv.out->mRootNode = ProcessSpatialStructure(NULL,*prod,conv);
- return;
- }
- }
- }
- }
- }
- IFCImporter::ThrowException("Failed to determine primary site element");
- }
- // ------------------------------------------------------------------------------------------------
- void MakeTreeRelative(aiNode* start, const aiMatrix4x4& combined)
- {
- // combined is the parent's absolute transformation matrix
- aiMatrix4x4 old = start->mTransformation;
- if (!combined.IsIdentity()) {
- start->mTransformation = aiMatrix4x4(combined).Inverse() * start->mTransformation;
- }
- // All nodes store absolute transformations right now, so we need to make them relative
- for (unsigned int i = 0; i < start->mNumChildren; ++i) {
- MakeTreeRelative(start->mChildren[i],old);
- }
- }
- // ------------------------------------------------------------------------------------------------
- void MakeTreeRelative(ConversionData& conv)
- {
- MakeTreeRelative(conv.out->mRootNode,aiMatrix4x4());
- }
- } // !anon
- #endif
|